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Abstract

Clustering of obesity, coronary artery disease, and cardiovascular disease risk factors is observed 

in epidemiological studies and clinical settings. Twin and family studies have provided some 

supporting evidence for the clustering hypothesis. Loci nearest a lead single nucleotide 

polymorphism (SNP) showing genome-wide significant associations with coronary artery disease, 

body mass index, C-reactive protein, blood pressure, lipids, and type 2 diabetes mellitus were 

selected for pathway and network analyses. Eighty-seven autosomal regions (181 SNPs), mapping 

to 56 genes, were found to be pleiotropic. Most pleiotropic regions contained genes associated 

with coronary artery disease and plasma lipids, whereas some exhibited coaggregation between 

obesity and cardiovascular disease risk factors. We observed enrichment for liver X receptor 

(LXR)/retinoid X receptor (RXR) and farnesoid X receptor/RXR nuclear receptor signaling 

among pleiotropic genes and for signatures of coronary artery disease and hepatic steatosis. In the 

search for functionally interacting networks, we found that 43 pleiotropic genes were interacting 

in a network with an additional 24 linker genes. ENCODE (Encyclopedia of DNA Elements) data 

were queried for distribution of pleiotropic SNPs among regulatory elements and coding sequence 

variations. Of the 181 SNPs, 136 were annotated to ≥1 regulatory feature. An enrichment analysis 

found over-representation of enhancers and DNAse hypersensitive regions when compared against 

all SNPs of the 1000 Genomes pilot project. In summary, there are genomic regions exerting 

pleiotropic effects on cardiovascular disease risk factors, although only a few included obesity. 

Further studies are needed to resolve the clustering in terms of DNA variants, genes, pathways, 

and actionable targets.
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The 2010 Global Burden of Disease Study reported on 235 causes of deaths in 187 countries 

of the world.1 In 2010, there were 52.8 million deaths, and ischemic heart disease and stroke 

accounted for 12.9 million of these deaths, that is, 1 in 4 deaths worldwide. In the United 

States, there were a total of 2.5 million deaths in the same year according to the Centers for 

Disease Control and Prevention, with 727 165 of them (or 29%) caused by heart disease and 

stroke. Heart disease was the leading cause accounting for 24% of all deaths.

Common risk factors for cardiovascular disease (CVD) have been identified and found to be 

highly prevalent in the United States and the rest of the developed world. In the United 

States, in adults aged ≥20 years, the prevalence of age-adjusted hypertension reached 30.0% 

and was 27.8% for high cholesterol (>240 mg/dL or high-cholesterol medication), 68.8% for 

overweight and obesity, and 11.4% for diagnosed and undiagnosed diabetes mellitus.2 On 

the basis of the National Health and Nutrition Examination Survey of 1999 to 2000, the 

prevalence of high-sensitivity C-reactive protein (hs-CRP) above 3 mg/L but below 10 mg/L 

was 23.1% among adults with a normal lipid profile.2 In addition, 19.3% of adults aged ≥18 

years were smokers, and 49.1% met neither the aerobic activity nor muscle-strengthening 

physical activity guidelines from the federal 2008 Physical Activity Guidelines Advisory 

Committee Report.3

Even though each of these risk factors individually imparts an increased risk of CVD, the 

presence of multiple risk factors translates into an even higher risk level. This is well 

illustrated by the widespread popularity of the metabolic syndrome concept, a constellation 

of risk factors that confers an elevated risk of cardiometabolic anomalies and CVD. Decades 

of research on common CVD risk factors have established that they often differ between 

men and women, are influenced by age and ethnicity, and are modulated by behavioral 

choices, including poor diet and a sedentary lifestyle, environmental conditions, and one's 

genetic profile. Even though it is well recognized that all these risk factors taken 

individually are characterized by a significant genetic component, there are uncertainties 

about the true magnitude of risk factor clustering, as well as on the role of genetic factors in 

risk factor clustering in individuals.

This review emphasizes the potential role of genetic determinants on CVD risk factor 

clustering with special reference to coaggregation of obesity with coronary artery disease 

(CAD) and CVD risk factors. The contribution of such determinants to the biology of 

cardiometabolic diseases will be discussed.

Evidence for Genetic Covariation Among CVD Risk Factors

Heritability of Individual CVD Risk Factors

Using several twin and family study designs, studies have revealed that there is a significant 

genetic component to human variability in CVD risk factors when considered individually. 

In Table 1, we have summarized the broad-sense heritability estimates emerging from 

studies that have focused on individual CVD risk factors. These risk factors are all 

characterized by familial resemblance and significant heritability estimates.4,5 All these 

CVD risk factors have been the target of genome-wide association studies (GWAS) aimed at 
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identifying common single nucleotide polymorphisms (SNPs) and at quantifying how much 

of the phenotypic variance is actually captured by them.

Heritability levels ranging from 25% to 70% for body mass index (BMI) or total body 

fatness have been reported, although higher and lower heritability values are not 

uncommon.24 For abdominal obesity, when total adiposity is taken into account, heritability 

estimates on the order of 50% have been reported.24,25 For adiposity-related traits and for 

other CVD traits, heritability values derived from twin studies tend to be higher26 than those 

calculated from nuclear family data.27 Levels of abdominal visceral fat are also 

characterized by significant familial aggregation and heritability levels ranging from 48% to 

56% have been found in 2 family studies with adjustment for total adiposity.28,29

Heritability estimates range from 20% to 55%30–32 for fasting insulin; from 10% to 

63%6,33–35 for fasting glucose; and from 46% to 90% for insulin resistance or type 2 

diabetes mellitus (T2DM). Significant genetic effects are evident for fasting plasma or 

serum lipoprotein traits, with commonly reported heritability values ranging from 25% to 

60% for triglycerides, 50% to 60% for total cholesterol (TC), 30% to 80% for high-density 

lipoprotein cholesterol (HDL-C), and 26% to 60% for low-density lipoprotein cholesterol 

(LDL-C).36,37 Genetic components are also significant for resting systolic blood pressure 

(20%–70%), diastolic blood pressure (10%–50%), and hypertension (clustering 

≈50%).7,25,37 In the Stanislas Family Study of 320 nuclear families, variance component 

analysis did not reveal the presence of a significant genetic effect to variation in hs-CRP.8 In 

the Jackson Heart Study, the heritability of hs-CRP in blacks reached 45% after adjustment 

for age, sex, and BMI.9 Comparable heritability levels have been reported in Japanese 

Americans (30%), twins many of which with hypertension (56%) and siblings from the 

Diabetes Heart Study (37% after adjustment for age, sex, ethnicity, and BMI).10–12

In spite of remaining uncertainties, the general picture emerging is one in which genetic 

variations have pervasive influences on common individual risk factors for CVD. 

