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Abstract. Structural coverage metrics have traditionally categorized
code as either covered or uncovered. Recent work presents a stronger
notion of coverage, checked coverage, which counts only statements whose
execution contributes to an outcome checked by an oracle. While this
notion of coverage addresses the adequacy of the oracle, for Model-Based
Development of safety critical systems, it is still not enough; we are also
interested in how much of the oracle is covered, and whether the val-
ues of program variables are masked when the oracle is evaluated. Such
information can help system engineers identify missing requirements as
well as missing test cases. In this work, we combine results from checked
coverage with results from requirements coverage to help provide insight
to engineers as to whether the requirements or the test suite need to
be improved. We implement a dynamic backward slicing technique and
evaluate it on several systems developed in Simulink. The results of our
preliminary study show that even for systems with comprehensive test
suites and good sets of requirements, our approach can identify cases
where more tests or more requirements are needed to improve coverage
numbers.

1 Introduction

Model-Based Development (MBD) refers to the use of domain-specific modeling
notations to create models of a desired system early in the development lifecycle.
These models can be executed on the desktop, analyzed for desired behaviors,
and then used to automatically generate code and test cases. Also known as
correct-by-construction development, the emphasis in model-based development
is on the engineering effort invested in the early lifecycle activities of modeling,
simulation, and analysis. This reduces development costs by finding defects early
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in the lifecycle, avoiding rework that is necessary when errors are discovered dur-
ing integration testing, and by automating the late life-cycle activities of coding
and test case generation. In this way, Model-Based Development significantly
reduces costs while also improving quality. There are several commercial MBD
tools, including Simulink/Stateflow [19], SCADE [10], IBM Rhapsody [1] and
IBM Rational Statemate [2].

An important part of MBD is automated test generation and execution.
Tools such as Reactis [26], the MathWorks Verification and Validation plug-in
for Simulink, and the IBM Rhapsody Automatic Test Generation add-on, as
well as other tools, support automated test generation from models. These tools
enable generation of structural coverage tests up to a high degree of rigor, e.g.,
tests satisfying the MC/DC coverage metric. In the domain of critical systems
– particularly in avionics – demonstrating structural coverage is required for
certification [27].

In principle, automated test generation represents a success for software engi-
neering research: a mandatory – and potentially arduous – engineering task
has been automated. However, several studies have raised questions about the
effectiveness of automated test generation towards a specific structural coverage
metric (e.g., [12,14,31]), in some cases finding these tests less effective than ran-
domly generated tests of the same length in terms of fault-finding capabilities.
This often has to do with the observability capabilities of the test oracle, which
determines whether the test passes or fails. In many cases, the code structure
that was examined has no measurable effect on the test outcome.

In recent work, a metric proposed by Schuler and Zeller in [29,30] addresses
observability, but does so in a post-priori way: given a test suite and a set
of requirements specified as assertions, it uses dynamic backward slicing from
the requirements (assertions) to determine the set of program statements that
affect the evaluation of the requirement. They call this metric checked statement
coverage, because it only considers the statements that are checked (observed).
They note that this metric judges the quality of the test oracle — a program
with no assertions will have no coverage. Therefore, given any test suite, it is
possible to increase coverage by adding additional oracles (requirements) to the
suite. Our hypothesis is that this metric can be leveraged to better assess the
quality of an automated testing process in MBD where formalized requirements
serve as oracles for auto-generated tests [28].

In this work, we combine the results of checked coverage with the results of
requirements coverage to determine for a given model whether its requirements
and test suite are adequate. While the work in [30] focuses on whether or not
the oracles (requirements) are adequate, we are interested in both the adequacy
of the test suite and the requirements encoded as oracles: if checked coverage is
low then either the requirements or the tests maybe incomplete. Specifically, we
add to this notion of coverage by calculating checked coverage based on dynamic
backward slicing as well as MC/DC masking information. Finally, we map the
different forms of code coverage back to the model, and report the coverage of
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Fig. 1. Hierarchical state machine model of the ALARM subsystem

the requirements, in order to provide information to the system engineers about
sources of incompleteness. Thus, the contributions of the paper are:

– An approach using checked, unchecked, and requirements coverage informa-
tion to assess the adequacy of both test suites and requirements.

