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Are water-xylitol mixtures heterogeneous? An investigation
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Abstract. Aqueous xylitol solutions at six different concentrations were studied employing dielectric relaxation
(DR) and time-resolved fluorescence (TRF) measurements in the temperature range 295–323 K. The focus was
to explore the solution heterogeneity aspect via monitoring the viscosity coupling of the average relaxation
rates at various temperatures. TRF measurements were done using both hydrophobic and hydrophilic probes
to explore the preferences, if any, for solute locations in these binary mixtures. Energy-selective population
excitations and the corresponding fluorescence emissions did not suggest any significant spatial heterogeneity
in solution structure within the lifetimes of these probes. DR measurements and TRF experiments indicated mild
deviations from the hydrodynamic viscosity dependence of the measured relaxation rates. All these suggest mild
spatiotemporal heterogeneity for these water-xylitol mixtures in the temperature range considered. In addition,
DR timescales appear to originate from reorientational and H-bond relaxation dynamics, excluding the possibility
of full molecular rotations.
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1. Introduction

Biologically important molecules, especially the build-
ing blocks of cell walls, nucleic acids, exoskeletons
and also the regulators of the human body’s functions,
constitute an important area of research. A thorough
understanding of microscopic interaction and dynamics
in the aqueous phase is necessary for a smarter applica-
tion of biologically relevant molecules, such as amino
acids, saccharides, polyols, etc. Xylitol is a polyhydroxy
alcohol which contains five hydroxyl groups attached
to five separate carbon atoms and is represented by the
chemical formula, C H2 O H(C H O H)3C H2 O H . Xyli-
tol is considered as natural sugar because it is found in
many vegetables, fruits, and also produced in the human
metabolism process.1 Pure xylitol is sweet as sugar and
is believed to reduce dental plaque, caries, and assists
in remineralization of teeth.2–4 Lower glycemic-index
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value (GI∼7) of xylitol makes it a potential alternative
to commonly used sugar (glucose GI∼100) for diabetic
patients.5,6 Xylitol, like many other polyols, is widely
used as a food additive due to non-carcinogenicity, low
energy content, and other relevant features.5,7,8

Structure and dynamics of pure water undergo con-
siderable changes in the presence of external solutes and
co-solvents (such as sugar, alcohol, etc.).9–13 Identifica-
tion of the origins for such changes in solute-solvent
mixtures is an important aspect. Water-sugar and/or
water-polyol mixtures are critically relevant to processes
that sustain life and assume importance in food sci-
ences and cryopreservation technology. In water-sugar
or water-polyol mixtures, the presence of hydrophilic
and hydrophobic interactions add to the complexity in
the structural and dynamical properties of the solution
via resolving the interparticle interactions in a new way
and modifying the motional features of the mixture
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components. Aqueous solutions of sugar or polyol are
known to stabilize proteins and other biological sub-
stances.14–16 The stabilization of proteins may occur
via either changing their internal structural character-
istics or altering the external medium properties that are
in contact with them. It is believed that stabilization
(by external stimuli) of protein occurs through pro-
cesses such as preferential solvation, alteration of water
structure, etc.17–19 Sometimes it may be assisted by the
solution-phase spatiotemporal heterogeneity.20 Thus, a
thorough knowledge of the structure and dynamics of
aqueous solutions containing sugar or other polyols is
critical for understanding the activity of biologically
relevant molecules in aqueous environments, and their
preservation at cryogenic temperatures.

Relaxation in glass-forming liquids (such as sugar,
polyols) has been studied by using various techniques
(such as dielectric relaxation, light scattering, etc.).21–24