Heritability levels are statistically significant and, although not reviewed here, complex 

genotype–nutrient, genotype– overfeeding, genotype–exercise, and genotype–medication 

interactions on these individual risk factors are commonly observed.

Statistical Evidence for CVD Risk Factor Clustering

The clustering of risk factors in adults has been observed for many years in epidemiological 

studies and in the clinical setting. Whether the commonly observed clustering results from 

the pleiotropic effects of specific genes and genomic variants has proven to be a complex 

question to address. However, several observational twin and family studies have provided 

quantitative but theoretical proof-of-concept evidence for the hypothesis that there are latent 

or unidentified genes and DNA sequence variants exerting pleiotropic influences on multiple 

CVD risk factors.

In one early study of the phenomenon, data on 2508 adult male twins suggested the presence 

of a common underlying factor mediating the clustering of hypertension, diabetes mellitus, 

and obesity.38 This latent common factor was influenced by both the genetic and 

environmental effects (59% genetic and 41% environmental). Furthermore, the concordance 
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rate for the clustering of all the 3 conditions in the same individuals was 5-fold higher in 

monozygotic compared with dizygotic twin pairs. Similar results for the prevalence of 

dyslipidemic hypertension in male twins were reported by Selby et al.39 On the basis of the 

San Antonio Family Heart Study cohort, it was concluded that the hypothesis of a common 

set of genes influencing insulin levels together with other insulin resistance syndrome-

related traits was supported by the data, with 1 exception: absence of pleiotropy between 

insulin and resting blood pressure.40 The Swedish Adoption/Twin Study of Aging revealed 

that 5 principal components computed from the measurements of BMI, insulin levels, 

triglycerides, HDL-C, and resting systolic blood pressure were all significantly influenced 

by a single latent genetic factor.41

The association of a parental history of diabetes mellitus and hypertension with other 

common CVD risk factors was evaluated in the Atherosclerosis Risk in Communities Study 

of middle-aged adults.42 Marked associations between a parental history of risk factors and 

the clustering of the same metabolic disorders in the offspring generation were observed. 

The strongest evidence for parent–offspring resemblance was observed with a parental 

history of both diabetes mellitus and hypertension.42 Hyperinsulinemia and insulin 

resistance increase the prevalence of dyslipoproteinemia.43–45 In a study of 682 female 

twins aged 30 to 91 years, Selby et al45 showed that the prevalence of the small, dense LDL 

particle phenotype rose from ≈6% in women with no other common CVD risk factors to 

100% in women who had 4 risk factors. In the San Antonio Heart Study, 549 nondiabetic 

individuals with a parental history of diabetes mellitus were compared with 1167 

nondiabetic individuals without such a history.46 Those with a parental history of T2DM had 

a more atherogenic pattern of risk factors, including higher triglycerides and lower HDL-C. 

However, the differences in blood lipids and lipoproteins between the 2 groups became 

nonsignificant when the data were adjusted for BMI, waist-to-hip circumference ratio, and 

fasting insulin levels.

There is a strong evidence in support of the notion that insulin resistance, hyperinsulinemia, 

or parental/familial history of diabetes mellitus or impaired glucose tolerance is associated 

with a higher probability in adult offspring of exhibiting an atherogenic risk profile or 

experiencing myocardial infarction.30,32,43,47 This notion was supported by 2 longitudinal 

studies, such as the 8-year follow-up of the Nurses' Health Study31 and the 12-year follow-

up of the Multiple Risk Factor Intervention Trial Study.47a For instance, in the Nurses' 

Health Study, the risk for nonfatal or fatal myocardial infarction or stroke was 4 to 7 times 

greater over an 8-year period in 1483 diabetics versus 114 694 nondiabetics, with 20% of 

the diabetic cases having a parental history of myocardial infarction, whereas the 

corresponding value was 14% in the nondiabetic women.31

Cross-trait familial studies between indicators of body fat or fat distribution and other 

common CVD risk factors have suggested the presence of some genetic pleiotropism. For 

instance, findings based on the Quebec Family Study suggested a moderate common 

familial basis, genetic or common environment in the covariation between total adiposity 

and blood pressure,48 as well as between total adiposity and fasting plasma insulin.49 

However, in the same cohort, the covariation between plasma lipids and total adiposity was 

associated more strongly with a shared environmental than a genetic hypothesis.50 
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Moreover, genes or familial nongenetic factors with pleiotropic effects were reported to 

influence, at least to a certain degree, both the abdominal visceral fat and plasma fasting 

insulin levels in the HERITAGE Family Study.51 However, there was no evidence of 

pleiotropy between measures of resting blood pressure and body composition in another 

study.52

Another line of evidence for the presence of genetic covariation affecting multiple CVD risk 

factors comes from family, sibling, and twin studies reporting familial aggregation of 

metabolic syndrome or some of its manifestations. The fact that the metabolic syndrome is 

generally not defined by a single underlying factor with a multiplicity of metabolic effects 

has been used as an argument against a genetic signature with pleiotropic effects. Thus, it 

has been reported that the metabolic syndrome was best defined by 2,7,53,54 3,55–58 or 459–61 

principal components or factors. A trend of these studies is that insulin-related variables 

