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One of the celebrated results of loop quantum gravity �LQG� is the discreteness of
the spectrum of geometrical operators such as length, area, and volume operators.
This is an indication that the Planck scale geometry in LQG is discontinuous rather
than smooth. However, there is no rigorous proof thereof at present. Because the
aforementioned operators are not gauge invariant, they do not commute with the
quantum constraints. The relational formalism in the incarnation of Rovelli’s partial
and complete observables provides a possible mechanism for turning a non-gauge-
invariant operator into a gauge invariant one. In this paper we investigate whether
the spectrum of such a physical, that is, gauge invariant, observable can be pre-
dicted from the spectrum of the corresponding gauge variant observables. We will
not do this in full LQG but rather consider much simpler examples where field
theoretical complications are absent. We find, even in those simpler cases, that
kinematical discreteness of the spectrum does not necessarily survive at the gauge
invariant level. Whether or not this happens depends crucially on how the gauge
invariant completion is performed. This indicates that “fundamental discreteness at
the Planck scale in LQG” is far from established. To prove it, one must provide the
detailed construction of gauge invariant versions of geometrical operators. © 2009
American Institute of Physics. �DOI: 10.1063/1.3054277�

I. INTRODUCTION

Among the candidates for a theory of quantum gravity, loop quantum gravity �LQG� �Ref. 1�
has gained more and more popularity in recent years. One of the successes of LQG is the rigorous
construction of �spatial� geometrical operators, such as the area, the volume, and the length
operator,2,3 on the so-called kinematical Hilbert space of LQG.4 Moreover, it turns out that these
geometrical operators have a discrete spectrum. In particular, there exists an area gap2,3 but
apparently no volume gap �see Ref. 5�.1

Another result is Ref. 6, which shows that the kinematical Hilbert space of LQG is the unique
quantum representation for the holonomies and flux variables used in LQG satisfying certain
covariance conditions with respect to the �spatial� diffeomorphism group. This shows that the
discreteness of the spectra for the geometrical operators follows from a minimal set of require-
ments. Furthermore, the volume operator is pivotal to obtain an uv-finite quantization of the
�gravity and matter� Hamiltonian constraints of the theory.7

a�Electronic mail: bdittrich@perimeterinstitute.ca.
b�Electronic mail: thomas.thiemann@aei.mpg.de.
1There exist a volume gap on the subspace of the kinematical Hilbert space spanned by spin networks with vertex valence
less than or equal to 4. However, on the full kinematical Hilbert space numerical evidence for an accumulation point at zero
was found, see the last three references in Ref. 5.
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In summary, the geometrical operators play a very important role for the structure and further
development of LQG. However, so far the discreteness of their spectrum is a result at the kine-
matical level only. By “kinematical level” we mean that the geometrical operators defined so far
are gauge dependent, i.e., they are not invariant under space-time diffeomorphisms. True observ-
ables have to be gauge independent. In the canonical formalism such observables are known as
Dirac observables. Physical measurements are described by Dirac observables and not by kine-
matical observables.

The explicit construction of Dirac observables in general relativity is very difficult since it
requires the solution of the dynamics of the theory. However, methods to obtain Dirac observables
�at least as classical phase space functions� are available.8,9 With these methods one can construct
the so-called complete observables,10 a specific type of relational observables. The main idea here
is to use some sets of fields T as “clocks and rods” and to express another field f �the “partial
observable”� in the coordinates defined by these clocks and rods. Under a diffeomorphism both f
and T transform in the same way, so that the relation between f and T does not change. More
details and a proof that the resulting phase space functions are indeed Dirac observables can be
found in the second reference in Ref. 8.

Indeed, one way to construct Dirac observables out of the geometrical operators mentioned
above is to use matter fields in order to localize the region which one wants to measure, for
instance, the �spatial or space-time� volume. This is also suggested in Ref. 2. The question would
be whether or not the Dirac observables constructed in this manner �assuming that such Dirac
observables can be quantized as self-adjoint operators on a yet to be constructed physical Hilbert
space� have a discrete spectrum. Reference 2 argues for a discrete spectrum of the Dirac observ-
ables.

Contrary to this expectation, we will show that in this note, without further assumptions, it is
impossible to make any predictions about the spectra of the complete observables, even if the
spectra of the partial observables and the clocks are known. We will do that by means of quite
simple examples with finitely many degrees of freedom, where the physical Hilbert space can be
explicitly constructed. In more complicated �field theory� examples, even the physical Hilbert
space might not be unique and the spectra of observables could, in principle, depend on the choice
of the Hilbert space.