– An approach to calculate checked coverage based on backward dynamic slic-
ing and MC/DC masking information, which leads to more precise checked
coverage results than dynamic backward slicing alone.

– A preliminary evaluation of our technique on a set of examples that use
Simulink as part of the MBD approach. In addition to computing coverage
for the auto-generated code, we also map the results back to the models.

Our experience shows that even for case studies with comprehensive test
suites and good sets of requirements, our approach can identify cases where
more tests or more requirements are needed to improve the coverage numbers.

2 Motivation

Consider the control software for an infusion pump, a medical device that is typ-
ically used to infuse liquid drugs into a patient’s body in a controlled fashion. An
important subsystem of the controller is the ALARM subsystem shown in Fig. 1.
The model for the system [22] was developed using MathWorks Simulink/State-
flow tool [19]. The “ALARM” subsystem is responsible for monitoring hazards
(CheckAlarm state machine) with different levels of severity in the system, and
alerting the clinicians (Audio and Visual state machines) to take the appropriate
action when such conditions occur. We auto-generate the source code from the
Simulink model, formalize the requirements as boolean expressions, and auto-
matically generate the test cases from the model.
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1: if(localB->ALARM OUT Hazard >= 3){
2: if(localB->Disable Audio > 1){
3: localB->ALARM OUT Audio Command = 0;
4: localB->ALARM OUT Audio Disabled = 1;
5: if(localDW->time minutes > 3){
6: localB->Disable Audio = 0;
7: }
8: }
9: }else . . .

Fig. 2. Code snippet from the ALARM system’s audio notification functionality

To motivate the utility of our proposed approach we use a snippet of auto-
generated code from the Audio state machine in Fig. 1. The code is shown
in Fig. 2. It raises an aural alert when a certain level of hazard is detected and
the audio has not been disabled by the user. Assume the following oracle encodes
a requirement of the system:

Hazard >= 3 ∧ Disable Audio = 0 =⇒ Audio Command = 1

Suppose we execute a test case, t, that covers program statements one to
seven in Fig. 2 and the values of the variables used in the oracle are: Hazard := 3
and Disable Audio := 2. The corresponding checked coverage for the test does
not contain the program statement at line 4 in Fig. 2; the Audio Disabled variable
defined at line 4 does not either directly or transitively impact the values used in
the oracle. This example demonstrates that the checked coverage is lower than
the set of covered statements.

The notion of checked coverage, however, does not take into account which
parts of the oracle were covered and whether the values of certain program
variables are masked when the oracle is evaluated. The values for variables
Hazard := 3 and Disable Audio := 2 cause the antecedent in the requirement
(Hazard >= 3 ∧ Disable Audio = 0) to be false; hence, the consequent of the
requirement (Audio Command = 1) is not evaluated. Even though the program
statement at line 3 in Fig. 2 writes to the variable Audio Command used in
the oracle, the test, t, does not evaluate Audio Command in the oracle. We
can leverage this information to define a more precise checked coverage measure
by marking line 3 in Fig. 2 as unchecked. In the next section we present an
overview of how we measure requirements coverage along with checked coverage
to improve upon the checked coverage measure.

3 Methodology

There are three inputs to our technique: the model of the system being analyzed,
a set of test cases (manual or auto-generated) that exercise the model, and a set
of formalized requirements of the model as shown in Fig. 3. The requirements are
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Fig. 3. Test Case Coverage Classification Approach Overview

transformed into assertions over program variables. We automatically generate
the code from the model and execute the tests on the auto-generated code. The
formalized requirements are used as a slicing criteria for program execution traces
generated by the various tests as shown in Fig. 3. A dynamic backward slice is
used to extract the set of program statements that operate on variables whose
values are checked in the assertions. This is termed as checked coverage while all
other executed statements are categorized as unchecked coverage. In addition to
the code coverage we also measure the coverage of the requirements. Checked,
unchecked, and uncovered code coverage are mapped back to the model to help
the system engineers determine incompleteness in the requirements, tests, or the
model.