correlate with determinations of glucose and obesity, and lipid traits are frequently included 

in 1 factor, whereas measures related to blood pressure fall in a separate factor. In contrast, 

others have provided support for the notion that the constellation of manifestations can be 

described by a single underlying factor.62,63 From a body of data, the heritability of human 

variation in metabolic syndrome has been estimated to be ≈30% to 40%.13

In summary, we conclude that there is reasonably strong evidence from genetic 

epidemiology reports that CVD risk factors taken individually are characterized by the 

presence of significant genetic effects (broad-sense heritability). More comprehensive and 

larger studies are needed on this topic to clarify whether there are age, sex, and ethnic 

differences in these genetic effects. However, the evidence for genetic pleiotropy affecting 

multiple clinically relevant CVD risks factors is less abundant. But what is available 

strongly suggests that there are genomic loci exerting pleiotropic effects on multiple CVD 

risk factors. Here, the challenge is the development of a larger and more comprehensive 

body of data on the magnitude of the underlying genetic trait and to resolve it in terms of 

DNA variants, genes, and pathways.

Pathway and Network Analysis

Genomic Regions Associated With a Specific Risk Factor

To assess whether there is any evidence of genes and genomic regions contributing to 

variability of CVD risk, obesity, and other CVD risk factors, we combined the results 

reported in the most recent genome-wide association meta-analyses for the following traits, 

such as BMI,64 CAD,65 CRP,66 blood pressure,67 lipids,68 and T2DM.69 We used the 

number of loci specified by the authors of each meta-analysis to compile the final list of loci 

for each trait. Thus, the final list included loci identified in previous GWAS reports that may 

or may not have been replicated at the genome-wide level, as well as newly identified 

genome-wide significant loci from the most recent meta-analysis. For example, 56 of the 97 

BMI loci reaching genome-wide significance in the latest GIANT consortium meta-analysis 

were novel,64 whereas the CARDIoGRAMplusC4D consortium meta-analysis of CAD 

GWAS identified 15 novel loci while only replicating 22 of the 30 established loci.65 

Similarly, 8 novel loci were identified in the latest T2DM GWAS meta-analysis, whereas 

only 30 of the 57 established loci were replicated.69 Thus, of the 65 T2DM loci, only 38 
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reached genome-wide significance in the latest meta-analysis. For the remaining traits, 11 of 

the 18 CRP loci, 16 of the 28 blood pressure loci, and 62 of the 157 lipids loci reaching 

genome-wide significance were novel, respectively.

It should be noted that the loci included in this report for blood pressure were derived from 

GWAS of systolic and diastolic blood pressure analyzed as continuous traits and 

hypertension analyzed as a categorical trait. The loci included for BMI were identified from 

a meta-analysis that examined BMI as a continuous trait, although previous GWAS reports 

have examined BMI categorically in terms of obesity status. The GWAS loci for CRP and 

lipid traits were derived from meta-analysis of continuous traits, whereas the loci for 

coronary heart disease and T2DM were derived from meta-analysis of categorical traits. The 

lipid and lipoprotein loci include loci identified for the following traits, such as HDL-C, 

LDL-C, TC, and triglycerides.

Table 2 provides a summary of the number of loci by trait with the sample size of the study 

and the percentage of the trait variance accounted for by these loci as defined in the relevant 

publication. The complete list of the lead SNPs along with the traits was associated together 

with the level of significance, and the closest gene as reported in the original publications is 

presented in Online Table I to VI.

Identification of Candidate Pleiotropic Regions and Their Distributions Across CVD Traits

Our definition of pleiotropism relates to chromosomal region rather than to individual SNPs 

or genes. Pleiotropic loci are defined solely based on the colocalization of genetic 

associations and not on any biochemical or functional evidence. Chromosomal regions were 

defined as pleiotropic if they contain SNP(s) that were associated with ≥2 of the 6 traits or if 

2 SNPs located within 150 kb from each other were associated with ≥2 traits. It should be 

noted that we used the SNPs to identify chromosomal regions that may harbour genes and 

sequence variants associated with multiple traits. On the basis of this definition, we found a 

total of 87 autosomal regions (a total of 181 SNPs, including single SNPs that were 

associated with 2 highly correlated traits, eg, TC and LDL-C) mapping to 56 genes. Notably, 

in several instances, multiple SNPs were mapped to the same gene. In the majority of cases, 

the nearest gene could be uniquely identified for each SNP. However, in some cases the 

SNP was sufficiently proximal to multiple genes (usually within 100 kb range). In these 

cases, all possible genes were mapped to that SNP (eg, genes ApoE-ApoC1 mapping to SNP 

rs445925).

The distribution of pleiotropy for the selected GWAS SNPs was examined by considering 

their associations with multiple traits. A total of 43 autosomal regions were identified for 

CAD risk with SNPs associated at P<1×10−4 and associations on 35 regions reached 

genome-wide significance (P<5×10−8). Of the 43 regions, 19 coincided with other CVD risk 

factor trait loci: 11 regions coincided with lipid/lipoprotein loci (5 with TC/LDL-C; 3 with 

TC/LDL-C and HDL-C/triglycerides, 1 with HDL-C/triglycerides, 1 with triglycerides, and 

1 with HDL-C), 4 regions colocalized with blood pressure/hypertension (although none of 

the blood pressure signals reached genome-wide significance), 1 with CRP, 1 with BMI, and 

1 with T2DM. In addition, the APOE-APOC1 cluster on chromosome 19 harbored 
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associations with all 4 lipid traits, BMI and CRP in addition to CAD (Figure 1; Online Table 

VII).