Notably, these studies explore the impact of water
on glass transition temperature as well as relaxation
behavior. Interestingly, in many glass-forming liquids
an ultraslow dynamics was detected in dielectric relax-
ation (DR),25–28 and dynamic light scattering (DLS)29,30

measurements. This ultraslow process is different from
the viscosity related structural (α) relaxation and was
explained by long-range density fluctuations or hydro-
gen bonded cluster diffusion. A low-frequency Debye
peak in the imaginary part of the permittivity is a char-
acteristic representation of an ultraslow process. This
Debye peak has been observed in alcohols and their
mixtures which represents slower dynamics than the
viscosity-related (α) relaxation.25,26 It is to be noted that,
low frequency Debye peak has been observed in xylitol
and supports the presence of ultraslow process other than
viscosity related structural (α) relaxation.31 Although
ultraslow relaxation processes in water-xylitol mix-
tures were detected in dynamic light scattering (DLS)
measurements, small-angle neutron scattering (SANS)
experiments did not find any significant excess scatter-
ing or any structural inhomogeneity in the medium.32

These SANS results, therefore, raise a debate regarding
the interpretation of ultra-slow relaxation detected in
DLS measurements in terms of cluster formation. Most
of these studies either focused on slow dynamics of xyl-
itol21,27,31 or relaxations of water-xylitol mixtures22,33

at lower temperatures. Though, there exist a few spo-
radic studies24,32 at higher temperatures (> 298 K), a
thorough and uniform study of dynamics and interac-
tion in water-xylitol mixtures addressing the solution
heterogeneity aspect at temperatures higher than room
temperature is still lacking.

We address the solution heterogeneity aspect in this
paper via steady-state and time-resolved fluorescence

measurements, and DR experiments in the temperature
range, 295–323 K. Temperatures beyond 323 K have
not been considered because (i) we wanted to explore
the solution characteristics at a temperature range not
too away from the physiological temperature (∼310 K)
given the fact that xylitol is produced during metabolism,
(ii) the DR dynamics becomes faster at higher tem-
perature, particularly those at lower xylitol concentra-
tions, which eventually become undetectable in our
frequency window, and (iii) the heterogeneity signa-
ture becomes weaker upon increasing temperature. We
presume that extensive interaction of water molecules
with xylitol may lead to orientational relaxation slower
than bulk neat water, and this may be detected in
the present DRS measurements. In addition, explo-
ration of the viscosity coupling to solute and solvent-
centred dynamics would lead to qualitative information
regarding micro-heterogeneous nature of these solu-
tions. In this work, measurements have been carried
out for water-xylitol mixtures in various concentrations
(2.31 mol% to 9.62 mol%) of xylitol. DRS technique
has already been used to understand the dynamics
of pure solvents,34–37 water-alcohol mixtures,13,38 deep
eutectic solvents (DESs)39,40 and other media. TRF
measurements of non-reactive solution dynamics and
DR is intimately related, and a combination of them
has been employed to explore dynamics and interac-
tion in many different systems.11,41–44 For fluorescence
measurements, we have used non-reactive hydrophilic
coumarin 343 (C343) and hydrophobic coumarin 153
(C153) as external probes to profile the medium fric-
tional response on a dissolved solute. We refrained from
measuring the solvation dynamics (via dynamic Stokes
shift measurements) of these probes in these mixtures
as water response is too fast to be detected by the
present setup (Section 2). Chemical structures of xylitol,
coumarin 343 and coumarin 153 are shown in Scheme 1.

2. Experimental

2.1 Sample preparation

Laser-grade coumarin 153 (C153) and coumarin 343 (C343)
were from Sigma-Aldrich and used as received. Xylitol was
from Sisco Research Laboratories (SRL, India) and used as
received. Solutions of six different concentrations of xylitol
were prepared by dissolving the required amount of xylitol
(by weight) in millipore water at room temperature. Stock
solutions of C153 and C343 were prepared in carrier sol-
vents, such as heptane and acetone, respectively. A few μL
of these stock solutions were taken into quartz cuvettes (opti-
cal path length 1 cm), and the career solvent evaporated off.
Approximately 3 mL of sample solution (water + xylitol)
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Scheme 1. Chemical structures of xylitol, coumarin 343, and coumarin 153.

was then poured into the cuvette and, complete dissolution of
C153/C343 grains in sample solution ensured. The concen-
tration of C153 (or C343) in each of these sample solutions
were maintained at ∼10−5 M.

