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INTRODUCTION

There is widespread consensus that we are facing a
global conservation crisis (Pimm et al. 1995, MEA
2005, Brooks et al. 2006, CBD 2010. There has been a

substantial decline in both the diversity and abun-
dance of species worldwide, owing to increasing
human pressures (Jackson et al. 2001, Myers & Worm
2003, Sala & Knowlton 2006, Halpern et al. 2008,
Baum & Worm 2009, Cardinale et al. 2012, Merrie et
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ABSTRACT: The protection of biodiversity is one of the most important goals in terrestrial and
marine conservation. Marine conservation approaches have traditionally followed the example of
terrestrial initiatives. However, patterns, processes, habitats, and threats differ greatly between
the 2 systems — and even within the marine environment. As a result, there is still a lack of con-
gruence as to how to best identify and prioritize conservation approaches moving from the static
terrestrial and nearshore realm into a more fluid, 3-dimensional pelagic realm. To address this
problem, we investigate how the conservation science literature has been used to inform and
guide management strategies in the marine system from coastal to pelagic environments. As
cumulative impacts on the health of the oceans continue to increase, conservation priorities have
shifted to include highly dynamic areas of the pelagic marine system. By evaluating whether pri-
orities match science with current place-based management approaches (i.e. marine protected
areas, MPAs), we identify important gaps that must be considered in current conservation
schemes. Effective pelagic MPA design requires monitoring and evaluation across multiple phys-
ical, biological, and human dimensions. Because many threatened and exploited marine species
move through an ephemeral and ever-changing environment, our results highlight the need to
move beyond traditional, 2-dimensional approaches to marine conservation, and into dynamic
management approaches that incorporate metrics of biodiversity as well as oceanographic fea-
tures known to promote multilevel, trophic productivity.

KEY WORDS:  Hotspot biodiversity · Conservation planning · Dynamic ocean management ·
Large marine protected areas · Pelagic · Productivity · Terrestrial conservation

OPENPEN
 ACCESSCCESS

Contribution to the Theme Section 
‘Geospatial approaches to support pelagic conservation planning and adaptive management’



Endang Species Res 29: 229–237, 2016

al. 2014, McCauley et al. 2015). Conservation efforts
have been underway to prioritize and preserve the
parts of the land and sea that are most under threat.
Historically, action plans have been aimed at preser-
vation of at-risk biodiversity (Myers et al. 2000,
Roberts et al. 2002). As such, spatially explicit, sys-
tematic management of threatened areas, the species
that inhabit these areas, and the ecosystem resources
these areas provide, has typically been adopted as a
conservation strategy.

Threats in the ocean, however, are less visible than
those on land and, as a result, we know far more
about terrestrial ecosystems and the extent of human
impacts on land than we do in the ocean (Hoekstra et
al. 2005, Game et al. 2009). While it was once thought
that the oceans’ resources were inexhaustible (Hux-
ley 1883, Orbach 2003), escalating threats to the mar-
ine environment and the cumulative impacts have
called attention to the need for marine conservation
strategies (Pew Oceans Commission 2003, Lourie &
Vincent 2004, Crain et al. 2008, Halpern et al. 2008).
Despite increasing focus, marine conservation has
historically lagged behind terrestrial approaches
(MacArthur 1964, Sloan 2002, Kaplan et al. 2013,
Maxwell et al. 2015). Whereas habitat loss is the
dominant threat to terrestrial species, overexploita-
tion by humans is the dominant threat in marine sys-
tems (Carr et al. 2003, Halpern et al. 2006, 2008,
Jackson 2008, Norse 2010, FAO 2014). In response,
international efforts have called for the protection of
10% of all coastal and marine areas from exploitation
by 2020 (CBD 2010), with most marine protected
areas (MPAs) managed using static reserve tech-
niques, similar to the management approaches ap -
plied in terrestrial resources (e.g MacArthur 1964,
Myers 1988, Norse & Crowder 2005).