The plan of the paper is as follows: In Sec. II we will explain the method of partial and
complete observables for systems with one constraint. This allows us to associate with a gauge
variant function �the partial observable� a one-parameter family of gauge invariant functions �the
complete observable�. Furthermore, one has to choose a clock. We can then consider in what way
the spectrum of the complete observables depends on the spectrum of the partial observable, the
clock, and the constraint. In Sec. III we will show with the help of concrete examples that every
possible combination of continuous and discrete spectra for the constraint, the partial observable,
the clock, and the complete observable can be realized. We will end with a discussion of the
results and their meaning for LQG. In particular, we will comment on earlier results within the
LQG literature on the physical spectrum of geometrical operators in the context of 2+1 Lorentzian
gravity11,12 and 3+1 Lorentz covariant gravity.13

In Appendix B we consider an additional toy model which is geared to constructing a gauge
invariant observable from a baby version of a volume operator by means of a baby version of a
scalar field as discussed in Ref. 2. We find that in contrast to the arguments spelled out there, the
kinematically discrete spectrum switches to a gauge invariant continuous one.

II. PARTIAL AND COMPLETE OBSERVABLES

Here we will explain the method of partial and complete observables. The examples we are
going to discuss exhibit only one constraint, i.e., only one gauge degree of freedom. We will
comment on the case with several constraints �general relativity has infinitely many constraints�
later on.

Let us start with an example, namely, the relativistic particle in two space-time dimensions.
Here we have the mass shell constraint
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C = p0
2 − p1

2 − m2, �2.1�

where m is the mass and �p0 , p1� the momentum of the particle. Now we have to choose a clock
variable T and another partial observable f . Our choice is T=x0 and f =x0p1−x1p0, where �x0 ,x1�
is the position vector of the particle. The complete observable F���, where � is a phase space
independent parameter, is defined to be the gauge invariant phase space function with the follow-
ing property: On the hypersurface T=� it should coincide with the phase space function f . Gauge
invariance means here that F��� has to be invariant under the flow of the mass shell constraint
�2.1�, i.e., that �F��� ,C�=0, where the Poisson brackets are defined by �xi , pj�=�ij.

One way to find the complete observable is to compute the flow of the clock variable T under
the constraint C, that is,

T�t� ª �
k=0

�
tk

k!
�T,C�k, �2.2�

where �g ,C�k+1= ��g ,C�k ,C�, �g ,C�0=g are iterated Poisson brackets. Next, one has to solve the

equation T�t�=! � for t. The solution ts= ts��� is, in general, also phase space dependent. For the
relativistic particle we have

T�t� = x0 + 2tp0=! � . �2.3�

Hence, ts= 1
2 p0

−1��−x0�.
Now we have to insert the solution ts into the flow of f under the constraint C. This gives the

complete observable F���,

F��� = f�ts���� = �
k=0

�
�ts����k

k!
�f ,C�k. �2.4�

Since for the relativistic particle f�t�= �x0+2tp0�p1− �x1−2tp1�p0, we find

F��� = �p1 − �x1p0 − �� − x0�p1� = 2�p1 − �x0p1 + x1p0� . �2.5�

Indeed �2.5� coincides with f on the hypersurface T=x0=� and is invariant under the flow of C.
This construction can be generalized to systems with arbitrary many �first class� constraints by

introducing as many clock variables Ti as there are constraints Ci, where i is in some index set I.
The complete observable F��i� associated with these clock variables and a partial observable f is
defined to be the gauge invariant function which coincides on the hypersurface �Ti=�i ∀ i� I�
with the function f . For methods to compute complete observables see Ref. 8.

We want to remark that the complete observable might not always be well defined. For
instance, the surface T=� might meet a gauge orbit several times which leads to multiple solutions

of the equation T�t�=! � and hence might lead to multiple valued complete observables as is
discussed in the first reference in Ref. 8. Some examples in the next section will have multiple

solutions ts of the equation T�t�=! � but in these the partial observable f is chosen such that f�t�
coincides on all solutions ts and hence we will always get a well defined complete observable.

