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Computational, data, and service grids, peer to peer systems, and wireless com-
munication systems are examples of open systems where the distinction between
providers and consumers of resources is blurred. Individual members of the commu-
nity contribute computing cycles, storage, services, and communication bandwidth
to the pool of resources available to the entire community. While the popularity
of such systems increases, their resource management models seldom take into ac-
count the utility for the consumers of the resources, and the incentives to provide
resources. In this paper, we discuss a resource allocation model that takes into
account the utility of the resources for the consumers and the pricing structure
imposed by the providers. We show how a satisfaction function can express the
preferences of the consumer both regarding the utility and the price of the re-
sources. In our model, the brokers are mediating among the selfish interests of the
consumers and the providers, and societal interests, such as efficient resource uti-
lization in the system. We report on a simulation experiment to study the behavior
of the system in steady state and in transient state.
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1. Introduction and Motivation

In many social and man-made systems, scarce resources have to be shared
among a large population of consumers. To study possible resource man-
agement policies, we have to develop resource consumption models that
take into account different, possibly contradictory, views of the benefits
associated with resource consumption as well as the rewards for provid-
ing resources to the consumer population. Such models tend to be very
complex and only seldom amenable to analytical solutions.

Computational, service, and data grids, peer-to-peer systems, and ad-
hoc wireless networks are examples of open systems where the distinction
between resource providers and consumers is blurred. Individual mem-
bers of the community contribute computing cycles, storage, services, and
communication bandwidth to the pool of resources available to the entire
community. The same individual could be both a provider and consumer of
resources: a provider in some instances and/or for some types of resources,
or a consumer in other instances and/or for different types of resources. An
efficient and fair utilization of the resources can be obtained only through
a scheme that gives incentives to the providers to share their resources and
that encourages the consumers to maximize the utility of the received re-
sources. A well-tested model for such a scheme is based on an economic
model, in which the resources need to be paid for in a real or virtual cur-
rency. This model has the advantage of being provably scalable, and we
can successfully reuse or adapt the models that govern the economy in our
society.

Economic models are attractive for resource providers, beneficial for
the consumers of resources, and have societal benefits. Indeed, providers
benefit from contributing their resources and are encouraged to re-invest
some of their profits into additional resources. Consumers enjoy fair treat-
ment as the resource allocation is governed by rules that do not depend on
the individual consumer. Moreover, providers and consumers have a say
in the market and can make their own decisions to maximize their utility
and/or profits. When system-centric scheduling policies are replaced by
consumer-centric policies the system becomes more responsive to consumer
needs and important problems are solved with higher priority. Economic
models allow resource allocation and management to be more efficient, the
demand and supply is regulated through economic activities and fewer re-
sources are wasted, and excess capacity and overloading are averaged over
a very large number of providers and consumers. Resources, e.g., CPU
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cycles, main memory, secondary storage, and network bandwidth/latency,
are treated uniformly and this can facilitate the design of large-scale dis-
tributed systems, such as computational grids. The system is more scalable
and decision-making is distributed.

In an economic model, all the participants are considered self-interested.
The resource providers are trying to maximize their revenues. The con-
sumers want to obtain the maximum possible resources for the minimum
possible price. The large number of participants makes one-to-one negoti-
ations expensive and unproductive.

It is desirable to have a middleman, a broker, mediate access to sys-
tem resources and consider multiple objectives. The role of a broker is
to reconcile the selfish objectives of individual resource providers and con-
sumers with some global, societal objectives, e.g., to maximize the resource
utilization of the system.

Several projects proposed approaches based on economic models. Radio
bandwidth management for wireless and mobile systems takes advantage
of utility and price concepts 2. The models used to study the benefits and
drawbacks of different bandwidth allocation schemes take into account the
individual consumer utility as well as pricing structures.

