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Abstract

Stress can lead to headaches and fatigue, precipitate addictive behaviors (e.g., smoking, alcohol 

and drug use), and lead to cardiovascular diseases and cancer. Continuous assessment of stress 

from sensors can be used for timely delivery of a variety of interventions to reduce or avoid stress. 

We investigate the feasibility of continuous stress measurement via two field studies using 

wireless physiological sensors — a four-week study with illicit drug users (n = 40), and a one-

week study with daily smokers and social drinkers (n = 30). We find that 11+ hours/day of usable 

data can be obtained in a 4-week study. Significant learning effect is observed after the first week 

and data yield is seen to be increasing over time even in the fourth week. We propose a framework 

to analyze sensor data yield and find that losses in wireless channel is negligible; the main hurdle 

in further improving data yield is the attachment constraint. We show the feasibility of measuring 

stress minutes preceding events of interest and observe the sensor-derived stress to be rising prior 

to self-reported stress and smoking events.
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1. INTRODUCTION

Although low to moderate levels of stress can improve task performance and contribute to 

skill development [24,50], repeated exposure to acute stress can cause significant damage to 

physical and mental well-being [32, 45]. Acute stress can lead to headaches, trouble 

sleeping, and fatigue [6, 10, 12, 33]. Repeated stress can cause or worsen cardiovascular 

diseases and cancer [44,47]. Stress can also precipitate adverse behaviors, such as 

depression, rage, anxiety, and addiction [5, 14, 15, 20]. As a result, stress contributes 

significantly to health care costs [38]. Even for healthy people, stress can degrade quality of 

life by affecting mood and productivity.

Assessment of stress has traditionally relied on surveys and self-reports. Real-time and 

continuous measurement of stress in daily life can enhance stress awareness, and 

revolutionize stress research. It can potentially lead to just-in-time intervention not only for 

stress management but also to manage other conditions that are affected by stress such as 

smoking, drinking, drug use, depression, migraine, etc. Real-time measurement of stress is a 

very active area of research. Researchers have developed a webcam-based method to 

measure stress in confined work environments [48] and a microphone-based method for use 

in unconstrained acoustic environment [29]. These approaches, however, do not lead to 

continuous measurement of stress in daily life. For example, stress from acoustics can only 

be inferred when people are conversing (25.6% of time [42]).

Physiological monitoring [19,22,40] is a promising approach for continuous assessment of 

stress. Recent work has demonstrated the feasibility of capturing physiological data in the 

natural environment with real time wireless transmission to smart-phone1. In 2010, [18] 

reported an average of 23.7 hours per participant of continuous measurement in a mobile 

health (mHealth) study with 19 participants wearing a custom-made physiological sensor 

suite for five days. They reported several issues that were major obstacles for continuous 

physiological measurements — loss of wireless connectivity, incorrect positioning of 

sensors on the body, and individuals forgetting to fully charge the sensors, or accidentally 

turning them off. In 2011, [40] reported an average of 24.8 hours per participant of good 

quality data from 21 participants over two days. Recently, [26] reported 45.6 hours per 

participant of physiological data collected from 4 participants. Although the amount of data 

collected per participant has been increasing, it is still not known whether physiological data 

can be collected in the natural field setting for a longer duration from a larger number of 

participants.

In this paper, we report our experiences from two user studies (with 40 illicit drug users and 

30 daily smokers), where 317 hours of good quality electrocardiogram (ECG) data per 

participant has been collected over 4 weeks of wearing wireless physiological sensors. We 

analyze the data collected from these two studies to understand the feasibility and challenges 

for longer-term continuous stress assessment in the field. This study reveals several lessons 

1We note that real-time wireless transmission of physiological data on smart phone is critical to facilitating just-in-time interventions 
(JITI) for stress management.

Rahman et al. Page 2

ACM BCB. Author manuscript; available in PMC 2015 March 26.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



for future efforts on physiological monitoring in daily life. It also provides key implications 

for future stress research and the design of just-in-time interventions for stress management.

First, we find that 11+ hours/day of usable data can now be obtained in a 4-week study. 

Second, we observe a significant learning effect after the first week, implying that one week 

may suffice for most users to learn proper wearing of the physiological sensors by 

themselves. Third, we observe that data yield continues to increase over time even in the 

fourth week. This may imply that fatigue stage is not reached in 4 weeks; longer studies may 

be feasible.

Fourth, we propose a framework to analyze sensor data yield and find that losses in the 

wireless channel are negligible. Fifth, we find that the yield from respiration sensor is higher 

than that for an electrocardiogram sensor, perhaps due to a more stringent attachment 

requirement; we lose at least 1.5 hours of ECG data per day due to attachment issues. It 

implies that the main hurdle in further improving data yield is the attachment constraint. 

Finally, we show the feasibility of measuring stress in the minutes preceding events of 

interest. We observe sensor-derived measure of stress to be rising prior to self-reported 

stress and smoking events.

Organization

We discuss related works in Section 2, data collection procedure in Section 3, and our 

framework for data yield analysis in Section 4. Section 5 describes how we infer stress from 

physiological data. Section 6 presents key results, lessons learned, and implications from our 

investigations. Section 7 describes limitation and future works, and Section 8 concludes the 

paper.