On the other hand, it might happen that for a fixed parameter � the surface T=� does not meet
a certain set of gauge orbits at all. Here we will assume that the parameter � is always chosen such
that one can define the complete observable at least on an open set of the phase space. In our
examples this complete observable can always be continued analytically to a gauge invariant
function defined on the whole phase space.2

2This convention is necessary, for instance, for the examples with the rotation generator as constraint. Note that with this
convention it may happen that the complete observable F��� assumes negative values whereas the partial observable f is
non-negative.
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Furthermore, often we will give the complete observables modulo terms that vanish on the
constraint hypersurface, since these terms are not relevant for the quantization of the observables
on the physical Hilbert space.

With the relativistic particle we already have an example where the spectrum of the quanti-
zation of the partial observable f =x0p1−x1p0 is discrete �since it generates rotations in the �x0 ,x1�
plane� and the spectrum of the quantization of the corresponding complete observable F��=0�=
−x0p1−x1p0 is continuous �since it generates boosts�.

Such a change of the spectral properties can be understood in the following way:

Heuristically3 the quantization f̂ of a �smooth� phase space function f has a discrete spectrum or
a continuous spectrum if the vector field � f associated with the phase space function f generates
compact orbits or noncompact orbits, respectively.

The vector field � f associated with f is defined by the equation

�g, f� = � f�g� , �2.6�

which has to hold for every smooth function g. Here the Poisson brackets �· , ·� are defined via the
symplectic form � defined on the phase space in question.

Assume that the equation T=� defines a good gauge fixing, i.e., that the surface T=� meets
each gauge orbit once and only once. As it is explained in Refs. 8 and 9 in this case the following
holds: The space of all complete observables with this choice of clock variable T can be mapped
via a symplectomorphism onto the reduced phase space obtained with the gauge fixing T=� and
equipped with the Dirac bracket �· , ·�D. This map is given by mapping the complete observable
associated with f to the gauge restriction of f , i.e., the restriction of the function f to the reduced
phase space �C=0, T=��.

Hence, considering complete observables and the symplectic flows they generate is equivalent
to considering the reduced phase space �C=0, T=�� with its induced symplectic form, which is
given by the Dirac bracket. That is, a complete observable associated with a function f generates
compact orbits if and only if this is the case for the symplectic flow of the gauge restriction of f
defined via the Dirac bracket. This symplectic flow preserves, in particular, the reduced phase
space �C=0, T=��. In fact, the vector fields � f

D associated with the gauge restriction of f via the
Dirac bracket can be understood as the vector fields � f projected to the hypersurface �C=0, T
=��: since the flow defined via the Dirac bracket does not leave the hypersurface �C=0, T=��,
the associated vector field � f

D has to be tangent to the hypersurface.
Now to determine whether the orbits generated by the vector field � f are compact or not

cannot, in general, be concluded from local considerations only. It might change under the
projection4 onto the reduced phase space. Also, the global properties of the reduced phase space
and how the reduced phase space is embedded into the full phase space are important. This
explains the different spectra for the partial observable f and the complete observable F���.
Moreover, this argument shows that it is very difficult to predict which kind of spectrum the
complete observables will have, since it requires control of the global features of the reduced
phase space.

In Sec. III we will give examples for all possible combinations of discrete �i.e., pure point� or
continuous �i.e., absolutely continuous� spectra for the �quantized� constraint, the clock variable T,
the partial observable f , and the complete observable F���.

III. THE EXAMPLES

In our examples we will use the phase space R2�R2 with canonical coordinates �x1 , p1 ,x2 , p2�
and Poisson brackets �xi , pj�=�ij �where �ij is the Kronecker symbol�.

3For instance, the Bohr–Sommerfeld quantization rule �Ref. 14� applicable to systems with periodic motion is a heuristic
method which connects the energy gaps to properties of the phase space orbits as generated by the Hamiltonian.
4Note that not the orbits themselves are projected but rather the Hamiltonian vector fields. Hence compact orbits may
change to noncompact ones under the projection of the generating vector fields.
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We choose the space of square integrable functions L2�R2� as the kinematical Hilbert space.
The quantized configuration coordinate functions x̂j act as multiplication operators x̂j =xj and the
quantized momenta as derivative operators p̂j =−i�� j.