Several systems, including Enhanced MOSIX 1, Nimrod/G 5,
Rexec/Anemone 7, Condor 8, Mungi 9, Mariposa 10, Mojo Nation 11, Pop-
corn 12, SETI@home 13, and Spawn 16, use market-based models for trading
computational resources 6. The efficiency of resource allocation under two
different market schemes, commodities markets and auctions are discussed
in 17 and 18. These papers define concepts such as price stability, market
equilibrium, consumer efficiency, and producer efficiency and show that the
commodities markets are better choices for controlling grid resources than
auction strategies. In this paper, we discuss a resource allocation model
that takes into account the utility of the resources for the consumers and
the pricing structure imposed by the providers. We show how a satisfac-
tion function can express the preferences of the consumer both regarding
the utility and the price of the resources. In our model, the brokers are
mediating among the selfish interests of the consumers and the providers,
and societal interests, such as efficient resource utilization in the system.
We report on a simulation experiment to study the behavior of the system
in steady state and in transient state. In 3 we use a simpler model based
upon a synthetic quantity to represent resource vectors and in 4 we expand
the model for a network of resource managers with a tree topology.

This paper is organized as follows. In Section 2, we introduce utility-
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price based models for resource allocation in large-scale distributed systems,
and in Section 3 present a simulation study for evaluation of such models.

2. Utility, Price, and Satisfaction Functions

We propose to use: (i) a utility function, 0 ≤ u(r) ≤ 1, to represent the
utility provided to an individual consumer, where r represents the amount
of allocated resources; (ii) a price function, p(r), imposed by a resource
provider, and (iii) a satisfaction function, s(u(r), p(r)), 0 ≤ s ≤ 1, to quan-
tify the level of satisfaction; the consumer satisfaction depends on both the
provided utility and the paid price.

The utility function should be an non-decreasing function of r, i.e., we
assume that the more resources are allocated to the consumer, the higher
the consumer utility is. However, when enough resources have been al-
located to the consumer, i.e., some threshold is reached, an increase of
allocated resources would bring no improvement on the utility. For exam-
ple, if a parallel application could use at most 100 nodes of a cluster, its
utility reflected by a utility function does not increase if its allocation in-
creases from 100 to 110 nodes. The above requirements are reflected by the
following equations:

du(r)
dr

≥ 0, lim
r→∞

du(r)
dr

= 0 (1)

Sigmoid functions follow Equation (1) and are often used to model util-
ity. A sigmoid is a tilted S-shaped curve that could be used to represent the
life-cycles of living, as well as man-made, social, or economical systems. It
has three distinct phases: an incipient or starting phase, a maturing phase,
and a declining or aging phase, as shown in Figure 1.

In the context of resource allocation, a sigmoid quantifies the utility
provided to an individual when the amount of resources allocated to the
consumer increases. We expect the utility to be a concave function and
reaches saturation as the consumer gets all the resources it can use effec-
tively. The utility function could be a sigmoid

u(r) =
(r/ω)ζ

1 + (r/ω)ζ

where ζ and ω are constants provided by the consumer, ζ ≥ 2, and ω > 0.
Clearly, 0 ≤ u(r) < 1 and u(ω) = 1/2.

The price could be a linear function of the amount of resources:

p(r) = ξ · r
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Figure 1. A sigmoid includes three phases: the starting phase, the maturing phase, and
the aging phase. Normally consumers do not want the amount of allocated resource to
be at the starting phase because the utility is too low; they also do not want the amount
of allocated resource to be at the aging phase because they can get a little lower utility
while saving a large amount of resources.

where ξ is the unit price. The unit price of the resources can be set by
convention to a constant, or it can vary based on supply and demand. The
variable unit price ξ might be (a) subject to a peer-to-peer negotiation
between the consumer and the provider, (b) set in a centralized way similar
to a commodity exchange, requiring global information about the supply
and demand, or (c) determined by local estimate of the supply and demand.
For example, based on the ratio of the allocated resources to the total
resources of the provider, a function could give a lower price for the low
ratio and a higher price for the high ratio.

A consumer satisfaction function takes into account both the utility
provided and the price paid. For a given utility, the satisfaction func-
tion should increase when the price decreases and, for a given price, the
satisfaction function should increase when the utility u increases. These
requirements are reflected in Equation (2).

