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Abstract

Many state-of-the-art segmentation algorithms rely on

Markov or Conditional Random Field models designed to

enforce spatial and global consistency constraints. This is

often accomplished by introducing additional latent vari-

ables to the model, which can greatly increase its complex-

ity. As a result, estimating the model parameters or com-

puting the best maximum a posteriori (MAP) assignment be-

comes a computationally expensive task.

In a series of experiments on the PASCAL and the MSRC

datasets, we were unable to find evidence of a significant

performance increase attributed to the introduction of such

constraints. On the contrary, we found that similar levels

of performance can be achieved using a much simpler de-

sign that essentially ignores these constraints. This more

simple approach makes use of the same local and global

features to leverage evidence from the image, but instead

directly biases the preferences of individual pixels. While

our investigation does not prove that spatial and consis-

tency constraints are not useful in principle, it points to the

conclusion that they should be validated in a larger context.

1. Introduction

Segmenting natural images into semantically consistent

regions is of fundamental importance to computer vision

and image understanding, and good performance on the

PASCAL [4] and MSRC [26] datasets has become a de facto

standard for success. A number of recent approaches have

pushed the state of the art on these data sets by introducing

sophisticated graphical models that include constraints on

both local spatial smoothness and global consistency.

Markov Random Fields (MRF) and Conditional Random

Fields (CRF) are at the heart of many modern segmentation

approaches. A recent trend has been to model global con-

straints as latent variables, which interact with local vari-

ables either directly or through intermediate hierarchies.

However, these global variables are usually coupled with

global features which are computed at a global or very large

scale. Thus, it unclear whether it is the constraints or the

features that give these models their power. We therefore

ask the question, what happens when we collapse the super-

structures of global variables and incorporate their features

directly into the local variables with which they interact?

In this paper, we show that in doing so, we obtain very

similar performance levels by using only global features

that already appear in the literature [8] to leverage evidence

from the image and bias the preferences of individual pix-

els or superpixels. This results in a much simpler model

than those found in other recent approaches, which rely on

complex hierarchies and global context models. Moreover,

when using these global features, removing the local spa-

tial smoothness term only results in minimal performance

degradation.

To demonstrate our point, we compare increasingly com-

plex versions of a state-of-the-art CRF-based segmentation

algorithm patterned after the model proposed by Gonfaus

et al. [8] that has been shown to yield excellent perfor-

mance on the PASCAL and the MSRC datasets. As will

be shown, for the MSRC dataset, the simplest model which

relies exclusively on image features outperforms state-of-

the-art models which enforce spatial smoothness and global

consistency constraints. On the PASCAL dataset, the same

simple model shows only a slight decline in performance.

This is not to say that spatial constraints or other kinds

of global constraints are not useful in principle. However,

it does suggest that recently reported results do not conclu-

sively demonstrate their usefulness, at least in the context

of the MSRC and PASCAL datasets.

2. Motivation and Related Work

Markov Random Fields were originally introduced as

generative models [2], where each variable is exclusively

associated with its own observation. In the context of image

segmentation, this is to say that the data term, or “unary po-

tential” as it is sometimes referred to, of a given superpixel 1

can only draw evidence from within itself. This requirement

has proved to be too stringent for most vision tasks includ-

1For simplicity, we will treat superpixels as atomic image regions for

the remainder of the text. However, for most algorithms, pixels can be used

interchangeably.



ing segmentation, and recent approaches have opted for the

more flexible Conditional Random Field (CRF) [15], which

allows the label of a superpixel to depend on features col-

lected from itself and its neighbors.

The Potts model is commonly used to enforce local spa-

tial smoothness constraints for image segmentation (Fig. 2).

Despite its continued popularity, there has been a consider-

able amount of work searching for more sophisticated spa-

tial smoothness terms. Gould et al. [9] use relative loca-

tion features to model class-specific spatial dependencies

between pixels. These are used to supplement appearance

based features when producing the final segmentation. In

their model, the smoothness term is pre-computed at a sep-

arate stage, not modeled jointly with the data term during

inference. Batra et al. [1] also learn class-specific affini-

ties in a CRF framework, where these affinities model the

relationship between visual words instead of between pix-

els. Galleguillos et al. [7] model the full joint transition

likelihood between neighboring pixels, where the parame-

ters of their spatial model are set via simple counting of

co-occurrences in the labeled images. Though this is ar-

guably sub-optimal, the method was shown to perform well

in practice.

