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Are volatility estimators robust with respect
to modeling assumptions?
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We consider microstructure as an arbitrary contamination of the underlying latent securities price, through
a Markov kernel Q. Special cases include additive error, rounding and combinations thereof. Our main
result is that, subject to smoothness conditions, the two scales realized volatility is robust to the form of
contamination Q. To push the limits of our result, we show what happens for some models that involve
rounding (which is not, of course, smooth) and see in this situation how the robustness deteriorates with
decreasing smoothness. Our conclusion is that under reasonable smoothness, one does not need to consider
too closely how the microstructure is formed, while if severe non-smoothness is suspected, one needs to
pay attention to the precise structure and also the use to which the estimator of volatility will be put.

Keywords: bias correction; local time; market microstructure; martingale; measurement error; realized
volatility; robustness; subsampling; two scales realized volatility (TSRV)

1. Introduction

Recent years have seen an explosion of literature on the problem of estimating integrated volatil-
ity and similar objects with the help of high-frequency data. For a sample of recent literature,
see Hull and White [16], Jacod and Protter [18], Gallant et al. [11], Chernov and Ghysels [7],
Gloter [12], Andersen et al. [3], Dacorogna et al. [8], Barndorff-Nielsen and Shephard [6] and
Mykland and Zhang [22], among others. An important realization has been that log prices do
not appear to be semimartingales, but rather are like semimartingales observed with error. The
main hypothesis proposed in the literature is that this error occurs by rounding (Delattre and Ja-
cod [9]; Jacod [17]; Zeng [25]) or by additive error (Zhou [28]; Zhang et al. [27]; Zhang [26];
Aït-Sahalia et al. [1]; Bandi and Russell [5]; Hansen and Lunde [14]). More complex (and de-
scriptive) models for microstructure are also available; see, for example, Hasbrouck [15] and,
from a very different perspective, Farmer et al. [10].

The multiplicity of ways in which errors can be modeled raises the question of how sensitive
inference is to modeling assumptions. This is the topic of this paper.

We shall be making the assumption that there is a latent log price process Xt that is a continu-
ous semimartingale of the form

dXt = µt dt + σt dBt , (1)

where µt and σt are continuous random processes, σt is nonzero and Bt is a Brownian motion.
This is also called an Itô process. Transactions at times 0 = t0 < t1 < · · · < tn = T give rise to
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log prices Yti that are contaminated versions of Xti as follows. We suppose that there is a family
Q(x,dy) of conditional distributions so that, given Xti , the law of Yti is

P(Yti ≤ y | X process) = P(Yti ≤ y | Xti ) = Q(Xti , y). (2)

In other words, Yti is distributed around Xti in a way that depends only on the latter. We also
assume that Yt0 , . . . , Ytn are conditionally independent given the X process.

A simple example of such contamination Q is additive error on the log scale. If Y = X + ε,
where ε has density g and is independent of X, then

Q(x,dy) = g(y − x)dy. (3)

Another example is rounding or truncation. In this case, the probability distribution Q(x,dy)

represents a non-random distortion of x. We shall look at yet another form of contamination in
Section 3. In that case, the distortion is a combination of additive error and rounding.

This paper has two pieces of news: one good and one bad. We shall see that for reasonable
types of contaminations Q, we can act as if the error is simply of additive type, and we shall
see that the two scales realized volatility (TSRV) of Zhang et al. [27] is substantially robust to
arbitrary contamination. This is our plan for Section 2.

There are, however, cases when we have to exercise care. We see one such case in Section 3,
where we show that it is not always quite clear what is meant by volatility, and we have to
consider carefully what quantity we actually wish to estimate. This occurs in cases that involve
rounding.

We are mainly using TSRV as an example of a volatility estimator, and we believe that similar
conclusions will apply, for example, to the multiscale realized volatility (MSRV) of Zhang [26].
With caveats about additional bias and variance, similar conclusions will also apply to traditional
realized volatility (RV).

2. Robustness and smoothness of contamination

2.1. Setup

Suppose the latent log price process X follows (1). Let Y be the logarithm of the transaction
price, which is observed at times 0 = t0 < t1 < · · · < tn = T . We assume that at these sampling
times, Y is related to the latent log price process X through (2). Let f (Xt ) be the conditional
expectation of Yt given the X process:

f (Xt ) = EQ(Yt |Xt). (4)

We assume that

f (x) is twice continuously differentiable with f ′(x) �= 0 ∀x. (5)
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Definition 1. For two generic processes Z(1) and Z(2) and for an arbitrary grid H =
{s0, s1, s2, . . . , sm} of points in the interval [0, T ], define

[
Z(1),Z(2)

]H
T

=
m∑

j=1

(
Z(1)

sj
− Z(1)

sj−1

)(
Z(2)

sj
− Z(2)

sj−1

)
.

Definition 2. If Z is a continuous semimartingale, its quadratic variation 〈Z,Z〉T is defined as
the limit in probability of [Z,Z]Hm

T if Hm becomes dense in [0, T ] as m → ∞. The quadratic
variation is also known as the (integrated) volatility of Z for the time period [0, T ].

The above definition gives a well-defined limit 〈Z,Z〉T (independent of the sequence Hm) in
view of Theorems 4.47 and 4.48 of Jacod and Shiryaev ([19], 52).

