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Abstract: Parkinson’s disease is characterized by motor and non-motor symptoms, such as defects
in the gut function, which may occur before the motor symptoms. To date, there are therapies that
can improve these symptoms, but there is no cure to avoid the development or exacerbation of this
disorder. Dysbiosis of gut microbiota could have a crucial role in the gut–brain axis, which is a
bidirectional communication between the central nervous system and the enteric nervous system.
Diet can affect the microbiota composition, impacting gut–brain axis functionality. Gut microbiome
restoration through probiotics, prebiotics, synbiotics or other dietary means could have the potential
to slow PD progression. In this review, we will discuss the influence of diet on the bidirectional
communication between gut and brain, thus supporting the hypothesis that this disorder could begin
in the gut. We also focus on how food-based therapies might then have an influence on PD and could
ameliorate non-motor as well as motor symptoms.

Keywords: probiotics; prebiotics; synbiotics; Parkinson’s disease; neurodegeneration; α-synuclein;
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1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized
by the loss of dopaminergic neurons in the midbrain, specifically in the substantia nigra
pars compacta, associated with the formation of cytoplasmatic inclusions named Lewy
bodies constituted of insoluble α-synuclein aggregates [1]. Nevertheless, PD pathology
involves the degeneration of non-dopaminergic neurons as well. Interestingly, α-synuclein
deposition is observed in several peripheral organs including the gastrointestinal (GI)
system (submandibular gland, stomach, and bowels) raising the question of a possible role
of the gut in PD pathogenesis [2].

PD is a complex disorder with multifactorial etiology: both environmental and genetic
factors participate in a common set of pathways including mitochondrial alteration [3], ROS
formation [4], protein aggregation, compromised autophagy and neuroinflammation [5,6].

PD clinical diagnosis is centered on the observation of both motor and non-motor
symptoms. Rest tremor, bradykinesia, rigidity and loss of postural reflexes are the car-
dinal PD motor symptoms. Rather, secondary motor signs include dysarthria, glabellar
reflexes, dysphagia, sialorrhea, micrographia, festination, shuffling gait, hypomimia and
dystonia [7]. Although PD is considered a movement disorder, it is associated with a wide
spectrum of non-motor features, such as anosmia, depression, sleep disorders, gastrointesti-
nal dysfunction and low-grade mucosal inflammation in the enteric nervous system [8].
During later stages of the disorder, additional non motor features may appear that include
autonomic dysfunction (orthostatic hypotension and urogenital dysfunction), pain and
cognitive deficits [9].

To date, there are treatments that could help relief these symptoms but there is no
cure to control the development and progression of this disease [10]. Pharmacological
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treatments include dopamine-based preparations such as levodopa, dopamine agonists
and monoamine oxidase-B (MAO-B) inhibitors are usually administered as initial treat-
ments [11]. Levodopa is the most commonly used drug, which controls some motor
symptoms and counteracts dopaminergic cell loss by improving dopamine synthesis.
However, this therapy has numerous adverse effects, it does not inhibit dopaminergic neu-
rodegeneration and has no impact on non-motor symptoms [12]. Moreover, PD-associated
gastrointestinal dysfunction contributes to levodopa effect fluctuations and oral treatment
with levodopa needs optimal GI function to determine an ideal drug metabolism, indeed,
it has been demonstrated that levodopa leads to delayed gastric emptying in healthy pa-
tients [13] and aggravates GI symptoms in PD patients [14]. In addition, further studies
found that levodopa responsivity is directly correlated with the severity of α-synuclein
accumulation in the enteric nervous system (ENS) [15–17].

More advanced therapies represented by deep brain stimulation, MRI-guided fo-
cused ultrasound, and therapy with levodopa-carbidopa enteral suspensions can support
individuals with medication-resistant tremor and dyskinesias [18,19].

2. Gut–Brain Axis

The gut–brain axis is defined as the two-way communication among the central
nervous system (CNS) and the ENS that bridges emotional and cognitive brain areas with
outermost intestinal functions [20]. This communication comprises the CNS (brain and
spinal cord), the autonomic nervous system, the ENS and the hypothalamic pituitary
adrenal (HPA) axis [20].

Sympathetic and parasympathetic limbs of the autonomic system participate in affer-
ent (vagus nerve to CNS) and efferent pathways (CNS to ENS) [21].