A total of 102 loci were reported for BMI and all of them were genome-wide significant 

(Figure 1; Online Table VII). However, only 11 of them colocalized with CAD or CVD risk 

factors (including the APOE-APOC1 super cluster on chromosome 19): 2 regions coincided 

with CAD, 6 with ≥1 lipid trait and 4 with T2DM (2 with T2DM only [including TCF7L2 

locus] and 2 with HDL-C/triglycerides as well). It should be noted that the total sample size 

for BMI/obesity meta-analyses is about an order of magnitude greater than sample sizes in 

CAD and other CVD risk factor GWAS reports. Therefore, BMI/obesity analyses are 

powered to detect small effect sizes that are most probably missed (if they exist) by the 

analyses in other traits.

An example of this approach is shown in the heatmap displayed in Figure 1 using genes 

associated with CAD or BMI as the primary traits (results for other traits are provided as 

Online Figure I). Although the majority of genes only show associations with CAD, a subset 

of genes (APOB, APOE-APOC1, LPL TRIB1, and ZNF259-APOA5-APOA1 cluster) is also 

associated specifically with lipid-related traits, such as TC, HDL-C, LDL-C, and 

triglycerides. A separate subset of genes (IL6R, SH2B3, FURIN-FES, and GUCY1A3) was 

found to be variably associated with other traits, including hypertension, CRP levels, and 

BMI. In most instances, the association of a gene was inferred based on its mapping to a 

single GWAS SNP. Exceptions included the SLC22A3-LPAL2-LPA, ApoE-ApoC1, CDKN2-

BAS1, COL4A1-COL4A2, and LIPA loci that each mapped to 2 genome-wide significant 

SNPs.

Pathway Analysis of Pleiotropic Genes

We used the Ingenuity Pathway Analysis (IPA) tool to investigate pathway enrichment 

among the 56 genes associated with the 87 pleiotropic regions. To identify the possible 

molecular mechanisms that might be enriched among a subset of the pleiotropic genes, we 

examined overlap of the pleiotropic gene list with gene sets representing canonical pathways 

and toxicity signatures in IPA (Figure 2). For each of these categories, the statistical 

significance of the overlap between the genes in these categories with the list of pleiotropic 

genes was determined via the Fisher exact test and corrected for multiple testing by the 

Benjamini–Hochberg procedure.70 Among the canonical pathways, we observed a highly 

significant enrichment for liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid 

X receptor/RXR nuclear receptor signaling among the pleiotropic genes, suggesting that 

these pathways might have a broad effect on several cardiometabolic traits (false discovery 

rate=3.16×10−15 and 1.58×10−13 for LXR and farnesoid X receptor signaling, respectively). 

We next compared the distribution of pleiotropy among the members of the LXR/RXR 

signaling (Figure 2A). All the 13 genes were associated with ≥1 of the lipid traits and 8 

genes were associated with CAD, whereas only 2 genes were associated with BMI. A 

similar analysis was performed to determine if genes linked to specific toxicity signatures 

were over-represented in the list of pleiotropic genes. The analysis identified highly 

significant enrichment for signatures of CAD and hepatic steatosis as the top 2 enriched 

signatures (false discovery rate=5.97×10−10 and 2.39×10−09, respectively). Again, all the 
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genes linked to the CAD and hepatic steatosis signatures showed a core pleiotropic 

association with ≥1 of the 4 lipid traits, whereas 8 genes were further associated with ≥1 

additional trait. For example, 7 of the 13 CAD toxicity signature genes were associated with 

the disease itself, 3 genes with BMI, and 1 gene each for CRP and T2DM (Figure 2B). The 

full list of canonical pathways and toxicity signature gene sets are available in Online Table 

VIII.

Interactome Analysis of Pleiotropic Region Genes

One can ask whether the population of GWAS SNPs retained for this review represents not 

only a list of genes but potentially also a set of biological networks. Therefore, in addition to 

the analysis of gene lists representing biological pathways or toxicity signatures, we further 

interrogated whether a subset of the pleiotropic genes could also be related via functional 

interactions (such as protein–protein interactions [PPIs], complex formation, enzyme–

substrate relationships, etc). The presence of functionally interacting networks involving the 

pleiotropic genes was examined via the ReactomeFI plugin71 and visualized in the 

Cytoscape software environment.72 The results of our analysis are shown in Figure 3A. In 

this network, each gene is color-coded according to the trait(s) it was associated with. 

Considering genes that interact with ≥1 other gene, 43 of 62 genes (the number of genes 

increased from 56 to 62 as loci that included >1 gene were expanded) were included in the 

network, along with an additional 24 linker genes. An inspection of the network revealed 

that several pleiotropic genes, often associated with different sets of traits, were 

interconnected, either directly (eg, a complex consisting of HPR and APOA1; HPR being 

associated with total and LDL-C, and APOA1 additionally associated with CAD, HDL-C, 

and triglycerides) or indirectly via a linker gene (eg, TCF7L2 and VEGFA genes via the 

CREBBP linker). Notably, TCF7L2 and VEGFA show pleiotropy over nonoverlapping sets 

of traits (BMI and T2DM for TCF7L2 and HDL-C and triglycerides for VEGFA, 

respectively). Interestingly, this predicted interaction between TCF7L2 and VEGFA was 

recently observed in patients with proliferative diabetic retinopathy, as well as in a mouse 

model of proliferative diabetic retinopathy.73

An additional analysis was carried out to statistically evaluate the degree to which 

nonrandom PPI networks could emerge from these candidate pleiotropic genes. This was 

accomplished via 1000 rounds of within-degree, node-label permutation of the highly 

curated and high confidence InWeb PPI network (containing 169 810 high-confidence 

pairwise interactions involving 12 793 human proteins and their orthologs),74 and 

comparing parameters of network connectivity (node degree and edge number) in 

subnetworks arising from the pleiotropic genes in the original versus the random networks. 

Analysis was conducted in the Disease Association Protein–Protein Link Evaluator software 

environment.75

Both direct interactions among the pleiotropic genes and indirect interactions (via common 

interactors linking ≥2 pleiotropic genes) were separately considered when examining the 

networks. This analysis identified a network of 18 genes that showed a statistically 

significant level of direct connectivity, compared with expectations from chance. 