2. RELATED WORKS

Several studies have demonstrated the feasibility of physical activity monitoring [13, 41, 49] 

in daily life using accelerometers. Physiological sensors, however, have more stringent skin 

attachment requirements. Hence, data yield findings from accelerometer studies are not 

directly applicable to those involving physiological sensors.

Early systems such as Holter monitors enabled collection of physiological data in the field 

with a bulky sensor suite [21]. To reduce the burden, sensors were subsequently integrated 

into clothing in products such as Lifeshirt [51], Smart Vest [37], Life Guard [35], and Smart 

Shirt [17]. Wireless technology eased the burden further by removing wiring. Wireless 

integration with mobile phones made it possible to process sensor data in real-time on the 

mobile phone, and prompt users to fix loose sensor attachments. Systems using such 

technology include Alive Monitor [1], Zephyr BioHarness [3], and several others (see [9] for 

a survey). The Alive Monitor includes ECG and pulse oximeter sensing and has been used 

successfully in several field deployments [25,28]. The BioHarness system includes ECG, 

respiration, and skin temperature and has also been used successfully in the field [11]. 

Despite the recent proliferation of wireless physiological sensors that wirelessly connect to 

mobile phones, there has been surprisingly little work on the analysis of the resultant data 

for continuous stress assessment.
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Recent work has demonstrated the feasibility of capturing physiological data in the natural 

environment with real time wireless transmission to smart phones. However, long-term 

collection of continuous physiological data using wearable wireless physiological sensors in 

the free-living environment are rare as acknowledged in recent literature [26]. Amount of 

data collected have ranged from 23.7 hours per participant from 19 participants [18] and 

24.8 hours per participant from 21 participants [40], to 45.6 hours per participant from 4 

participants [26]. In contrast, we report 317 hours per participant from 40 participants. 

Moreover, to the best of our knowledge, no existing work has systematically analyzed major 

factors that are responsible for data loss. Such an analysis is critical to identifying major 

hurdles in improving the data yield further. Finally, this is the first work to demonstrate the 

feasibility of stress assessments in the minutes preceding self-reported stress and addictive 

behaviors.

3. DATA COLLECTION

Two user studies were conducted to investigate the relationships among stress, addictive 

behaviors, and their mediators (e.g., conversations, physical activity, and location), where 

these factors were measured via wearable sensors, rather than via traditional self-reports. 

Studies were conducted on 40 illicit drug users (Study 1) and 30 daily smokers and social 

drinkers (Study 2). Table 1 presents a summary of the demographics of the study 

participants. Both studies were approved by Institutional Review Boards (IRBs). In the 

following, we describe the devices and protocols used.

3.1 Devices and Sensor Measurements

Sensor Suite—During the study period, participants wore the AutoSense sensor suite 

underneath their clothes [16]. AutoSense consists of an unobtrusive, flexible band worn 

around the chest. It provides respiration data by measuring the expansion and contraction of 

the chest via inductive plethysmography (RIP) and includes two-lead electrocardiograph 

(ECG), 3-axis accelerometer, temperature (ambient and skin), and galvanic skin response 

(GSR) sensors. Although we used a research platform (e.g., AutoSense) that may not be as 

comfortable as commercial sensors such as Zephyr BioHarness [3], we believe that our 

feasibility results should still be applicable to studies that use commercial sensors. We chose 

AutoSense because it provides a significantly longer lifetime (7 days vs. 3 days). The 

measurements collected by AutoSense are transmitted wirelessly using ANT radio [2] to an 

Android smart phone. The sampling rates for the sensors are 64 Hz for ECG, 21.33 Hz for 

respiration, 10.67 Hz for each accelerometer axis and GSR, and 1 Hz for the two 

temperature sensors and the battery level. These samples are transmitted at the rate of 28 

packets/second, where each packet is 8 bytes long and contains 5 samples.

Mobile Phone—Each participant also carried a smart phone. The smart phone had four 

roles. First, it received and stored data transmitted by the sensor suite. Second, it sampled 

and stored data from the sensors built into the phone — GPS and accelerometers. Third, 

participants used the phone to complete system-initiated self-reports. Finally, participants 

reported the beginning of drinking and smoking episodes by using a button on the smart 

phone.
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3.2 Field Study Procedure

In both studies, participants were trained in the proper use of the devices. They were shown 

how to remove the sensors before going to bed and how to put them back on correctly the 

next morning. They were also asked to take it off during shower and any contact sport. 

Participants received an overview of the smart phone software's user interface, including the 

self-report interface. Once the study coordinator felt that participants understood the 

technology, they left the lab and went about their normal life. Participants were asked to 

wear the sensors during their waking hours, complete self-reported questionnaires when 

prompted, and record smoking and drinking events.

Participants were asked to return to the lab daily. The study coordinator downloaded the data 

collected in the previous day and reviewed the physiological measurements to ensure that 

sensors were working and were being worn properly. On the final day, participants returned 

study equipment and completed an Equipment and Experience Questionnaire. Lastly, 

participants were debriefed on their experiences and comfort with the study.

3.3 Study Specific Information

3.3.1 Study 1: Illicit Drug Users—We recruited polydrug users from an ongoing study 

who agreed to wear AutoSense and complete additional self-reports. Since drug use is a rare 

event, we choose to conduct this study for four weeks to maximize the likelihood of 

capturing real-life drug use events.