∂s

∂p
≤ 0,

∂s

∂u
≥ 0 (2)

Furthermore, a normalized satisfaction function should satisfy the fol-
lowing conditions:

• the degree of satisfaction, s(u(r), p(r)), for a given price p(r), ap-
proaches the minimum, 0, when the utility, u(r), approaches 0;

• the degree of satisfaction, s(u(r), p(r)), for a given price p(r), ap-
proaches the maximum, 1, when the utility, u(r), approaches infin-
ity;
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• the degree of satisfaction, s(u(r), p(r)), for a given utility u(r),
approaches the maximum, 1, when the price, p(r), approaches 0;
and

• the degree of satisfaction, s(u(r), p(r)), for a given utility u(r), ap-
proaches the minimum, 0, when the price, p(r), approaches infinity.

These requirements are reflected by Equation (3) and (4).

∀p > 0, lim
u→0

s(u, p) = 0, lim
u→∞

s(u, p) = 1 (3)

∀u > 0, lim
p→0

s(u, p) = 1, lim
p→∞

s(u, p) = 0 (4)

A candidate satisfaction function that conforms to the Equation (2),
(3), and (4) could be:

s(u, p) = 1− e−κ·uµ·p−ε

(5)

where µ and ε control the sensitivity of s to utility and price, and κ =
− log α, with α a reference value for the satisfaction function. Similar func-
tions are widely used in the field of microeconomics 15. A typical shape
of the satisfaction function for a sigmoid utility function and a linear price
function is shown in Figure 2. Satisfaction decreases after a peak value
because continuing to pay more as resources increase after that point does
not increase utilization.

0.0

1.0

r

s

Low Unit Price
Medium Unit Price

High Unit Price

Figure 2. The satisfaction function of the amount of resources r for a sigmoid utility
function and linear price functions, 0 ≤ s ≤ 1. For the same amount of resources, the
higher is the price, the lower is the satisfaction.
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Consider a system with n providers offering computing resources and m

consumers. For the sake of simplifying the model, we assume that the two
sets are disjoint. Call U the set of consumers and R the set of providers.
The n providers are labeled 1 to n and the m consumers are labeled 1 to
m. Consider provider Rj , 1 ≤ j ≤ n, and consumer Ui, 1 ≤ i ≤ m, that
could potentially use resources of that provider.

Let rij denote the resource of Rj allocated to consumer Ui and let uij

denote its utility for consumer Ui. Let pij denote the price paid by Ui to
provider Rj . Let tij denote the time Ui uses the resource provided by Rj .
Let cj denote the resource capacity of Rj .

The term “resource” here means a vector with components indicating
the actual amount of each type of resource:

rij = (r1
ij r2

ij . . . rl
ij)

where l is a positive integer and rk
ij corresponds to the amount of resource of

the k-th type. The structure of rij may reflect the rate of CPU cycles, the
physical memory required by the application, the secondary storage, the
number of nodes and the interconnection bandwidth (for a multiprocessor
system or a cluster), the network bandwidth (required to transfer data
to/from the site), the graphics capabilities, and so on.

The utility of resource of the k-th type provided by Rj for consumer Ui

is a sigmoid:

uk
ij = u(rk

ij) =
(rk

ij/ωk
i )ζk

i

1 + (rk
ij/ωk

i )ζk
i

where ζk
i and ωk

i are constants provided by consumer Ui, ζk
i ≥ 2, and

ωk
i > 0. Clearly, 0 < u(rk

ij) < 1 and u(ωk
i ) = 1/2.

The overall utility of resources provided by Rj to Ui could be defined
as:

• the product over the set of resources provided by Rj , i.e., uij =∏l
k=1 uk

ij , or
• the weighted average over the set of resources provided by Rj , i.e.,

uij = 1
l

∑l
k=1 ak

iju
k
ij , where ak

ij values are provided by consumer
Ui.