Significance was observed both for the number of observed edges (18, compared with an 
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expectation of 2.2 according to the null hypothesis; P<0.0009) and the average degree of 

directly connected (observed, 2; expected, 0.98; P<0.009) or indirectly connected nodes 

(observed, 19.4; expected, 11.0; P<0.008). The significant network of direct interactions is 

shown in Figure 3B, whereas the larger network consisting of both the direct and indirect 

interactions is shown in Online Figure II.

Compared with the ReactomeFI networks described above, Disease Association Protein–

Protein Link Evaluator investigates only one type of interaction (PPI) with a statistical 

evaluation of the expected randomness of the observed subnetwork. Thus, although 

ReactomeFI allows one to expand the network space by considering multiple categories of 

interactions, Disease Association Protein–Protein Link Evaluator conducts a statistically 

rigorous examination of a particular type of interaction. Therefore, the 2 tools are 

complementary.

Analysis of Predicted Regulatory Functions

The analyses described to date are based on genes that, in turn, are inferred depending on 

their proximity to the trait-associated GWAS SNPs. However, one has to remember that the 

majority of the trait-associated GWAS SNPs are physically located in noncoding regions of 

the genome. Thus, it is conceivable that the effects of some of the GWAS SNPs are not 

mediated through genes, but rather via regulatory control over biological functions, 

mediated through alterations in noncoding, structural elements of the genome. These 

regulatory effects from noncoding variants could form a significant component of the 

overall biological effects of the trait-associated SNPs. To explore this possibility, we queried 

the data generated by the ENCODE (Encyclopedia of DNA Elements) project76,77 for 

distribution of GWAS SNPs located in pleiotropic regions (and SNPs in strong linkage 

disequilibrium with these GWAS SNPs) among the various regulatory elements (eg, 

evolutionarily constrained sequences, enhancers, DNAse hypersensitive open chromatin 

regions, promoters, and 3′- and 5′-untranslated regions), in addition to possible coding 

sequence variations resulting in synonymous or nonsynonymous amino acid substitutions. 

The list of SNPs was first expanded by identifying SNPs in strong linkage disequilibrium 

with the GWAS SNPs located in pleiotropic regions (r2>0.8, based on 1000 Genomes Phase 

1 European population data). This increased the total number of SNPs to 6175. Possible 

regulatory effects were examined via the HaploReg tool (version 2).78 HaploReg analysis 

was conducted at 2 levels, such as (1) interrogating SNPs for statistical enrichment of 

enhancers and DNAse hypersensitivity sites (representing open chromatin; compared with a 

background set of all SNPs in the 1000G pilot project) and (2) annotating the expanded SNP 

set for their presence within promoters, enhancers, DNAse, transcription factor binding, 

expression quantitative trait loci sites or coding regions within genes.

Results of the various analyses on the possible regulatory function of the selected SNPs are 

shown in Figure 4. Of the 181 GWAS SNPs, 136 SNPs were annotated to ≥1 regulatory 

feature. The distribution of these 136 SNPs among the different features is presented in 

Figure 4A. Results for additional SNPs, in linkage disequilibrium with the GWAS SNPs, are 

shown in Online Table VIII. The majority of GWAS SNPs located in pleiotropic regions 

were found to be associated with enhancer or DNAse hypersensitive regions. A similar 
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pattern of distribution was also obtained with the expanded SNP set (Online Figure III). We 

also carried out an enrichment analysis to determine if there was over-representation of 

enhancers and DNAse hypersensitive regions among the 136 SNPs, when compared against 

the background of all SNPs identified in the 1000 Genomes pilot project. For this analysis, 

regulatory data from each cell type available in the ENCODE project was analyzed 

separately. The results (Figure 4B) show strong statistical evidence for enrichment of 

enhancer sequences among the SNPs for several, but not all, cell types (eg, H1, HepG2, 

K562, and NHLF cells; P<2.6×10−05). A similar examination of DNAse hypersensitive sites 

identified some significant findings, although the level of evidence was weaker (best 

P<0.007 for progeria syndrome fibroblasts). Because the cell lines investigated in ENCODE 

may not have a direct relation to cardiovascular physiology, these findings should be 

interpreted with caution. Nevertheless, the observed enrichment of enhancer and DNAse 

hypersensitive site sequences in multiple cell types suggest that the pleiotropic SNPs may 

also exert similar regulatory effects in cells relevant to cardiovascular and metabolic 

function.

Interpretation of the Evidence

Several findings can be identified from this review and the pathway and network analysis 

undertaken on SNPs and genomic regions showing evidence of pleiotropism on ≥2 of the 

CVD traits considered here. First, there is a strong evidence that there is a significant 

heritability component to human variation in the risk factors when considered individually. 

Second, based on genetic epidemiology and statistical modeling studies, there is a moderate 

evidence that the pairwise covariation and familial clustering of the CVD risk factors is 

partly because of genetic pleiotropic effects. Third, a total of 87 autosomal regions, 

identified by 181 SNPs and mapping to 56 gene loci, were found to be pleiotropic. Traits 

most commonly coaggregating on these regions were CAD and plasma lipids, whereas only 

a few pleiotropic regions were found for BMI and obesity. Fourth, enrichment for 

LXR/RXR and farnesoid X receptor/RXR nuclear receptor signaling among the pleiotropic 

genes was observed with an effect on multiple CVD traits, especially on CAD and lipids. 

Fifth, an analysis of toxicity signatures revealed that the genes linked to CAD and hepatic 

steatosis were suggestive of core pleiotropic associations with the CVD traits considered 

here. Sixth, explorations of potential functional interactions suggested that several 

pleiotropic loci were associated with different sets of traits either directly (eg, APOA1 

associated with CAD, HDL-C, and triglycerides) or indirectly via a linker gene (eg, TCF7L2 

and VEGFA genes via the CREBBP linker). Seventh, investigations into PPIs among the 

pleiotropic genes showed a network of 18 genes exhibiting a statistically significant level of 

direct connectivity compared with simulated random networks. Eighth, despite the fact that 

the cell lines investigated in ENCODE may not have direct relevance to cardiovascular 

physiology, the hypothesis that the GWAS SNPs and SNPs in strong linkage disequilibrium 

with them exert their effects via regulatory elements of the genome was considered. For 

several but not all cell types, a majority of GWAS SNPs were found to be in enhancer or 

DNAse hypersensitive genomic regions.