Compensation: Participants receive $10/day for wearing the AutoSense sensor suite (and 

$5 bonus for 14+ hours of wearing), carrying the study phone, and completing device-

prompted study questionnaires consisting of 32 items. In total, participants are paid up to 

$380 plus bonus (if any) for four weeks of participation.

Self-Report Measures: Participants were requested to voluntarily record on the smart 

phone whenever they smoked a cigarette, used any substance (e.g., cocaine, heroin or 

another opioid, marijuana, benzodiazepines, or alcohol) outside of a medical context, or 

whenever they felt overwhelmed, anxious, or stressed more than usual. Urine drug screens 

and retrospective drug use interviews occurred 3 times per week to verify drug use self-

reports.

3.3.2 Study 2: Daily Smokers and Social Drinkers—We recruited “daily smokers” 

and “social drinkers” from the student population at a large university (approximately 

23,000 students). We choose one week study duration for each participant to cover all days 

of a week.

Compensation: Participants earned $35 for daily visits ($5/day); and $75 for completing all 

end-of-study procedures and returning all equipment. Completing a device prompted self-

report questionnaire consisting of 42 items was worth $1. An additional $0.25 bonus was 

awarded if the questionnaire was completed within five minutes. A maximum of 20 requests 

for self-reports occurred each day. Thus, a participant could earn up to $20/day ($25 with 

bonus, if any), adding up to $140 over seven days ($20 x 7). In total, participants are paid up 
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to $250 plus bonus (if any). Since wearing physiological sensors and answering 42-items 

questionnaire more than 13 times/day are highly burdensome, level of compensation was 

derived from the prevailing wage in similar behavioral science studies that involves wearing 

physiological sensors [36].

Self-Report Measures: In addition to completing system-initiated self-reports, participants 

were requested to voluntarily log each instance of smoking or drinking on the phone using 

touchscreen.

In this paper, we report data on the feasibility of stress assessment preceding voluntarily 

reported events (e.g., stress, smoking, drug use, and drinking alcohol).

4. DATA PROCESSING

In this section, we propose a framework (see Figure 1) to identify major factors that may be 

responsible for data loss when using wireless physiological sensors. We also describe the 

computational procedure we use to quantify their impact.

Study duration

It is the total number of days that participants were active in the study. In Study 1, four 

weeks of data was collected from 40 participants, for a total of 922 person days. In Study 2, 

we collected seven days of data from 30 participants, for a total of 210 person days. We 

report the usable data (yield) and loss in units of hours per person per day.

Active/Inactive periods

Because participants were asked to remove the physiological sensors during sleep, the active 

period per day refers to that part of the day when participants were awake and available for 

wearing the sensors. We estimate active period to be the period between the first and the last 

time of the day when acceptable data from any of the physiological sensors (e.g., respiration 

or ECG) was available. The remaining time of the day (outside the active period) is labeled 

as inactive period. If participants took the sensors off within the active period (e.g., to take 

shower), these episodes also contributed to data loss since it occurred within the active 

period.

Acceptability of ECG and respiration data

For both respiration and ECG, signals are labeled as acceptable if they retain their 

characteristic morphologies; and unacceptable otherwise. ECG signals are rendered 

unacceptable mostly due to improper or loose contact of electrodes on body, electrode 

detachment, loosening of electrical connectors, drying out of gel, or noise from physical 

movement. Morphology of an acceptable ECG signal corresponds to the standard ECG 

wave.

Respiration signals are largely affected by misplacement of the chest band and slipping of 

the band from its expected location on chest. Mere loosening of the chest band sometimes 

results in a low amplitude signal, but that was considered acceptable if it still retained the 

characteristic morphology of a respiration signal. Signal saturation to a point where variation 

Rahman et al. Page 6

ACM BCB. Author manuscript; available in PMC 2015 March 26.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



is no longer detectable is considered unacceptable. We adopt a method proposed in [39] for 

determining acceptability of ECG and respiration signals.

Phone on/off

Within the active period, the period in which the study application was running on the study 

phone is considered as phone on. When the application runs on the phone, it saves phone 

sensor data even if the body sensors are off or out of radio range. We did not inform 

participants how to stop the application when the phone was on. But participants could 

always use the power button on the phone to switch the phone off (which would also stop 

the application). Time within the active period when the phone was turned off, either 

intentionally or due to battery drainage, is referred to as phone off.

Sensor on/off

Sensor on is defined as the period when the study phone receives data from body sensors. 

Sensor off is defined as the period when the study phone is on and the data acquisition 

application is running, but no data is received from the body sensors for more than one 

minute. We describe later how we distinguish sensor off from the sensor's being out of 

wireless range.

Sensor battery down

The wearable sensor suite transmits battery level data. A full charge of our battery is 4.1 

volts, nominal operation is 3.7 volts, and the minimum voltage needed for operation is 3 

volts. When the battery level is close to 3 volts and the application stops receiving data from 

the sensors, we define this event as sensor battery down.

