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ARE THE INVARIANCE PRINCIPLES REALLY TRULY LORENTZ COVARIANT?

V. Arunasalam

• Princeton University, Princeton Plasma Physics Laboratory

P. O. Box 451, Princeton, N.J. 08543
J

ABSTRACT

It is shown that some sections of the invariance (or symmetry) principles such as the space reversal

symmetry (or parity P) and time reversal symmetry T (of elementary particle and condensed matter

physics, etc.) are not really truly Lorentz covariant. Indeed, I find that the Dirac-Wigner sense of

Lorentz invariance is not in full compliance with the Einstein-Minkowski requirements of the

Lorentz covariance of all physical laws (i.e., the world space Mach principle).

The invariance (or symmetry) principles 1"3 play a significant role in many branches of physics.

In particular, they are of considerable interest in group theory, elementary particle and condensed

matter physics, quantum field theory, string theory, etc. The basic reason for such a significance

is that the invariance under a symmetry operation is always associated with a conservation law for

some physical quantity. Indeed, a large number of Nobel prizes have been awarded to both the

theoretical and experimental works relating to these invariance principles. However, we have

failed to ask the question: Are these invariance principles really truly Lorentz covariant? It is my

aim in this letter to show that some sections of the invariance principles such as the space reversal

symmetry (or parity P) and time reversal symmetry T are not really truly Lorentz covariant while
D

the world parity or the proper parity W (i.e., the space-time reversal symmetry PT) is a truly

0 Lorentz covariant concept. Because of the fundamental significance and its huge implications to

the foundations of physics and to the future developments of Lorentz covariant unified field

theories, I felt that it is important to draw attention to this problem by writing this letter.

It is well known that in classical mechanics 4 there are two types of relativistic formalisms: One
Q_



that is Lorentz invariant where we choose the Hamiltonian H 1 as the total energy E of the particle

which is the generator of the particle motion with the ordinary time t and is given by H 1 = E =

(c2p 2 + m2c4) 1/2 , and the other that is Lorentz covariant where we take the Hamiltonian H2 as

the negative of 1/2 the rest energy (-E0/2) of the particle which is the generator of the particle

motion with the proper tim_ x ( i.e., the generator of the particle's world line) and is given by H2

= (2m)-I p2 = (2m)-1 X;_p_.p_. = - mc2/2 = - E0/2. Here Pl = Px, P2 = Py, P3 = Pz, and P4 -

iE/c. However, in the Lorentz invariant relativistic quantum mechanics there is no Hamiltonian

formalism for spin zero particles,5, 6 but there are these analogous two types of relativistic

Hamiltonian formalism for spin 1/2 particles: One that is Lorentz invariant where the Hamiltonian

H3 = E = -c0t.p - _mc 2 is the Dirac Hamiltonian5,6, 3 and this Hamiltonian is the generator of the

particle motion again with the ordinary_ time t, and the other that is Lorentz covariant where the

Hamiltonian is H2 for spin zero particles and is3 H4 = (2m)" 1 (_,.p)2 = (2m)-I (X;_._'EP_,)(_

_'l.tPkt)= - mc2/2 = "E0/2 for the spin 112particles and these Hamiltonians are the generators of

the particle motion with the proper or world time x (i.e., the generators of the particle's world

lines) and here the ordinary time t is an operator and not a parameter. The o_,13,and 3,are the

familiar spin matrices of the Dirac's theory of the electron.5,3, 6 In the Lorentz invariant quantum

mechanics one usually studies the eigenvalue equation (i.e., the Schrodinger or the Klein-Gordon

relativistic wave equation) of the form E2 _(x,y,z,t) = (c2p 2 + m2c 4) xg(x,y,z,t) for spin zero

it

particles, where E = ifi/)/_)t and pj =- i _/)//)xj for j = 1, 2 and 3, and H3_(x,y,z,t) = E_(x,y,z,t)

for spin 1/2 particles with the same replacement for E and pj for the Schrodinger wave equation '
I

type formalism, and the fundamental commutation relations Ixi, pj] = i_ _iij, Ixi, xj] = [Pi, Pj] = 0

for i, j = 1, 2 and 3 in conjunction with the Heisenberg equation of motion for any matrix operator
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M as given by dM/dt -/)M//gt + (i _)-1 [M, H 3] for the Heisenberg matrix operator type

formalism. It may be noted that if M does not depend explicitly on the ordinary time t and

commutes with 1-I3 then it is a constant of motion in that particular Lorentz frame. This operator M