A central problem is that we have two continuous semimartingale processes, X and f (X), that
produce two volatilities:

〈X,X〉T =
∫ T

0
σ 2

t dt and 〈f (X),f (X)〉T =
∫ T

0
f ′(Xt )

2σ 2
t dt

(see Protter [23], Theorem 29, pages 75–76). An interesting question arises immediately: which
volatility are the volatility estimators estimating? When we make use of the observations Yti to
estimate the volatility, we might think that we are estimating 〈X,X〉T , because Yti is just the con-
taminated version of Xti , but given the X process, Yti is centered at f (Xti ), rather than Xti . We
note that because both Xt and f (Xt ) are Itô processes, without further model assumptions, we
have nothing in the model that can answer the question of which volatility is the true underlying
one.

These two volatilities 〈X,X〉T and 〈f (X),f (X)〉T are often similar quantities if f (x) ≈ x,
which makes the above question not so crucial, but this may not always be the case. Our first
objective is to clarify which volatility the volatility estimators are estimating and how good the
approximations are.

TSRV is a typical example of volatility estimators. For the moment, we focus on determining
the properties of TSRV. We make use of some of the notations from Zhang et al. [27]:

Let G = {0 = t0, t1, t2, . . . , tn = T } be the grid that contains all the observation times. We
suppose G is partitioned into K non-overlapping subgrids G(k), k = 1, . . . ,K . As introduced in
Zhang et al. [27], a typical example of selecting the subgrids is to use the regular allocation

G(k) = {tk−1, tk−1+K, tk−1+2K, . . . , tk−1+nkK}.
Let nk = |G(k)|, the integer making tk−1+nkK the last element in G(k), and let n̄ = 1

K

∑K
k=1 nk =

1
K

(n − K + 1). Further define [Z(1),Z(2)](all)
T = [Z(1),Z(2)]GT and [Z(1),Z(2)](avg)

T = 1
K

×∑K
k=1[Z(1),Z(2)]G(k)

T for the two processes Z(1) and Z(2).
Estimators of the form [Y,Y ]HT with H ⊂ G are usually known as the RV. The TSRV is given

by

〈̂X,X〉T = [Y,Y ](avg)

T − n̄

n
[Y,Y ](all)

T . (6)
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We assume constant step size (�ti = T/n) and that as n → ∞,

K → ∞ and n/K → ∞. (7)

Note that our results generalize quite predictably if we allow �ti to vary (see the theory in Zhang
et al. [27]).

We also assume that the filtration for (Xt ) satisfies the “usual conditions” (see, e.g., Defini-
tion 1.3 of Jacod and Shiryaev [19], page 2) and Condition E of Zhang et al. [27].

2.2. Estimators of volatilities—estimators of 〈f (X),f (X)〉T

Denote

εti = Yti − f (Xti ). (8)

Note that under (2), the conditional moments of εti depend only on the value of Xti . We assume
that the conditional second moment of εti is continuous and that there exists δ0 > 0 such that the
conditional (4 + 2δ0)th moment of εti is bounded on compact sets; that is,

g(x) := E(ε2
ti
|Xti = x) is continuous, (9)

∀l > 0,∃M(4+2δ0,l), s.t. E(|εti |4+2δ0 |Xti = x) ≤ M(4+2δ0,l), when x ∈ [−l, l]. (10)

We shall need the concept of stable convergence, as follows.

Definition 3. Consider the σ -field � = σ(Xs,0 ≤ s ≤ T ). We say that a sequence ζn converges
stably to ζ provided, for all F ∈ � and all bounded continuous g, EIF g(ζn) → EIF g(ζ ) as
n → ∞, where ζ is defined on an extension of the original space.

Note that because X is continuous, the stable convergence of a sequence ζn is equivalent to the
joint convergence of ζn with the process Xs,0 ≤ s ≤ T (see Jacod and Protter [18]; Section 2).
This would not have been the case if X were discontinuous. Also, note that we are using a specific
reference σ -field �, which is a little different from standard usage.

Theorem 1. When we take K = cn2/3 (the best possible order of TSRV), under the setup as-
sumptions in Section 2.1, suppose (9) and (10) are satisfied, as n → ∞,

n1/6( ̂〈X,X〉T − 〈f (X),f (X)〉T
) L→

(
8

T c2

∫ T

0
g(Xt )

2 dt + cξ2T

)1/2

N(0,1)

stably, where

ξ2 = 4
3

∫ T

0
(f ′(Xt )σt )

4 dt. (11)

It is clear from this result what changes and what does not change for this more general con-
tamination, compared to the case of independent additive error studied by Zhang et al. [27].
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• The volatility being estimated is that of f (Xt ). (In Zhang et al. [27], f (x) = x.)
• The rate of convergence n1/6 is the same as for independent additive error.
• The asymptotic variance changes to reflect the more complex form of contamination.

In summary, if we are happy to estimate the volatility of f (Xt ), the TSRV is exceedingly
robust. The point about asymptotic variance is an issue only if we wish to set an interval around
the observation. As can be seen from Zhang et al. [27], this is difficult even with straight additive
contamination.