We will start our considerations with the constraint Ĉd= x̂1p̂2− x̂2p̂1, which is the generator of
rotations on R2. The constraint operator has a discrete spectrum ��z ,z�Z� �indicated by the index
d�. We will assume that the partial and complete observables have either an entirely discrete �i.e.,
pure point� spectrum or an entirely continuous �i.e., absolutely continuous� spectrum and that the
spectral type of the complete observable does not depend on the particular value of the parameter

�. Then there exist eight combinations for the spectra of the clock variable T̂, the partial observ-

able f̂ , and the complete observable F̂���. We will indicate these combinations by �d , i , j ,k� with

i , j ,k� �c ,d� for the spectrum i of the clock variable T̂, the spectrum j of the partial observable f̂ ,

and the spectrum k of the complete observable F̂���.
The construction of the physical Hilbert space for the constraint Ĉd is straightforward. The

constraint has a pure point spectrum and moreover the point zero is included in this spectrum so

that we have solutions �phys to the constraint equation Ĉd�phys=0 that are elements of the kine-
matical Hilbert space. A physical inner product is given by the restriction of the kinematical inner
product to these solutions.

The gauge invariant functions we will encounter in our examples of complete observables are
given by r2

ªx1
2+x2

2 and hªx1
2+x2

2+ p1
2+ p2

2. The corresponding quantizations have a continuous
spectrum and a discrete spectrum, respectively. Details on the physical Hilbert space and the
algebra of Dirac observables can be found in Appendix A.

We will begin the discussion of the examples with the case �d ,d ,d ,d�. Here we choose as
clock variable and as partial observable

T = x1
2 + p1

2, f = x2
2 + p2

2, �3.1�

which are the harmonic oscillators in the x1 and x2 coordinates, respectively. The corresponding
quantum operators have obviously a discrete spectrum.

One way to find5 the complete observable is to first solve the equation

T�t� ª �
k=0

�
tk

k!
�T,Cd�k=

!
� �3.2�

for t and then to insert the solutions of this equation into f�t�. However, there is a shorter way:
Note that

T�t� = x1
2 cos2�t� + x2

2 sin2�t� − 2x1x2 cos�t�sin�t� + p1
2 cos2�t� + p2

2 sin2�t� − 2p1p2 cos�t�sin�t� .

�3.3�

Hence, we have for solutions ts of the equation T�t�=�

2x1x2 cos�ts�sin�ts� + 2p1p2 cos�ts�sin�ts� = x1
2 cos2�ts� + x2

2 sin2�ts� + p1
2 cos2�ts� + p2

2 sin2�ts� − � .

�3.4�

We use this equation in

5The following exceptionally simple examples were actually not found by using the partial observable method directly but
by splitting an observable under the respective symmetry into two nonobservables which are then the two candidate partial
observables. This works because in most of our elementary examples the complete observables are a linear combination of
the partial observable and the clock variable. As has been pointed out by Christian Fleischhack, this method can of course
be used in principle in a wider context.
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F��� = f�ts� = 2x1x2 cos�ts�sin�ts� + 2p1p2 cos�ts�sin�ts� + x2
2 cos2�ts� + x1

2 sin2�ts� + p2
2 cos2�ts�

+ p1
2 sin2�ts� �3.5�

and find

F��� = x1
2 + x2

2 + p1
2 + p2

2 − � , �3.6�

which is the sum of two harmonic oscillator Hamiltonians minus a constant �. The corresponding
quantum operator has a discrete spectrum.

Hence, we found an example for the case �d ,d ,d ,d�. Examples for all the other cases
�d , i , j ,k� can be found in a similar manner. The examples are summarized below:

Case T f F���
�d,d,d,d� x1

2 + p1
2 x2

2 + p2
2 x1

2 + p1
2 + x2

2 + p2
2 − �

�d,c,d,d� �1 − �2�x1
2+ p1

2 + �2x1
2+ x1

2 + p1
2 + x2

2 + p2
2 − �

�1 − ��2�x2
2 p2

2 + ��2x2
2

�d,d,c,d� p1
2 + �2x1

2+ �1 − �2�x1
2+ x1

2 + p1
2 + x2

2 + p2
2 − �

p2
2 + ��2x2

2 �1 − ��2�x2
2

�d,c,c,d� x1
2 + p2

2 x2
2 + p1

2 x1
2 + p1

2 + x2
2 + p2

2 − �

�d,d,d,c� �p1
2 + �2x1

2�− − �p1
2 + ��2x1

2�+ ��2 − ��2��x1
2 + x2

2� − �

�p2
2 + ��2x2

2� �p2
2 + �2x2

2�
�d,d,c,c� p1

2 + x1
2 p1

2 − x2
2 − x1

2 − x2
2 + �

�d,c,d,c� p1
2 − x2

2 p1
2 + x1

2 x1
2 + x2

2 + �

�d,c,c,c� x1
2 x2

2 x1
2 + x2

2 − �

. �3.7�

We will now turn to a constraint with a continuous spectrum. We use the same phase space
and the same kinematical Hilbert space as before, namely, R2�R2 and L2�R2�, respectively. We

will work with the momentum constraint Cc= p1, whose quantization Ĉc=−i��1 has a continuous
spectrum.