It is well known that leveraging data from larger support

gives features more discriminative power. However, this has

a subtle side effect: it reduces the significance of the spatial

term, namely the smoothness or consistency constraints that

are encoded as edges of the CRF. As shown in Figure 1, if

the features of a superpixel are computed from a neighbor-

hood much greater than the superpixel itself, the smooth-

ness constraint between adjacent superpixels becomes al-

most redundant since they are associated with highly corre-

lated, largely overlapping observations.

Indeed, several other methods have found success using

simpler models that do not enforce smoothness, raising the

question about the necessity of more elaborate CRFs. It was

shown in [24] that much greater performance gains could be

attained by finding powerful image features rather than en-

forcing spatial constraints. This finding was echoed by Ver-

beek and Triggs [29] who concluded that complex smooth-

ness priors help only in the absence of global contextual in-

formation provided by image-wide aggregate features, and

by the success of the Semantic Texton Forests [25] which

do not involve any spatial model.

Consequently, recent CRF models for segmentation have

shifted their focus from regularizing local smoothness to

encouraging global consistency [13, 14, 8]. A further mo-

tivation for this is the belief that information stored in the

local nodes is incapable of capturing the “big picture” or

overview of the scene. To do this, Shotton et al. [25] train

an image-level classifier and use its prediction to modify the

probabilities given by the local pixel-level classifiers. Sim-

ilar to many other approaches [10, 22, 16, 21], the image-

(a) (b)

Figure 1. Spatial support of local image features for neighbor-

ing superpixels computed at different scales. The bounding boxes

show the extent of the spatial support of the local features de-

scribed in Section 4.1, which are similar to the features used in [8]

and other works. In (a), one side of the bounding box is 4 times

the mean superpixel width. In (b), it is 6 times the mean superpixel

width. Because the regions significantly overlap, their class pre-

dictions will be highly correlated. This has the effect of reducing

the impact in performance attributed to the spatial term.

level cues are inferred separately from the labels of the pix-

els. Despite the lack of any spatial constraints, this method

achieved impressive performance that surpassed the state-

of-the-art. Joint inference of pixel labels and image-level

preference was studied by Kohli et al. [13], where robust

PN potentials are used to encourage consistency between

the labels of local and global variables. Ladicky et al.

[14] further propose an associative hierarchical CRF model,

which has a more elaborate structure that includes inter-

mediate layers in between. In these approaches, the label

sets for the global nodes are limited to the set of semantic

classes, possibly augmented by an additional “background”

label. This restricts image-level preference to a single class

at most, ignoring scenarios where there is more than one

dominant object type in the image.

To address this issue Gonfaus et al. [8] use more expres-

sive constraints called “harmony potentials”, which model

global preferences using the power set over all semantic

classes. Although this makes it possible to have multi-

ple preferences at the global level, the exponential sized

power set is prohibitively expensive to search and has to be

heuristically truncated to make it computationally afford-

able. Hence in practice, only a small subset is used.

An important but often overlooked detail of these hier-

archical models is the use of specialized global features de-

signed to enforce global consistency. As we will show, di-

rectly embedding these features into a much simpler graph-

ical model results in similar performance.

3. Segmentation using CRF Models

In order to investigate the effect of imposing spatial and

global constraints, we designed a CRF model inspired by

the one proposed by Gonfaus et al. [8], shown in Fig. 2(d).
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(a) Potts model (b) Robust PN model [12] (c) Harmony model [8] (d) Class independent model (DPG)

Figure 2. Increasingly more sophisticated CRFs for modeling global preference. Standard CRFs include local nodes Vl connected by edges

El. Observations are denoted by gray nodes. Class labels are indicated by color. High level preferences can be encoded by adding global

nodes Vg connected by edges Eg . (a) The Potts model penalizes all the local nodes with a label different from the global node. (b) The

robust PN potential is similar to the Potts model but adds an extra “free label” label that does not penalize local nodes. (c) The harmony

potential allows different labels to coexist in a power set. However, the size of the power set makes optimization difficult. (d) The class

independent model (DPG) used in this work models each of the K classes with its own global node to make the inference more tractable.

In Section 4, we will explore the contributions of the data

term, spatial constraints, and global preferences by compar-

ing increasingly complex versions of this model.