2.3. Proof of Theorem 1

We need to do some preparations before proving Theorem 1.
First, note that under the assumption (10), the following statements are true:

∀θ < 4 + 2δ0 E(|εti |θ |Xti = x) is bounded on [−l, l] (12)

(we write the bound as M(θ,l)) and

Var(ε2
ti
|Xti = x) = E(ε4

ti
|Xti = x) − E2(ε2

ti
|Xti = x) is bounded on [−l, l] (13)

(say, by M(Var,l)). We shall use these notations in the proof:

M
(1)
T = 1√

n

∑
ti∈G

(
ε2
ti

− E(ε2
ti
|X)

);
M

(2)
T = 1√

n

∑
ti∈G

εti εti−1;

M
(3)
T = 1√

n

K∑
k=1

∑
ti∈G(k)

εti εti,− ,

where ti,− denotes the previous element in G(k) when ti ∈ G(k). εt−1 = 0, εti,− = 0 for ti =
minG(k).

Proposition 1. Assume that E(|An||X) is OP (1). Then An is OP (1).

Proof. We have

P(|An| > K) ≤ P
(|An|I{E(|An||X)≤K ′} > K

) + P
(
E(|An||X) > K ′)

≤ E(|An|I{E(|An||X)≤K ′})
K

+ P
(
E(|An||X) > K ′)

= E(E(|An||X)I{E(|An||X)≤K ′})
K

+ P
(
E(|An||X) > K ′)
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≤ K ′

K
+ P

(
E(|An||X) > K ′)

for all K,K ′. Hence the result follows. �

Lemma 1. We have

[Y,Y ](all)
T = [ε, ε](all)

T + OP (1), (14)

[Y,Y ](avg)

T = [ε, ε](avg)

T + [f (X),f (X)](avg)

T + OP

(
1√
K

)
. (15)

Proof. Define τl = inf{t : |Xt | ≥ l}, ∀l. Note that τl has the property that

P(τl ≤ T ) → 0 as l → ∞. (16)

Also define �f (Xti )) = f (Xti+1) − f (Xti ) for i = 0,1, . . . , n − 1.
By (12), g(Xt ) = E(ε2

t |Xt), t ≤ T is bounded by M(2,l) on {τl > T }; that is,

E
(([f (X), ε](all)

T

)2
I{τl>T }|X

)
= I{τl>T }

n−1∑
i=1

(
�f (Xti−1) − �f (Xti )

)2
E(ε2

ti
|X) + �f (Xtn−1)

2E(ε2
tn
|X)

+ �f (Xt0)
2E(ε2

t0
|X)

≤ I{τl>T }M(2,l)

[
n−1∑
i=1

(
�f (Xti−1) − �f (Xti )

)2 + �f (Xtn−1)
2 + �f (Xt0)

2

]

= 2I{τl>T }M(2,l)

(
[f (X),f (X)](all)

T −
n−1∑
i=1

�f (Xti−1)�f (Xti )

)

≤ 4I{τl>T }M(2,l)[f (X),f (X)](all)
T

= OP (1),

where we have used the Cauchy–Schwarz inequality. Hence, by Proposition 1 and (16),

[f (X), ε](all)
T = OP (1). (17)

Parallel argument shows that E(([f (X), ε](avg)

T )2I{τl>T }|X) = Op( 1
K

). Hence,

[f (X), ε](avg)

T = OP

(
1√
K

)
. (18)

Equalities (17) and (18) imply (14) and (15) because

[Y,Y ](all)
T = [ε, ε](all)

T + [f (X),f (X)](all)
T + 2[f (X), ε](all)

T
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and

[Y,Y ](avg)

T = [f (X),f (X)](avg)

T + [ε, ε](avg)

T + 2[f (X), ε](avg)

T . �

Lemma 2. M
(2)
T and M

(3)
T are asymptotically independently normal conditionally on X, both

with variance 1
T

∫ T

0 g(Xt )
2 dt .

Proof. We use 〈·, ·〉T to denote the discrete-time predictable quadratic variations and covaria-
tions (see Hall and Heyde [13], page 51) in this proof. Note that they are different from the
continuous time quadratic variations in Definition 2. �

M
(2)
T and M

(3)
T are the end-points of martingales with respect to filtration Fi = σ(εtj ,

j ≤ i,Xt , all t):

〈
M(2),M(2)

〉
T

= 1

n

∑
ti∈G

Var(εti εti−1 |Fi−1)

= 1

n

∑
ti∈G

ε2
ti−1

g(Xti )

= 1

n

∑
ti∈G

(
ε2
ti−1

− g(Xti−1)
)
g(Xti ) + 1

T

∑
ti∈G

g(Xti−1)g(Xti )�t. (19)

Note that

E

((
1

n

∑
ti∈G

(
ε2
ti−1

− g(Xti−1)
)
g(Xti )I{τl>T }

)2∣∣∣X
)

= Var

(
1

n

∑
ti∈G

(
ε2
ti−1

− g(Xti−1)
)
g(Xti )I{τl>T }|X

)

= 1

n2

∑
ti∈G

Var(ε2
ti−1

|X)g2(Xti )I{τl>T }

≤ 1

n2

∑
ti∈G

M(Var,l)M(2,l)

= OP

(
1

n

)
;
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hence, by Proposition 1 and (16), the first term of (19) 1
n

∑
ti∈G(ε2

ti−1
− g(Xti−1))g(Xti ) →P 0.