, and the associated constant of motion is, in general, no_ Lor_ntz cQv_riant since for the Dirac

Hamiltonian [H3, L] _ 0 and when [M, H3] = 0 by Jacobi's identity4, 6 we get [H 3, [L, M]] =

-[M, [1-13,L]]. Thus [M, L] can be zero only in the special situation ( i.e., in the special Lorentz

inertial frame) where [M, [I-I3, L]] = 0, which may not be true in the general cases. Here L is the

Einstein's Lorentz transformation matrix or the boostl,3, 5. For spin zero particles, however,

there is no Lorentz invariant Heisenberg matrix operator type formalism since there exist no

corresponding Hamiltonian to begin with. In the Lorentz covariant quantum mechanics one starts

studying the world-space eigenvalue equation of the form 3 H _(x,y,z,ict, x) = E0 _'(x,y,z,ict,x),

where E0 = - mc2/2, regardless of its spin. Here H is either H2 or H4. For the world space

Schrodinger wave equation type formalism we adopt the substitution E0 = i5 i)/i)x, and Pit - - i'l_

/)//)xit for it = 1, 2, 3 and 4; and we use the world space fundamental commutation relations [xv,

Pit] = i'l_ 8vit, and [xv, xit] = [Pv, Pit] = 0 for v, it = 1, 2, 3, and 4 in conjunction with the world

space Heisenberg equation of motion for any four-matrix operator M as given by

dM/dx = OM/Ox + (i_)'l[M, H] (1)

for the world space Heisenberg matrix operator mechanics type formalism. It may be noted from

Eq. (1) that if the four-operator M does not depend explicitly on the world or proper time x and

commutes with both the Lorentz covariant Hamiltonians H ( i.e., [M, HI = 0 with [H, L] = 0)

, and the boost transformation matrix L (i.e., [M, L] = 0) then it is a truly manifestly Lorentz

covariant operator that is a constant of motion in the world or the Minkowski space, and is

form-invariant under the boost transformation L, i. e., it is a truly Lorentz covariant symmetry

operation.
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In the Lorentz invariant quantum mechanics we usually talk of two pictures, 1,3 namely, the

Heisenberg picture where the state vectors are time independent and the operators are time

i

dependent, and the Schrodinger picture where the state vectors are time dependent while the 0

operators are time independent. In a similar way in the Lorentz covariant quantum mechanics 3 one

has the Heisenberg world picture in which all operators are world time dependent while the state

vectors are world time independent, and the Schrodinger world picture in which all operators are

world time independent while the state vectors are world time dependent. In the Wignerian

analysis of the relativistic invariance under the symmetry group one usually works with the Dirac

Hamiltonian where the time t enters as a parameter marking the dynamical evolution of the particle

rather than an operator, and the quantum states are described in the Heisenberg picture. 1 The

symmetry operations or the invariance principles are those that preserve the transition probabilities

I(q_,_)l2 between the two quantum states tp and _g,where (_,_) is the scalar product of the two

state vectors tp and _. This requirement of the relativistic invariance in the conventional Lorentz

invariant quantum mechanics leads to the existence of ray representations up to a phase factor of

modulus one of the inhomogeneous Lorentz or Poincare group. 1

We have thus far discussed the quantum dynamics of a single particle. However, the

quantization of this wave field _ (Le., the second quantization ) converts this one-particle theory

into the corresponding many-particle theory 6 (i.e. the field theory). When the particle is in an

electromagnetic (e.m.) field described by a four-vector potential A with A1 = Ax, A2 = Ay, A3 =

Az, and A4 = i¢/c, then all these Hamiltonians undergo the replacement of p by the expression (p -

qA/c). Thus, combining the second quantization of the single-particle wave field _ with the first

quantization of the e.m. field A, one obtains the conventional many-body quantum field theory.

Hence, any symmetry operation that is Lorentz covariant with respect to the singe-particle quantum

ii

dynamics descibed in terms of the proper time x (keeping the ordinary time t as an operator and not

as a parameter) will also be Lorentz covariant in the corresponding quantum field theory and vice

versa.