Sensor on-body/off-body

Sensor on-body is the time duration when physiological sensors are attached to the 

participants’ body and the phone receives data from the body sensors, even if the data is of 

poor quality. When the sensors are off body, the data appears saturated (i.e., showing 

negligible change over time [39]). Because AutoSense has both respiration and ECG 

sensors, unsaturated data from either of the sensors indicates that the sensor is on-body. 

Otherwise, it is considered off-body if that time period is within the active duration.

Attachment loss

Attachment loss refers to times when data quality was unacceptable despite the sensors’ 

being attached to the body. It is attributed to three factors:

Delay in attachment occurs when the sensors are being worn but acceptable data from one of 

the sensors is delayed. Whenever the participants wore the sensors, they were also instructed 

to visualize the real time signal on the smart phone and fix the attachment, if the signal 

looked unacceptable.

Intermittent loosening occurs when, after being acceptable for some time, data quality 

becomes unacceptable intermittently (indicated by restoration of data quality in the same 

Rahman et al. Page 7

ACM BCB. Author manuscript; available in PMC 2015 March 26.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



wearing episode). This may be due to movement, ECG electrode gel drying out, or 

loosening of the electrode attachment or the chest band.

Improper attachment occurs when participants attach sensors improperly and do not fix the 

attachment for the entire wearing episode.

Loss due to jerks

When data quality becomes unacceptable immediately after the onset of physical activity 

and again becomes acceptable right after the end of the activity, we define this type of data 

loss as a loss due to jerks.

Packet loss in the wireless channel

Packet loss (different from disconnection) refers to the time duration when phone is 

wirelessly connected to the body sensors but some data is lost through the wireless 

communication channel. Packet loss could occur due to the presence of obstacles between 

the lines of sight of the devices. We recover lost data using interpolation when the signal 

retains appropriate morphology even after interpolation. Otherwise, we do not recover them 

and label these packets as lost packets.

Wireless Connection loss

During the active period, participants were instructed to carry the study phone to ensure that 

data from the body sensors could be received on the phone in real-time. A green icon 

(similar to the Wi-Fi icon) was displayed on the application to inform participants about the 

status of the wireless connection. We logged each disconnection and reconnection time 

stamp on the phone and use these time stamps to identify data loss due to wireless 

disconnections, which can result from the following two factors:

Physical separation—Wireless disconnection can result if participants walk away from 

the phone while wearing the sensors, causing the distance between the phone and sensors to 

exceed the allowable wireless range. We attribute a connection loss to physical separation, if 

physical movement (detected from accelerometer that is sampled on both the wearable 

sensor suite and on the study phone) is observed on the wearable sensors, but not on the 

study phone, preceding the event of a connection loss.

Other factors—Wireless disconnection can also result from wireless interference or issues 

with the wireless radio software (on either the sensor or the phone).

Physical Activity Detection

Physical activity episodes need to be detected to exclude data from stress assessment. We 

adapted a threshold based approach to physical movement detection proposed in [8]. To 

train our model, we collected training data from seven subjects during walking and running 

(354.16 minutes), and stationary (1,426.50 minutes) states and then trained a model to 

distinguish physical movements from stationary states. Participants wore the chest sensors 

and carried the phone, each of which has a 3-axis accelerometer. The processing of signal 

includes filtering of raw data and drift removal from the filtered data. Finally, we computed 

Rahman et al. Page 8

ACM BCB. Author manuscript; available in PMC 2015 March 26.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



a feature, i.e., standard deviation of magnitude, which is independent of the orientation of 

the accelerometers [8]. In 10-fold cross-validation test, our model provided 97% accuracy 

for on-body sensor and 96% for phone in the pocket or purse.

Systematic Filtering of Physical Activity

We did not expect (and instruct) our participants to avoid physical movement during their 

daily activities as these activities are integral parts of the usual daily life. But, it is well-

known that physical activity activates physiology and can easily confound the assessment of 

stress [40]. It was shown in [22] that the reliability of stress assessment reduces significantly 

in the presence of physical activity, even in a lab environment. As a result, data affected by 

physical activity is usually filtered out before applying a stress model on physiological data.

We developed an admission control criterion for identifying episodes of physical activity 

that may confound the assessment of stress to automatically filter out unusable data. Figure 

2 shows the threshold for assessment of physical activity. Using this method, we find that 

17% of ECG data is affected by activity in daily smokers (Study 2).

5. STRESS INFERENCE FROM PHYSIOLOGICAL DATA

Stress estimation from ECG has traditionally relied on a single feature (e.g., heart rate or 

heart rate variability (HRV), respiratory sinus arrhythmia (RSA) [30, 31]. Machine learning 

models that identify a more specific fingerprint of physiological activation began emerging 

in the past decade [19]. We use the stress model in [40] since it has been validated in both 

the lab and the natural field environment. This model provides a continuous measure of 

stress that is normalized to be between 0 and 1.