2.2 Viscosity and refractive index measurements

Temperature-dependent viscosity coefficient and the refrac-
tive index of water-xylitol mixtures were measured by using
AMVn automated micro-viscometer from Anton Paar (falling
ball method) and automated temperature controlled refrac-
tometer (RUDOLPH, J357), respectively.43,45,46

2.3 Steady-state and time-resolved fluorescence

measurements

Steady-state absorption and emission spectra were collected
using a UV-visible spectrophotometer (UV-2600, Shimadzu)
and a fluorimeter (Fluorolog, JobinYvon, Horiba), respec-
tively, and data analysis was carried out following the protocol
described elsewhere.44,47–49

Time-resolved fluorescence measurements were performed
using a time-correlated single photon counting (TCSPC)
(LifeSpecps, Edinburgh Instruments, U. K.) setup fitted with
a diode laser of 409 nm wavelength (details provided else-
where).50–52 The instrument response function (IRF) mea-
sured using scattering solution was found to be ∼85 ps.
Time-resolved fluorescence anisotropy (r(t)) measurements
were performed at the peak wavelength of the steady-state
emission spectrum as usual and r(t) were determined from
the well-known formula10,53–55

r(t) =
Ipara(t) − G Iper p(t)

Ipara(t) + 2G Iper p(t)
. (1)

Figure 1. Upper panel: DR spectra of water-xyli-
tol mixtures at 295 K within the frequency regime,
0.2 ≤ ν/GHz ≤ 50 at various xylitol concentrations.
Lower panel: Temperature dependence of the real (ε′) and
imaginary (ε′′) parts of the measured complex DR spectra
of water-xylitol (5.58 mol%). Solid lines through data repre-
sent simultaneous fits using multi-Debye relaxation model.
Spectra at different xylitol concentrations and different
temperatures are color-coded. Green color represents DR
response of neat water.
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Table 1. Parameters obtained from the 3-D/2-D fits of the complex dielectric response functions of water-xylitol mixtures
for all the concentrations at 295 K.

Mole % Xylitol T (K) ε0 �εa
1 % τ b

1 (ps) � ε2 % τ2 (ps) � ε3 % τ3 (ps) ε∞ nc
D ε∞ − n2

D 〈τav〉 (ps)

Water 295 80.1 – – 100 9.3 – – 4.7 1.333 2.92 9.3
2.31 295 76.4 7.6 48 67.8 13 24.6 6.6 6.1 1.358 4.26 14

298 76.1 5.7 46 51.5 15 42.8 7.9 6.6 1.358 4.76 14
303 73.7 2.7 51 25.3 17 72.6 7.6 5.9 1.359 4.05 11
308 72.5 2.6 47 21.6 16 75.5 7.2 5.7 1.359 3.85 10
313 72.3 – – 15.5 16 84.5 6.7 4.8 1.359 2.95 8
318 70.2 – – 14.1 19 85.9 6.5 4.9 1.360 3.05 8
323 68.9 – – 13.9 16 86.1 5.8 3.9 1.360 2.05 7

4.52 295 73.9 15.7 49 66.4 16 17.9 6.2 6.8 1.378 4.90 19
5.58 295 73.4 20.7 57 63.5 18 15.8 5.7 6.7 1.386 4.78 24

298 72.7 18.7 56 62.0 18 19.3 6.4 7.1 1.386 5.18 23
303 70.8 15.4 55 52.9 19 31.7 6.9 7.0 1.386 5.08 21
308 69.4 11.9 54 47.8 18 40.3 7.1 6.9 1.386 4.97 18
313 67.8 9.0 52 41.2 18 49.8 6.9 6.7 1.385 4.78 15
318 66.4 5.7 58 35.9 18 58.4 6.8 6.5 1.386 4.57 13
323 64.7 4.8 55 30.7 17 64.5 6.3 6.1 1.386 4.18 12

7.65 295 70.7 25.1 68 60.6 21 14.3 6.0 6.9 1.399 4.94 31
8.65 295 70.1 29.8 77 55.7 24 14.5 6.7 7.0 1.405 5.02 37
9.62 295 68.9 31.7 80 54.8 26 13.6 5.6 7.1 1.410 5.11 40

