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Abstract Animal models of acute ischemic stroke have
been criticized for failing to translate to human stroke.
Nevertheless, animal models are necessary to improve our
understanding of stroke pathophysiology and to guide the
development of new stroke therapies. The rabbit embolic
clot model is one animal model that has led to an effective
therapy in human acute ischemic stroke, namely tissue
plasminogen activator (tPA). We propose that potential
compounds that demonstrate efficacy in non-rabbit animal
models of acute ischemic stroke should also be tested in the
rabbit embolic blood clot model and, where appropriate,
compared to tPA prior to investigation in humans. Further-
more, the use of anesthesia needs to be considered as a
major confounder in animal models of acute ischemic
stroke, and death should be included as an outcome
measure in animal stroke studies. These steps, along with
the current STAIRs recommendations, may improve the
successful translation of experimental therapies to clinical
stroke treatments.
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Abbreviations
ApoE Apolipoprotein E
FDA Food and Drug Administration
HDL High-density lipoprotein
ICAM-1 Intercellular adhesion molecule 1
LDL Low-density lipoprotein
NXY-059 Free radical scavenger
RSCEM Rabbit small clot embolism model
rt-PA Recombinant tissue plasminogen activator
SAINT I/II Stroke Acute Ischemic Stroke NXY-059 Trial
STAIR Stroke Therapy Academic Industry Roundtable
tPA Tissue plasminogen activator

Introduction

The uncertainty as to why animal studies of acute cerebral
ischemia fail to translate into human stroke treatments
continues with NXY-059 in the SAINT II trial [1, 2]. The
Stroke Therapy Academic Industry Roundtable (STAIR)
recommendations [3–8] have identified important issues in
the experimental modeling of ischemic stroke and have
sought to promote the translation of animal studies to
successful human stroke trials. The STAIR recommenda-
tions outline suggestions to optimally pre-clinically assess
potential neuroprotective and restorative drugs for the
treatment of acute ischemic stroke. Briefly, they include
recommendations for drug dose, therapeutic window,
choice of animal model, physiological monitoring, outcome
measures, and sex differences, amongst others. However,
despite such recommendations successful experimental to
clinical translation has yet to be achieved. This suggests
that further modifications and changes may be required to
experimental paradigms in order to achieve such results.
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Rather than assess these criteria, or address the many
excellent reviews in the literature [9–12], we instead seek to
highlight features of stroke models that may have been
underestimated, and some assumptions that have been made
in the development of animal models of acute ischemic
stroke and the testing of neuroprotective agents. The goal is
to promote discussion and possible modification of models
to ultimately improve the translation of experimental stroke
studies to the clinical setting [9, 10, 13–20].

The inconsistency amongst animal models, in addition to
the lack of a clear progression of testing to humans has
proved a major obstacle in the translation of treatments
from animal models to human stroke. One experimental
model which has not been adequately considered in
experimental stroke research is the rabbit embolic clot
model [21]. To date, this is one of the only models which
has yielded/predicted a treatment approved for use in acute
ischemic stroke in humans—tissue plasminogen activator
(tPA) [22]. Notably, however, tPA was first shown to be
efficacious in rodent stroke models [23–30]. Thus, there
may be some value in comparing the two models and
addressing whether one is “better” than the other particu-
larly since the rabbit model is seldom used. Even though
tPA improves outcomes in both the rabbit and rodent
models, this does not mean that either model actually would
translate to humans. For example, just because hundreds of
neuroprotectants work in rodent stroke models, this does
not mean they translated to humans. If one assumed, for the
sake of argument, that it is the results in the rabbit model
that predicted translation to humans, the rabbit model
should be used for translational studies. Factors that might
account for translation in rabbits and not rodents might
include: the rabbit immune system is different from the
rodent; the particular blood clot model used; the clot—
endothelial cell interaction is closer to humans in the rabbit
model; rabbit lipid metabolism is closer to humans; the use
of death as an outcome measure in the rabbit model; the
absence of anesthesia in the rabbit model; and other factors
discussed below. Thus, the rabbit results—and possibly not
the rodent results—predicted tPA to be a clinical stroke
treatment [21, 31–33].

Since it is not possible at present to decide whether the
rabbit or the rodent models are “best” for translational studies,
we propose that it may be beneficial for compounds that have
been found to be effective in non-rabbit models (rat, mouse,
non-human primate, and others) to also demonstrate efficacy
in the rabbit embolic blood clot model before proceeding to
clinical testing. Clearly, it may be useful, more convenient and
cost-effective to initially test compounds in rodent blood clot
embolic models [34]. Indeed, as highlighted by the STAIR
recommendations [3–8], testing potential therapeutics in a
second species, and importantly in a species already shown
to predict improved outcome in acute ischemic stroke, would

improve the likelihood of successful translation. Compounds
successful in such a setting should then be given a high
priority for evaluation in humans. In contrast, those
compounds demonstrating efficacy in only one animal
model or species are less likely to be successfully translated
into human stroke. We propose that compounds that prove
effective in a given model also be tested in the rabbit blood
clot embolic model.