3.1. CRFs with Global Preferences

The standard CRF model can be extended to incorporate

global consistency constraints as seen in Fig. 2(d). Such

models typically contain a set of nodes V = (Vl,Vg) where

the global nodes Vg encode high-level preferences in addi-

tion to local nodes Vl which represent superpixels.

The edges E = (El, Eg) represent interactions at two dif-

ferent levels. El model the relationship between neighbor-

ing local nodes. Eg link local nodes to global nodes, which

serve to bias local labels to be consistent with global prefer-

ences. Thus, the extended energy function takes the form:

Ew(Y |X) =
∑

i∈Vl

Di(yi)
︸ ︷︷ ︸

data term

+
∑

(i,j)∈El

Pij(yi, yj)
︸ ︷︷ ︸

pairwise term

+
∑

(i,g)∈Eg

Gig(yi, yg)
︸ ︷︷ ︸

global term

(1)

where yi ∈ {1, · · · ,K} are class labels for superpixels and

yg ∈ {0, 1} represent the states of global preferences.

Minimizing this energy function is equivalent to per-

forming MAP inference on the CRF. Though this is in gen-

eral NP-hard on graphs with loopy structures, good approx-

imate solutions can be found using efficient energy mini-

mization techniques (we use belief propagation [19]).

3.2. Energy Function

The energy function in Eq. 1 consists of three terms: the

data term, the spatial term, and the global term, described

below.

Data Term The data term Di(yi) encourages agreement

between a node’s label yi and the local image evidence xi.

We model it as a linear combination of the output scores

given by S classifiers cs, such as support vector machines

(SVM) trained to predict the label of a superpixel. It is writ-

ten as

Di(yi) =

S∑

s=1

wD
yi,s

cs(xi, yi). (2)

Spatial Pairwise Term The pairwise term Pij(yi, yj)
represents the cost of transition from class yi to yj , and is

expressed in a non-parametric form as

Pij(yi, yj) = wP
yi,yj

. (3)

Like the standard contrast-dependent Potts model [26], this

term encodes valid configurations according to the labels of

neighboring nodes (yi, yj). It also considers the difference

in color ||xi−xj ||
2 between pairs of superpixels, as well as

their position relative to one another, allowing the model to

capture geometric relationships such as “sky should appear

above grass” (as illustrated in Fig. 3).

Global Term To enforce global consistency, a set of

global nodes are introduced, resulting in a global term

Gig(yi, yg) = wG
yi,yg

. (4)

As shown in Fig. 2(d), this term expresses the dependency

between the local nodes and K global nodes whose labels

are inferred jointly with the local nodes. Our approach is

similar to the harmony potential approach [8], except that

it does not need to model the full power set of all class la-

bels. This makes it more computationally tractable, but sac-

rifices the capability of modeling category co-occurrence.

In contrast, other approaches like [12] can only bias the

local nodes towards a single class label.
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Figure 3. Learned spatial relationships in the pairwise term. The

pairwise term wP (xi, xj , yi, yj) in matrix form where columns

indicate classes yi belonging to superpixel i and rows indicate

classes yj belonging to neighboring j for the MSRC-21 dataset.

Red colors indicate that yi is likely to appear above yj . Left-of and

right-of relationships are also learned but not shown here. Gradi-

ent information is also ignored for this illustration.

3.3. Parameter Learning

As in [27, 20], we express the energy function of the CRF

(Eq. 1) in a linear form Ew(X,Y ) = wΨ(X,Y ), where

Ψ(X,Y ) is a vector defined as
[
ΨD ΨP ΨG

]
. Here,

ΨD is a vector with S entries with ΨD
s = cs(xi, yi). For

the pairwise interaction ΨP (X,Y ), assuming that the im-

age X is ignored results in a K-by-K table of values where

ΨP (X,Y ) =
∑

(i,j)∈El
ΨP

i,j,yi,yj
is a sum of indicator vari-

ables in which the (a,b)-th entry is defined as

ΨP
i,j,yi,yj

(a, b) = I(yi = a, yj = b). (5)

Gradient information and spatial relationships are also in-

cluded in ΨP (X,Y ). The global term ΨG is formulated in

a similar manner.

To train the model, two learning steps are required. For

the data term ΨD, S multi-class SVM classifiers corre-

sponding to S local and global feature scales are trained.