There is a strong evidence for positive associations between obesity and increased risk of 

CVD incidence and mortality.79–81 The biological mechanisms driving these observed 
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associations are likely to be complex. At least 3 different models could be proposed to 

explain the association of excess adiposity with CVD, such as (1) a direct effect of body fat 

on CVD; (2) an indirect effect mediated via recognized CVD risk factors, such as 

hypertension, dyslipidemia and T2DM; and (3) an indirect effect mediated by other 

mechanisms, such as inflammation, endothelial dysfunction, thrombogenic factors, left 

ventricular hypertrophy, atrial fibrillation, and insulin resistance. Genetic and postgenetic 

mechanisms may operate through one or more of these 3 routes to link obesity to CVD. This 

seems to be the more probable scenario because several studies have shown that the 

detrimental effects of excess body weight cannot be fully accounted for by the established 

CVD risk factors alone.79,81–83 On the basis of our analysis of common SNPs from the 

GWAS reports, we do not see strong evidence for pleiotropism among the genetic regions 

associated with BMI and CAD. Among the established CVD risk factors (and CRP, a 

marker of inflammation), the level of overlap with BMI-associated genetic loci is also low, 

perhaps with the exception of HDL-C (6 candidate genes overlap). Thus, it is possible that 

the genetic basis for the association between excess adiposity and CAD operates through 

other paths and risk factors or the association may be accounted for by primarily postgenetic 

mechanisms.

There has been 1 previous attempt to uncover genetic pleiotropism among 5 CVD risk 

factors and CAD.84 It was based on a search for overlapping genetic variants independently 

associated with obesity, diabetes mellitus, hyperlipidemia, hypertension, kidney disease, and 

CAD in the National Human Genome Research Institute GWAS catalog. A set of 107 

eligible GWAS (by June 2011) were interrogated and 44 positional genes shared by ≥2 of 

the 6 traits were found but only in studies of non-European populations. Seven genes 

provided evidence for pleiotropy with ≥3 traits, primarily lipid phenotypes. Fourteen 

positional genes were shared between CAD and lipids, whereas 9 were shared between 

diabetes mellitus and obesity traits. The most significant candidate for pleiotropic effects 

was KLHL29 for which the GWAS signals associated with blood pressure, lipids, kidney 

disease, and CAD. Other genes with strong evidence of connectivity among some of the 

CVD traits included PCSK9, LDLR, LPL, APOB, APOC1, PDGFD, and VEGFA. This 

analysis included 17 of the 44 loci identified in the study by Gottesman et al84 and found 

that 12 showed evidence of pleiotropy: APOB, APOC1, CDKN2BAS, FTO, GCKR, IRS1, 

LDLR, LPL, PCSK9, SH2B3, TRIB1, and ZNF259.

In a recent report, Holmes et al85 describe the findings from a Mendelian randomization 

study of a genetic score comprised 14 BMI–associated SNPs and its relations to glycemic, 

inflammation, lipid, and blood pressure traits, as well as subclinical atherosclerosis.85 The 

BMI genetic score was strongly associated with CVD-related traits, such as glycemic, 

inflammation, lipid, and blood pressure phenotypes, as well as hs-CRP and fibrinogen. 

However, although the BMI genetic score was related to the risk of T2DM, it was not 

associated with coronary heart disease, stroke, or carotid intima media thickness. 

Furthermore, a causal effect of the BMI genetic score on coronary heart disease events could 

not be substantiated by the authors in a meta-analysis based on 27 465 coronary heart 

disease events.
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Li et al.86 recently examined the pleiotropic effects of the 95 lipid GWAS loci individually 

and collectively (ie, genetic risk score) with fasting plasma glucose, glycated hemoglobin 

(HbA1c), and homeostasis model assessment-estimated insulin resistance in 2 large cohorts. 

Interestingly, the authors found an opposite genetic effect between dyslipidemia and 

glucose-related traits in a cohort-specific manner, as higher triglycerides, TC, and LDL-C 

genetic risk scores and lower HDL-C genetic risk scores were weakly (r=−0.07 to 0.11), but 

significantly correlated with lower glucose-related trait levels after adjusting for blood lipid 

levels.86 Individually, 15 lipid loci showed a pleiotropic association with glucose traits, with 

8 having opposite allelic directions of effect on dyslipidemia and glucose-related trait 

levels.86 These results suggest that there is a significant pleiotropy between lipid loci and 

glucose-related traits and this relationship involves a complex genetic regulation and 

metabolic interplay between lipids and glucose metabolism. The authors conclude that the 

positive metabolic relationship but opposite genetic effect may partly explain the low power 

seen in previous studies trying to detect the genetic association of lipid loci with glucose 

traits.86

It should be noted that some of the GWAS meta-analyses we used to derive the SNPs for our 

analyses had already explored to some extent potential pleiotropic effects. For example, the 

latest report by the Global Lipids Genetics Consortium68 tested if the strongest lipid loci are 

associated with CAD, as well as cardiovascular and metabolic risk factors. The results 

showed that the lipid SNPs were more likely to be nominally associated (P<0.05) with the 

additional traits than would be expected by chance alone: the magnitude of observed 

nominal associations over expected ones ranged from 2.2-fold for fasting glucose to 5.1-fold 

for CAD.