We now wish to examine the mapping associated with the symmetry operations in the

four-dimensional space-time continuum known as the world space or the Minkowski space. The

, familiar relativistic Lorentz transformation is an orthogonal transformation in this world space

whose coordinates are x 1 = x, x2 = y, x 3 = z, and x4 = ict. Let us consider the two inertial frames
Q

F and F' whose axes of coordinates are parallel to each other, and the primed system is moving

with a uniform velocity v - _ci x along the x direction with respect to the unprimed system. Then

the pure proper orthochronous (or Einstein) Lorentz transformation ( i. e., the boost

transformation) may be writtenl,3 x' =L x and x =L-lx ', whereLll =L44 =Y, L22 ---L33

= 1, L14 = - L41 = il3y,all other L_v = 0 for l.t,v = 1, 2, 3, and 4, y = (1 - 132)-1/2, and 13= v/c.

An event A in the F frame is given by the tip of the position four-vector x(a) whose Minkowskian

coordinates are x 1(a), x2(a), x3(a), and x4(a) = ict(a). Thus in the F frame the mapping of an

event A [i.e., the space-time point x(a)] onto an event B [i.e., the space-time point x(b)] may be

written x(b) ---Mx(a), where M is the mapping matrix with elements Mktv. In the F' frame the

corresponding mapping of the event A' [i.e., the space-time point x(a')] onto the event B' [i.e., the

space-time point x(b')] is x(b') = M'x(a'), where M' is the corresponding mapping matrix in the

F' frame with elements M'_tv. But by the boost Lorentz transformation, x(a') = Lx(a), and x(b')

= Lx(b). Hence x(b') = Lx(b) = LMx(a) = (LML-1)Lx(a) = (LML "1) x(a'). Thus, M' =

LML -1. That is, the mapping matrix M' of the F' frame is related to the corresponding mapping

matrix M of the F frame by the usual similarity or the equivalence transformation. The principle

of relativity states that all inertial frames are equivalent. Hence according to the principle of

• relativity, we find that any symmetry operation or mapping matrix M is manifestly Lorentz

covariant (i.e., will appear form invariant) if and only if M = M' = LML- 1. That is,

[M, L] = ML- LM = 0 (2)

Hence any symmetry operation or mapping matrix M is manifestly Lorentz covariant (i.e., will

appear form invariant) if and only if it commutes with the Einstein Lorentz transformation matrix
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(i.e., the boost) L. This is the necessary and sufficient condition for the manifestly Lorentz

covariance of any physically meaningful symmetry operation and the associated world space

mapping. Hence according to the Einsteinian principle of relativity, any dynamical laws of

symmetry or covariance principle must, of course, satisfy the kinematic symmetry requirements of
Ib

Eq. (2).

Let us f'u'stexamine the Lorentz covariance of the Newtonian concept of simultaneity. We may

define the simultaneity matrix S in the F frame by taking the matrix elements of S as given by $44

= 1, S4i = Si4 = 0, and all other elements Sij are finite, where i, j = 1, 2, and 3. Since x(b) =

Sx(a), it is clear that x4(b ) = ict(b) = x4(a) = ict(a). That is, t(b) = t(a) in the F frame. Note that

IS, L] _: 0 and since for a Lorentz covariant Hamiltonian [H, L] = 0 we find that by the Jacobi's

identity [H, S] can be zero only in the special situation where [H, [L, S]] = - [L, [S, I-I]] = 0

which may not be true in the general cases. This implies that in the general cases S is not a

constant of motion in the Minkowski space [according to Eq. (1)]. In the F' frame x(b') =

S'x(a'), where S'= LSL "1. It is relatively easy to show that x4(b') _: x4(a'), i.e., t(b') _ t(a').

Hence, the Galilean-invariant concept of simultaneity is not a truly Lorentz covariant concept for

inertial observers, a well-known fact from the early days.

We now wish to examine the Lorentz covariance of the Newtonian concept of spatial inversion

symmetry or parity. We may define the spatial inversion matrix or the parity operator P in the F

frame by taking the matrix elements of P as given by Pii - - 1 for i = 1, 2, and 3, P44 = 1, and all

other elements PI.tv = 0. Note that [P, L] _ 0 and since [H, L] = 0 for a Loren_z covariant

Hamiltonian we again find that by the Jacobi's identity [H, P] can be zero only in the special

situation where [H, [L, P]] = - [L, [P, HI] = 0 which again may not be true in the general cases.
Ib

This implies that in the general cases P is not a constant of motion in the world space [according to

Eq. (1)]. It may be noted that the parity operator P is a special case of the simultaneity operator

S. In the F' frame P' = LPL -1. The matrix elements of P' are given by P'44 = - P'I 1 = 72( 1 +
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132),P'22 - P'33 = - 1, P' 14 = P'41 = i213Y2, and all other elements PI.tv = 0. This is clearly not a

spatial inversion or parity operator in the F' frame. That is the Galilean-invariant concept of spatial
J

inversion symmetry or parity is not a truly Lorentz covariant concept for inertial observers. This