Marine conservation approaches increasingly in -
volve place-based management strategies such as
marine spatial planning and marine protected areas,
which are based on terrestrial conservation objec-
tives to conserve the target resources within a spatial
boundary (Hyrenbach et al. 2000, Carr et al. 2003,
Maxwell et al. 2015). An increasing number of inter-
nationally recognized organizations now include
spatial protection of marine ecosystems in their con-
servation portfolios, such as Conservation Interna-
tional’s ‘Hotspots and high biodiversity wilderness
areas’, WWF-US’s ‘Global 2000: priority ecoregions’,
and BirdLife International’s ‘Important bird and bio-
diversity areas’ (Mittermeier et al. 1998, Myers et al.
2000, Olson & Dinerstein 2002, Myers 2003, BirdLife
International 2013). All of these schemes are man-
aged within traditional place-based prescriptions,

targeting the areas of greatest species diversity, or
biodiversity ‘hotspots’ (Halpern et al. 2006, Holmes et
al. 2012). Yet the ocean is more dynamic and complex
in processes, scales, and threats than most terrestrial
systems (Maxwell et al. 2015). As a result, it is uncer-
tain whether current spatial approaches to mitigating
anthropogenic threats are likely to be effective in the
marine environment, with the potential that current
marine conservation schemes may be missing impor-
tant areas of the ocean. To ex plore this question, we
investigate how well conservation prioritization has
overlapped with the dominant threats identified in
the terrestrial and marine environments. Specifically,
we (1) summarize how well the scientific empirical
literature has been used to inform and guide conser-
vation management strategies in marine and terres-
trial systems. (2) We then discuss the challenges of
applying terrestrial schemes to marine conservation
and the conceptual frameworks needed to success-
fully implement marine conservation. (3) Finally, we
recommend 3 additional conservation strategies to
help us to more effectively mitigate anthropogenic
threats to marine resources.

‘HOTSPOTS’ AS A CONSERVATION TOOL

‘Hotspot’ is one of the most fundamental terms
used in both terrestrial and marine systems to iden-
tify regions in need of conservation focus. The term
was first coined by Myers (1988) to identify geo-
graphic regions of ‘exceptional concentrations’ of
endemic species undergoing exceptional loss of
habitat, and a ‘hotspot’ originally highlighted where
the greatest number of terrestrial species could be
protected per conservation dollar invested (Myers
1988, 1990, 2003, Myers et al. 2000). Since its incep-
tion more than 20 years ago, the original hotspot def-
inition has evolved as researchers have expanded
upon and revised the criteria. In practice, hotspots
now describe a geographical area (terrestrial or mar-
ine) ranking highly in one or more of the following
biological criteria: species richness, species en -
demism, number of rare, threatened, or endangered
species, complementarity, taxonomic distinctiveness,
and degree of habitat loss (Reid 1998, Roberts et al.
2002, Brummitt & Lughadha 2003, Possingham &
Wilson 2005). While the term has evolved from its
original definition, in its most general sense, conser-
vation biologists use ‘hotspots’ as a value-laden term
to call attention to important areas of biodiversity
under imminent threat (Myers 1988, Prendergast et
al. 1993, Mittermeier et al. 1998, Reid 1998, Myers et
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al. 2000, 2003, Roberts et al. 2002, Kareiva & Marvier
2003). The term ‘hotspot’ has become prevalent
within academia, with nearly 1500 articles published
in conservation literature using the term since Myers
first coined it in 1988 (Fig. 1). While there have been
criticisms of the hotspots approach (Harcourt 2000,
Kareiva & Marvier 2003, Orme et al. 2005, Possing-
ham & Wilson 2005), after over 20 years of use, it has
become a fixture within conservation biology as a
guide to global conservation efforts. For this reason,
its consistent use throughout the field serves as a
marker for how scientists and practitioners assign
critical importance to a species, habitat, or threat in
each system.

HOTSPOTS IN THE SCIENTIFIC LITERATURE

We evaluated all academic peer-reviewed research
publications from 1988 to 2010 that define hotspots
for conservation and compare how the term is used to
prioritize important areas within each system. The
review included all publications from Biosis Previews
and Web of Science, 2 highly used and widely ac -
cessible academic search engines. All articles con-
taining the keywords: ‘hotspot’ and/or ‘hot spot’ and
‘con servation’, were downloaded and entered in a
database describing content, context, and detailed
use of the term ‘hotspot’. For consistency, book chap-
ters, conference proceedings, non-English journal
articles, and any grey literature were omitted from
our database. From this comprehensive database, we
placed the results of the literature review into 2 dom-

inant conservation objectives: species diversity (i.e.
species richness endemism, or rarity) and trophic-
wide productivity (i.e. high concentrations of primary
producers, secondary, tertiary consumers, and top
predators). These 2 conservation objectives are here-
after known as ‘biodiversity hotspots’ and ‘productivity
hotspots’, respectively. We then used these empiri-
cally defined ‘hotspot’ objectives to highlight dispar-
ity and overlap between conservation approaches,
moving from the terrestrial to coastal to pelagic mar-
ine environment.