However, the interpretation of these results from the pleiotropic perspective is still 

uncertain. For example, it is not known if the association between the FTO locus and HDL-

C is simply reflecting the strong association between FTO and BMI, or if it is independent 

of BMI. This question was recently addressed in a smaller study that investigated 

pleiotropism between GWAS-derived obesity and body fat distribution SNPs and 

cardiovascular and metabolic traits.87 Even though the study was based on ≈33 000 subjects 

(versus 185 000 in the GWAS report), the FTO locus was not significantly associated with 

HDL-C whether BMI was included as a covariate. However, the direction of the FTO-HDL 

association reversed from negative (β=−0.01; P=0.22 in the unadjusted model) to positive 

(β=0.01; P=0.23) after adjusting for BMI.87

These examples illustrate the challenges posed by quantitative studies aimed at testing 

hypotheses on pleiotropic loci. There is a need for standardized analytic strategies to 

approach these questions in a uniform and comprehensive manner so that the findings can be 

made comparable across studies and populations. One of the major questions to be 

addressed by such new analytic tools would be to provide protection against confounders 

mimicking pleiotropic effects. Moreover, novel analytic strategies should perhaps take 

advantage of emerging GWA-based data on gene–gene and gene–environment interaction 

effects that are rapidly becoming available to augment the search for pleiotropic CVD loci.
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The review and related in silico studies presented herein need to be evaluated in light of the 

following limitations. Even though the recent GWAS meta-analyses that were used for each 

trait are large by today's standard, some of the reports are based on substantially larger 

sample sizes than others. This has undoubtedly influenced the number of SNPs and genes 

that constitute the foundation of the pathway and network analyses reported here. When 

much larger sample sizes will be available for all CVD traits GWAS, it is evident that the 

number of significantly associated SNPs will grow substantially and probably the number of 

pleiotropic regions. Furthermore, ongoing and future whole-genome and exome sequencing 

studies will unravel the finer structure of genetic associations and identify additional 

common and rare variants affecting CVD traits. One important issue is that we were not able 

to include the whole universe of biological and behavioral risk factors for CVD. When a 

more global and fully integrated pathway and network analysis is performed based on all 

known risk factors and fully powered genomic screens, it is likely to generate even more 

informative panels of pleiotropic SNPs and chromosomal regions and functional evidence 

on genetic pleiotropism.

Finally, one of the incentives for examining pleiotropy is to identify common mechanisms 

underlying related disorders that may be therapeutically targeted for the amelioration of 

these disorders. It is conceptually possible that, by developing a treatment directed at 

pleiotropic genes or pathways, one can gain therapeutic benefits against multiple disorders 

through a single drug rather than a cocktail of medicines. This could reduce complications 

often associated with polypharmacy, such as patient compliance with multiple drug 

regimens, drug–drug interactions (eg, the interaction between cholesterol-lowering statins 

and triglyceride-lowering fibrates) and the additive side effects associated with multiple 

drugs. Thus, identification of the biological pathways and reaction networks enriched for the 

pleiotropic genes could further expand our repertoire of possible drug targets. Even if it is 

not possible to pharmacologically target a pleiotropic gene, or proves to be refractory 

because of side effects, other genes in the same pathway may be exploited for therapeutic 

benefit. For example, our analysis identified the LXR signaling pathway as highly enriched 

for pleiotropic genes. Indeed LXR, a sterol-sensitive transcription factor and regulator of 

cholesterol homeostasis, is already an attractive drug target for the treatment of lipid 

disorders88 and tissue and subtype-selective LXR agonists are promising strategies for 

developing targeted modulators of lipid metabolism. However, undesirable hepatic side 

effects have proven to be a major challenge in these efforts. In this context, other target 

genes in the LXR signaling pathway could provide additional opportunities and offer 

alternative solutions to the treatment of lipid disorders The fact that we found little evidence 

of pleiotropic SNPs and genes on obesity and other CVD risk factors emphasizes that weight 

loss and weight management remain important clinical tools in the prevention and treatment 

of cardiometabolic diseases.

Conclusions

A clustering of CVD risk factors is commonly observed in epidemiological studies and 

clinical settings. Whether the clustering results from pleiotropic effects of specific genes 

remains to be fully understood. Genetic epidemiology studies have provided proof-of-

concept evidence for the notion that there are genes and DNA sequence variants exerting 
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pleiotropic influences on multiple CVD risk factors. Using recent meta-analyses of GWAS 

reports, we have identified autosomal regions and panels of SNPs with positional evidence 

of involvement in covariation among CVD traits, especially CAD and plasma lipids. We 

have selected for further bioinformatics studies loci nearest lead SNPs showing significant 

associations with ≥2 of the following: CAD, BMI, CRP, blood pressure, lipids, and T2DM. 

A subtotal of 87 autosomal regions identified by 181 SNPs, mapping to 56 genes, were 

found to be pleiotropic. Pathways, networks, interactomes and genomic coding sequences 

and regulatory elements were explored in silico using bioinformatics technologies. There 

was relatively strong evidence for interacting genes, pathways, and networks suggesting a 

biological basis for genetic pleiotropism in the clustering of CVD traits, especially CAD and 

plasma lipids, whereas evidence for pleiotropic effects involving obesity was much less 

convincing. Pleiotropic SNPs were over-represented in enhancer sequences and DNAse 

hypersensitive regions as identified from the ENCODE resources. Of the 181 pleiotropic 

SNPs, 136 were annotated to ≥1 DNA regulatory element. We conclude from our review 

and bioinformatics explorations that there is a reasonable evidence for the presence of 

genomic sequence variants and positional genes exerting pleiotropic effects on CVD risk 

factors. We suggest that larger studies with more comprehensive trait panels are needed at 

this time to provide the necessary resources to be able to investigate in depth the CVD risk 

factor clustering in terms of DNA variants, genes, pathways, and actionable targets. Such 

studies could perhaps take advantage of the fact that GWA-based data on gene–gene and 

gene–environment interaction effects are becoming available to augment the search for 

pleiotropic CVD loci.
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Nonstandard Abbreviations and Acronyms