We present an overview of the algorithm to partition coverage into checked
coverage versus unchecked coverage in Fig. 4. The algorithm takes as input an
auto-generated program M , the test suite T for exercising the behaviors of the
program, and the set of assertions that encode the formalized requirements. The
sets checked and unchecked are initialized as empty. We run each test, t, in
the test suite T on the program and generate the set of program statements
〈l0, . . . , ln〉 executed by the test. Next, we generate a dynamic slice of the trace
using each assertion a as the slicing criteria. In the case that a program statement
l is in the dynamic slice then it is added to the checked set; otherwise it is added
to the unchecked set.

Dynamic slicing is used to compute the basic form of checked coverage. A
dynamic slice of an execution trace with respect to an assertion extracts the set of
program statements in the trace that may impact the evaluation of the assertion.
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/ ∗ checked := ∅, unchecked := ∅ ∗ /

procedure initialize(M, T, A)
1: for each t ∈ T ∧ a ∈ A do

2: 〈l0, . . . , ln〉 := execute(P, t)
3: for each i ∈ [0, n] do

4: if li ∈ dynamicBackwardSlice(〈l0, . . . , ln〉, a) then

5: checked := checked ∪ {li}
6: else

7: unchecked := unchecked ∪ {li}
8: unchecked := unchecked \ checked

Fig. 4. An algorithm to partition checked and unchecked coverage

Standard flow analyses are used to generate the slice based on the assertion. Any
program statements that read or write variables used in the assertion, as well as
program statements computed by transitive closure of the reads and writes, are
part of the dynamic slice. Suppose, boolean variables x and y are used in the
assertion; all program statements that read and write program variables that
may be used directly or transitively by x and y are added to the dynamic slice.
This notion of checked coverage does not however take into account which parts
of the assertion are covered and whether certain values are masked when the
assertion is evaluated. In the rest of the section we first present how we measure
the coverage of the assertions and then leverage the information to improve the
precision of the checked coverage.

3.1 Coverage of Requirements

In this work we use the Modified Decision/Condition Coverage (MC/DC) metric
to evaluate the assertion coverage for a given test suite. MC/DC is commonly
used to evaluate the coverage of requirements in safety-critical systems. MC/DC
coverage of a requirement encoded as an assertion requires that each condition
in the assertion takes on all possible outcomes at least once and each condition is
shown to independently affect the assertion’s outcome. Note that a condition is a
boolean expression that contains no boolean operators. We use the masking form
of MC/DC to determine the independence of the conditions in the assertion. A
condition is masked if changing its value does not affect the outcome of the
assertion. For example, when evaluating assert x and y, in the case when x

is false, the value of y is masked. We need to satisfy three possible coverage
obligations:

1. x ∧ y

2. x ∧ ¬y

3. ¬x ∧ y

In order to check the MC/DC coverage of the assertion x and y, we replace the
assertion in A with three new assertions synthesized from the expressions shown
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above. If there are test cases in T that can satisfy all three assertions, then we
report 100% MC/DC coverage of the assertion. But if only one is satisfied by the
test, then we report 33% coverage of the assertion. We believe that measuring
the MC/DC coverage of the requirements for a given test suite enables us to
better characterize the quality of the test suite with respect to a given set of
requirements.

3.2 A More Precise Dynamic Backward Slice

We propose a more precise dynamic backward slice that takes into account which
parts of the assertion are covered and whether certain values of program variables
are not used when the assertion is evaluated. We leverage the masking informa-
tion within an assertion for a given test to generate a more precise dynamic
backward slice. As stated earlier, a condition is masked if changing its value
cannot affect the outcome of a decision. So in the assertion, x and y, if the
value for x is false, the value of y is masked. In this more precise version of a
dynamic slice we first extract the variables in the assertion that are not masked,
then get all of the program statements in the execution trace that impact them.
Therefore, instead of computing the slice based on both x and y, we generate
a slice using x alone. Even though there are values of y being written to in the
execution trace, since they are not being used in the evaluation of the assertion,
they are not added to the checked set. We believe this will reduce the size of the
checked set and provide a more precise characterization of parts of the program
that are being checked in the assertions.