Therefore, by (9),

〈
M(2),M(2)

〉
T

= 1

T

∑
ti∈G

g(Xti−1)g(Xti )�t + op(1) →P

1

T

∫ T

0
g(Xt )

2 dt.

Parallel argument shows that

〈
M(3),M(3)

〉
T

= 1

n

K∑
k=1

∑
ti∈G(k)

Var(εti εti,−|Fi−1) →P

1

T

∫ T

0
g(Xt )

2 dt.

On the other hand,

〈
M(2),M(3)

〉
T

= 1

n

K∑
k=1

∑
ti∈G(k)

Cov(εti εti−1 , εti εti,−|Fi−1) = 1

n

K∑
k=1

∑
ti∈G(k)

εti−1εti,−E(ε2
ti
|X).

As a consequence,

E
((〈

M(2),M(3)
〉
T

)2
I{τl>T }|X

) = 1

n2

K∑
k=1

∑
ti∈G(k)

E2(ε2
ti
|X)E

(
ε2
ti−1

ε2
ti,−I{τl>T }|X

)

≤ 1

n2

K∑
k=1

∑
ti∈G(k)

E2(ε2
ti
|X)

√
E
(
ε4
ti−1

I{τl>T }|X
)
E
(
ε4
ti,−I{τl>T }|X

)

≤ 1

n
M2

(2,l)M(4,l)

= OP

(
1

n

)
.

By Proposition 1 and (16), 〈M(2),M(3)〉T →P 0.
By assumption (10) and Proposition 1, we can easily see that the conditional Lyapunov condi-

tions are satisfied. Also note that the limiting predictable quadratic variation 1
T

∫ T

0 g(Xt )
2 dt and

the limiting predictable quadratic covariation (which is zero) are measurable in (the completions
of) all the σ -fields Fi , so we can make use of the Remarks immediately following Corollary 3.1
(the martingale central limit theorem) in Hall and Heyde [13] to obtain the conclusion.

Proof of Theorem 1. Denote

R1 = (
ε2
t0

− E(ε2
t0
|X)

) + (
ε2
tn

− E(ε2
tn
|X)

)
and

R2 =
K∑

k=1

[(
ε2

minG(k) − E
(
ε2

minG(k) |X
)) + (

ε2
maxG(k) − E

(
ε2

maxG(k) |X
))]

.
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By (13), E(R2
1I{τl>T }|X) = Op(1); hence, R1 = Op(1) by Proposition 1 and (16). Similarly,

E(R2
2Iτl>T |X) = Op(K); hence, R2 = Op(K1/2). As a consequence,

[ε, ε](all)
T = 2

∑
ti∈G

(
ε2
ti

− E(ε2
ti
|X)

) − 2
∑
ti>0

εti εti−1 + 2
∑
ti∈G

E(ε2
ti
|X) − R1

= 2
√

n
(
M(1) − M(2)

) + 2
∑
ti∈G

E(ε2
ti
|X) + OP (1)

and

K[ε, ε](avg)

T = 2
√

n
(
M(1) − M(3)

) − R2 + 2
K∑

k=1

∑
ti∈G(k)

E(ε2
ti
|X)

= 2
√

n
(
M(1) − M(3)

) + OP (K1/2) + 2
K∑

k=1

∑
ti∈G(k)

E(ε2
ti
|X).

Therefore, conditionally on the X process,

K√
n

(
[ε, ε](avg)

T − n̄

n
[ε, ε](all)

T

)
≈ 1√

n

(
K[ε, ε](avg)

T − [ε, ε](all)
T

)

= (
2
(
M(2) − M(3)

)) + OP

(√
K

n

)

L→ N

(
0,

8

T

∫ T

0
g(Xt )

2 dt

)
. (20)

Observe that

̂〈X,X〉T = [Y,Y ](avg)

T − n̄

n
[Y,Y ](all)

T

= [f (X),f (X)](avg)

T + [ε, ε](avg)

T + Op

(
1√
K

)

− n̄

n
[ε, ε](all)

T − Op

(
n̄

n

)
(by Lemma 1)

= [f (X),f (X)](avg)

T + [ε, ε](avg)

T − n̄

n
[ε, ε](all)

T + Op

(
1√
K

)

and note that K√
n

∼ K√
Kn̄

∼
√

K
n̄

by (20), conditionally on the X process

√
K

n̄

(
̂〈X,X〉T − [f (X),f (X)](avg)

T

) L→N

(
0,

8

T

∫ T

0
g(Xt )

2 dt

)
. (21)



610 Y. Li and P.A. Mykland

On the other hand, f (Xt ) is a semimartingale, df (Xt ) = (f ′(Xt )µt + 1
2f ′′(Xt )σ

2
t )dt +

f ′(Xt )σt dBt . By Zhang et al. [27],√
n

K

([f (X),f (X)](avg)

T − 〈f (X),f (X)〉T
) L→ ξ

√
T · Zdiscrete, (22)

where ξ is defined as in (11) and Zdiscrete ∼ N(0,1) is independent of the process X. The con-
vergence in law is stable.

Combining (21) and (22), we have

̂〈X,X〉T − 〈f (X),f (X)〉T = (
̂〈X,X〉T − [f (X),f (X)](avg)

T

)
+ ([f (X),f (X)](avg)

T − 〈f (X),f (X)〉T
)

= Op

(
n̄1/2

K1/2

)
+ Op(n̄−1/2).