We consider a linear pricing scheme pk
ij = ξk

j · rk
ij , though more sophis-

ticated pricing structures are possible. Here ξk
j represents the unit price

for resource of type k provided by provider Rj . The amount consumer Ui
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pays to provider Rj for a resource of type k is pk
ij × tij . The total cost for

consumer Ui for resources provided by provider Rj is

pij =
l∑

k=1

pk
ij × tij

Based on Equation 5, we define the degree of satisfaction of Ui for a
resource of the k-th type provided by provider Rj as

sk
ij(u

k
ij , p

k
ij) = 1− e−κk

i uk
ij

µk
i (pk

ij/φk
i )
−εk

i
, κk

i , φk
i , µk

i , εk
i > 0

where µk
i and εk

i control the sensitivity of sk
ij to utility and price; φk

i and
κk

i are normalization constants; φk
i is a reference price; and κk

i = − log α,
with α a reference value for the satisfaction function. Additional details
regarding these parameters can be found in Section 3.

The overall satisfaction of consumer Ui for resources provided by Rj

could be defined as:

• the product over the set of resources provided by Rj , i.e., sij =∏l
k=1 sk

ij , or
• the weighted average over the set of resources provided by Rj , i.e.,

sij = 1
l

∑l
k=1 bk

ijs
k
ij , where bk

ij values are provided by consumer Ui.

The role of a broker is to mitigate access to resources. In this paper, we
consider a provider-broker-consumer model that involves the set of resource
providers R, the set of consumers U , and broker B. This model assumes
that a consumer must get all of its resources from a single provider. Bro-
kers have “societal goals” and attempt to maximize the average utility and
revenue, as opposed to providers and consumers that have individualistic
goals; each provider wishes to maximize its revenue, while each consumer
wishes to maximize its utility and do so for as little cost as possible. To
reconcile the requirements of a consumer and the candidate providers, a
broker chooses a subset of providers such that the satisfaction is above a
high water mark and all providers in the subset have equal chances to be
chosen by the consumer. We call the size of this subset satisficing size,
where the word “satisfice” was coined by Nobel Prize winner Herbert Si-
mon in 1957 to describe a behavior of attempting to achieve at least some
minimum level of a particular variable instead of striving to achieve its
maximum possible value 14. We denote the satisficing size as σ.

The resource negotiation protocol consists of the following steps (Figure
3):
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(1) All providers reveal their capacity and pricing parameters to the
broker: ∀Rj ∈ R send vectors cj and ξj where each element corre-
sponds to one type of resource.

(2) A consumer Ui sends to the broker:

(a) the parameters of its utility function: vectors ζi and ωi where
each element corresponds to one type of resource,

(b) the parameters of its satisfaction function: vectors µi, εi,
κi and φi where each element corresponds to one type of
resource, and

(c) the number of candidate resource providers to be returned.

(3) The broker performs a matchmaking algorithm and returns a list of
candidate resource providers Ri to consumer Ui.

(4) Consumer Ui selects the first provider from Ri and verifies if the
provider can allocate the required resources. If it can not, the con-
sumer moves to the next provider from the list until the resources
are allocated by a provider Rj .

(5) Rj notifies the broker about the resource allocation to Ui.

1. Advertise 
resource capacity 

and pricing 
parameters

2. Send the utility 
function parameter, 

the satisfaction 
function parameter, 
and the number of 
resource providers 

to be returned

3. Return a set of 
ordered resource 

providers

4. Claim resources

5. Notify resource 
allocation

Figure 3. The brokering process: 1) Providers send to the broker their resource capacity
and pricing parameters; 2) A consumer sends to the broker a request; 3) The broker
executes a brokering algorithm and returns to the consumer a list of resource providers;
4) The consumer selects the first provider from the returned list and confirms that it can
satisfy the resource requirements; if it can not, chooses the next provider, until one of
the providers allocates the needed resources. 5) If a resource provider allocates resources
to the consumer, it notifies the broker about this allocation.