298 67.9 28.6 78 53.2 28 18.2 6.6 7.2 1.410 5.21 38
303 66.2 25.0 76 52.3 25 22.7 6.6 7.2 1.410 5.21 34
308 65.5 23.6 69 51.3 23 25.1 6.6 7.3 1.410 5.31 30
313 63.7 18.6 64 49.9 22 31.5 6.6 7.3 1.410 5.31 25
318 62.4 16.5 58 47.6 20 35.9 6.4 7.1 1.410 5.11 21
323 61.8 16.1 50 47.4 18 36.5 6.0 7.0 1.410 5.01 19

(a) Indicates dispersion amplitude (�εi , i = 1−3) of a given dispersion step in percentage.
(b) τi (i = 1−3) are better within ± 5% of the reported values (based on 2–3 independent measurements).
(c) Measured refractive index at 295 K.

Where Ipara(t) and Iper p(t) are parallel and perpendicular
decays, respectively. The factor accounts for the differen-
tial sensitivity to the two polarization and was obtained
(G = 1.45 ± 0.1) by the tail matching of the intensity decays
Ipara(t) and Iper p(t). Average rotational time was obtained
via time integrating the normalized r(t) decay:〈τr 〉 =
∞
∫

0
dt[r(t)/r0]. The value of initial anisotropy, r0, was used

as 0.37653 for C153 and 0.3556 for C343. In the present
anisotropy measurements, r(t) decays were found to be
single-exponential functions of time for both C153 and C343

in these aqueous solutions, and thus, 〈τr〉 =
∞
∫

0
dt[r(t)/r0] =

∞
∫

0
dt[a exp(−t/τ)] = a τ .

2.4 Dielectric relaxation spectroscopy

The frequency dependent complex relative permittivity ε∗ (ν)

is expressed as57

ε∗(ν) = ε′(ν) −

[

iε′′(ν) +
iκ

2πν εP

]

. (2)

Here, κ is the dc conductivity of the medium, εp the
permittivity of free space. ε′ and ε′′ represents the real and
imaginary components of the complex permittivity, respec-
tively. Dielectric spectra were collected using a PNA-L
Network Analyzer (N5230C) combined with a probe kit
(85070E) operating in the frequency range 0.2 ≤ GHz ≤ 50.
Around 8–10 mL solution of each mixture was used for all
the measurements. Details regarding DR measurements can
be found elsewhere.40 Experimentally obtained frequency
dependent complex relative permittivity ε∗ (ν) was then fitted
with a sum of n Havriliak-Negami (HN) equation.57

ε∗(ν) = ε∞ +

n
∑

j=1

�ε j
[

1 + (i2πντ j )
1−α j

]β j
, (3)

where 0 ≤ α j < 1 and 0 < β j ≤ 1. �ε j represents the dis-
persion magnitude at the j − th relaxation step with the time
constant, τ j . Debye (D) relaxation corresponds to α j = 0,
β j = 1 whereas α j = 0 describes the Cole-Davidson (CD)
and β j = 1 the Cole-Cole (CC) models respectively. Simul-
taneous fitting of ε′ and ε′′ by using a non-linear least squares
method produced the relaxation parameters that described
the measured spectra adequately. For accurate description,
sufficient numbers of data points were collected during
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Figure 2. (η/T ) dependence of the average DR relaxation
times (〈τDR〉) for aqueous xylitol solutions at the lowest
(upper panel) and the highest (lower panel) concentrations.
SED predictions with stick boundary condition for water and
xylitol molecules using the experimental temperature depen-
dent solution viscosity coefficients (η, see Table 2) are also
shown in these panels for comparison.

measurements within the available frequency window. Both
the ‘goodness-of-fit’ parameter (χ2) and residuals were
checked for ensuring the quality of fits. The following expres-
sion58 defines the (χ2)

χ2 =
1

2m − ℓ

m
∑

i=1

[

(

δε′
i

σ(ε′
i )

)2

+

(

δε′′
i

σ(ε′′
i )

)2
]

(4)

With m representing the number of data triples
(

ν, ε′, ε′′
)

,
ℓ the number of adjustable parameters, δεi and σ (εi ) the
residuals and standard deviations of the individual data points,
respectively.