We found that in the past 20-plus years, the use of
the term ‘hotspot’ has increased steadily. Despite the
overall increase, over 80% of the 1471 studies were
applied to the terrestrial systems, and less than 20%
of all published hotspot literature focused on mar-
ine ‘hotspots’ (Fig. 1). Across both systems, results
showed that ‘hotspots’ were most commonly referred
to as areas of high biodiversity, followed by areas of
high productivity. Biodiversity hotspots were most
frequently used to describe a geographical area (ter-
restrial or marine) ranking highly in one or more of
the following biological criteria: species richness,
species endemism, or number of rare or threatened
species. Approximately 89% of terrestrial articles
used ‘hotspot’ to identify biodiversity under threat,
with 66% using the original Myers definition (Myers
1988, 1990, 2003, Myers et al. 2000) (Fig. 2). Of the
287 marine articles, 54% defined hotspots of marine
biodiversity, while 49% used the term to define areas
of high productivity (i.e. primary production or nutri-
ent concentrations) and/or species abundance (for
foraging, reproduction, or recruitment purposes)
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(Fig. 2). Of these, only 3% of marine articles defined
hotspots as important areas of marine biodiversity
and productivity. The original Myers definition was
used by 7% of marine articles.

CHALLENGES TO MARINE CONSERVATION

Results of our literature review showed that an
overwhelming number of terrestrial and marine sci-
entists identify and define ‘hotspots’ in the tradi-
tional, original sense: as areas of high species diver-
sity under threat (Fig. 2). The focus on biodiversity in
the terrestrial system is not surprising; reducing
extinction risk and habitat loss has been identified as
an effective way of protecting many species at once
(Worm et al. 2005, Baillie et al. 2008, Bode et al.
2008). In the marine environment, such an approach
may be suitable for shallow and/or coastal habitat
(i.e. seagrass beds, kelp forests, and rocky intertidal
zones), which are more static in nature, contain
diverse levels of sessile endemic organisms, and thus
fit well into terrestrial hotspot characterizations (see
Roberts et al. 2002). The open ocean, however, is a
far more complex, multidimensional system than its
terrestrial counterpart. For this reason, terrestrial
approaches may not be transferable to the pelagic
marine environment.

Complexity of the pelagic marine environment

Unlike coastal and terrestrial regions, pelagic habi-
tats are largely based on properties of water masses,
surface currents, and wind-driven mixing (Bograd et
al. 2009, Game et al. 2009, Ban et al. 2014). Away
from shore, dynamic coupling between physical and
biological processes spreads interactions away from
geomorphic features, and over much larger spatial
and shorter temporal scales (Hyrenbach et al. 2000).
While there are geographically predictable locations
of high productivity and diversity in the ocean (e.g.
seamounts, reefs, shelf breaks), the horizontal and
vertical transport of resources and organisms leads to
a more dynamic and patchy environment, organisms
with complex life histories and migratory behaviors,
and less clearly biogeographically defined habitats
(Levin & Whitfield 1994, Carr et al. 2003, Lourie &
Vincent 2004). Biophysical processes such as up -
welling, frontal gradients, and eddies entrain high
levels of primary production that promote complex
trophic linkages, and the predictable formation of
these features causes species to repeatedly exploit
these areas during predictable times of the year
(Hyrenbach et al. 2000, Croll et al. 2005, Sydeman et
al. 2006, Foley et al. 2010, Scales et al. 2015, Pikesley
et al. 2013). In addition, individual movement, larval
dispersion, and nutrient transport can occur across
permeable habitat boundaries (Foley et al. 2010),
which means that greater horizontal and vertical
transport of energy and producer turnover can lead
to greater patchiness of resources. As such, the com-
munity of species utilizing these areas is not always
static, but rather dynamic in composition, distribu-
tion, and abundance, presenting unique challenges
for determining hotspots in the marine environment.