' result is in disagreement with the familiar Dirac-Wigner invariance principle analysis. The physical

reason for this disagreement is due to the fact that the Dirac Hamiltonian H 3 is not Lorentz

covariant since it is not an invariant word scalar and is the generator of the particle motion with the

ordinary time t (in space and time and not in the space-time continuum); and since it is linear in 0t.p

where et is an operator in the four dimensional spin space, while p is an operator in the ordinary

space and time (and also in the space-time continuum), there exists an intrinsic coupling between

the spin space and the real space (implying also an intrinsic coupling between the spin space and

the Minkowski space) even for a free particle. This artificially introduced coupling yields some

peculiar nonphysical behavior for a Dir_c free particle. For example, its velocity operator v =

dx/dt = c ot is independent of p, acts only on the spin space and takes the eigenvalues +_c,

whereas for a particle of finite mass m classical velocity cannot be equal to + c. Note the explicit

coupling between the x-space and the a-space by the relation dx/dt = ca. Also this velocity

oscillates rapidly (the Zitterbewegung ), whereas its momentum is a strict constant of motion.

Further, neither its orbital angular momentum nor its spin angular momentum is a constant of

motion but only its total (orbital plus spin) angular momentum is a constant of motion, clearly and

explicitly exhibiting this nonphysical coupling even for a free particle. All these behavior of the

Dirac free particle are contrary to those expected from both the Lorentz invariant and the Lorentz

covariant formulations of classical mechanics. 4 A truly covariant Hamiltonian must satisfy the

- requirements of Eq. (2), i. e., [H, L] = 0, since it must be the generator of the particle (motion

. with the proper time x) world line and should not couple these two spaces for a free particle and

according to the correspondence principle should yield results that reduce to the classical results in

the limit fi --90. Indeed, it is shown elsewhere 3 that the truly Lorentz covariant Hamiltonians H2

............. ,, ......... ,_ ................ .,, .........._ ............... _...,_.,_,,,_,..._ ..........._ .... _ ......... . .....



8

and H4 do not show this nonphysical coupling between the four dimensional spin space and the

four dimensional Minkowski space for a free quan_om particle and these quantum results are

completely consistent with the corresponding classical results.4, 3 '

A theory based on the total energy as the Hamiltonian in which time time is treated differently b

from the space coordinates is not manifestly Lorentz covariant, since [H, L] _ 0. This does not

imply that the theory is incorrect. Here, since [H, L] _ 0, we should not ( and it is inappropriate

to) require the symmetry operators M such that M_ = +_ to satisfy the requirements of Eq. (2).

We only require the results of the theory (e.g, the transition probabilities I(0,_) 12) to be Lorentz

invariant. This is clearly true for the Dirac-Wigner invariance principle analysis. However, the

theory with mathematical beauty in which space and time are considered as entirely similar

coordinates in the Minkowski or world space should be based on a Hamiltonian H that is a

Lorentz-invariant world scalar [e.g H2 and H4], and this theory is manifestly Lorentz covariant

since [H, L] = 0 where H = HI and I is the identity mapping matrix in the world space. Here, we

not only require the results of this theory [e.g., I(0,gt)l2] to be Lorentz invariant, but also require

that all physically meaningful symmetry operators M such that M_ = +__ satisfy the

Lorentz-covariant requirements of Eq. (2), since H itself satisfies Eq.(2) [i.e., covariant symmetry

principles in contrast to the present day invariant symmetry principles ]. The basic difference is

that in the former theory one would have to prove that its results are Lorentz invariant before they

could be accepted as correct, while in the latter covariant theory the Lorentz invariance of its results

should be explicitly apparent from its mathematical structure.

Let us now examine the Lorentz covariance of the newtonian concept of time reversal symmetry.

We may define the time reversal matrix T in the F frame by taking the matrix elements of T as T44

= - 1, Tii = 1 for i = 1, 2, and 3, and all other elements Ti.tv = 0. Note that [T, L] _: 0 and since

for a Lorentz covariant Hamiltonian [H, L] = 0 we again find that by the Jacobi's identity [I-I, T]

can be zero only in the special situation where [H, [L, T]] = - [L, [T, HI] = 0 which again may

not be true in the general cases. This implies that in the general cases T is not a constant of motion
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in the world space [according to Eq. (1)]. In the F' frame T' = LTL-1. The matrix elements of

T' are given by T'44 = T'll =- 72(1 + _2), T,22 = T,33 = 1, T'14 = T41 =- i2_72, and all
1

other elements Ti.tv = 0. This is clearly not a time reversal operation in the F' frame. Thus we see
8

that the Galilean invariant concept of time reversal symmetry is not a truly Lorentz covariant

concept for inertial observers. Here, again, this result is in disagreement with the usual

Dirac-Wigner invariance principle analysis.