We also learn the parameters of the energy function, w =
[
wD wP wG

]
, which encode prior knowledge about re-

lationships between the various object classes including

pairwise relationships. We learn these parameters using the

standard margin-rescaling Structured SVM (SSVM) [28].

The SSVM framework can be viewed as minimizing an

upper bound on the average training loss (up to a constant

factor C), as long as a labeling with cost no higher than that

of the ground truth can be found for every training exam-

ple. While this condition is not guaranteed due to the in-

tractability of exact energy minimization on loopy graphs,

an approximation can be found using efficient energy mini-

mization techniques [27, 5].

The SSVM framework finds parameters w balancing

model complexity and empirical loss. The loss function

measures how incorrect a labeling H is compared to the

ground truth Y . A natural choice of loss function is the 0-1

loss function that penalizes any error with the same weight

without considering the labels: δ(hi, yi) = I(hi 6= yi).
However, some classes occur more often, so in order to en-

sure a better balance, we weight errors inversely propor-

tional to the frequency of a class

δ(hi, yi) =

{ 1
frequency(yi)

, if hi 6= yi

0 , otherwise.
(6)

We also consider an alternative method to estimate w,

which was proposed in [8]. In this approach, a Gibbs-like

sampling algorithm changes a single parameter at each iter-

ation. A new value is drawn from a Gaussian distribution

with µ = 0 and σ = 1. If the new parameter improves the

score, it is kept. The drawback of this method is that it does

not scale well with the number of parameters and therefore

cannot be applied to high order CRFs. However, we found

this simple method to be very competitive when only con-

sidering the data term, as we will see in the next section.

4. Experiments

We conducted experiments on two popular datasets for

multi-class segmentation, the MSRC-21 [26] and PASCAL

VOC 2010 [4] datasets. We compare five increasingly com-

plex versions of the CRF model described in Sec. 3, as well

as previously published models. Below, we provide details

related to our implementation, experimental setup, and eval-

uation procedure.

4.1. Implementation

Prior to image segmentation, we extract features from

the image. To do so, we over-segment the image into su-

perpixels using the SLIC algorithm [23]. These superpixels

correspond to local nodes in the CRF models. For each su-

perpixel, we then extract local features at multiple scales, as

well as global features over the entire image. These features

are fed to classifiers in the data term, and a final solution is

inferred using belief propagation.

Local features It has been shown that using a combina-

tion of features computed from both the superpixels and its

surrounding area is more effective than using features just

from the superpixel itself [6, 8]. Therefore, for each su-

perpixel we extract a set of quantized visual words [30]

over five different neighborhood scales, which provides a

histogram-like descriptor. However, unlike [6, 8] who con-

catenated the features to create a single feature vector, we

build a bag-of-words descriptor at each scale.



To build the bag-of-words representation, we extract

patches over a grid with 50% overlap at several scales (12,

24, 36 and 48 pixels). These patches are described by shape

(SIFT) and color (RGB histogram) features. We then use k-

means to build a dictionary containing 1, 000 words for the

shape features and 400 words for the color features. The as-

signment of a query patch to a dictionary term is done using

a nearest neighbor search. The feature vectors are created

for 5 different scales by extracting patches inside the super-

pixel alone, then extending the neighborhood size by factors

of 1, 2, 4 and 6 respectively.

Global features Global features are similar to the local

features, but extracted over the entire image. They are fed

to a classifier who returns a single response for the whole

image. For the VOC 2010 data set, we used a bag-of-words

representation of the whole image, based on shape SIFT,

color SIFT [3], together with spatial pyramids [17]. For

MSCR-21, we used a simpler bag-of-words representation

based on SIFT and RGB histograms.

Learning As described in Sec. 3.3, extracted features are

fed to an SVM classifier trained such that its response

c(xi, yi) represents its perceived cost of assigning super-

pixel i to the class label yi in the data term. We also train

a structured SVM to learn the parameters w of the energy

function Ew(X,Y ) in Eq. 1, which represents a linear com-

bination of low-level classifier outputs on local (and global)

features. The parameters cover all possible category combi-

nations between two superpixels, two types of spatial rela-

tions (left-right and top-bottom), and 10 discretized gradi-

ent values. In total, the DP model incorporates 8862 param-

eter values, and the DPG model incorporates 9744 values.