BMI body mass index

CAD coronary artery disease

CVD cardiovascular disease

GWAS genome-wide association study

HDL-C high-density lipoprotein cholesterol

hs-CRP high-sensitivity C-reactive protein

LDL-C low-density lipoprotein cholesterol

LXR liver X receptor

PPI protein–protein interaction

RXR retinoid X receptor

SNP single nucleotide polymorphism

T2DM type 2 diabetes mellitus
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Figure 1. Pleiotropy of genes with primary association to (A) coronary artery disease (CAD) and 
(B) body mass index (BMI)
Genes were identified based on their proximity to genome-wide association study–

associated CAD and BMI single nucleotide polymorphisms (SNPs). Traits and genes are 

represented in columns and rows, respectively. The association of a gene to each trait is 

indicated in red with the color intensity proportional to the number of trait-associated SNPs 

mapping to that gene. The heatmap is based on a 2-way average linkage hierarchical 

clustering such that genes and traits are clustered based on the similarities of trait-wide 

associations. Heatmaps for the other cardiovascular disease traits are depicted in Online 

Figure I. BMI indicates body mass index; CAD, coronary artery disease; CHOL, total 

cholesterol; CRP, C-reactive protein; HDL, high-density lipoprotein cholesterol; HTN, 

hypertension; LDL, low-density lipoprotein cholesterol; T2DM, type 2 diabetes mellitus; 

and TRIG, triglycerides.

Rankinen et al. Page 21

Circ Res. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Enrichment of biological pathways and toxicity gene signatures among pleiotropic 
genes
A, Distribution of pleiotropism among the LXR/RXR signaling pathway genes. Column 1 

shows the gene names and columns 2 to 10 list the traits. The association of a gene with a 

trait (as identified in genome-wide association study meta-analysis) is indicated with 

shading (cell value=1) and a lack of association in white (cell value=0). B, Distribution of 

pleiotropism among genes in the coronary heart disease toxicity signature. Column 

descriptions are identical to that in (A).BMI indicates body mass index; BP, blood pressure; 

CAD, coronary artery disease; CRP, C-reactive protein; HDL-C, high-density lipoprotein 

cholesterol; LDL-C, low-density lipoprotein cholesterol; T2DM, type 2 diabetes mellitus; 

TC, total cholesterol; and TG, triglycerides.
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Figure 3. Interaction networks underlying pleiotropic genes
A, Interaction networks underlying pleiotropic genes. The ReactomeFI tool was used to 

identify interaction networks enriched for the pleiotropic genes. Genes are colored according 

to their trait-association status, described in the legend. Query genes are shown as circles, 

whereas linker genes are shown as squares. The edges connecting the genes (lines, dashed 

lines, and arrows) represent the different types of interactions among the genes. The 

interactions involving HPR and APOA1 and TCF7L2, CREBBP, and VEGFA are 

highlighted in red. B, Statistically significant protein–protein interaction (PPI) network of 

direct interactions. Genes are color-coded according to their pleiotropy. Statistical 

significance was ascertained by permutation testing of the InWeb PPI network, as described 

in the text.
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Figure 4. Analysis of potential regulatory functions of single nucleotide polymorphisms (SNPs) 
located in pleiotropic regions
A, Pie chart based on all SNPs (genome-wide association study+linkage disequilibrium). Pie 

chart showing the distribution of different regulatory features among the selected SNPs. The 

name of each regulatory feature is indicated, followed by the number of SNPs associated 

with that feature (some SNPs are associated with multiple features). B, Enrichment of 

enhancers and DNAse hypersensitive sites among pleiotropic SNPs. Analysis for enrichment 

of enhancers and DNAse hypersensitive sites among SNPs in different cell models used by 

the ENCODE (Encyclopedia of DNA Elements) project. Column 1, name of cell line; 

column 2, description of cell line; column 3, observed number of regulatory features; 

column 4, number expected by chance; column 5, fold-enrichment of observed/expected; 

column 6, significance of enrichment P value; and column 7, type of regulatory feature.
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Table 1
Commonly Reported Heritability Levels for CVD Risk Factors

Phenotype Estimated Heritability, %

Body composition

 BMI 25–60

 Body fat 25–40

 Abdominal obesity 40–55

Insulin/glucose

 Fasting glucose 10–75

 Fasting insulin 20–55

 Insulin resistance or T2DM 46–90

Lipids

 Triglycerides 25–60

 LDL-C 25–60

 HDL-C 30–80

 Total cholesterol 50–60

BP

 Systolic BP 20–70

 Diastolic BP 10–50

 Hypertension 50

Others

 hs-CRP 25–55

 Hemostasis-related traits 20–60

 Microalbuminuria 30

The range of heritability estimates is derived from the study6–23. BP indicates blood pressure; BMI, body mass index; CVD, cardiovascular 
disease; HDL-C, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; and 
T2DM, type 2 diabetes mellitus.
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Table 2
Summary of GWAS Loci

Trait n No. of Loci* % Variance Explained by Loci Reference

BMI 339 224 97 2.7 Locke et al64

CAD 67 376 cases; 142 664 controls 45 10.6 Deloukas et al65

CRP 81 870 18 ≈5 Dehghan et al66

BP 203 056 28 0.90 Ehret et al67

Hypertension 11

Diastolic BP 26

Systolic BP 25

Lipids† 188 577 157 Willer et al68

HDL-C 62 ≈12–14

LDL-C 30 ≈12–14

TC 40 ≈12–14

Triglycerides 32 ≈10–13

Type 2 diabetes mellitus 34 840 cases; 114 981 controls 65 5.7 Morris et al69

BMI indicates body mass index; CAD indicates coronary artery disease; CRP, C-reactive protein; GWAS, genome-wide association study; HDL-C, 
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; and SNP, single nucleotide polymorphism.

*
Number of loci as specified by authors of each meta-analysis. Thus, loci may or may not have been significant at the genome-wide level of 

P≤5×10−8.

†
For individual lipid and lipoprotein traits, number of loci represents those whose strongest association was for the specified trait. As multiple 

SNPs within the same loci (ie, chromosomal region) may have reached genome-wide significance, the number of loci across individual traits 
amounts to >157.
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