3.3 Mapping Back to the Model

In the final phase of our technique, for a given test suite, we report the following
to the system engineers: (i) the precise checked coverage, (ii) the unchecked
coverage, (iii) the uncovered coverage, and the (iv) coverage of the requirements.
Note that we map the coverage of the code onto the model. We believe that these
coverage measures help us bridge the gap between requirements, tests, and the
model as discussed in [28]. The relationship between the various types of coverage
can potentially help to determine the source of incompleteness in either tests,
requirements, or the model. Low coverage of the requirements and high checked
coverage could indicate missing functionality in the model. Low coverage of the
requirements coupled with low checked coverage could be indicative of missing
tests and/or missing requirements. Finally, high coverage of requirements along
with low checked coverage could be indicative of missing requirements.

4 Evaluation

In this section we describe the evaluation of our approach on three systems.
We first give a brief overview of the example systems, then we describe the
experimental set up followed by the evaluation of the approach on the systems.
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4.1 Case Examples

We consider three different systems: a medical device controller, an avionics
system controller and a general appliance controller. Table 1 shows the specifics
of the case examples considered. Following this section, we refer to each system
and its test cases using the ID from the first column in Table 1. The second
column gives the number of auto-generated source lines of code (LOC); column
three presents the number of requirements available for each test suite; column
4 describes the source of the test suites. The last column shows the number of
tests in each test suite.

Table 1. Case Example Artifacts Synopsis

ID System # LOC # Reqs Test Suite : Source # Tests

ALM 1 ALARM 1950 18 Set 1 : Manual 16

ALM 2 ALARM 1950 18 Set 2 : jKind 106

DCK 1 DOCKING 2240 3 Set 1 : Reactis 32

DCK 2 DOCKING 2240 3 Set 2 : SDV 69

MCR 1 MICROWAVE 537 11 Set 1 : Reactis 39

MCR 2 MICROWAVE 537 11 Set 2 : Reactis 23

Table 2. Case Example’s Test Case Coverage Metrics

ID Statement Condition Requirements

ALM 1 43.65% 31.93% 65.71%

ALM 2 95.05% 95.80% 84.84%

DCK 1 39.43% 35.29% 26.66%

DCK 2 77.37% 78.89% 73.32%

MCR 1 79.07% 93.75% 60.86%

MCR 2 87.21% 100.00% 80.42%

The first system considered is the ALARM subsystem discussed in Section 2.
The model of the ALARM subsystem was developed as a multi-level hierarchical
state machine using the Mathworks Simulink/Stateflow tool. The source code of
this model was automatically generated using MathWorks Simulink Coder [20].
The system has 18 formally verified [22] safety critical requirements. For testing
the ALARM system, we created manual test cases using the requirements as a
reference and also generated a test suite with high structural coverage (MC/DC)
using the jKind model checker [13].

The second example we consider is a docking approach system. This system
specifies the mechanism for the docking of a space vehicle. This system was also
developed using Mathworks Simulink/Stateflow tool and its source code was
generated using Simulink Coder. A major issue with this system is that even
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though it is elaborately modeled, there are only a few requirements specified.
Although we know that this system lacks a complete set of requirements, our goal
was to analyze the adequacy of the sparse requirements for the test cases. For
the Docking example, we generated a random test suite using the Reactis tool
and another test suite with high structural coverage using MathWorks Simulink
Design Verifier (SDV) [21] .

The third case example is a microwave’s controller system used in our pre-
vious work [28], that was also modeled as hierarchical state machines using the
MathWorks Stateflow notation. The microwave controller implements the usual
functions of a regular microwave. We generated code for the microwave system
using the Gryphon Tool Suite [34]. The advantage with the microwave model is
that it has a comprehensive set of requirements. The test cases for microwave
were generated using Reactis.