Among all measurements presented here, some of the DR
spectra fit to 2-D (2-Debye) and rest to 3-D (3-Debye) relax-
ations. Fits were employed to obtain the best simultaneous
descriptions of both the measured ε′ (ν) and ε′′ (ν). Different
combinations of Debye, Cole-Cole and Cole-Davidson pro-
cesses were attempted but did not obtain any better description
than the fits chosen here (shown in Figure S1, Supplementary
Information).

3. Results and Discussion

3.1 Dielectric relaxation measurements:

concentration and temperature dependence

Figure 1 presents the concentration and temperature
dependent real (ε′) and imaginary (ε′′) components of
the measured complex dielectric relaxation (DR) spec-
tra of water-xylitol mixtures along with simultaneous
multi-Debye fits. Concentration-dependent measure-
ments were done at 295 K and at six different xylitol
concentrations (mol%). The highest concentration cho-
sen here is limited by the aqueous solubility of xylitol at
295 K. For comparison, we have also shown our exper-
imental DR spectra of pure water at 295 K in the same
(upper) panel. Fit parameters are summarized in Table 1.
Two aspects could be immediately realized from these
concentration-dependent spectra. The first observation
is the gradual decrease of the estimated static dielectric
constant (ε0) upon increase of xylitol concentration in
the aqueous solution. Second, the peak position in the
imaginary component (ε′′) shifts to a lower frequency
with xylitol concentration, producing longer relaxation
times at higher concentrations. The concentration-
dependent slowest DR timescale (τ1) falls in ∼50−80 ps
range, the fastest (τ3) being < 10 ps. Another timescale
(τ2) also appears at this temperature which is somewhat
slower than the fastest but covers the range ∼13−26 ps.

The decrease of ε0 with xylitol concentration is
expected because ε0 of xylitol is ∼40.59 Note DR mea-
surements with appropriate frequency coverage for neat
water have revealed two relaxation timescales (∼9 ps
and ∼1 ps) in pure water at ∼293 K.60 We also have
observed the ∼9 ps timescale in our DR measure-
ments for pure water at 295 K, although we have
missed the fast 1ps timescale, probably due to our lim-
ited frequency coverage at the high-frequency wing
(up to 50 GHz only). We may, therefore, associate
the < 10 ps DR timescale observed for xylitol solu-
tions with the DR of bulk-like water molecules. The
other two DR timescales (τ1 and τ2) are much slower
than the DR timescale of bulk pure water and thus
may have a connection to xylitol orientation dynam-
ics. The slowest timescale (τ1 ∼48−80 ps) and its
magnitude (8–32%) increases with increasing xylitol
concentration and therefore supports the connection of
xylitol molecules to the slow (compared to neat water)
DR dynamics in these aqueous mixtures. Notably, the
second slower component (τ2) dominates the total relax-
ation (∼68−55%) and also becomes longer with xylitol
concentration.

Now, what could be the likely origins for these two
slower timescales, τ1 and τ2? In water-xylitol mixtures,
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Table 2. Viscosity, refractive indices and average rotational time 〈τr 〉 of water-xylitol mixtures at different mole % of xylitol
and temperatures.

Xylitol mol% T (K) η (cP) 〈τr 〉 (ps) [C153] 〈τr 〉 (ps) [C343] Density (g/cm3)

2.31 298 1.49 143 143 1.0537
303 1.33 132 127 1.0519
308 1.19 115 119 1.0498
313 1.08 95 100 1.0475
318 0.98 87 91 1.0441
323 0.86 83 84 1.0407

4.52 298 2.29 201 195 1.0963
303 2.04 183 174 1.0941
308 1.87 160 166 1.0918
313 1.63 130 129 1.0886
318 1.44 119 115 1.0853
323 1.30 108 109 1.0813

5.58 298 2.92 222 263 1.1153
303 2.52 189 215 1.1130
308 2.26 157 180 1.1105
313 1.96 148 164 1.1078
318 1.75 138 150 1.1049
323 1.60 125 120 1.1019

