

Are there approximate Fast Fourier Transform on graphs?

European Research Council projection, learning and sparsity for efficient data processing

Luc Le Magoarou, Rémi Gribonval Inria, Rennes, France

Objective

Goal: Enable Fast Fourier Transform (FFT) and fast filtering on large graphs.

Approach: Provide a general method for approximating the graph Fourier matrix **U**, giving approximations $\hat{\mathbf{U}}$ that can be applied rapidly.

Graph Fourier transform

Let $\mathbf{L} \in \mathbb{R}^{n \times n}$ be the laplacian matrix of a graph, and $\mathbf{U} \in \mathbb{R}^{n \times n}$ its eigenvectors matrix. Let $\mathbf{x} \in \mathbb{R}^n$ be a signal on the graph, and $\mathbf{y} \in \mathbb{R}^n$ its Fourier transform, we have:

$$\mathbf{y} = \mathbf{U}^T \mathbf{x}$$
 $\mathbf{x} = \mathbf{U} \mathbf{y}.$

The matrix \mathbf{U} being dense in general, the Fourier transform costs $\mathcal{O}(n^2)$ arithmetic operations.

Fast transforms

Many widely used transforms (classical Fourier, wavelets, DCT, etc.) are paired with a fast algorithm, exploiting the factorizability of the assocciated matrix **A** into sparse factors,

$$\mathbf{A} = \prod_{j=1}^{J} \mathbf{S}_{j}.$$

This factorizability is necessary and sufficient for a fast linear algorithm to exist. In the case of the classical Fourier transform, \mathbf{A} can be factorized into $J = \log_2(n)$ factors, each having 2n nonzero entries.

Contact Information

luc.le-magoarou@inria.fr

$FA\mu ST$ approximations

We approximate U using Flexible Approximate MUlti-layer Sparse Transforms (FA μ ST) [1]:

$$\mathbf{U} pprox \hat{\mathbf{U}} = \prod_{j=1}^J \mathbf{S}_j,$$

allowing to compute approximate Fourier transformations ($\hat{\mathbf{U}}^T\mathbf{x}$ and $\hat{\mathbf{U}}\mathbf{y}$) in only $\mathcal{O}\left(\sum_{j=1}^{J}\|\mathbf{S}_j\|_0\right)$ arithmetic operations.

Optimization problems

We consider two optimization problems:

• Approximate factorization of \mathbf{U} (giving $\hat{\mathbf{U}}_{\text{fact}}$):

minimize $\frac{1}{2} \|\mathbf{U} - \mathbf{S}_J \dots \mathbf{S}_1\|_F^2$ subject to $\mathbf{S}_j \in \mathcal{S}_j, \, \forall j \in \{1, \dots, J\},$ (P1)

• Approximate diagonalization of \mathbf{L} (giving $\hat{\mathbf{U}}_{\mathrm{diag}}$):

minimize
$$\mathbf{S}_{1},...,\mathbf{S}_{J},\mathbf{D}$$
 $\frac{1}{4} \|\mathbf{L} - \mathbf{S}_{J}...\mathbf{S}_{1}\mathbf{D}\mathbf{S}_{1}^{T}...\mathbf{S}_{J}^{T}\|_{F}^{2}$ subject to $\mathbf{S}_{j} \in \mathcal{S}_{j}, \, \forall j \in \{1,...,J\}$ $(P2)$ $\mathbf{D} \in \mathcal{D},$

both tackled with the hierarchical strategy of [1].

Main Contribution

A flexible approach that allows to get FA μ STs with computational complexities $\mathcal{O}(n^{\alpha})$, $1 < \alpha < 2$, approximating well the Fourier transform of many classical families of graphs.