During training, we sample a total of 8000 superpixels for

MSRC-21, and 20, 000 for VOC 2010 with equal numbers

of positive and negative examples for each class.

4.2. Experimental Methodology

Data Sets The MSRC-21 dataset contains 591 images,

with objects from 21 categories. To compare results with

those of other methods, we use the standard split of the

dataset [26]. The VOC 2010 dataset contains 20 object

classes plus a background class. The images are divided

into 3 subsets: training, validation, and testing.

Models Tested In order to better understand how spatial

and global constraints affect performance, we tested five in-

creasingly more complex versions of the CRF model de-

scribed in Sec. 3. Descriptions of the models appear below.

• D model – Includes only the data term, consisting of

the SVM classifiers scores. Equivalent to an energy

function Ew(Y |X) =
∑

i∈Vl
Di(yi).

• DP model – Considers both the data and pairwise

terms of the energy function, i.e. Ew(Y |X) =
∑

i∈V
Di(yi) +

∑

(i,j)∈El
Pij(yi, yj).

• DG model – Considers the data term and the global

term without the pairwise term, i.e. Ew(Y |X) =
∑

i∈Vl
Di(yi) +

∑

(i,g)∈Eg
Gig(yi, yg).

• DPG model – The full model described in Eq. 1, in-

cluding the data, pairwise and global terms.

• D-sampling – Like the D model, only considers the

data term. Instead of learning parameters using the

SSVM, uses the sampling method of Sec. 3.3.

We also compared against four state-of-the-art CRF ap-

proaches including [25, 11, 14, 8] on the MSRC data set,

and six reported methods for the VOC 2010 data set which

are shown in Tables 1 and 2.

Local vs. Global+Local To test the effect of directly in-

troducing global features to the data term on the various

CRF models, we repeated each experiment twice. First,

we provided only local features to the classifiers in the data

term. In the second round, we included the global features

as well.

Evaluation Metrics For MSRC-21, we measure perfor-

mance for a given category by computing its pixel-wise

classification accuracy. Overall performance is measured

by averaging per-category classification accuracy across all

categories. A global pixel-wise accuracy is also reported.

For the VOC 2010 dataset, a similar procedure is used, but

performance is measured by the Jaccard index instead of

pixel-wise accuracy. The Jaccard index is the ratio of the

areas of the intersection between what has been segmented

and the ground truth, and of their union. It is written as

VOC =
True Pos

True Pos + False Pos + False Neg
. (7)

4.3. Results

MSRC-21 The results for MSRC-21 appear in Table 1.

When only local features are considered, there is a clear

advantage to adding spatial and global constraints (as indi-

cated in red). The pairwise term alone leads to an increase

by 6%, and adding the global term results in another 5%

increase. The average per-category accuracy of the various

CRF models ranged from 58% to 69%.

The second set of experiments introduces global features

into the data term. Under these conditions, previous gains

from adding the spatial and global constraints disappear,

while the overall performance of all methods increased. In

fact, the simple D model and D-sampling models now out-

perform the higher order CRFs. These results demonstrate
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Local features

S=5

D model 54 94 59 72 67 95 70 66 86 45 93 72 68 27 52 27 43 70 1 19 37 67 58

DP model 53 86 72 79 75 95 93 49 85 38 81 83 64 39 63 49 68 68 38 63 9 70 64

DG model 34 91 70 83 70 97 83 65 82 93 91 69 67 13 86 64 65 83 23 31 20 72 66

DPG model 54 88 83 79 82 95 87 70 85 81 97 69 72 27 88 46 60 74 27 49 28 75 69

D-sampling 52 83 74 50 72 89 86 68 73 69 83 67 69 22 68 25 67 54 14 46 50 69 61

Local+Global features

S=6

D model 64 94 91 72 87 97 90 76 72 83 86 88 93 62 90 89 85 97 0 83 0 85 77

DP model 58 87 83 73 78 94 95 78 85 68 96 89 71 41 96 83 85 87 49 52 38 80 76

DG model 54 86 93 80 94 90 87 88 74 80 85 86 96 35 96 80 65 96 0 77 26 81 76

DPG model 65 87 87 84 75 93 94 78 83 72 93 86 70 50 93 80 86 78 28 58 27 80 76

D-sampling 50 83 87 81 84 90 97 72 75 79 90 95 79 52 97 81 80 89 51 64 60 79 78

[25] 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 72 67

[11] 53 97 83 70 71 98 75 64 74 64 88 67 46 32 92 61 89 59 66 64 13 78 68

[14] 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 09 86 75

[8] 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46 77 75

Table 1. MSRC-21 segmentation results. For each category, the pixel-wise classification rate is provided. Bold entries indicate best

performance. Global reports the pixel-wise classification rate over the entire data set. Average reports the mean of all category classification

rates. The first five rows show results for the data term only (D model), the data and pairwise terms (DP model), data and global terms