This concept also extends to neuroprotection and
combination therapy with tPA. Accordingly, when com-
pounds are tested in the rabbit embolic model, they could
be evaluated on their own compared to vehicle, but more
importantly, where appropriate, they should be compared
directly to tPA. A compound shown to improve acute
ischemic stroke outcomes comparable to tPA may be more
likely to translate to human stroke. This concept would
apply to all compounds proposed to improve acute
ischemic stroke, including new thrombolytiics and neuro-
protectants. That is, if the neuroprotection provided by a
“neuroprotectant” is similar to or better than that obtained
with tPA, then the “neuroprotectant” is more likely to
translate to human stroke. A second consideration is the
combination of compounds with tPA. Several neuroprotec-
tants when co-administered with tPA have been identified
to improve outcomes in non-rabbit models of acute
ischemic stroke [35]. Evaluating such agents further in
conjunction with tPA in the rabbit embolic model would
provide additional support for potential clinical efficacy.

Acute Ischemic Stroke Models in the Rat and Mouse
are not Equivalent to the Rabbit

Certainly, the rabbit model of ischemic stroke has been
used to a lesser extent than rodent models. This may be in
part due to the increased cost associated with rabbit
experiments. Nevertheless, the predictive power of these
animal models may differ considerably. Although tPA
improves outcomes in both rat and mice blood clot embolic
models [25, 36–38], as well as in the rabbit embolic clot
model [21], it does not necessarily follow that since tPA
works in both rodents and rabbits that the predictive power
of the rabbit model is shared by that of the rodent model.
Ideally, one should show efficacy in the rodent and the
rabbit clot embolic models. Thus, the rabbit becomes the
confirmatory “second animal model” as suggested by the
STAIRS recommendations.

Human stroke generally involves progression of under-
lying vascular disease, and is associated with increasing
age, hypertension, diabetes, hyperlipidemia, smoking, and
heart disease [39, 40]. Accordingly, models that incorporate
such factors are more likely to be predictive of clinical
efficacy than those that do not. None of the animal models
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truly replicate human stroke. They are simply models of
stroke. However, choosing the most appropriate animal
models for the research question is essential for the success
of both experimental and clinical testing. Accordingly, there
may be several explanations for the efficacy of the rabbit
model and indeed several advantages of this model.

Atherosclerosis

Rodents and rabbits differ in the development of athero-
sclerosis. Rabbits develop atherosclerosis and share many
aspects of human lipoprotein metabolism. For example, the
composition of lipoproteins, production of Apoβ100-
containing VLDLs by liver, cholesteryl ester transfer
activity, and high absorption of dietary cholesterol are
similar in humans and rabbits [41, 42]. Transgenic rodents
are available which have increased plasma cholesterol and
triglycerides as well as low high-density lipoprotein levels
[42]. Rabbits, however, rapidly develop atherosclerosis on
hypercholesterolemic diets (0.5–4%/weight) where dietary
cholesterol supplementation leads to the development of
fatty streaks [41]. Though rodents may also develop
atherosclerosis, they are inherently much more resistant
than rabbits [43]. Atherosclerosis may be induced in
rodents with dietary and genetic manipulations, such as
apolipoprotein E (ApoE; −/−) and low-density lipoprotein
(LDL; −/−), although they develop very unstable athero-
sclerotic lesions [44–46]. Furthermore, the cholesterol
metabolism of rodents is more geared towards HDL, rather
that LDL, like that in both humans and rabbits [45]. This is
of clinical relevance as the expression of ApoE and LDL
receptors differs in young adult versus old rats following
cerebral ischemia [47]. Atherosclerosis is an important risk
factor in patients with ischemia [48]. Therefore, consider-
ation of this pathology in animal stroke models is crucial.
The simple fact that rabbits develop atherosclerosis whereas
normal rodents do not may make the rabbit a better model
in which to test compounds for stroke due to the lipid
metabolism and/or endothelial differences in rabbits versus
rodents. Rabbits are commonly used for the study of
atherosclerosis and for cardiovascular diseases for these
very reasons [49, 50].

The Immune System

Another issue that has not been considered in animal
models of stroke is whether the immune system of the
rodent is appropriate for modeling that of human stroke.
The immune system is critical in human stroke [51–53] as
exemplified by the enlimomab clinical trial [54] where anti-
ICAM-1 antibody significantly worsened stroke outcome

[55]. The composition and type of immune response are
important factors in modeling human stroke remains to be
seen [56]. The rodent immune cell composition is remark-
ably different from that of rabbits and humans. Specifically,
rodents have a lymphocyte predominance with a 1:5 ratio
of neutrophils to lymphocytes. In contrast, rabbits have a
1:1 ratio of neutrophils to lymphocytes, which is similar to
the immune system in humans who have a 2:1 ratio of
neutrophils to lymphocytes [57, 58]. Rodents and humans
also differ significantly in the systemic immune cell gene
expression response to ischemic stroke [59–63]. Although,
this represents only one aspect of the immune system, it
suggests that the way the rodent immune system responds
to cerebral ischemia may not reflect that of the human
immune response to acute ischemic stroke. It is not known
whether the rabbit immune response to cerebral ischemia is
similar to humans or not.