The Dirac observable algebra for this constraint is spanned by x2 and p2, i.e., it is given by
phase space functions which do not depend on x1 or p1. Physical wave functions are wave
functions which do not depend on x1. A physical inner product can be defined by omitting the
integration over x2 in the kinematical inner product. Hence, we are left with a physical Hilbert
space L2�R ,dx2� which carries the usual representation of the basic Dirac observables x̂2 and p̂2.

The calculation of the complete observables is straightforward. In table �3.8� we have listed
the examples for all possible cases �c , i , j ,k� where again i , j ,k can take values d or c and indicate
a discrete or continuous spectrum, respectively, of the corresponding quantum observable. Note
that for the case �c ,d ,d ,d� we make use of the fact that two observables are equivalent if they
differ by a term vanishing on the constraint surface,

Case T f F���
�c,d,d,d� x1

2 + p1
2 x1

2 + p1
2 + x2

2 + p2
2 x2

2 + p2
2 + �

�c,c,d,d� x1
2 x1

2 + p1
2 + x2

2 + p2
2 x2

2 + p2
2 + �

�c,d,c,d� x1
2 + p1

2 + x2
2 + p2

2 x1
2 − x2

2 − p2
2 + �

�c,c,c,d� x1 + p2
2 x1 − x2

2 − x2
2 − p2

2 + �

�c,d,d,c� x1
2 + p1

2 �x1p2 − x2p1�2 �p2
2

�c,d,c,c� x1
2 + p1

2 + x2
2 + p2

2 x1
2 + x2

2 − p2
2 + �

�c,c,d,c� x1
2 + x2

2 x1
2 + p1

2 + x2
2 + p2

2 p2
2 + �

�c,c,c,c� x1 x1 + x2 x2 + �

. �3.8�
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Consider. in particular. the cases �c ,c ,d ,d� and �c ,c ,d ,c� which can be generalized to

T = x1
2 + 	x2

2,

f = x1
2 + p1

2 + x2
2 + p2

2,

F��� � �1 − 	�x2
2 + p2

2 + � , �3.9�

with 0
	�1 or 	�1 for a discrete spectrum of the complete observable or a continuous spec-
trum of the complete observable, respectively. The symbol � indicates that the last equation in
�3.9� holds modulo terms which vanish on the constraint hypersurface. Hence, we have an ex-
ample where just changing the clock variable T leads to the change of the spectrum of the
complete observable.

Examples with more than one constraint can be easily constructed by taking “a direct sum” of
the above examples for one constraint: For instance, consider the constraints C1= p1 and C2= p3 on
a phase space R4�R4. Choose as partial observables

T1 = x1
2,

T2 = x3
2,

f = x1
2 + p1

2 + x2
2 + p2

2 + x3
2 + p3

2 + x4
2 + p4

2. �3.10�

The corresponding complete observable is F��1 ,�2��x2
2+ p2

2+x4
2+ p4

2+�1+�2. Hence, we have an
example with two constraints and two clock variables with a continuous spectrum and a partial
observable f and a complete observable F��1 ,�2� with a discrete spectrum.

IV. DISCUSSION

The examples show that it is very difficult to make any predictions about the spectra of
physical observables even if the spectra of gauge variant observables are known to which the
physical observables are associated in a certain sense �e.g., here through the method of partial and
complete observables�. The examples considered here are very simple and do not include further
complications one would expect for the geometrical operators in LQG. For instance, one might
consider space-time geometrical operators rather than spatial ones.