The error is minimized when K = O(n2/3). If we take K = cn2/3, we have [by exploiting the
conditional convergence in (21)]

n1/6( ̂〈X,X〉T − 〈f (X),f (X)〉T
) →L

(
8

T c2

∫ T

0
g(Xt )

2 dt + cξ2T

)1/2

N(0,1) stably. �

3. A case study

3.1. Another form of contamination

Two types of errors—additive errors and rounding errors—have been proposed as candidates of
market microstructure errors. Results of when one of them plays the role are available. Now, we
consider the case when both types of errors are present.

Suppose at the transaction times, the latent return process Xti is contaminated by an inde-
pendent additive error process ηti and then rounded to reflect that prices are quotes on a grid
(typically in multiples of one cent). We thus envision a two stage procedure where a latent effi-
cient price S̃ = exp(X) is first subjected to multiplicative random error: Ŝ = S̃ exp(η). The actual
price S is then the rounded value of Ŝ. If we take, as usual, Y = logS, our final product is the
observed process Yti of logarithms of rounded contaminated prices

Yti = log
((

exp(Xti + ηti )
)(α))

,

where s(α) = α[s/α] is the value of s rounded to the nearest multiple of α. The model is some-
what similar to that used by Large [21]. It can be illustrated as in Figure 1.

For practical purposes, we further assume that the smallest observation of the security price
is α, which makes observations of the log prices have the form

Yti = logα ∨ log
((

exp(Xti + ηti )
)(α))

. (23)
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Figure 1. Two stage contamination: random error followed by rounding.

We consider the case when the random errors are independent identically distributed normal
random variables, with mean 0 and positive variance; that is,

ηti ∼i.i.d. N(0, γ 2), γ > 0. (24)

In this case,

f (x) = E(Yti |Xti = x)

=
∫ ∞

−∞
1√

2πγ

(
logα ∨ log

(
(ez)(α)

))
e−(z−x)2/(2γ 2) dz (25)

is a twice continuously differentiable function with positive first derivative, and the assumptions
(9) and (10) hold. Therefore, by Theorem 1, the TSRV is a robust estimator of 〈f (X),f (X)〉T .

In this study we assume that α is a fixed quantity that is independent of the number of obser-
vations. Note that in the case where α → 0, we can expect relatively well posed behavior in view
of Kolassa and McCullagh [20] and Delattre and Jacod [9].

3.2. Robustness works: When γ is big

Assume that the latent price process S̃ = exp(Xt ) has a small probability of going below α for
t ∈ [0, T ]. Then, under model (23) and assumption (24), we have

f (Xt ) ≈ Xt and f ′(Xt ) ≈ 1 for t ∈ [0, T ], for suitably big γ s.

By ‘suitably big γ s,’ we mean that the size of the random error is large enough that the possibility
that it pulls the observations of the prices up or down several grid points (multiples of α) is not
negligible. In this case, when taking the conditional expectation, the positive and negative errors
cancel out, and this leads to the result that f (Xt ) ≈ Xt .

In this case, 〈f (X),f (X)〉T ≈ 〈X,X〉T . Therefore, the TSRV, which is a robust estimator of
〈f (X),f (X)〉T , is a good estimator of 〈X,X〉T as well.
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These relationships are illustrated in Section 3.4.

3.3. How things can go wrong: When γ → 0

When γ is small but not 0, by Theorem 1, we know that the TSRV goes to the limit
〈f (X),f (X)〉T robustly. However, this volatility 〈f (X),f (X)〉T is no longer close to 〈X,X〉T .

To study the limiting behavior of 〈f (X),f (X)〉T , we relate it to the local time La
T of the

semimartingale X (for a definition of the local time, see Revuz and Yor [24], page 222). By
Corollary 1.6 of Revuz and Yor ([24], page 224), for any positive Borel function �, almost
surely, ∫ t

0
�(Xs)d〈X,X〉s =

∫ ∞

−∞
�(a)La

t da. (26)

By Exercise (1.32) of Revuz and Yor ([24], page 237), for the process X given by (1), the fam-
ily La may be chosen such that

La
t is continuous in a almost surely. (27)

We shall consider only the version of the local time La
t that satisfies the condition (27).

Relating 〈f (X),f (X)〉T to La
T by (26), we obtain the following result:

Theorem 2. As γ → 0, for the process X given by (1) and f defined as in (25), almost surely,

γ 〈f (X),f (X)〉T → 1

2
√

π

∞∑
k=1

L
log((k+1/2)α)

T

(
log

k + 1

k

)2

,

where La
t is the local time of the continuous semimartingale X.

In other words, the ‘target’ 〈f (X),f (X)〉T that we are estimating blows up as γ goes to zero
and is of order 1/γ . This fact raises questions of whether 〈f (X),f (X)〉T is, in this case, the
quantity that we are really seeking.

3.4. Illustration

We take a typical sample path to illustrate the situation: suppose the latent log price process
Xt follows (1) with µt = 0 and σt = 0.2,∀t ∈ [0,∞) (these are the annualized parameters).
Suppose at observation time ti , the price exp(Xti ) first is contaminated by an independent multi-
plicative random error exp(ηti ) with ηti independent identically distributed as N(0, γ 2) and then
is rounded to the nearest multiple of α = 0.01 (one cent). The quantity of interest is the volatil-
ity of the process over time t ∈ [0, T ] with T = 1/252 (i.e., one day). We assume that a day
consists of 6.5 hours of open trading and that the price process is observed once every second
(n = 23 400).
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Figure 2. Relationship between f (X) and X on one (random) sample path.