4.2 Tools and Experiment Set up

We use a combination of commercially available and free open source tools to
implement our approach. As previously mentioned, the test suites and the source
code are generated using various sources and tools in order to generate a variety
of artifacts and determine the efficacy of the different test suites based on our
metrics. However, assessing the test suite generation techniques and tools is
not the intent of this experiment. We used the gcov [17] tool to measure the
statement and condition coverage of the test suites. In order to measure coverage
of requirements we generate MC/DC obligations and replace the assertions with
these obligations. The total number of obligations that are satisfied by the test
suite are recorded and reported.

To generate dynamic backward slices, we use the Frama-C tool [7], an open
source tool for analysis of C programs. Although Frama-C is primarily a static
analysis tool, it provides the ability to construct dynamic backward slices by
embedding the test vector into the program and using the -slevel slicing option.
The Frama-C slicing plugin provides an implementation of dependence-based
backward slicing. The Frama-C slicing plugin requires the slicing criterion to be
expressed using ACSL [4], a formal specification language used for specifying
behavioral properties of C source code. The ACSL notation allows C like syntax
for specifying slicing criteria, which makes it straightforward to specify require-
ments as logical statements. For example, the slicing criteria for the ALARM’s
oracle described in Section 2 is translated into an expression for slicing as shown
below:

//@slice pragma expr

(!(Hazard >= 3 and Disable_Audio == 1) || (Audio_Command == 0));

The slice is obtained by executing each test case in the test suite and extract-
ing the dynamic backward slice based on the slicing criterion (requirements).
While executing the test, the execution trace is also obtained. Once all slices
and execution traces are obtained, the slices are compared with the execution
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Table 3. Coverage Metrics Partitioned based on Slicing

Slicing Precise Slicing

ID Checked Unchecked Checked Unchecked Uncovered

ALM 1 36.50% 8.65% 20.01% 23.64% 56.35%

ALM 2 75.44% 19.61% 54.35% 38.70 % 4.95%

DCK 1 23.91% 15.52% 5.49% 33.96% 60.57%

DCK 2 35.63% 41.47% 16.06% 61.31% 22.63%

MCR 1 76.70% 2.37% 56.25% 22.82% 20.93%

MCR 2 73.86 % 13.35% 65.34% 21.87% 12.79%

Table 4. Data Summary

ID Covered Requirements Checked Improve, Add

ALM 1 43.65% 65.71% 20.01% test cases, new reqs

ALM 2 95.05% 84.84% 54.35% new reqs

DCK 1 39.43% 26.66% 5.49% all

DCK 2 77.37% 73.32% 16.06% new reqs

MCR 1 79.07% 60.86% 56.25% test cases

MCR 2 87.21% 80.42% 65.34% new reqs

trace to identify the checked and unchecked covered lines of code. Similarly by
comparing the source code and the execution trace, the uncovered lines of code
are obtained.

4.3 Analysis of the Results

Table 2 shows the structural and requirements coverage metrics for the artifacts
for a given test suite. The statement and condition coverage for ALM 1 and
DCK 1 and the requirements coverage for DCK 1 is less than 50%. The rest of
the coverage numbers are over 50%. The statement and condition coverage of
ALM 2 is slightly above 95% and the requirements coverage is 84%. Similarly
MCR 2 has statement and condition coverage of 87% and 100% respectively and
requirements coverage of 80%. These are fairly reasonable values for traditional
coverage metrics for this set of artifacts.