This machine learning model predicts whether a one minute measurement corresponds to a 

physiological response to a stressor. It was trained and tested using physiological data from 

a 21 person lab study where participants were carefully exposed to three diverse and 

validated stressors (public speaking, mental arithmetic, and cold pressor challenges) while 

physiological data and self-reports were collected. This model can classify stress and non-

stress minutes with 90% accuracy for 10-fold cross validation (92% accuracy for 66%-34% 

split), and showed 0.72 correlation with self-reports. Features used in the model included 

heart rate variability (HRV), respiratory sinus arrhythmia (RSA), minute ventilation, and IE 

ratio, among several others. To show the generalizability of the model in field, the same 21 

participants wore the sensors 12-14 hours daily for 2 days in field and provided stress ratings 

25 times/day when prompted. It was found that the average rating produced by the stress 

model had a correlation of 0.7 with the average rating of self-reported stress [40]. We note, 

however, that although we use a specific stress model for the analysis reported in this paper, 

our goal here is to analyze the relative changes in stress level (section 6.4) and hence it is not 

strongly dependent on a specific stress model.
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6. RESULTS AND IMPLICATIONS

6.1 Overall Data Yield and Trends

We use the framework presented in Section 4 (see Figure 1) to report the overall data yield 

and its characteristics. Table 2 lists the quantity of data collected in the two studies. It also 

reports data lost due to various factors defined in Section 4. We also report data yield for 

ECG and respiration separately. Even though these two sensors are hosted on the same 

sensor device and share the wireless radio, difference in their attachment requirements may 

explain the difference in yield observed for these two sensors. Finally, the amount of 

physiological data affected by physical activity is also reported, since stress assessment may 

not be accurate during these periods. This data set has produced several important 

observations and results. In the following, we analyze in greater detail some of the main 

results from which we can draw lessons and suggest implications for stress assessment in the 

natural environment to support self-monitoring, self-management, or broadly health 

research.

6.2 Key Observations for Data Collection with Wireless Physiological Sensors

6.2.1 Feasibility of Long-term Data Collection—We first observe from Table 2 that 

participants in Study 2 wore the sensors for 10.45 hours, of which we get 7.87 hours of 

acceptable data on ECG2, which is 75.3% yield. In Study 1, the yield is 85.7% (i.e., 11.33 

hours of acceptable ECG data out of 13.22 hours of sensors on-body). This represents a 

significant higher yield in Study 1. To understand this difference, we examine data yield 

from Study 1 for each study week individually(as opposed to considering the average of all 

four weeks).

Filled bars in Figure 3 present an average yield in each of the four weeks of Study 1, and 

unfilled bar is the average yield in Week 1 of Study 2. We observe that the (78.9%) yield in 

Week 1 of Study 1 is comparable to the (75.3%) yield in Week 1 of Study 2. Statistically 

significant improvement (from 78.9% to 84.3%) in data yield occurs in Week 2. We thus 

hypothesize that one week of participation may suffice to learn how to wear and maintain 

sensors well. We summarize this finding below:

Observation 1. For physiological sensor wearing, a signifi-cant learning effect is 

observed after Week 1.

We further observe that the improvement, though not statistically significant, continues 

through all four weeks. This points to potential feasibility of studies longer than four weeks 

that is reported here. As mentioned in Section 1, the longest wearing episode for 

physiological sensors reported previously was 45.6 hours / participant. In Study 1, the yield 

is seen to be increasing (beyond 85%) even after each participant wore the physiological 

sensors for 317 hours. We, therefore, propose the following hypothesis.

Hypothesis 1. It may be feasible to obtain a good data yield (e.g., 11+ hours/day) 

from wireless physiological sensors, even when they are worn for four weeks or 

longer.

2We get an higher yield on respiration, but analyze ECG since it has the lowest yield of all physiological sensors.
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In the following, we discuss major factors that may explain or improve data yield with 

wireless physiological sensors.

6.2.2 Impact of Short Packets on Wireless Data Loss—There have been significant 

improvements in the design of low-power wireless radios in recent years, making them a 

mature technology. For example, studies conducted few years ago [18] reported 50% data 

loss due to various issues, including that due to wireless radio. Similarly, [40] reported 30% 

losses. It was also reported in [40] that the average length of consecutive valid data was less 

than 4 minutes. The sensor suite in our study used ANT radio, which is similar to the newly 

emerging low power Bluetooth radio. In addition to various improvements in antenna design 

that are better suited to the body, and higher energy efficiency, we discuss a specific design 

decision that decreased data loss in wireless transmission in our studies.

Shorter packets: Figure 4 shows number of packets that were lost between two successive 

packet arrivals. We observe that 82% of the time, we lose only one packet in a burst and 

10% of the time we lose two packets subsequently. Figure 4 also depicts the contribution of 

packet loss to the overall data. We note that the use of short packets is quite advantageous 

for physiological sensors because each packet then constitutes only a small portion of ECG 

or respiration cycle. Interpolating one, two, and three packets reduces the overall data loss 

rate due to packet losses from 9.5% to 1.6%, 0.51%, and 0.25% respectively. We only 

interpolated one packet that constitutes 8% of a cycle for both ECG and respiration using 

Hermite interpolation (which did not adversely affect signal morphology). As shown in 

Table 2, data lost due to packet losses or wireless disconnection is less than 2.5% each, 

which is a signifi-cant improvement over the previously reported studies.

We summarize this observation in the following.

Observation 2. Using short packets can limit data loss in wireless transmissions.