It is known in mechanics that the momentum canonical to the time coordinate t is the total energy

E. Thus in quantum mechanics the energy operator E = i _ 0/3t. Hence T E = - E ---i _ 0/O(-t).

That is a pure time reversal T corresponds to negative energy states. But in nonrelativistic

quantum mechanics the energy cannot be negative. This led Wigner to suggest that the proper

quantum mechanical time reversal operator T w = TK, where K is the complex conjugation

operator (that changes i to -i). Then T w E = TKE = E = -i'fi b/O(-t). However in relativistic

quantum mechanics Feynman 5 proposed that the negative energy states should be interpreted as

states representing particles moving backward in time. That is, the time-reversed negative energy

states of a particle correspond to the positive energy states of the corresponding antiparticle.

Further it is well known that the Maxwell equations and their consequences lend themselves very

simply to a Lorentz covariant discription and are invariant with respect to change in sign of the

charge density. This leads one naturally to consider charge conjugation C on an equal footing with

time reversal in quantum electrodynamics. However, this charge conjugation operation does not

fall directly within the framework of world space mapping. But this does lead us to the famous

CPT theorem,I, 2 which states that if a local Lagrangian theory (which may contain derivative

couplings to any high but finite orders) is invariant under proper orthochronous Lorentz

" transformation, it is invariant under the product CPT (and its permutations PCT, etc.), although

the theory may not be separately invariant under each of these operators C, P, and T. It should be
A

noted that for the CPT theorem, we require the invariance of the Lagrangian theory under _ the

restricted Lorentz group and n.qg.ithe other three components of the full Lorentz group. I Strictly

speaking, for an ideally correct theory in the Einstein-Minkowski sense, we should require the
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Lagrangian and the Hamiltonian operators of the theory bv themselves to be Lorentz covariant with

respect to this restricted Lorentz group of transformations. Then P and T separately have no place

in this manifestly Lorentz-covariant theory.

It should be noted that in nature there are both charged (i.e., for example, electrons, protons,
lb

tt+ -mesons, n+ -mesons, _+ -mesons, charged hyperons, etc., and their antiparticles) and

uncharged (i.e., for example, neutrons, n° -mesons, 0° -mesons, uncharged hyperons, etc., and

their antiparticles) particles of finite mass. The CPT theorem applies to the field theory of charged

particles. However, in the field theory of uncharged particles the CPT theorem must reduce to a

PT theorem as it should since the particles carry no charge. We will soon see that lit is a Lorentz

covariant kinematical symmetry property of the Minkowski or world space. Therefore PT seems

as fundamental to the field theory of uncharged particles as CPT is to the field theory of charged

particles. Further, the Lorentz covariant Hamiltonians H5 = (2m)-l(p _ qA/c)2 = (2m)-I Y-'L(P_"

qAk/c) (p_ - qAk/c) = (2m) -1 E_u_u_. = - mc2/2 = - E0/2 for the spin zero particles and H6 -

(2m)l {Y"(P -q A)/c}2 = (2m)-1 _.{YZ. (p_ - qA_,/c) y_ (p_ - qA_/c)} = (2m) -1 _{(y_u_,)

(y_u_.)} = - mc2/2 = - E0/2 for the spin 1/2 particles are both Lorentz invariant world scalars.

Hence, in the total Hamiltonian H = (Hparticle + Hinteraction) + Hfield for a charged particle in the

e.m. field, Hfiel d is Lorentz covariant and is also invariant under the C operation while (Hparticle

+ Hinteraction) is Lorentz covariant under the PT operation, since (Hparticle + Hinteraction) is H5

for the spin zero particles and is H6 for the spin 1/2 particles.