A sample path of the latent log price process Xt, t ∈ [0, T ], is plotted in Figure 2, together
with its corresponding pure rounded process (the solid line) and two f (Xt ) processes [see (25)]
with γ = 0.001 (asterisks) and γ = 0.005 (open circles), respectively.

Figure 3 records the TSRV of this particular sample path Xt, t ∈ [0, T ], in Figure 2, with
random contaminations of different sizes (with standard error γ ranges from 0.0002 to 0.006).
The solid line is the volatility 〈X,X〉T .

We see from Figure 2 that for this process, when γ is as large as 0.005, the f (X) is close
to X, while when γ is smaller, the process f (X) diverges from X; in fact, it goes closer to the
(discontinuous) pure rounded process. Figure 3 shows that when γ is suitably large, the TSRV
can be a good estimator of 〈X,X〉T , but when γ is too small, the estimator does not estimate
〈X,X〉T , but rather a much larger quantity. Note that although it is similarly shaped, this graph
is not a signature plot in the sense of Andersen et al. [2], because the horizontal axis represents
γ rather than sample size. There is, however, a connection between these two types of plots, as
shown in equation (29) below.
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Figure 3. TSRV vs size of the random contamination, based on one (random) latent log price process
(〈X,X〉T = (0.2)2/252 ≈ 1.59 · 10−4). For more details of the simulation, please refer to Section 3.4.

3.5. How error and sample size relate to each other—comparison to the
case when γ = 0

When γ = 0, the additive error is gone, only the rounding error is present. In this case, the
observations are themselves the conditional expectations and f (x) is no longer continuous:

Yti = f (Xti ) = E(Yti |Xti ) = logα ∨ log
(
(exp(Xti ))

(α)
)
. (28)

Recall the notation from Section 2.1 about the TSRV ̂〈X,X〉T . In particular, K is the number
of subgrids and n̄ = 1

K
(n−K +1) is the average number of elements in the subgrids. Also recall

assumption (7), which is equivalent to ‘n̄ → ∞ and n̄/n → 0 as n → ∞.’ A modification of the
Jacod [17] proof gives the following result:
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Theorem 3. When γ = 0, if X = σW where σ > 0 and W is a standard Brownian motion, we
have

plim
n→∞

1√
n̄

̂〈X,X〉T = 1

σ
√

T

√
2

π

∞∑
k=1

L
log((k+1/2)α)

T

(
log

k + 1

k

)2

,

where La
t is as in Theorem 2.

We can see from Theorems 2 and 3 that to first order,

TSRV under pure rounding and no contamination

=
√

8n̄γ 2

σ 2T
× TSRV under rounding after contamination of size γ. (29)

Thus, in a sense, contamination plays a role slightly similar to sample size when there is no
contamination:

γ −2 under random contamination ≈ n̄
8

σ 2T
under no random contamination. (30)

In both cases, the sizes of of γ −2 and n̄ have similar functions in quantifying the ill-posedness of
the respective estimation problems. The deeper meaning of this remains, for the moment, a little
mysterious, even to us.

3.6. Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2. We have, by (26), for µ(da) = µγ (da) = (f ′(a))2 da, almost surely,

〈f (X),f (X)〉T =
∫ T

0
(f ′(Xt ))

2 d〈X,X〉t =
∫ ∞

−∞
La

T µ(da).

Recall that f (x) = ∫ ∞
−∞

1√
2πγ

(logα ∨ log((ez)(α)))e−((z−x)2/(2γ 2)) dz; hence,

f ′(x) =
∫ ∞

−∞
1√

2πγ

(
logα ∨ log

(
(ez)(α)

))z − x

γ 2
e−((z−x)2/(2γ 2)) dz

=
∫ ∞

−∞
1

γ
logα ∨ log

(
exp(x + γ v)(α)

) v√
2π

e−v2/2 dv.

For k = 1,2,3, . . . , we have, ∀y ∈ R,

γf ′
(

log

((
k + 1

2

)
α

)
+ yγ

)

=
∫ ∞

−∞
logα ∨ log

(
exp

(
log

((
k + 1

2

)
α

)
+ yγ + vγ

)(α))
v√
2π

e−v2/2 dv
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= EV

(
logα ∨ log

(((
k + 1

2

)
α · eγ (y+V )

)(α))
· V

)
, V ∼ N(0,1).

By the dominated convergence theorem,

lim
γ→0

γf ′
(

log

((
k + 1

2

)
α

)
+ yγ

)

= EV

(
log

(
(k + 1)α

) · V I{y+V >0}
) + EV

(
log(kα) · V I{y+V <0}

)
= log

(
(k + 1)α

) 1√
2π

∫ ∞

−y

ze−z2/2 dz + log(kα)
1√
2π

∫ −y

−∞
ze−z2/2 dz

= 1√
2π

e−y2/2 log

(
k + 1

k

)
. (31)

For k = 1,2,3, . . . , denote xk = log((k + 1
2 )α). For any δ0 ∈ (0, log (k + 1

2 )/(k − 1
2 )) and

δ1 ∈ (0, log (k + 3
2 )/(k + 1

2 )),

γµ[xk − δ0, xk + δ1] =
∫ xk+δ1

xk−δ0

γ (f ′(x))2 dx

=
∫ ∞

−∞
(
γf ′(xk + yγ )

)2
I{y∈[−δ0/γ,δ1/γ ]} dy.