6.2.3 Impact of Attachment Burden—A major hurdle in collecting physiological data 

in daily life over long term is the stringent attachment requirement for these sensors. We 

observe (Table 2) that in Study 2, we lose only 0.32 hours/day of respiration sensor data as 

compared to 2.23 hours/day for ECG sensor data. In Study 1 (Drug Users), we lose 1.04 

hours/day of respiration data as compared to 1.58 hours/day of ECG data3. In both studies 

the difference in the yield of two sensors can be attributed to attachment losses. ECG is 

sensitive to proper attachment of the gel electrodes to skin at an appropriate location, but for 

respiration sensor, it suffices to wear a band around mid-chest. Respiration sensor does not 

require skin contact and it can be worn with flexible positioning of the band from the upper 

chest position to the abdomen at the level of umbilicus [4] - making it more challenging to 

wear and maintain ECG electrodes properly than the respiration band. However, even 

respiration sensor band can become loose and slip over the course of wearing for the entire 

day.

3As explained earlier, the higher overall yield in ECG occurs in Study 1 due to learning effect over four weeks.
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The major component of data loss from attachment constraints is the one lost due to 

intermittent loosening. We analyzed the pattern of this loss as the day progresses. We find 

that intermittent loosening increases as the day progresses (r = 0.8, p < 0.001) (see Figure 

5). We believe that eliminating or reducing the attachment constraints for physiological 

sensing may significantly improve data yield in the field environment. We note, however, 

that our findings are specific to the ECG sensor used in our studies. Newer ECG sensors 

such as patches or smart fabric electrodes may have lower attachment issues, which can be 

investigated in future studies. We summarize this effect in the following observation.

Observation 3. Attachment constraints is a major source of data loss during 

everyday wearing of physiological sensors that involve careful attachment.

6.3 Implications for Stress-related Research

In this section, we discuss implications of this study on future prospects of continuous stress 

assessment in the natural environment for stress research. It has also implications on self-

monitoring of stress because these types of systems have potential in assisting people in 

monitoring their health conditions. Although wearing the chest band is burdensome for daily 

use, some users may be motivated, perhaps due to a health condition (e.g., stress can 

aggravate migraine attack), to use such systems even when there is no direct monetary 

incentive. Wearable physiological sensors are also becoming popular in the quantified-self 

community [43].

Here, we analyze how much overall physiological data is available daily for stress 

assessment, especially around events (or behaviors) of interest. We consider five events of 

interest, each of which were self-reported by our participants as part of the study protocol. In 

Study 1, the drug users reported smoking, drug use, craving, and stress events while in Study 

2, daily smokers and social drinkers reported each smoking and drinking event. Table 3 

shows overall statistics of all types of voluntary self-reports collected.

We first analyze the availability of stress measurements preceding events of interest since 

stress has long been known to play a prominent role in precipitating several adverse 

behaviors, especially smoking. We then analyze how likely participants are to wear the 

sensors when such events of interest occur.

6.3.1 Stress Assessment Preceding Events of Interest—Given that smoking is the 

largest cause of death [34], over $300 million are spent on smoking cessation research by 

US National Institutes of Health alone. Decades of work in this area, all based on self-

reported stress data, found stress rising hours prior to a lapse in addictive behaviors [46]. 

However, due to a lack of continuous stress measurement, it has not been known what 

happens minutes prior to a smoking lapse. Although our study did not assess stress prior to a 

smoking lapse in abstinent smokers, it shows the feasibility of obtaining stress data in 

minutes prior to a smoking event.

Figure 6 shows the availability of stress assessment in minutes preceding to a self-reported 

smoking, drinking, and drug craving events. Data for self-reported stress and drug use are 

similar and hence are omitted for brevity. We report these data in terms of percentage of 
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time (out of the active period per day). This helps normalize these data across the two 

populations since the absolute numbers are quite different in the two studies.

We observe that it is indeed feasible to obtain stress measurement in each minute preceding 

an event of interest via self-reports. Up to 65% of the data is available for stress assessment 

in the neighborhood of the event even after excluding data affected by physical activity. 

Availability of stress measurement data arbitrarily close to the self-report opens up 

tremendous new opportunities to not only study the role of stress in these adverse events 

with significant health impact, but also opens up an opportunity to deliver interventions 

upon detection of a rise in stress in real time (since stress data are available on mobile 

phone).

We make several observations from our data. First, data availability in the minute preceding 

a self-report is higher than usual. This may be due to enhanced consciousness of participants 

to check sensor attachments prior to reporting an event. Second, we observe that there is a 

higher level of activity preceding a smoking event than usual. This may be due to walking 

out of buildings prior to smoking. We still obtain over 55% usable data in each population. 

Third, we observe that if the analysis is flexible in using best 3 out of 5 preceding minutes, 

then the amount of data available for stress increases to around 70%. We now summarize 

these observations.

Observation 4. It is now feasible to assess stress in the minutes preceding self-

reported addictive behavior events.

6.3.2 Likelihood of Capturing Events of Interest—For self-reporting stress and drug 

use, participants used another digital device that they were asked to carry with them at all 

times. We use these two reports to estimate how likely the participants are to be wearing the 

sensors (to enable stress assessment) when these events of interest occur. We observe that on 

days when participants reported a stress event, the average time of sensor wearing is 11.96 

hours/day as compared to 13.32 hours/day for those days when these same participants did 

not report a stress event (two tailed paired t-test, p < 0.001). Similarly, on the days when 

participants reported a drug use event, the average time of wearing was 12.07 hours/day 

versus 13.43 hours from these same participants on non-drug days (two tailed paired t-test, p 

< 0.001). We use these observations to hypothesize that on days or times when participants 

engage in unusual behavior (anticipated stress such as job interviews or planned drug use), 

they are not as likely to wear the sensors. Yet, there are sufficient instances of these events 

when it is feasible to capture physiological data for stress assessment.