Table 3 shows the results obtained using the dynamic slicing based approaches.
The first two columns show the checked and unchecked coverage values using the
dynamic backward slicing technique as proposed by [29,30], whereas the next two
columns show the checked and unchecked coverage values using the more precise
dynamic backward slicing approach presented in this paper. The results demon-
strate that, overall, the checked coverage in Table 3 is lower compared to the set
of covered statements shown in Table 2. Recall that the total number of checked
statements plus the unchecked statements gives the covered statements. Table 3
shows that the unchecked coverage ranges from 2.37% for MCR 1 to 41.47% for
DCK 2.Using themore precise dynamic slicing techniqueproposed in thiswork the



Determining the Adequacy of Formalized Requirements and Test Suites 289

checked coverage decreases even further while the unchecked coverage increases.
The MCR 2 artifact has a reasonably high statement coverage of 87.21% as shown
in Table 3. coverage In the MCR 1 example, the checked coverage using the slicing
approachdecreases from76.70% in columnone to 56.25% in column three ofTable 3
when using precise slicing, because the tests are not able to exercise most variables
in the requirements. The low requirements coverage of 60% as shown in Table 2
provides evidence for the same. In MCR 2, however, when more variables of the
requirements are exercised by the test cases (indicated by requirements coverage
of 80.42%) the decrease in the checked coverage is smaller—73.86% to 65.34%.

The results for the examples in this section provide evidence towards our
hypothesis that taking into account the part of the requirements or oracle that
are covered (not masked) by the tests can provide us with a stronger notion of
structural coverage with respect to the requirements.

5 Discussion

We summarize the results of the empirical evaluation and provide some rec-
ommendations for improvement based on the data. Table 4 presents the three
coverage metrics (i) covered, (ii) requirements, and (iii) checked, as well as the
recommendations for which artifacts should be further augmented in order to
improve the coverage of the code and the requirements. For example, ALM 1
has reasonable requirements coverage of 65.71% but fairly low covered program
statements (43.65%) and even lower precise checked coverage (20.01%). Our rec-
ommendation is to first augment the test suite with tests that exercise additional
parts of the code, then try to identify missing requirements, and finally measure
the requirements coverage with the augmented test cases. DCK 1 has fairly low
coverage values for all metrics, suggesting that all artifacts need to be improved.
This is not surprising since there are only three requirements for the model. The
ALM 2, DCK 2, MCR 2 examples have reasonable statement and requirements
coverage but low precise checked coverage. This suggests that the set of require-
ments may be incomplete. MCR 1 also has reasonable statement coverage but
the coverage of existing requirements needs to be improved prior to identifying
the missing requirements.

We demonstrate using an example of how the coverage information can be
used by system engineers to detect potential causes of missing requirements.
The ALARM system had 19.6% unchecked coverage (see Table 3). A snippet
of code from the unchecked lines of code is shown in Figure 5. The variables
used in these lines are then traced back to their source blocks in the model, as
shown in Figure 5. Using this information, a system engineer might want to add
a requirement that would check if the system has been IDLE for more than a
certain amount of time.

This overall approach can be iteratively applied until we achieve the desired
coverage metrics. Although achieving 100% for all the coverage criteria is ideal,
it may not be practical. However, we believe that the metrics presented in the
paper help identify the specific inadequacies in the test suite, that can be ana-
lyzed by the stakeholders to determine if and how they should be addressed. In
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switch (ALARM_Functional_DW.is_IsIdleTimeExceeded)
.....
case ALARM_Functional_IN_No:

else if (ALARM_Functional_B.Current_System_Mode == 1)
ALARM_Functional_DW.idletimer = 0;
ALARM_Functional_DW.idletimer++;

...

Fig. 5. Tracing unchecked lines of source code in the ALARM model

future work, we would like to assess the fault finding capability improvement by
improving these artifacts.

6 Related Work

Our work is built on the checked-coverage work of Schuler and Zeller [29,30],
which is in turn built upon dynamic slicing techniques [15] which follow from
Weiser’s original slicing work [32]. Checked coverage is in the category of observ-
ability testing, in which a metric tries to ensure that the code structure under
test can be observed by the oracle. Often, the oracle is simply the outputs of the
system under test. Observability testing has been a focus in testing of hardware
logic circuits. The observability-based code coverage metric (OCCOM) attaches
tags to internal states in a circuit and the propagation of tags is used to predict
the actual propagation of errors (corrupted state) [9,11]. A variable is tagged
when there is a possible change in the value of the variable due to a fault. The
observability coverage can be used to determine whether erroneous effects that
are activated by the inputs can be observed at the outputs.