Highly productive and highly exploited

Terrestrial productivity and biodiversity are often
highly coupled in space and time (Steele 1985, Steele
et al. 1994, Gaston 2000, Richmond et al. 2007). In
contrast, while oceanic areas of high productivity
may have high biodiversity (e.g. the global distribu-
tion of species richness in marine mammals, see
Pompa et al. 2011), the two are not necessarily, nor
inherently, congruent (Angel 1993). In fact, some of
the most productive marine regions (e.g. the North
Atlantic, Polar Seas, eastern boundary upwelling
zones) are relatively low in species diversity (Bots-
ford et al. 1997, Leslie 2005, Schipper et al. 2008)
compared to the high levels of diversity found in
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coral reef systems or seamounts (Morato et al. 2008,
2010, Maxwell et al. 2012). This becomes increas-
ingly important when prioritizing marine areas with
the goal of preserving valuable economic and eco-
logical resources as they relate to areas most under
threat. In effect, some important areas of marine pro-
ductivity can be spatially or temporally decoupled
from regions of high biodiversity, yet both are impor-
tant for the overall maintenance of ecosystem func-
tion and services (Leslie & McLeod 2007).

In fact, the majority of overexploitation does not
necessarily occur in the most diverse, or species-rich
areas of the oceans (i.e. coral reefs), but in the highly
productive marine areas that may extend from the
shelf and further offshore. For example, productive
areas such as upwelling regions account for only
0.1% of the ocean surface (Ryther 1969), yet they
support up to 50%of the world’s fisheries production
(Valavanis et al. 2004). Exploitation of these highly
productive marine regions has resulted in significant
declines in populations of target species (e.g. tuna,
billfish, and sharks), as well as the decline of non- target
species incidentally taken in fisheries operations
(e.g. sea turtles, seabirds, and marine mammals)
(Lewison et al. 2004, Myers et al. 2007, Schipper et al.
2008). While habitat destruction remains a primary
threat to terrestrial and coastal ecosystems, the
greatest threat in the open ocean is the overexploita-
tion of top predators, keystone species, and other
structure-forming species (Pauly et al. 1998, Carr et
al. 2003, Norse & Crowder 2005, Worm et al. 2006,
Myers et al. 2007, Halpern et al. 2008, Heithaus et al.
2008, Jackson 2008, Schipper et al. 2008, Baum &
Worm 2009, Hazen et al. 2013). Therefore, a focus on
biodiversity alone may leave critical gaps in the way
in which we manage the open ocean and fail to pro-
tect some of the most important areas of the ocean.

Indeed, marine conservation scientists recognize
this. The presence of productivity hotspots within
marine literature shows that the original definition of
a ‘hotspot’ has evolved to match the different conser-
vation needs associated with marine systems (Figs. 2
& 3). This suggests that while scientists also refer to
productivity as a means to drive conservation of
important ecosystem resources in the marine system,
they recognize that threatened species and habitats
are not limited to areas of heightened biodiversity,
like in the terrestrial system. Specifically, research
biologists ascribe an additional focus on areas of high
productivity, which may require a suite of priority
setting criteria that go beyond those used for terres-
trial or even coastal conservation (Lewison et al.
2015, Maxwell et al. 2014)

Putting marine conservation into practice

Over the past few decades, as marine conservation
research has grown, conservation organizations have
shifted their focus. An increasing number of inter -
national organizations have expanded their conser-
vation programs to incorporate productive marine
ecosystems into their portfolios and prioritization
schemes. However, it is not clear if this has translated
into effective conservation action.

To examine this, we compared how well results
from our academic literature review are reflected in
the strategic planning of marine conservation organ-
izations over the past 10 years. Specifically, we com-
pared the overlap of academically defined ‘hotspots’
with published examples of global conservation plan-
ning or action (Gilman et al. 2011). Only a decade
ago, a synthesis of marine conservation planning
approaches by Leslie (2005) found that few organiza-
tions were prioritizing important marine areas by
objectives other than biodiversity. More recently,
Gilman et al. (2011) reviewed 20 terrestrial and mar-
ine conservation organizations for design criteria.
Fifteen of the 20 organizations now have marine pri-
oritization schemes, all of which focus on marine bio-
diversity (e.g. species richness, endemism, rarity/
threatened status). The Gilman et al. (2011) re view
showed that an overwhelming majority of conserva-
tion organizations still use biodiversity as the main
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criteria in marine conservation planning and design.
Of these, only 7 include productivity (biomass, abun-
dance, or biophysical processes) in their design crite-
ria for marine conservation planning (Table S1 in the
Supplement at www. int-res. com/ articles/ suppl/ n029
p229 _ supp .pdf). As such, while some organizations
are shifting focus to include biological productivity,
such priority-setting criteria still largely fail to include
important metrics beyond species diversity. A primary
focus on biodiversity may exclude important marine
regions of high productivity and biomass; these areas
may be particularly important for large marine pred-
ators, which are in many cases imperiled species.
Marine conservation organizations may benefit by
incorporating additional criteria that include bio-
physical features in their priority-setting process (e.g.
environmental and ecological factors, stock recovery,
and endangered species) (see Table S1).