The algorithm performed by the broker is summarized in Figure 4. The
amount of resources to be allocated is determined during the algorithm ac-
cording to a broker strategy. Simple strategies would be to allocate the same
amount of resources to every consumer, or to allocate to every consumer
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a random amount of resources. A better strategy, used by our system, is
to allocate an amount of resources such that the utility of each type of re-
source to the consumer reaches a certain target utility τ . To determine the
amount of resources allocated to the consumer, the broker uses Equation
6(a) derived from the definition of u(r), Equation 6(b):

r = e
ln( τ

1−τ
)

ζ +ln(ω) (a) u(r) =
(r/ω)ζ

1 + (r/ω)ζ
(b) (6)

BROKERING ALGORITHM
INPUT request req, , , a finite set of resource providers ps
OUTPUT a finite set of suggested resource providers ss
BEGIN

determine amountso that req.u(amount) =
        FOR each resource provider rp in ps

      r = min (amount,available resources of rp)
satisfaction= req.s (req.u(r), rp.p(r))

        END FOR
        sort elements in ps according to their satisfactions
        randomize the sequences of the first items in ps
        keep the elements in ps that have the highest req.cardinalitysatisfaction degrees and remove the rest

ss = ps
END

Figure 4. The brokering algorithm performed by the broker. req contains a utility
function u, a satisfaction function s, and a cardinality that specifies the number of
resource providers to be returned by the broker. τ is the target utility. σ is the satisficing
size.

Several quantities are used in the next section to characterize the re-
source management policy for broker B and its associated providers and
consumers:

(a) The average hourly revenue for providers. The revenue is the sum of
revenues for all of its resource types. This average is over the set of all
providers connected to broker B.

(b) The consumer admission ratio. This ratio is the number of admitted
consumers over the number of all consumers connected to B. A consumer is
admitted into the system when there is a provider able to allocate resources,
otherwise the consumer is dropped.

(c) The average consumer overall utility. This average is over the set of all
admitted consumers connected to broker B.
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(d) The average consumer overall satisfaction. This average is over the set
of all admitted consumers connected to broker B.

3. A Simulation Study

To evaluate the model presented in Section 2, we present the results of
a simulation study of the provider-broker-consumer model, conducted in
the YAES simulation environment 19. The model used for simulation is
relatively complex and requires a fair number of choices for the distribution
and the range of several random variables.

The behavior of the model is determined by two parameters, τ and σ,
chosen by the controlling authority, in our case the broker. σ = 1 means
that the consumer accepts only the best match; when σ > 1, all providers
in the subset chosen by the broker based on a high water mark have an
equal chance to be selected.

We compare the system performance of our scheme for several σ values
with a random strategy where we randomly choose a provider from the set
of all providers, without considering the satisfaction function.

Recall the resource types allocated by provider Rj to consumer Ui are
denoted as a resource vector rij = (r1

ij r2
ij . . . rl

ij). For example, if the
k-th component is secondary storage, then rk

ij = 20GB is the amount of
secondary storage provided by Rj to consumer Ui. The associated utility
vector is uij = (u1

ij u2
ij . . . ul

ij) and the associated satisfaction vector sij =
(s1

ij s2
ij . . . sl

ij).
The demand-capacity ratio for a resource type k is the ratio of the

amount of resources requested by the consumers to the total capacity of
resource providers for resource type k,

∑
j ck

j . The level of demand is prac-
tically limited by the sigmoid shape of the utility curve and the finite finan-
cial resources of the consumers. In our model, the consumers do not provide
the precise amount of resources needed, they only specify their utility func-
tion. In the computation of the demand-capacity ratio, for each consumer
and each resource, it is assumed that for the requested rij value the corre-
sponding uij value is 0.9. The demand-capacity ratio vector for all resource
types is ηj = (η1

j η2
j . . . ηl

j). To simplify the interpretation of the results of
our simulation we only consider the case when η1

j = η2
j = · · · = ηl

j = η.
We simulate a system of 100 clusters and one broker. The number of

nodes of these clusters is a random variable normally distributed with the
mean of 50 and the standard deviation of 30. Each node is characterized by
a resource vector containing the CPU rate, the amount of main memory,
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and the disk capacity. For example, the resource vector for a node with one
2 GHz CPU, 1 GB of memory, and a 40 GB disk is (2GHz, 1GB, 40GB).
Initially, there is no consumer in the system. Consumers arrive with an
inter-arrival time exponentially distributed with the mean of 2 seconds. The
service time tij is exponentially distributed with the mean of λ seconds. By
varying the λ value we modify demand-capacity ratio so that we can study
the behavior of the system under different loads.