7.65 298 4.35 335 350 1.1479
303 3.71 280 304 1.1453
308 3.19 222 251 1.1427
313 2.78 207 190 1.1391
318 2.44 170 168 1.1370
323 2.16 158 150 1.1339

8.65 298 5.35 354 399 1.1616
303 4.50 292 357 1.1590
308 3.87 268 298 1.1561
313 3.35 243 252 1.1529
318 2.90 180 205 1.1484
323 2.55 166 173 1.1449

9.62 298 6.54 458 445 1.1741
303 5.45 360 357 1.1718
308 4.62 280 310 1.1686
313 3.96 245 298 1.1658
318 3.44 203 256 1.1626
323 3.01 180 196 1.1580

it is quite natural to expect that the relaxation dynam-
ics would be regulated by both H-bonding fluctuation
dynamics and orientation relaxations.61 Interestingly,
the magnitudes of τ2 (∼13−26 ps) corroborate well
with the concentration-dependent peak times corre-
sponding to the peak frequencies in ε′′ displayed in the
upper panel (τpeak = 1/2πνpeak , with ν2.31mol%

peak ∼15 GHz
producing ∼12 ps, and ν9.62mol%

peak ∼5 GHz producing
∼32 ps). Stokes-Einstein-Debye (SED)53,62–64 relation
with the stick boundary condition, τr = 3ηV/kB T ,
predicts values of molecular rotation times for xyli-
tol and water at 295 K in these solutions either to be
too large or inconsistent to be favorably compared to
the observed τ1 and τ2 or to their amplitude-weighted
average, 〈τDR〉 =

∑2
i=1 ai τi. Table S1 (Supplementary

Information) provides this comparison after connecting

τr with τDR as follows, τr =
ℓ(ℓ+1)

2 × τDR, and for DR,
ℓ = 1. Molecules were treated as spheres in the SED
predictions with molecular volumes (V) for water65,66

as 10.9 Å3 and 107.3 Å3 for xylitol.67 It is there-
fore quite clear that molecular rotation times cannot
cogently explain these two relaxation times. In light of
the recent findings for acetamide containing deep eutec-
tics,61 these components may derive contributions from
H-bond fluctuation dynamics and collective single par-
ticle reorientational relaxations. Simulation studies are
therefore required to confirm this conjecture.

The temperature dependent (295 K to 323 K) DR
spectra shown in the lower panel (Figure 1) are a repre-
sentative of the DR measurements that we have carried
out for three (2.31, 5.58 and 9.62 mol%) of the six dif-
ferent xylitol concentrations considered here. Here also
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Figure 3. Absorption (left panels) and emission (right panels) spectra of C153 and C343 in water-xylitol
mixtures at different concentration (2.31, 4.52, 5.58, 7.65, 8.65, 9.62 mole %) of xylitol at 298 K. Blue
broken line represents the absorption and emission spectra of C153 and C343 in neat water.

Figure 4. Excitation wavelength (λexc.) depen-
dence of fluorescence emission peak wave-
length difference (between red and blue end,
�λ = λ

em,peak
red,exc − λ

em,peak
blue,exc) for C153 (red circles)

and C343 (blue circles) in water-xylitol mixtures
at all xylitol mol% studied. The excitation wave-
lengths are from 380 nm to 460 nm for C153, and
396 nm to 466 nm for C343 with 10 nm inter-
val, scanning wavelengths that can cover ∼60%
of the total intensity on both sides of the peak of
the respective absorption spectra.

these spectra fit to the multi-Debye model, and the fit
parameters are summarized in Table 1. With temper-
ature, the peak of ε′′ shifts toward higher frequency.
This is due to the lowering of solution viscosity with
the rise in solution temperature leading to faster relax-
ation. As the slower relaxation becomes faster upon a
rise in temperature with concomitant loss of amplitude,
distinct relaxations may merge together at higher tem-
peratures to produce total relaxations with fewer steps.
This is the reason for two-step relaxation at higher tem-
peratures for the lowest xylitol concentration studied
here. Note also that the fastest relaxation component
(τ3) remains nearly insensitive to temperature variation
whereas the other two show relatively stronger tem-
perature dependence. This may be due to the limited
frequency coverage of the present measurements which
are unable to detect temperature-induced shortening of
the fastest DR timescale.