(DG model), and the full model (DPG model). D-sampling includes only the data term, but learns parameter values using Gibbs sampling

instead of the SSVM. The second five rows show results when the global features are added. For reference, scores reported for other

methods are reported in the last four rows. Scores in red indicate that when only local features are considered, there is an advantage to

adding spatial and global constraints. Scores highlighted in yellow show that introducing global features eliminates the previous gains

attributed to adding the spatial and global constraints, while increasing the overall performance of all methods.

(a) (b) (c) (d) (e) (f) (g)

Figure 4. Example segmentations from the MSCR-21 dataset. (a) Original images (b) D model with local features, (c) DPG model with local

features, (d) D model with local+global features, (e) DPG model with local+global features, (f) D-sampling with local+global features, (g)

Ground-truth.

that the presence of the global classifier in the data term can

boost performance to levels similar to or even better than

the more complex models that include spatial and global

constraints. To the best of our knowledge, the D model

trained with the sampling method achieves the highest av-

erage score ever reported on MSRC-21.

PASCAL VOC 2010 Results for the PASCAL VOC 2010

dataset appear in Table 2. The results mirror our findings

on the MSRC-21 dataset. In red, we can see that when only

local features are considered, there is a clear advantage to

using spatial and global constraints. But the results high-

lighted in yellow show that providing global features to the
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VALIDATION SET

Local features

S=5

D model 31.7 9.7 1.1 9.1 0.9 3.0 27.4 12.9 14.4 0.0 21.2 0.0 0.0 3.7 26.8 22.9 0.0 30.0 9.6 23.1 0.0 11.8

DP model 29.3 13.0 2.2 2.8 7.7 12.8 36.6 24.3 19.7 3.6 19.2 0.2 14.6 1.9 25.3 17.7 1.3 12.6 6.1 19.1 5.5 13.1

DG model 76.2 30.8 6.8 1.6 0.0 4.4 34.1 0.7 23.5 0.4 28.3 0.3 2.6 6.5 46.2 11.4 0.0 0.0 2.2 39.9 0.1 15.0

DPG model 67.3 22.4 15.5 18.0 15.4 0.0 28.4 24.5 18.7 0.0 30.5 4.6 0.5 6.0 28.9 23.0 3.6 0.0 12.9 33.1 7.3 17.2

D-sampling 76.2 23.3 11.7 6.4 6.8 9.0 24.4 24.0 13.6 3.2 11.4 0.0 14.7 10.3 24.1 24.5 4.0 20.3 3.8 14.6 11.7 16.1

Local+Global features

S=6

D model 73.0 38.9 13.3 21.1 25.7 12.2 37.7 32.7 29.0 0.4 35.5 11.5 9.5 18.8 30.1 1.8 6.5 36.1 8.1 43.7 19.9 24.1

DP model 76.7 29.8 16.8 6.0 21.6 13.2 39.8 33.0 16.1 0.0 25.5 0.5 21.8 13.8 45.1 34.1 3.0 35.0 2.9 47.2 26.3 24.2

DG model 74.1 27.8 0.2 22.9 20.8 16.7 32.5 29.1 25.4 7.1 30.8 14.9 15.7 16.0 45.5 29.3 5.7 32.3 17.2 42.0 0.0 24.1

DPG model 64.3 27.1 18.2 23.1 21.0 15.0 35.3 29.2 23.7 7.8 16.9 21.5 17.3 18.8 30.7 31.5 6.7 27.8 12.2 39.5 26.7 24.5

D-sampling 78.8 44.1 21.0 16.9 28.7 24.8 59.3 40.0 30.3 7.0 26.8 6.8 18.2 17.0 35.2 34.3 31.2 18.7 11.5 47.3 18.1 29.3