For software, dynamic taint analysis, or dynamic information flow analysis,
marks and tracks data in a program at runtime in order to determine observ-
ability. This technique has been used in security as well as software testing and
debugging [6,18]. Taint propagation occurs in both explicit information flow
(i.e., data dependencies) and implicit information flow (control dependencies).
Although the way in which markings are combined varies based on the appli-
cation, the default behavior is to union them [6]. Thus, dynamic taint analysis
is conservative and does not consider masking. More accurate techniques for
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information flow modeling, such as [35], define path conditions to prove non-
interference, that is, the non-observability of a variable or expression on a partic-
ular output. These information flow-based techniques have been used for testing
in a metric called Observable MC/DC [33]; this work is very similar to checked
coverage except that markings are forward propagated from observation points
towards an oracle rather than (in checked coverage) back-propagated from the
oracle towards observation points.

Mutation testing [3,8,23] is also concerned with quality of both tests and
oracles. In mutation testing, one creates a set of programs that contain some
small modification (mutation) of the original program and determines whether
the discrepancy is detected (killed) by the test suite / oracle pair. Mutation test-
ing suffers somewhat from the problem of equivalent mutants, which are program
modifications that do not change the observable behavior of the program.

For requirements testing, much of the work has focused on requirements spec-
ified in temporal logic. In [24,36], a coverage metric called Unique First Cause
Coverage is defined by expanding the MC/DC test metric to formulas involv-
ing temporal logic operators. Similar work involves vacuity checking of temporal
logic formulas [5,16,25]. Intuitively, a model M vacuously satisfies property f if
a sub-formula φ of f is not necessary to prove whether or not f is true. Formally,
a formula is vacuous if we can replace φ by any arbitrary formula ψ in f without
affecting the validity of f :

M � f ≡ M � f [φ ← ψ]

For requirements specified as synchronous observers, the Simulink test gener-
ation tool Reactis and the Mathworks Verification and Validation plug-in for
Simulink support MC/DC generation and coverage measurement over require-
ments.

7 Conclusion

There are a variety of mechanisms to generate test cases. The two main tech-
niques for test case generation are (i) manual and (ii) automated test case gener-
ation techniques. In MBD, system engineers often write tests manually in order
to cover the requirements as well as cover program statements. The system engi-
neers study the requirements and try to determine the constraints on program
inputs and their expected outputs on the model based on the statements in the
requirements. This information is used to then create test inputs and a test ora-
cle, using various techniques. Some operate on formalized requirements, some
on the model, while others on the code auto-generated from the model. We can
measure the structural coverage of the code when these tests are executed.

The challenge for automatically generated tests is that there is no oracle.
Sometimes even in manually generated tests, defining a precise oracle for a given
test is often a difficult endeavor. When present, system requirements that are
either formalized or can be formalized serve as ideal candidates to be encoded
as oracles. Even if the requirements are in a natural language such as English
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but describe the requirements in terms of the interface of the model, then we
can convert these requirements into some formal notation.

Recent work presents a stronger notion of coverage of checked coverage, com-
pared to traditional structural values of simply covered and uncovered [29,30].
It uses dynamic backward slicing to count only statements whose execution con-
tributes to an outcome checked by an oracle. In this work we add precision to
the notion of checked coverage based on combining MC/DC masking informa-
tion with dynamic backward slicing. We believe that this information can help
system engineers identify missing requirements as well as missing test cases.
The approach presented here allows us to connect the dots between test cases,
requirements, and the model.

We demonstrated our approach using three case examples and also illustrated
how the metrics can be actually used as a closed loop in identifying missing
requirements and improving testing in a model-based approach. As part of future
work, we would like to evaluate the proposed approach on the requirements
and tests of the NASA’s Lunar Atmosphere and Dust Environment Explorer
(LADEE) mission.
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