Figure 2 shows the viscosity dependence of the aver-
age DR relaxation times (〈τDR〉) for aqueous xylitol
solutions at the lowest (upper panel) and the high-
est (lower panel) concentrations. SED predictions with
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Figure 5. Representative time-resolved fluorescence anisotropy (r(t)) decays for C153 (left panels) and
C343 (right panels) in water-xylitol mixture with 2.31 and 9.62 mol% of xylitol (upper panel) and also at
298 K and 323 K (lower panel). Lines going through data denotes single exponential fits. (Residual of r(t)
decays are shown in Figure S2, Supplementary Information).

stick boundary condition for water and xylitol molecules
using the experimental temperature dependent solu-
tion viscosity coefficients (η, see Table 2) are also
shown in these panels for comparison. Clearly, the
SED predictions for xylitol are highly over-estimated
relative to the average values from measurements at
both the concentrations, whereas the calculations for
water are strikingly close. Note these average times
are the amplitude-weighted average of the DR relax-
ation times. A fit of these data to the expression,
〈τDR〉 = A ηp, provides a value for the power (p = 1.06)
very similar to that for SED prediction (p = 1) at
2.31 mol%. However, at 9.62 mol%, p = 0.82, which is
smaller than unity. We, therefore, infer that these xylitol
solutions are not strongly heterogeneous in the temper-
ature range studied. In order to confirm this observa-
tion we have carried out both steady-state and time-
resolved fluorescence measurements using hydrophobic
(C153) and hydrophilic (C343) probes of comparable
molecular volumes,53,68 results of which are presented
later in this paper.

Figure 3 presents the UV-VIS absorption and steady-
state fluorescence emission spectra for C153 and C343
in these aqueous xylitol solutions at 298 K. For com-
parison, spectra of these solutes in neat water are also
provided in the respective panels. It is quite evident
that these spectra exhibit weak xylitol concentration
dependence. In addition, C153 spectra in these aque-
ous solutions are slightly red-shifted than those in neat
water, while the reverse (though faint) is seen for C343.
This is probably because of their inherent preferences
for solvation environments. The solution heterogene-
ity aspect is subsequently explored by monitoring the
excitation wavelength dependence of the emission peak
wavelengths for these solutes in these solutions at 298 K.
Figure 4 shows these results by showing a xylitol con-
centration dependence of the total dispersion of the
peak emission wavelength (λem,peak

exc ) at a given concen-
tration upon changing the excitation wavelength (λexc)
from blue to red across the corresponding absorption
spectrum: �λ(c) = λ

em,peak
red,exc (c) − λ

em,peak
blue,exc(c). Clearly,

these solutions are mildly heterogeneous as the total
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Figure 6. Viscosity coupling of rotation times (〈τr 〉) for
C153 and C343 in water-xylitol mixtures at various xyli-
tol concentrations are plotted. Temperature-dependent mea-
sured rotation times are shown as a function of temper-
ature reduced viscosity (η/T ) in a log-log fashion. Lines
through the data represent fits to the following expression:
Log〈τ 〉 = A + pLog [η/T ]. Broken lines represent the
hydrodynamic (SED) predictions, τ SE D

r = (V η/kB T ) f C ,
where V -volume, f -shape factor and C-solutes-solvent cou-
pling parameter. All these parameters are taken from Ref. 53
and Ref. 68 for C153 and C343, respectively.

dispersion of the peak emission wavelength (�λ) is
not significant and remains limited only within ∼4−6
nanometer for both the solutes.