By the dominated convergence theorem,

lim
γ→0

γµ[xk − δ0, xk + δ1] =
∫ ∞

−∞
lim
γ→0

(
γf ′(xk + yγ )

)2
I{y∈[−δ0/γ,δ1/γ ]} dy

=
∫ ∞

−∞

(
1√
2π

log
k + 1

k

)2

e−y2
dy

= 1

2
√

π

(
log

k + 1

k

)2

. (32)

As a consequence, for any δ′
0, δ

′
1 ∈ (0, 1

2 log (k + 3
2 )/(k + 1

2 )),

lim
γ→0

γµ[xk + δ′
0, xk+1 − δ′

1] = 0. (33)

A simpler argument shows that for any a < x1 and δ ∈ (0, x1 − a),

lim
γ→0

γµ[a, x1 − δ] = 0. (34)

Define ν to be the finite measure on R that has point mass 1
2
√

π
(log k+1

k
)2 on xk , k =

1,2,3, . . . . For any continuous function φ that vanishes outside a compact set, suppose that
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the support of φ is in [−C,C] and that |φ| is bounded by M . Denote kC = � eC

α
− 1

2�, the largest
integer k such that log((k + 1

2 )α) ≤ C. For small δ > 0,∣∣∣∣∣
∫ ∞

−∞
φ(a)γµ(da) −

∞∑
k=1

φ(xk)ν(xk)

∣∣∣∣∣
≤

∣∣∣∣∣
kC∑
k=1

∫ xk+1−δ

xk+δ

φ(a)γµ(da) +
∫ x1−δ

−C

φ(a)γµ(da)

∣∣∣∣∣
+

∣∣∣∣∣
kC∑
k=1

∫ xk+δ

xk−δ

φ(a)γµ(da) −
kC∑
k=1

φ(xk)ν(xk)

∣∣∣∣∣
≤ M

kC∑
k=1

(
γµ[xk + δ, xk+1 − δ] + γµ[−C,x1 − δ])

+
∣∣∣∣∣

kC∑
k=1

∫ xk+δ

xk−δ

φ(a)γµ(da) −
kC∑
k=1

∫ xk+δ

xk−δ

φ(xk)γµ(da)

∣∣∣∣∣
+

∣∣∣∣∣
kC∑
k=1

∫ xk+δ

xk−δ

φ(xk)γµ(da) −
kC∑
k=1

φ(xk)ν(xk)

∣∣∣∣∣.
As γ → 0, the first term above goes to zero by (33) and (34); the second term can be arbitrarily
small by letting δ be small; the third term goes to zero by (32). Hence,

lim
γ→0

∫ ∞

−∞
φ(a)γµ(da) = 1

2
√

π

∞∑
k=1

φ

(
log

((
k + 1

2

)
α

))(
log

k + 1

k

)2

.

In particular, for any ω ∈ � such that La
t is continuous in a, La

t is a continuous function of a

that has compact support. Therefore, by (27), almost surely,

lim
γ→0

γ 〈f (X),f (X)〉T = lim
γ→0

γ

∫ ∞

−∞
La

T µ(da) = 1

2
√

π

∞∑
k=1

L
log((k+1/2)α)

T

(
log

k + 1

k

)2

.
�

Proof of Theorem 3. We borrow the notations from Jacod [17]: For ti = iT
n

, i = 0,1, . . . , n,

ξn
i := Xti − Xti−1; χn

i := (
f (Xti ) − f (Xti−1)

)2
, where f (x) is defined in (28),

Rk
n := {

(x, y) :f (x) = log(kα), f (y) = log
(
(k + 1)α

)
or

f (x) = log
(
(k + 1)α

)
, f (y) = log(kα)

}
,

Rn :=
∞⋃

k=1

Rk
n, Sn := R2 \ Rn, T (a) := {(x, y) :x < a ≤ y or y < a ≤ x},
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Tn :=
∞⋃

k=1

T
(
log

(
(k + 1/2)α

))
, Ŵn := 1√

n

n∑
i=1

IRn(Xti−1,Xti ),

Wn :=
n∑

i=1

1√
n
χn

i ISn(Xti−1,Xti ).

If (x, y) ∈ Sn, then either f (x) = f (y), or

| exp(f (x)) − exp(f (y))| > α. (35)

In the case of (35), without lost of generality, we can assume exp(x) > exp(y) ≥ α. Then

|f (x) − f (y)| = log
(exp(x))(α)

(exp(y))(α)
≤ log

exp(x) + α/2

exp(y) − α/2

≤ log
exp(x) + exp(x)/2

exp(y) − exp(y)/2
= log 3 + |x − y|. (36)

If, in addition, we have that both exp(x) and exp(y) are bounded by M > 0, then there exists θ ,
(x ∧y) ≤ θ ≤ (x ∨y) such that α ≤ | exp(x)−exp(y)| = exp(θ)|x −y| ≤ M|x −y|. This implies
that |x − y| ≥ α