Anesthesia

The majority of patients with ischemic stroke are not
anesthetized. The effect of a stroke or response to stroke
may differ greatly with anesthesia. Accordingly, anesthesia
may markedly confound experimental stroke studies.
However, there are animal models of stroke that are able
to induce an ischemic stroke in conscious animals [21, 64–
66]. Such models are likely to model human stroke more
closely than those models using anesthesia during the
induction of stroke. Specifically, the rabbit blood clot
embolism model [21] involves the preparation of animals
under anesthesia and then later, the stroke is induced in
awake, un-anesthetized animals. Moreover, numerous stud-
ies have demonstrated anesthetic agents afford a degree of
protection from cerebral ischemia [67–70]. Even light
surgical anesthesia may substantially reduce infarct size
following stroke [71]. Accordingly, the contribution of
anesthesia to the experimental paradigm and potential
neuroprotection requires careful consideration, and ideally
the confounding effects of anesthesia must be eliminated
from animal stroke models.

tPA Effectiveness in Human Stroke Provides Insight
into Animal Models

Thrombolysis with tPA is effective in humans in cardioem-
bolic, large vessel thromboembolic, and small vessel
lacunar stroke [22, 72]. This finding has important
implications for animal models of stroke and for testing of
drugs to treat human stroke. Since cardioembolic stroke is
due to embolic blood clot, then animal models of embolic
autologous clot likely models this type of stroke. There are
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no accepted animal models that mimic large vessel
thromboembolic stroke and small vessel lacunar stroke in
humans [73, 74]. However, since tPA improves outcome in
all three human ischemic stroke subtypes, this suggests that
all three types of human stroke are caused at least in part by
clots that are acted upon by tPA. For cardioembolic strokes,
the clots would usually come from the heart. For large
vessel strokes the clots would come from the parent vessels
likely related to atherosclerosis. For lacunar strokes, clots
might form because of abnormalities in the vessel wall or
platelet vessel wall interactions. Thus, the blood clot
embolic animal models—be they rabbit or rodent—could
be viewed as reasonable mimics of human cardioembolic,
large vessel and lacunar causes of human stroke. Thus,
animal models in which tPA was effective might also be
considered as potential models of important aspects of the
pathophysiology of these three human stroke subtypes.
Addressing treatments for all three causes of human stroke
is essential for translation to human stroke trials because
few human stroke trials to date, with the exception of
cardioembolic stroke, have considered the cause of stroke
when choosing subjects to treat.

Outcome Measures in Animal Models—What is the Best
One?

In animal studies, a “neuroprotective” compound is
typically compared to a “saline or vehicle control.” The
common outcome measures are either a statistically
significant decrease in infarct volume or an improvement
in a given behavior [34]. However, these outcome measures
in animals may not translate to improving outcomes in
human stroke. Thus, alternate outcomes need to also be
considered. The original rabbit clot embolic model used
death as an outcome measure. This is in contrast to most
other animal stroke models. In fact, most rodent studies
discard animals that die from as a result of ischemic stroke
[75]. Indeed, survival studies are becoming increasingly
important as death is an important outcome measure in
human studies and may be one of the reasons that the rabbit
embolic clot model was predictive of efficacy in humans.
Therefore, the inclusion of survival rates in experimental
stroke studies is critical in determining the true efficacy of a
potential therapeutic agent as excluding animals that have
died from the study significantly skews the results so that
findings are biased towards surviving animals [34, 75]. In
the various trials of tPA, the drug decreased morbidity and
mortality [76]. Even if one accepted standard behavioral
measures short of death, the behaviors in rats, mice, rabbits
and even primates that predict clinical efficacy of therapies
for stroke in humans are unknown. Additionally, outcome
measures are evaluated at short times following ischemia

and not at the times used in clinical trials. Thus, if nothing
else death provides at least one additional outcome
measure. Using death as the outcome measure in the rabbit
embolic clot model likely means that other behavioral
assays do not have to be performed and there would be no
need to find the behaviors that translate to humans.
Moreover, since death was the major behavioral outcome
used to demonstrate tPA efficacy in the rabbit blood clot
embolic stroke model, this same behavioral endpoint may
be useful when testing new neuroprotectants and/or
thrombolytics in the rabbit embolic clot model and
probably should be included in rodent stroke models.

Concluding Remarks

To date, there has been a lack of translation of stroke
treatments from animals to humans. The rabbit blood clot
model of embolic stroke, in which tPA improved stroke
outcomes, may be a relevant animal model for predicting
efficacy of a drug in human stroke. We suggest that
blood clot embolic models should be the primary ones
evaluated, and head to head comparison with tPA should
be performed in the rabbit model and other models. The
contribution of the immune system and atherosclerosis
must be included in experimental models along with the
other STAIR recommendations. Additionally, death needs
to be included as an outcome measure. Ultimately, the
goal of translational stroke research is to find the
simplest yet most predictive animal model of ischemic
stroke so that potential treatments can be successfully
and rapidly moved to the clinic and improve the care of
patients with stroke.
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