The parameters of the utility function of consumers, i.e., uk
ij , are uni-

formly distributed in the intervals shown in Table 1. The CPU rate, mem-
ory space, and disk space of a request, rk

ij , are exponentially distributed
with the mean of 2GHz, 4GB, and 80GB, and in the range of [0.1GHz,
100GHz], [0.1GB, 200GB], and [0.1GB, 1000GB], respectively.

Table 1. The parameters for the simulation are uni-
formly distributed in the intervals displayed in this table.

Parameter CPU Memory Disk

ξ [5, 10] [5, 10] [5, 10]
ω [0.4, 0.9] [0.5, 1.5] [10, 30]
κ [0.02, 0.04] [0.02, 0.04] [0.02, 0.04]
µ [2, 4] [2, 4] [2, 4]
ε [2, 4] [2, 4] [2, 4]
φ [40, 60] [80, 120] [1800, 2200]

A consumer request specifies only the parameters of the utility function,
ω and ζ, for each element of the resource vector (CPU, Memory, Disk).
More precisely, for each element: (a) we generate the amount rij ; (b) we
choose a value for ω; (c) set u = 0.9 and compute the corresponding value
of ζ.

We investigate the performance of the model under various scenarios of
demand-capacity ratio, for different target utility and satisficing size. We
study the evolution in time and assume that the system reaches steady-
state after of a transient period of the first 104 seconds. When we study
the effect of τ , we use σ = 1, and when we study the effect of σ, we use
τ = 0.9. In each case, we run the simulation 50 times and show the average
value and a 95% confidence interval.

We report the average hourly revenue, the consumer admission ratio, the
average consumer satisfaction, and the average consumer utility collected
over the most recent one hour interval:

(a) As function of time for several levels of target utility, τ , Figures 5, 6, 7,
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and 8. We choose λ so that the demand-capacity ratio is 1.0.

(b) As function of time for several levels of satisficing size, σ, Figure 9,
10, and 11. We choose λ so that the demand-capacity ratio is 0.5. The
system is capable of handling all consumer requests for all values of σ and
the consumer admission ratio is approximately 1.0 for all cases.

(c) As function of time for several levels of demand-capacity ratio, η, Fig-
ures 12 and 13.

For a multi-dimensional resource, we let the overall utility be the prod-
uct of the utility of all types of resource, and we let the overall satisfaction
be the product of the satisfaction of all types of resource.

The average hourly revenue increases rapidly during the transient pe-
riod, slowly decreases due to the resource fragmentationa towards the end
of the transient period, and reaches a stable value in steady state, as shown
in Figure 5. The larger is τ , the more resources are allocated to consumers,
and the higher is the average hourly revenue.
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Figure 5. Average hourly revenue vs. time (in seconds) for σ = 1 and τ = 0.8, 0.85, 0.9,
and 0.95. Left: transient period. Right: steady state.

When τ = 0.8, τ = 0.85, and τ = 0.9, the system is capable of handling
all consumer requests, the consumer admission ratio is approximately 1.0,
and the three plots overlap with each other, as shown in Figure 6. When

aResource fragmentation is an undesirable phenomena; in our environment the amount of
resources available cannot meet the target utility value for any request and an insufficient
amount of resources is allocated.
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τ = 0.95, during the transient period some consumer requests are dropped.
As time goes on, the consumer admission ratio slowly increases. More
consumers can be admitted into the system due to the fragmentation of the
resources because the system is no longer capable of ensuring the required
levels for τ = 0.95 and allocates lower amounts of resources. The resource
fragmentation effect is noticeable in other graphs as well. In steady state
the admission ratio is 1.
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Figure 6. Consumer admission ratio vs. time (in seconds) for σ = 1 and τ =
0.8, 0.85, 0.9, and 0.95. Left: transient period. Right: steady state.