M
; hence, log 3 ≤ M log 3

α
|x − y|. By (36),

|f (x) − f (y)| ≤
(

M log 3

α
+ 1

)
|x − y|. (37)

It is easy to see that (37) holds for all (x, y) ∈ Sn such that exp(x) and exp(y) are bounded by M .
Therefore,

E
(
WnI{τlogM>T }

) =
n∑

i=1

1√
n
E

(
χn

i ISn(Xti−1,Xti )I{τlogM>T }
)

≤
n∑

i=1

1√
n

(
M log 3

α
+ 1

)2
σ 2T

n
,

which implies (also by making use of (16))

Wn →P 0 as n → ∞. (38)

On the other hand, for i = 1,2, . . . , n,

E
(
I{| exp(Xti

)−exp(Xti−1 )|≥α}
) ≤ E

(
exp(X(iT )/n) − exp

(
X((i−1)T )/n

))2
/α2

= (
E exp(2σWiT /n) + E exp

(
2σW((i−1)T )/n

)
− 2E exp

(
2σW((i−1)T )/n

)
E exp(σWT/n)

)
/α2
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= 1

α2
exp

(
2σ 2(i − 1)T

n

)(
exp

(
2σ 2T

n

)
+ 1 − 2 exp

(
σ 2T

2n

))

≤ 1

α2
exp(2σ 2T )

∞∑
k=1

(2σ 2T )k − 2(σ 2T/2)k

(k!nk)

≤ 1

n

(
exp(2σ 2T )(exp(2σ 2T ) − exp(σ 2T/2))

α2

)
,

which implies

1√
n

n∑
i=1

I{| exp(Xti
)−exp(Xti−1 )|≥α} →P 0 as n → ∞. (39)

Note also that if (Xti−1 ,Xti ) ∈ Rk
n, then χn

i = (log k+1
k

)2. We have, for kl = � el

α
− 1

2� (the
greatest integer k such that log((k + 1

2 )α) ≤ l),

1√
n
[Y,Y ](all)I{τl>T } =

(
Ŵn

∞∑
k=1

IRk
n
(Xti−1,Xti )χ

n
i + Wn

)
I{τl>T }

=
(

kl∑
k=1

(ŴnIRk
n
(Xti−1 ,Xti )) ·

(
log

k + 1

k

)2

+ Wn

)
I{τl>T }. (40)

We have Rn ⊂ Tn and | exp(x) − exp(y)| ≥ α when (x, y) ∈ Tn \ Rn. By (38), (39) and (40),
we see that, for Ŵ ′

n = 1√
n

∑n
i=1 ITn(Xti−1,Xti ),

plim
n→∞

1√
n
[Y,Y ](all)I{τl>T }

= plim
n→∞

kl∑
k=1

Ŵ ′
nIT (log((k+1/2)α))(Xti−1,Xti )

(
log

k + 1

k

)2

I{τl>T }

= plim
n→∞

kl∑
k=1

1√
n

n∑
i=1

IT (log((k+1/2)α))(Xti−1,Xti )

(
log

k + 1

k

)2

I{τl>T }

=
kl∑

k=1

[(
log

k + 1

k

)2

plim
n→∞

1√
n

n∑
i=1

IT (log((k+1/2)α))(Xti−1 ,Xti )

]
I{τl>T },

and for k = 1,2,3, . . . , by Azaïs [4] and Jacod [17],

1√
n

n∑
i=1

IT (log((k+1/2)α))(Xti−1,Xti )
L

2→ 1

σ
√

T

√
2

π
L

log((k+1/2)α)

T .
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Note that l can be chosen to be arbitrarily large in the above argument. Therefore, by (16), we
have

plim
n→∞

1√
n
[Y,Y ](all) = 1

σ
√

T

√
2

π

∞∑
k=1

L
log((k+1/2)α)

T

(
log

k + 1

k

)2

(41)

and

plim
n̄→∞

1√
n̄
[Y,Y ](avg) = 1

σ
√

T

√
2

π
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k=1

L
log((k+1/2)α)

T

(
log

k + 1

k

)2

.

Applying these results to the TSRV (6), noting that (41) implies
√

n̄
n

[Y,Y ](all) →P 0 by as-
sumption (7), yields

1√
n̄
〈̂X,X〉T = 1√

n̄

(
[Y,Y ](avg)

T − n̄

n
[Y,Y ](all)

T

)

P→ 1

σ
√

T

√
2

π

∞∑
k=1

L
log((k+1/2)α)

T

(
log

k + 1

k

)2

.
�

4. Conclusion

We have shown in this paper that the robustness of the two scales realized volatility (TSRV)
depends crucially on the deterministic part of the distortion through the function f defined in (4).
On the other hand, in terms of consistency and order of convergence, the TSRV is always robust
to the random part of the error (Y − f (X)). In Section 3, we have studied a particular model of
contamination, involving random error followed by rounding, and we have seen that, in this case,
depending on parameters, the non-random distortion can be benign or problematic.

A lesson from our study is that there are really two candidates for the term ‘volatility,’ namely
〈X,X〉T and 〈f (X),f (X)〉T , and that in some cases they can diverge substantially. Further in-
vestigation of what quantity one wishes to estimate necessitates more research into the use of
realized volatility estimates in such applications as portfolio management, options trading and
forecasting.
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