Experimental validation

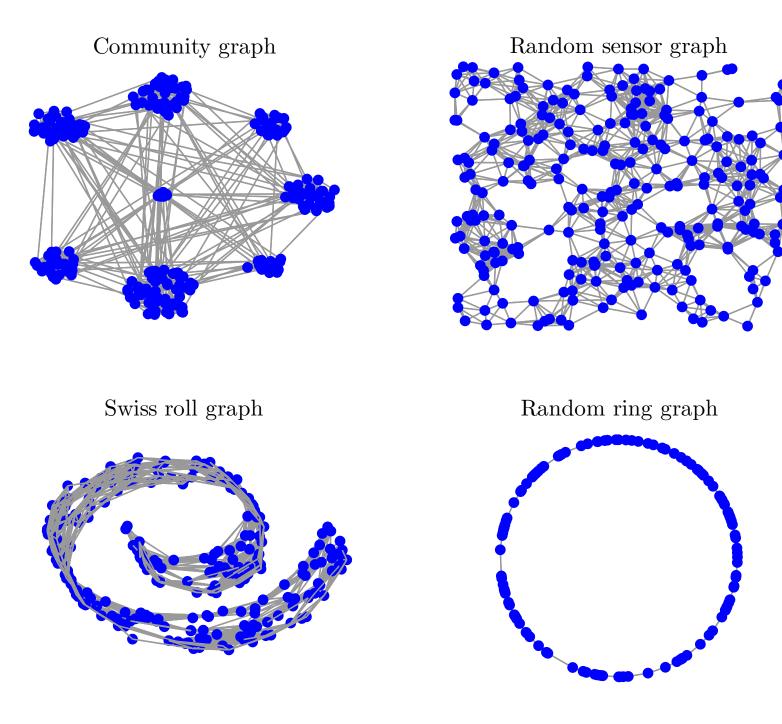


Figure 1: Different graphs used.

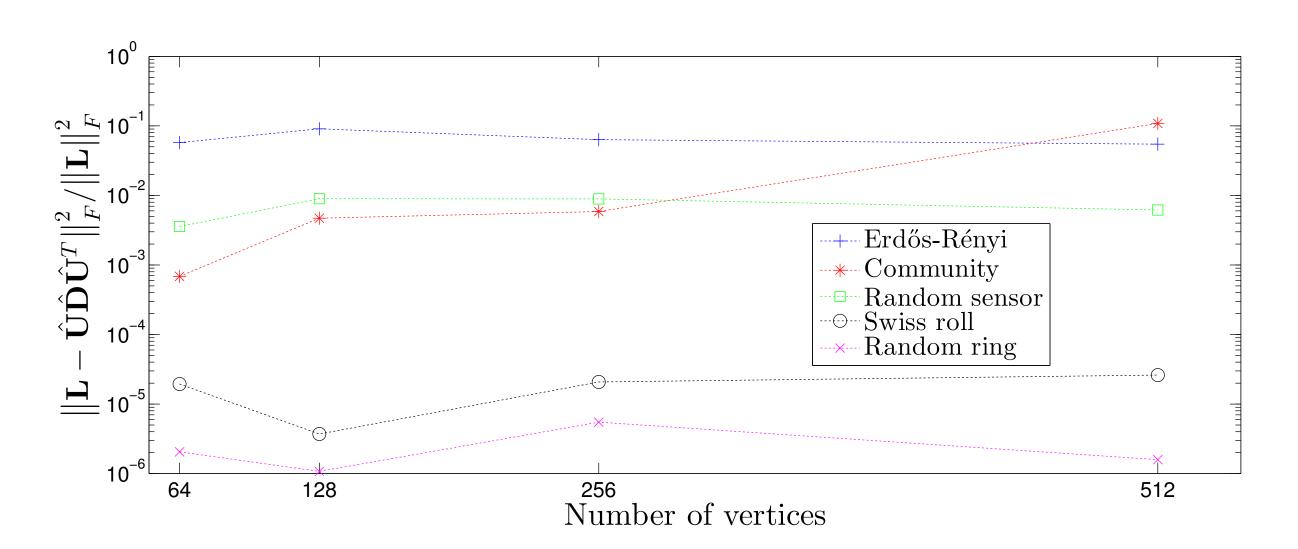


Figure 2: Approximation error for (P2), various graphs of different dimensions $n \in \{64, 128, 256, 512\}$, and FA μ STs of complexity $\mathcal{O}(n^{1.26})$. The mean over 10 independent trials is shown.

Acknowledgments

This work was supported in part by the European Research Council, PLEASE project (ERC-StG-2011-277906).