Among earlier work on these issues we select the following three: In Ref. 11 the authors
consider 2+1 Lorentzian gravity without matter and construct a length operator within the Hamil-
tonian theory. Since the authors do not require that the spatial slices be spacelike, the length
operator measures the length of timelike or spacelike curves. The spacelike spectrum is continuous
while the timelike one is discrete, corresponding to the coexistence of a continuous and a discrete
spectrum of the Casimir for SO�1,2�. However, the spectrum is at the kinematical level only and
it is unknown what happens when one implements the dynamics. Of more relevance to our paper
is Ref. 12 which concerns Riemannian 2+1 gravity with point particles. Now the length operator
can be made into a Dirac observable and the spectrum is discrete for both the kinematical and the
physical length observable! However, it is not clear whether a similar construction will also work
in 3+1 dimensions, and the analysis is done for the Riemannian case only. Finally there is a body
of literature called “Lorentz covariant gravity” in 3+1 dimensions, see, for instance, Ref. 13,
where one keeps the connection a Lorentz connection at the price of the connections not to
Poisson commute. Hence, one does not have any �connection� representation and thus rigorous
spectral theory cannot be performed.

Our heuristic argument of how one could understand the change from discrete to continuous
spectra and vice versa shows that the global features of the kinematical and reduced phase space
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play an important role. However, it is very hard to get complete control over the reduced phase
space of general relativity. It might be therefore complicated to give any conditions that would
ensure the discreteness of the spectra for the complete observables.

As a more general lesson these examples show that physical observables might have very
unexpected properties. Here we considered the spectra of physical observables. Other properties
are, for instance, commutation relations of physical observables; see, for instance, the third refer-
ence in Ref. 8. Moreover, there are indications that considering physical observables might lead to
a notion of noncommutative space-time.15

Although we cannot say yet whether or not the true physical geometrical operators of LQG
will have discrete spectra without spelling out additional details, we want to emphasize that their
kinematical versions are still important. For instance, the kinematical volume operator enters the
definition of the Hamiltonian constraint and surely many other Dirac observables which are gauge
invariant aggregates built out of gauge variant operators.
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APPENDIX A: EXAMPLE, PHYSICAL HILBERT SPACE

Here we will briefly discuss the representation of the Dirac observable algebra on the physical

Hilbert space for the constraint Ĉd= x̂1p̂2− x̂2p̂1. The Dirac observable algebra is spanned by

d̂ = 1
2 �x̂ip̂i + p̂ix̂i� = x̂ip̂i − i�, ê+ = x̂ix̂i, ê− = p̂ip̂i, �A1�

where we sum over repeated indices. With this operator ordering for d̂ the observables �A1�
represent the sl�2,R� algebra:

�d̂, ê
� = � 2i�e
, �ê+, ê−� = 4i�d̂ . �A2�

The constraint has a pure point spectrum and, moreover, the point zero is included in this

spectrum so that we have solutions �phys to the constraint equation Ĉd�phys=0 that are elements of
the kinematical Hilbert space. A physical inner product is given by the restriction of the kinemati-
cal inner product to these solutions. Explicitly we can change to polar coordinates r�R+ ,�
� �0,2��:

x1 = r cos � x2 = r sin � , �A3�

so that the constraint operator Ĉd and the Dirac observable algebra �A1� become

Ĉd = − i��x1�2 − x2�1� = − i���,

d̂ = − i��x1�1 + x2�2 + 1� = − i��r�r + 1� ,

�dA4�
ê+ = �x1

2 + x2
2� = r2,

ê− = − �2��1
2 + �2

2� = − �2��r
2 + r−1�r + r−2��

2�

on the kinematical Hilbert space L2�rdrd� ,R+� �0,2���. The physical states are the states which
do not depend on the angular coordinate � and the physical inner product can be written as
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��phys,�phys�phys = 	
R+

�phys�r��phys�r�rdr . �A5�

The representation �A4� of the Dirac observable algebra �A1� is unitary and irreducible. It is
equivalent to the representation D1/2

+ �see, for instance, Ref. 16� from the discrete series of repre-
sentations of sl�2,R�. In this representation the operators ê+ and ê++ ê− �which is the two-
dimensional harmonic oscillator restricted to states with vanishing angular momentum� have an
absolutely continuous spectrum and a pure point spectrum, respectively. These Dirac observables
appear as complete observables in our examples.

APPENDIX B: BABY VERSION OF LQG GEOMETRICAL OPERATORS

The examples considered so far could be taken as irrelevant for the situation in LQG for two
reasons: First, the configuration space of the models was noncompact while for the geometry part
of LQG the configuration space was compact. Second, in all the examples considered it so hap-
pened that f ,T did not Poisson commute whenever the spectrum changed. However, the idea of
Ref. 2 was to use for T scalar matter while f is a geometry function; hence f ,T did Poisson
commute there.