We now examine the Lorentz covariance of the Minkowskian concept of the world parity or

the proper parity operator W (i.e., the space-time reversal operator PT). It is relatively easy to

show that W = PT = - I. That is, W_tl.t - - 1, and all the other elements Wit v = 0, where It, v -

1, 2, 3, and 4. Note that [W, L] = 0 and since for a Lorentz covariant Hamiltonian [H, L] = 0
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we find that [H, W] = 0 implying that W is a strict constant of motion in the Minkowski space

[according to Eq. (1)]. The corresponding mapping matrix W' in the F' frame is W' = LWL" 1 -

. - I. This is clearly a world parity or proper parity (i.e., a space-time reversal mapping) in the F'

frame. Note that W = W ° = - I, the same operator for all inertial observers, i.e., a truly

manifestly Lorentz covariant operator. Thus the concept of world parity or proper parity (i.e., the

space-time reversal symmetry) is indeed a truly Lorentz covariant concept for all inertial observers.

This result is in accordance with the spirit of the world space Mach principle:2, 3 the laws of

physics should not depend on the particular Minkowskian or world geometrical coordinate system

we happen to choose. In summary, since the covariant Hamiltonians H2, H4, H 5 and H 6 will

satisfy the commutation relation [H, L] = 0 and since [W, L] = 0 while [P, L] _: 0 and IT, L] _:

0, it is clear [H, W] - 0 while, in general, [H, P] and [H, T] may not be zero. That is, in any

truly covariant formalism the world or proper parity W is always conserved while the ordinary

P and the ordinary_time reversal symmetry_T may not, in general, be conserved. However,

in the special cases (i.e., in the special Lorentz inertial frames) where [L, [P, HI] = 0 and [L, [T,

HI] = 0, the ordinary parity P and the ordinary time reversal symmetry T are also conserved.

Although we have only illustrated the application of our mathematical results of the theory of

Lorentz covariant world space mapping to the relativistic quantum theory, it is apparent that these

results apply equally well to any world eigenvalue problem in the Minkowski space-time

continuum. In essence, the bottom line is this: according to both the Einstein's special theory of

relativity and the laws of causality 7 (which states that the effect should not precede the cause for

particles of positive real mass moving with speeds less than c, i. e., tardyons or bradyons with

timelike four-vectors ), in any truly Lorentz-covariant theory of any physical phenomena, one

cannot change the space leaving the time invariant (as is usually done in simultaneity, parity,

rigid-body constraints, action-at-a-distance forces, etc.) and vice versa (as is usually done in time

reversal). In the literature 8 the possible existence of tachyons, i.e., particles with imaginary mass
J

* moving faster than the speed of light c with spacelike four-vectors, has been postulated. Here, we

will only consider the mechanics of tardyons. As Minkowski said, 9 "Space of itself, and time of

itself will sink into mere shadows, and only a kind of union between them shall survive." Hence

in the spirit of Minkowski's remark, we conclude that space-reversal symmetry (P) by itself and
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time reversal symmetry (T) by itself will sink into mere shadows, and only a kind of union

between them, the world parity or the proper parity (W = PT) shall survive in any properly

formulated manifestly Lorentz-covariant theory of any physical phenomena, regardless of the

nature of the interaction. It is, of course, the duty of a correct theory of any physical phenomenon
'4

to provide Lorentz-covariant expressions for the forces involved from which one can construct the

covariant Lagrangian and the covariant Hamiltonian that will satisfy the requirements of Eq. (2).

Unfortunately, at present however, we do not have covariant theories of all the possible forces in

nature such as electromagnetic, nuclear (both the strong and weak), gravitational, etc. Only the

electromagnetic theory provides a covariant force equation. However, as pointed out by

Goldstein, 4 the transformation properties must be the same for all forces no matter what their

IKigi_q. For example, the statement "a particle is in equilibrium under the influence of two forces"

must hold true in all Lorentz systems which can only be the case if all forces transform in the same

manner. Hence, we must be able to formulate a fully satisfactory m_Inifcstly Lorentz covariant

unified field theory of all the forces in nature no matter what their origin. Although according to

Dirac and Wigner it is necessary and sufficient for any correct relativistic theory to predict

Lorentz invariant results, but according to Mach, Einstein, Minkowski and Maxwell all correct

relativistic theories ..mustbe Lorentz covariant. I strongly believe that we should follow the latter

view. Then and only then we have a good chance of producing the folly Lorentz covariant grand

unified field theory of all the forces in nature no matter what their origin with all its mathematical

beauty and glory. Clearly, one cannot mix simply Lorentz invafiant but not Lorentz covariant

theories of strong, weak and gravitational interactions with the manifestly Lorentz covariant

Maxwell's e.m. theory and obtain any meaningful and fully satisfactory (i.e., a truly Lorentz

covariant) unified field theory.

t
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