TEST SET

BONN SVR 84.2 52.5 27.4 32.3 34.5 47.4 60.6 54.8 42.6 9.0 32.9 25.2 27.1 32.4 47.1 38.3 36.8 50.3 21.9 35.2 40.9 39.7

BROOKES 70.1 31.0 18.8 19.5 23.9 31.3 53.5 45.3 24.4 8.2 31.0 16.4 15.8 27.3 48.1 31.1 31.0 27.5 19.8 34.8 26.4 30.3

STANFORD 80.0 38.8 21.5 13.6 9.2 31.1 51.8 44.4 25.7 6.7 26.0 12.5 12.8 31.0 41.9 44.4 5.7 37.5 10.0 33.2 32.3 29.1

UC3M 73.4 45.9 12.3 14.5 22.3 9.3 46.8 38.3 41.7 0.0 35.9 20.7 34.1 34.8 33.5 24.6 4.7 25.6 13.0 26.8 26.1 27.8

UOCTTI 80.0 36.7 23.9 20.9 18.8 41.0 62.7 49.0 21.5 8.3 21.1 7.0 16.4 28.2 42.5 40.5 19.6 33.6 13.3 34.1 48.5 31.8

Harmony FG-BG 80.2 57.0 28.7 29.3 31.7 27.0 57.6 48.5 35.2 8.3 29.9 22.6 25.2 33.0 52.6 35.9 25.2 39.7 16.9 43.4 24.7 35.8

DPG model 64.8 33.4 16.6 17.8 23.4 17.2 45.7 35.0 30.3 6.0 21.5 21.0 21.9 29.6 32.6 29.6 23.3 24.9 15.7 26.4 21.1 26.6

D-sampling 77.9 49.4 23.1 19.2 24.8 26.1 52.4 44.9 32.9 6.5 35.8 22.3 25.5 21.9 58.1 34.6 26.8 39.9 17.5 38.0 25.3 33.5

Table 2. PASCAL VOC 2010 segmentation results. For each category, the Jaccard index is provided. Bold entries indicate the best

performance. Average indicates the mean of the scores across all categories. The first ten rows show results reported on the validation set,

for increasing CRF complexity, as in Table 1. Tests are made for local features only, as well as local+global features. Results highlighted

in red indicate that local and global constraints improve performance when only local features are provided. But the results highlighted in

yellow show that providing global features to the model eliminates the need for complex models. The last 8 rows compare the performance

of our approach to other reported methods on the official VOC 2010 test set. Our models tend to underperform relative to the other methods

because our learning procedure does not optimize for the Jaccard index.

model eliminates the need for complex models.

The lower section of the table compares our models to

some of the best reported results on the PASCAL VOC 2010

test set. BONN SVR [18] obtained the best results, but their

method tries to produce globally consistent segmentations

by exploiting characteristic shapes of objects. However,

they do not report results on the MSRC-21 dataset, which

may prove to be more difficult for their model as it con-

tains classes such as grass, building, water, and sky, which

are difficult to characterize shapes. Our D-sampling model

achieves a similar score to the second highest competitor,

the Harmony potential model [8]. Note that our models

trained with the structured SVM tend to underperform as

they do not optimize for the VOC score.

5. Summary and Discussion

While we believe that spatial and global constraints are

useful in principle, their relative weakness when compared

to simpler models that consider global image features on

the PASCAL and MSRC-21 datasets is worth reflecting

upon. This suggests two possibilities for further consider-

ation. First, we should reconsider the effectiveness of cur-

rent approaches to modeling global and spatial constrains

in CRF frameworks. Second, we should consider the pos-

sibility that these datasets, while useful, have shortcom-

ings that need to be addressed if they are to be used to

validate segmentation approaches that employ sophisticated

constraints. For instance, in many images of the MSRC-21

dataset the ground truth is imprecise. This has the effect of

arbitrarily penalizing correct labels near boundaries. While

annotation quality of the PASCAL dataset is more precise,

the current state-of-the-art on this dataset is such that state-

of-the-art methods struggle to correctly label even half of

the pixels. Performance differences attributed to the com-

plexity of the CRF model may be overshadowed by other

error sources that lead to such poor overall performance.

Resources used in this paper are publicly available at

http://cvlab.epfl.ch/data/dpg/index.php.
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