Filtering experiment

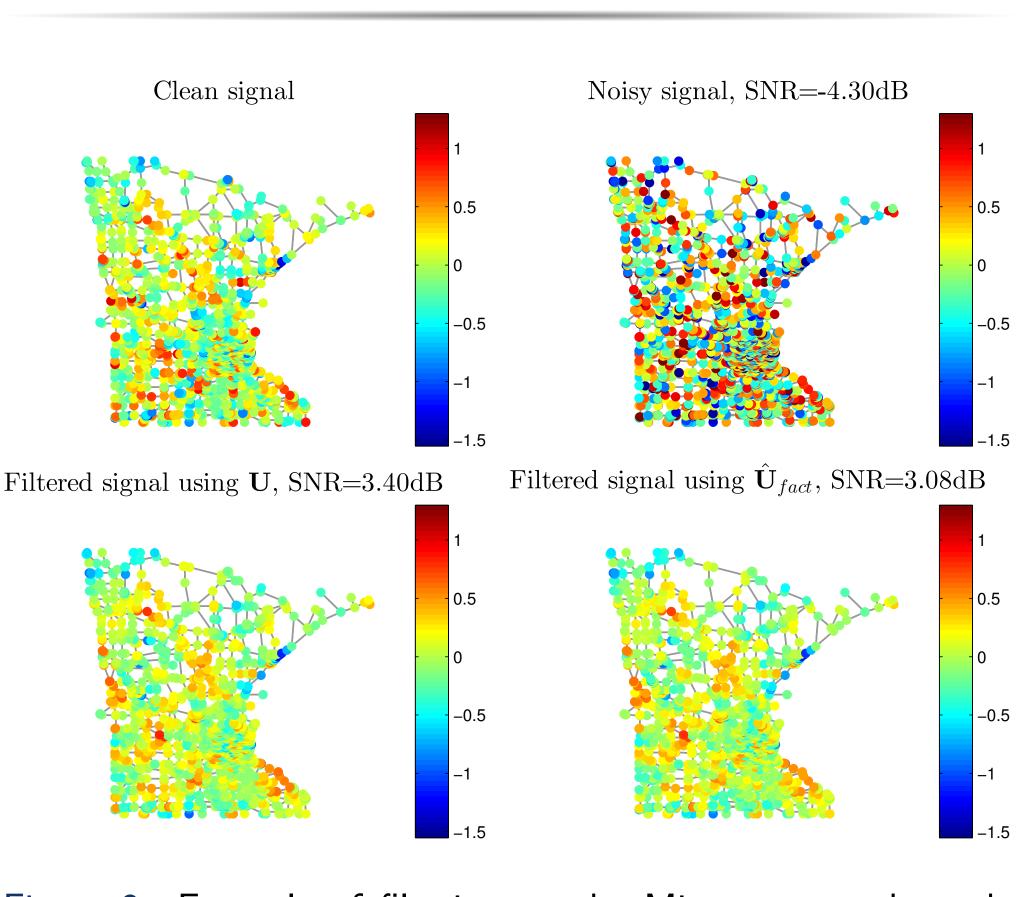


Figure 3: Example of filtering on the Minnesota road graph. Filtering using \mathbf{U} and filtering using a FA μ ST $\hat{\mathbf{U}}_{fact}$ (eight times more computationally efficient) are shown.

	$\sigma = 0.3 \ \sigma$	$\sigma = 0.4 \ \sigma$	$\sigma = 0.5$
Noisy	1.82	-0.68	-2.65
Filtered using \mathbf{U}	5.11	4.57	3.89
Filtered using $\hat{\mathbf{U}}_{\mathrm{diag}}$	4.04	3.62	3.11
Filtered using $\hat{\mathbf{U}}_{\mathrm{fact}}$	4.70	4.23	3.59

Table 1: Filtering results, the SNRs in dBs and in average over 100 independently drawn signals for each noise level are given.

Future work

- Designing a method that does not require a precomputed diagonalization of the Laplacian ${\bf L}$.
- Imposing orthogonal FA μ STs, to ensure perfect reconstruction ($\hat{\mathbf{U}}^T\hat{\mathbf{U}} = \mathbf{Id}$).

References

[1] Luc Le Magoarou and Rémi Gribonval.

Flexible multi-layer sparse approximations of matrices and applications. *CoRR*, abs/1506.07300, 2015.