Observation 5. Participants wear fewer hours on days when stress or drug events 

are reported.

6.4 Implications for Stress-related Just-in-time Intervention

Now that it is feasible to obtain stress assessment in real-time on mobile phone preceding 

events of interest, it has several implications for the design and delivery of just-in-time 

interventions (JITI). In this section, we first present the pattern of stress observed preceding 

events of interest and draw implications on how they may inform the design of JITIs. We 
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then discuss how the measurement of other contexts from sensors can be used in the design 

or delivery of JITIs.

Stress Pattern—For smoking, stress, craving, and drinking, we use the self-report from 

participants as the timing of these events. But, for drug use, self-report is usually provided 

tens of minutes after the use episode. Hence, self-report is not a reliable marker of the timing 

of these events. Hence, we use a model we recently developed to detect the timing of illicit 

drug use from physiology [23].

Figure 7 shows the stress patterns observed preceding the events of interest. We make 

several observations. First, we observe that stress is seen to be rising in the minutes 

preceding a self-report of stress. It also confirms that the stress model used here is sensitive 

enough to capture the rise in self-reported stress. Second, we observe that even though this 

study did not involve abstinent smokers, stress levels preceding a smoking event is still 

higher than usual4. Further, the stress level is elevated several minutes preceding a smoking 

report. This is observed in both populations, which may warrant further investigation by 

smoking researchers to understand and explain the pattern. Stress level preceding other 

events do not show such clear patterns. We summarize these observations in the following.

Observation 6. Elevated stress from sensors is observed prior to a self-reported 

smoking or stress event, which can inform the design and delivery of just-in-time 

interventions.

Third, we observe a higher stress level among drug users than student smokers. This may be 

due to lower socio-economic status of drug users, as compared to students. Fourth, within 

each population, stress is also highly variable across participants. There is also wide within-

person variability which is omitted for clarity of presentation. Finally, as the vertical bars 

show in these figures, there is wide variability in the stress level. These observations suggest 

that stress provides important information for triggering an intervention to avert an adverse 

behavior. But, stress measurement may not be sufficient by itself due to wide variability and 

additional strategies should be employed to make such interventions more accurate. They 

could include personalization of the models as well as use of other contexts.

Incorporating other contexts to trigger just-in-time intervention—To explore 

additional context that may be detectable from sensors and can help predict an imminent 

adverse behavior, we analyze the physical activity levels. In the case of smoking events, 

activity pattern from both studies show a common pattern (Figure 6(a) and (c)). Physical 

activity around the smoking self-reports for both the cases is higher at times close to the 

self-reports. This is because smokers usually smoke cigarette in a designated area. They 

walk to or from the smoking spot around smoking session. Therefore, it may be possible to 

use the detection of walking outside a building to improve the prediction of a smoking event 

which may then be used to trigger an intervention to avert a smoking lapse event.

4We note that activity affected data is not considered for stress assessment and hence the rise on stress level is not a result of walking 
episodes before a smoking event.
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7. LIMITATIONS AND FUTURE WORK

This work presents several findings that have implications for future monitoring of stress in 

research as well as for personal health and well-being. However, our work has several 

limitations that could be addressed in future works.

Generalizability

Both studies were monitored or supervised by professional staff. Participants had a training 

session where they learnt about proper wearing of devices, which improved the data yield 

over time (see Figure 3). It remains an open question whether similar or better data yield can 

be obtained without daily meetings, especially in the absence of micro-incentives to 

encourage compliance with the protocol, such as when users voluntarily wear sensors for 

self-monitoring. Nevertheless, this study provides a first evidence of high data yield in a 4-

week study.

Sensor Type

This study considered two physiological sensors with specific attachment requirements. 

Again, it remains an open question whether similar or better yield can be obtained for other 

sensors that may have different attachment requirements (e.g., smart patch, smart watch).

Temporal precision of self-report

Self-reports and actual events may not always be synchronized. Participants may report an 

event before, during, or after the actual occurrence. Hence, the stress levels observed 

preceding self-reported events may not be temporally precise. Automated detection of these 

events from sensors (e.g., traffic stressors from GPS, exam from calendar) will improve the 

temporal precision of relating stress to the event of interest. These methods are an active 

area of research and promise a future where addictive behaviors such as smoking [7], drug 

use [23], and drinking [27] may be detected accurately from sensors.

8. CONCLUSION

This work demonstrates the feasibility of collecting continuous stress data from wireless 

physiological sensors in the natural environment for 4 weeks. Stress research that have been 

traditionally limited to self-reports, can now be conducted with sensors and provide 

tremendous visibility into stress dynamics around events of interest. Similarly, interventions 

that have been limited to self-initiation or pre-selected-time-based can now be triggered 

based on real-time sensor data. Primary hurdle to further increasing the data yield as well as 

duration of sensor wearing to several months is the attachment constraints and burden 

associated with physiological sensing. Development of contact-less sensors may enable the 

next giant leap in physiological sensing.
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Figure 1. 