The average consumer satisfaction decreases slowly during the tran-
sient period and then increases and reaches a stable value in steady state,
as shown in Figure 7. The average consumer satisfaction is higher when
τ is smaller; the smaller is τ , the more consumers can be admitted by re-
source providers with cheaper prices and these consumers experience higher
satisfaction.

The average consumer utility decreases slowly during the transient pe-
riod because of the resource fragmentation; some resources are allocated
to consumers due to their cheaper price although they are not enough to
allow the utility to reach the specified τ value, as shown in Figure 8. The
average utility reaches a stable value during the steady state. The average
consumer utility is lower when τ is smaller.

Figure 9 shows that the average hourly revenue increases rapidly during
the transient period. It decreases slowly due to resource fragmentation after
the transient period and leads to a stable value in steady state. A small
value of σ limits the number of choices the broker has and this restriction
leads to lower average hourly revenues. The larger is σ, the higher is the
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Figure 7. Average consumer satisfaction vs. time (in seconds) for σ = 1 and τ =
0.8, 0.85, 0.9, and 0.95. Left: transient period. Right: steady state.
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Figure 8. Average consumer utility vs. time (in seconds) for σ = 1 and τ = 0.8, 0.85, 0.9,
and 0.95. Left: transient period. Right: steady state.

average hourly provider revenue. The random strategy, which corresponds
to the maximum value of σ =| R | has the highest average hourly provider
revenue. As we shall see shortly the random strategy leads to the lowest
consumer satisfaction.

We notice from Figure 10 that the average consumer satisfaction de-
creases slowly during the transient period and then increases and leads to
a stable value in steady state. The average consumer satisfaction is higher
when σ is smaller. Indeed, when σ = 1 we direct the consumer to that re-
source provider that best matches the request. When we select at random
one provider from the set of all providers we observe the lowest average con-
sumer satisfaction. Indeed, when we resort to a random strategy we have
a high probability to select a less than optimal match for a given request.
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Figure 9. Average hourly revenue vs. time (in seconds) for τ = 0.9 and σ = 1, 10, 20,
and 50. For the random strategy, σ =| R |= 50. Left: transient period. Right: steady
state.

The optimal match is the top ranked element of the candidate resource
provider list.
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Figure 10. Average consumer satisfaction vs. time (in seconds) for τ = 0.9 and σ =
1, 10, 20, and 50. For the random strategy, σ =| R |= 50. Left: transient period. Right:
steady state.

Figure 11 shows that the average consumer utility drops slowly during
the transient period because of system fragmentation; some resources are
allocated to consumers due to their cheaper price, although they are not
enough to allow the utility to reach the target value, τ . In steady state the
average utility reaches a stable value. The average consumer utility is lower
when σ is smaller. The random strategy has the highest average consumer
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utility; when σ is large consumers have a better chance to get resources
according to the τ values.
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Figure 11. Average consumer utility vs. time (in seconds) for τ = 0.9 and σ = 1, 10, 20,
and 50. For the random strategy, σ =| R |= 50. Left: transient period. Right: steady
state.

Figure 12 (Left) shows that the average hourly revenue at first increases
rapidly during the transient period. It decreases slowly due to resource
fragmentation after some 105 seconds, at the beginning of the steady-state
period, and then it reaches a steady value. The larger is η, the higher is the
average hourly revenue. Figure 12 (Right) shows that when η is set to 0.25,
0.50, or 0.75, the system is capable of handling all requests and the corre-
sponding plots overlap with each other. When η = 1.0 some requests are
dropped. As time goes on, the consumer admission ratio slowly increases
due to resource fragmentation. During the steady state the consumer ad-
mission ratio is 1.

The average consumer satisfaction drops during the transient period,
then increases, and converges to a steady value, as shown in Figure 13
(Left). The smaller is η, the earlier the system reaches the steady state
and the higher is the average consumer satisfaction. The average consumer
utility drops during the transient period and reaches a steady value, as
shown in Figure 13 (Right). The smaller is η, the earlier the system reaches
the steady state and the higher is the average consumer utility.