Next, we follow the temperature and concentration
dependence of dynamic fluorescence anisotropy, r(t),
for these solutes in these solutions. Figure 5 depicts
the representative dependence where the collected data
for the lowest and highest concentrations at room tem-
perature (for concentration dependence), and for the
highest concentration at 298 K and 323 K (for tem-
perature dependence) are compared. Both these solutes
show dependencies on these two solution parame-
ters. As mentioned earlier, measured r(t) decays for
both the solutes fit adequately to single exponentials.
This might be due to the limited temporal resolution
employed (∼85 ps) in the present measurements.53

Fits through these data are also shown in these pan-
els, and the corresponding fit parameters summarized

in Table 2. Average solute rotation times (〈τr〉) in this
table is the relaxation time constant (τr) associated
with the underlying single-exponential decay function.
This time constant, following the temperature depen-
dence of viscosity, is becoming faster with temperature
for all these solutions. The coupling to the viscos-
ity of the solute rotation times in these solutions is
then explored in Figure 6 where the measured 〈τr〉 are
shown as a function of temperature-scaled viscosity,
η /T, in a double-logarithmic fashion for both C153
(upper panel) and C343 (lower panel). Fit of these data
to the viscosity dependence of the type, 〈τr〉 ∝ ηp,
then produces (represented by the solid line through
the data) p values (∼0.8) which are not too away from
unity. Such values for the fraction power suggest the
presence of mild temporal heterogeneity in these solu-
tions. Note also that these p values are quite close to
those obtained from DR measurements, and therefore
inferences drawn from both these different experiments
regarding solution dynamics corroborate well to each
other. Combining steady-state fluorescence results with
these relaxation measurements, one may then conclude
that these solutions are not too spatially and temporally
inhomogeneous.

If the relaxation times – be it from DR measurements
or from dynamic fluorescence anisotropy experiments
– follow closely the solution viscosity, then the activa-
tion energies extracted from the respective temperature
dependent measurements should be agreeing well to
each other. This exercise is undertaken next and the
results are shown in Figure 7. Arrhenius-type temper-
ature dependence is found for average rotational times
for both the solutes in these solutions; so are for the
average dielectric relaxation times and viscosity coef-
ficients. Representative data for three different xylitol
concentrations are shown for these observables along
with the associated activation energies, Ea. Note the one-
to-one correspondence between the activation energies
at individual concentrations and the agreement among
the concentration averaged activation energies, 〈Ea〉c,
which ranges between ∼21 kJmol−1 to ∼23 kJmol−1.
Such a good agreement among activation energies from
different measurements originates from the overwhelm-
ing dominance of the frictional response of the system
on these solution-phase relaxation processes in the tem-
perature range studied, and the frictional resistance is
nearly quantified by the macroscopic solution viscosity.
This near-hydrodynamic coupling to solution viscosity
(of relaxation dynamics) suggests mild spatiotempo-
ral heterogeneity in these aqueous xylitol solutions
at these temperatures. This is different from our ear-
lier observation for other binary mixtures containing
sugar.20
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Figure 7. Arrhenius plot of ln(1/〈τr 〉) versus 1/RT for C153 (upper left panel) and C343 (upper right
panel) rotation times in water-xylitol mixtures (upper panel), and the same for the DR rotation times and
viscosity coefficients (lower panel). Solid lines represent fit through the respective data sets.

4. Conclusions

In conclusion, the temperature dependent DR and flu-
orescence measurements suggest near-homogeneous
solution structure and dynamics for these aqueous
xylitol solutions in the temperature range studied.
Multi-probe measurements do not indicate substantial
concentration-dependent spectral shift, indicating no
dramatic change in the overall polarity of the system in
the presence of this poly-hydroxy alcohol. In addition,
we do not find any evidence for cluster formation result-
ing from extensive H-bond interaction between water
and xylitol molecules. In fact, the extent of viscosity
coupling of probe rotation times observed in these solu-
tions only indicates a mild heterogeneity. Measured DR
timescales do not match the hydrodynamic predictions
for molecular rotation of these species, leaving space for
explanation in terms of H-bond fluctuation dynamics
and collective single particle reorientation relaxation.
Extensive computer simulations are necessary for a
microscopic understanding of the DR relaxation pro-
cesses of these solutions, although the challenge here

is to construct, at least qualitatively correctly, the
inter- and intra-molecular interaction pair potentials.
Such an effort is in progress.

Supplementary Information (SI)

Figures S1-S2 and Table S1 are available at www.ias.ac.in/
chemsci.
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