MOVING FORWARD IN PELAGIC
 CONSERVATION STRATEGIES

With this conceptual framework in mind, how do
we best identify and quantify marine important bio-
diversity and productivity regions in the open ocean
and assure that these are aligned with anthropogenic
threats and focus for conservation action? Three non-
exclusive strategies can help with achieving such
alignment: (1) inclusion of productivity in priority-
setting exercises; (2) large-scale protected areas and
(3) incorporation of dynamic marine features.

Inclusion of productivity

A strategy that focuses on protecting processes,
patterns, and features that promote enhanced biolog-
ical productivity in addition to biodiversity will have
a greater probability of in cluding important conser-
vation features. As noted by Angel (1993, p. 769), ‘any
conservation protocol that focuses purely on regions
of high species richness runs the serious danger of
overlooking those regions where processes are occur-
ring that support the maintenance of that richness’.

Large-scale protected areas

Large-scale pelagic MPAs are likely more effective
in including and thus protecting both wide-ranging
habitats and oceanographic features such as fronts or
eddies that are responsible for increasing or concen-

trating productivity in pelagic environments (Game
et al. 2009, Toonen et al. 2013, Maxwell et al. 2014,
Young et al. 2015). For example, the Pelagos Marine
Sanctuary was designed to incorporate persistent
frontal features in the Mediterranean Sea that facili-
tate the congregation of productivity, prey and a
number of marine mammal species (Notarbartolo-Di-
Sciara et al. 2008). While criticisms of large-scale
MPAs exist regarding the feasibility of enforcing such
large areas, they offer the potential to gain ecosystem
levels of protection that will allow conservation prac-
titioners to meet multiple conservation ob jectives in
the complex marine environment (Leen hardt et al.
2013, Wilhelm et al. 2014).

Incorporation of dynamic features

More dynamic management approaches across
physical, biological, and human dimensions are often
more likely to include important conservation targets
than traditional, 2-dimensional approaches. Dynamic
ocean management, while in its infancy, is emerging
as a means of protecting dynamic features and spe-
cies in the ocean by allowing for protected or man-
aged areas to move in time (Maxwell et al. 2015). The
use of MPAs that are dynamic in time and space
would allow for the inclusion of many of the key fea-
tures such as eddies and fronts responsible for pri-
mary productivity over large-scale areas, while also
protecting the mobile marine species that rely on these
features. Implementation of such dy namic areas has
occurred in many parts of the world (Maxwell et al.
2015, Lewison et al. 2015) and the technology neces-
sary to implement dynamic management already
exists (Hobday & Pecl 2014). While implementation
may still be challenging for many organizations,
dynamic management allows for ecosystem-based
management that reflects the dynamic nature of mar-
ine environments (Maxwell et al. 2015).

CONCLUSIONS

We have shown that the marine conservation
research literature is shifting away from a terrestrial-
based biodiversity perspective to one more appropri-
ate to the processes, scales, and spatio-temporal
dynamics of marine systems. Nonetheless, the focus
of conservation strategies in relation to species, pro-
cesses, and threats, has lagged behind this changing
perspective. Whereas the maintenance of biodiver-
sity and habitat has been the primary conservation
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objective in terrestrial and coastal marine systems
(Baillie et al. 2008, Bode et al. 2008, Halpern et al.
2008), protection of species from overexploitation
should be the primary focus in pelagic marine sys-
tems. Therefore, a focus on marine biodiversity alone
may fail to protect some of the most important areas
of the ocean from overexploitation, specifically the
open ocean. Moving forward, the incorporation of
dynamic and highly productive features, distribu-
tions, and processes in addition to biodiversity in
management strategies, represents a great opportu-
nity to advance our ability to support, prioritize, and
manage the pelagic environment.
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