4. Conclusions and Future Work

Economic models have significant advantages over other models of resource
sharing among a large user population. Scalability, fairness, distributed-
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Figure 12. Left: average hourly revenue vs. time (in seconds) for τ = 0.9 and σ = 1.
Right: consumer admission ratio vs. time (in seconds) for τ = 0.9 and σ = 1.
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Figure 13. Left: average consumer satisfaction vs. time (in seconds) for τ = 0.9 and
σ = 1. Right: average consumer utility vs. time (in seconds) for τ = 0.9 and σ = 1.

decision making, and the ability to automate the resource allocation, are
only a few of the advantages of economic models. The interest of the
distributed systems community in economic models for resource allocation
is reflected by a fair number of studies 1,5,6,7,8,9,10,11,12,16,17,18 published in
recent years.

The research reported in this paper is part of our effort to introduce re-
source allocation models based upon utility, price, and satisfaction function
3,4 for large-scale distributed systems. Such models have proved their po-
tential in a different context, when the only resource is the radio bandwidth,
the size of the population is limited, and each participant has a unique role,
is a consumer 2. The heterogeneity of a large-scale distributed system, the
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large spectrum of resources and demands placed upon these resources, the
scale of the system, the autonomy of individual resource providers, and the
dual role of individual actors, consumer of some resources and provider for
others, add complexity to the models we study. Due to space limitations we
cannot fully analyze the properties of utility, price, and satisfaction func-
tions. We only show that the satisfaction reaches an optimum for some
level of resource allocation for linear price functions. In this paper and in
3 we consider a model based upon a three party system, provider-broker-
consumer while in 4 we consider hierarchical models when the optimization
criteria is the optimization of the satisfaction function.

Economic models are notoriously difficult to study. The complexity of
the utility, price, and satisfaction-based models precludes analytical stud-
ies and in this paper we report on a simulation study. The goal of our
simulation study is to validate our choice of utility, price, and satisfaction
function, to study the effect of the many parameters which characterize our
model, and to get some feeling regarding the transient and the steady-state
behavior of our models. We are primarily interested in qualitative rather
than quantitative results, we are interested in trends, rather than actual
numbers. It is too early to compare our model with other economic models
proposed for resource allocation in distributed systems, but we are confident
that a model that formalizes the selfish goals of consumers and providers,
as well as societal goals, has a significant potential. This is a preliminary
study that cannot provide a definite answer to the question posed in the
title of the paper. Our intention is to draw the attention of the community
to the potential of utility, price, and satisfaction-based resource allocation
models.

The function of a broker is to monitor the system and set τ and σ for
optimal performance. For example, if the broker perceives that the average
consumer utility is too low, it has two choices: increase τ or increase σ. At
the same time, the system experiences an increase of average hourly avenue
and a decrease of average consumer satisfaction. The fact that increasing
utility could result in lower satisfaction seems counterintuitive, but reflects
the consequences of allocating more resource; we increase the total cost
possibly beyond the optimum predicated by the satisfaction function. The
simulation results shown in this paper are consistent with those in 3 where
we use a much simpler model based upon a synthetic quantity to represent
vector resources.

Backward utility functions allow us to describe the behavior of systems
when the amount of allocated resources is reduced. Models supporting
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elastic resource allocation using backward utility functions could provide
additional insights. In our study we ignored the fact that when the utility
or the satisfaction are low, the consumer may reject the allocation. More
refined models should take such rejection into account.

A fair number of questions require further investigations including: (a)
Are there better alternatives to the utility, price and satisfaction functions
we introduced? (b) Is the policy aiming to achieve maximum satisfaction
sound, how should we take into account the societal importance of activities
carried out by individual resource consumers? (c) How can we apply the
models to more complex networks of resource managers? (d) What com-
position rules should be used to describe the utility and/or the satisfaction
for a group of consumers? (e) How can we define more complex utility
functions that take into account additional constraints related to quality of
service, system reliability, and deadlines?
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