In Ref. 17 we find an example based on sl�2,R� where a continuous kinematical spectrum
switches to a discrete gauge invariant one. However, there the configuration space is still noncom-
pact and, furthermore, the switch happens in the wrong direction. Thus, we now explicitly display
an example where both of the above-mentioned properties that are missing in our models are
satisfied and still the switch occurs.

Consider the phase space T��S1�R� of a particle moving on a cylinder. Denote by A the angle
configuration variable �“connection”� and by E its conjugate momentum �“flux”�. Recall that all
geometrical operators of LQG are compound operators built from fluxes and they inherit their
spectral discreteness from that of the flux operators. Denote by � the axis configuration variable
�“scalar field”� and by � its conjugate momentum. Of course, A is not a globally defined function
and we must switch to the “holonomy” h=exp�iA�.

We impose as constraint that the particle must spiral around the cylinder with period 2�; that
is,

C = A − 
� − 2�� �

2�
�
 , �B1�

where �·� denotes the Gauss bracket. In the form �B1� the constraint is not differentiable; hence,
we pass to the equivalent version

C = exp�i�A − ��� − 1 = 0. �B2�

In this form the constraint is not real valued but that will not pose any problems. �Alternatively
work with the reducible system C1=cos�A−��−1 and C2=sin�A−��. The constraint C2 is used to
determine the gauge flow on the constraint hypersurface defined by �B1�, whereas C1 is only
needed to exclude the points with A−�=� and so on from consideration. One cannot reduce this
system to only one real and differentiable constraint: this would require a continuous and periodic
function that is �a� vanishing at 2�z, z�Z, and only at these points and �b� has nonvanishing and
well defined derivative at these points. A continuous function vanishing at, say, 0 and 2� and
having the same derivative different from zero at these points has to vanish at least at one point in
the open interval �0,2��.�

As clock we choose T=� and as partial observable f =E. A straightforward calculation reveals
that the corresponding complete observable is given by

F = E + � − � , �B3�

which is essentially the total momentum of the particle.
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The kinematical Hilbert space is given by Hkin=L2�S1 ,dA /2�� � L2�R ,d��. Operators are

represented as �̂= id /d�, Ê= id /dA=−hd /dh while �, A �or rather h� become multiplication

operators. Clearly, �̂, Ê, �̂ are self-adjoint while ĥ is unitary. The spectrum of Ê is discrete and
takes integer values with eigenfunctions given by Tn=hn �“spin network functions”�.

To compute the physical Hilbert space we define the rigging map6

���� ª ��Ĉ�� . �B4�

The � distribution is given by

��Ĉ� = �R
A − 
� − 2�� �

2�
�

 = �

n

�R��,A + 2�n� = �
n

exp�in�A − ��� = �S1�A − �� ,

�B5�

where in the last step we have applied a Poisson resummation. The physical inner product on the
solutions ���� is given by

�����,������phys = ��,��Ĉ����kin = ��̃,��̃�L2�R,d��, �B6�

where �̃���=��A=� ,�� which is well defined because � is periodic in A.
One can also get this by making the Fourier expansion

��A,�� = �
n

Tn�A��n��� �B7�

and solve exp�i�Â−�̂���=� for the coefficients �n.

It is physically completely obvious that F̂ has an absolutely continuous spectrum. To see this

explicitly, suppose that ���� is an eigenvector of F̂, that is,

F̂���� = ��F̂�� = ����� . �B8�

Since we may assume without loss of generality that � depends trivially on A, this is equivalent to
the equation

�̂� = �� + ��� ⇒ ���� = c exp�− i�� + ���� �B9�

for some constant c. However, in order to be normalizable in the physical inner product it follows

c=0. Thus F̂ has no pure point spectrum and since the physical Hilbert space is equivalent to

L2�R ,dx� on which the observable F̂ is essentially represented as id /dx it follows that F̂ has an
absolutely continuous spectrum as claimed. This example illustrates nicely the heuristic argument
given in Sec. II: The flow associated with the partial observable f =E is compact on the kinemati-
cal phase space, since it integrates to circles. Under the projection to the �gauge fixed and�
constraint hypersurface the flow is mapped to noncompact spirals, leading to a continuous spec-
trum of the associated Dirac observable.
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