A hierarchical framework for analyzing data loss (and data yield) for physiological data 

collected in the natural environment. We used this framework to quantify the contribution of 

various factors in data loss for both studies. We present them in Table 2.
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Figure 2. 

Threshold to detect physical activity. Standard deviation of accelerometers magnitude 

greater than 0.21348 is labeled as non-stationary (i.e., walking or running) and the others are 

labeled stationary. We find that daily smoker population was physically active for 16.83% 

(20% for drug users) when they were wearing our sensors.
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Figure 3. 

Data yield (the ratio of acceptable to sensor on-body duration) for Week 1 in Study 2 

(unfilled bar) and for all four weeks in Study 1 (filled bars). On average, data yield increased 

over time. The increase observed from first week to second week in Study 1 is statistically 

significant (paired t-test, p = 0.035).
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Figure 4. 

Number of consecutive packets lost between two successive packet arrivals with their 

relative contribution to overall lost samples. Note that each packet contains only five 

samples.
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Figure 5. 

Frequency of intermittent loosening throughout the day. Red bold line is the least square 

regression for the incidents of intermittent loosening (ECG) for drug users (Study 1) (r = 

0.84, p < 0.001). Blue dashed line is the regression line for daily smokers (Study 2) (r = 0.8, 

p < 0.001). It shows that intermittent loosening increases with the progression of the time of 

day for both population.
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Figure 6. 

In each group of 3 bars, 1st bar shows the fraction of physiological data available for stress 

assessment, 2nd bar shows what fraction of data is affected by activity, and 3rd bar shows 

what fraction becomes unacceptable due to poor data quality. Vertical dashed line indicates 

the relative time of self-reports. Bars before the vertical dashed lines present the availability 

of data for stress assessment in preceding individual minutes -1 through -10. After the 

vertical line, best 2/3 means taking the average availability of two best previous minutes out 

of three, and best 3/5 means taking the average availability of three best previous minutes 

out of five. Last group of bars in each figure represents overall minute by minute availability 

of data for stress assessment. (a), (b) are for drug users (n = 40) and (c), (d) are for daily 

smokers (n = 30).
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Figure 7. 

Stress level before self-reported stress (a), smoking (b), drug use (c), and drug craving (e) 

events in Study 1. Stress level before self-reported smoking (d) and drinking (f) events in 

Study 2. Vertical dashed line shows the time of the event report, and horizontal bold line 

shows average daily stress level. Figure (a) shows that the stress level in minutes preceding 

a voluntary self-report of stress event is higher than average daily stress. Also, stress level in 

minutes preceding smoking is relatively higher than average daily stress.
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Table 1

Demographics of participants in the two studies.

Statistics Drug Users Daily Smokers

# of Participants 40 30

# of Males 29 15

# of Females 11 15

# of Drop Outs 4 2

Age 41 ± 10 24.25 ± 6.25

Race White 19 19

African-American 20 8

Asian 0 3

Refused 1 0

Educational High School Grad 40 0

Status University Grad 0 30

Employment Full Time 15 6

Status Part Time 10 14
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Table 2

Overall physiological data yield statistics computed from all person days of both studies using the hierarchical 

framework proposed in Figure 1.

Factors Study 1 Study 2

Study Length (person days) 922 210

Active period 14.57±2.8 13.02±2.01

Phone off 0.78±0.23 2.2±0.31

Phone on 13.73±2.2 10.82±1.6

Sensor off 0.17±0.06 0.37±0.04

Sensor Battery Down 0.03±0.32 0.08±0.88

Sensor off Body 0.34±1.31 0.11±0.19

Sensor on Body 13.22±1.86 10.45±1.55

Packet Loss 0.27±0.01 0.18±0.04

Wireless Disconnection 0.04±0.01 0.15±0.01

ECG

    Delay in Attachment 0.22±0.14 0.3±0.10

    Intermittent Loosening 1.17±0.09 1.8±0.04

    Improper Attachment 0.19±1.72 0.13±0.71

    Acceptable Data 11.33±0.88 7.87±0.31

    Activity 2.26±0.18 1.32±0.06

    Usable 9.06±0.72 6.55±0.26

RIP

    Delay in Attachment 0.12±0.1 0.05±0.06

    Intermittent Loosening 0.72±0.05 0.17±0.01

    Improper Attachment 0.20±0.63 0.1±0.51

    Acceptable Data 11.84±0.52 9.83±0.55

    Activity 2.36±0.11 1.66±0.10

    Usable 9.47±0.42 8.18±0.47

Values (mean±std) are in hours per participant per day. To show the subject variation, standard deviation is added with each mean value.
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Table 3

Statistics of voluntary self-reports in the field. Smoking self-reports are frequent. Craving, drug use, drinking 

alcohol, and stress reports are less frequent.

Events # Self-reports Self-report/day

Study 1 Smoking (Cigarette) 2643 2.87

Craving for drug 302 0.33

Illicit Drug Use 142 0.15

Perceived Stress 108 0.12

Study 2 Smoking (Cigarette) 1520 7.24

Drinking (Alcohol) 144 0.68
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