The hypothalamic pituitary adrenal gland is known to have roles in the adaptive
responses to several stressors and it is a component of the limbic system that is crucial
in emotional and memory processes [22]. Stressors together with elevated levels of pro-
inflammatory cytokines induce the release of corticotropin-releasing factor (CRF) from
the hypothalamus that activates this system. The release of adrenocorticotropic hormone
(ACTH) from the pituitary gland leads to cortisol secretion from adrenal glands [23].
Cortisol is a crucial stress hormone that interacts with several organs, brain included.
Therefore, activities of intestinal functional effector cells, such as immune cells, enteric
neuronal cells, smooth muscle cells, interstitial cells of Cajal and enterochromaffin cells are
affected by both neuronal lines and hormones [24]. Moreover, these cells are influenced by
gut microbiota [25].

As mentioned above, GI dysfunction is a crucial non-motor symptom of PD, which
frequently appears at the very early stage of the disorder. Some studies established that
PD patients are affected by constipation for more than 20 years before the onset of motor
symptoms [26]. GI symptoms, including exaggerated salivation, dysphagia, constipation,
esophageal motility disorder, and gastric abnormalities, frequently occur years before
motor symptoms and their incidence in a healthy population has been associated with an
increased risk of developing PD [27]. Additionally, the association with GI abnormalities
validates the Braak’s theory that PD might initiate in the GI tract, supported by the presence
of Lewy body burden in the ENS with respect to other body areas and in the CNS [28].

Observing the distribution of Lewy bodies in PD patients, Braak and his research
group assumed that α-synuclein pathology begins in the ENS and then travels to the
brain passing through the brainstem, midbrain, basal forebrain and lastly the cortical
regions [29,30]. α-synuclein aggregates are usually found in structures that contribute to
the parasympathetic innervation to the intestine [31]. For this reason, the vagal nerve may
represent the communication channel between the gut and brain. In fact, recently it has
been proved that full truncal vagotomy can be related to a decreased risk in developing PD
compared to highly selective vagotomy or control conditions [32,33]. Solid data are still
lacking regarding this hypothesis, and several studies show contradicting evidence.
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Interestingly, a clinical study showed that there is no significant association between
T. gondii infection and idiopathic PD [34] and another work showed a significant increase
in dopamine metabolism in neural cells [35]. Moreover, a very recent paper goes against
Braak’s theory indicating that α-synuclein aggregates are found in the vagus nerve and in
the stomach of PD patients, but not in normal ageing people, thus suggesting the beginning
of α-synuclein pathology in the brain [36].

α-synuclein accumulation in the GI system is correlated with injury in the enteric
neurons and feasibly triggers GI dysfunction [37]. The damage involves both myenteric and
submucosal plexuses of the gut and the distribution is through the whole GI tract, starting
from the esophagus to the rectum [38]. Accordingly, it has been proved that α-synuclein
can be retrogradely moved from the intestine to the brain in rat models. Emerging studies
in vitro and in vivo showed that α-synuclein can diffuse through endocytic mechanisms
to neighboring neurons where it creates inclusions [38]. Another evidence showed that a
PD-like pathology can be induced by oral administration of rotenone in mice, thus proving
that the local effect of pesticides at the level of the ENS may be enough to induce PD signs
from the ENS to the brain [39].

Since the olfactory bulbs and the ENS are continuously exposed to environmental
agents throughout inhalation or ingestion, may be possible that factors such as diet, toxins,
microorganisms and different environmental pathogens may determine and propagate PD
pathology progression probably against a background of genetic susceptibility [40].

3. Gut Microbiota

The human gut is home to numerous bacteria, archaea, fungi, microbial eukaryotes
and viruses/phages. This assortment of microbes is named the “gut microbiota” and their
respective genes are the “microbiome” [41,42]. The typical composition of gut microbial
community includes Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria and Verrucomi-
crobia phyla. Bacteroidetes and Firmicutes, in a healthy individual, represent more than the
90% of the total bacteria and their ratio depends on the host genomes and environmental
features (hygiene, use of antibiotics or drugs, lifestyle and diet) [43]. Several pathologies
affect the gut inducing dysbiosis. These pathologies include obesity, diabetes, diarrhea and
irritable bowel syndrome [44].

The gut microbiota in adults is quite stable but the bacterial community can be easily
altered by environmental factors. Dietary habits represent the main factor that influence
the microbiome variety and the effects of nutrients and diet on gut microbiota were widely
studied [45]. Emerging evidence shows that the interaction between diet and microbiota is
highly dependent on the individual microbiota composition.

Gut microbes contribute to the digestion, absorption, metabolism and transforma-
tion of undigested macronutrients into advantageous and active molecules for human
health [46]. Every macronutrient impacts the gut microbiota in a distinctive manner, and
changes in macronutrient proportions, quantities and categories are associated with mi-
crobiota composition [47]. Carbohydrates represent the most effective macronutrients for
modifying the gut microbiota, in particular dietary fiber [48].

Nowadays the identification and quantification of gut bacterial genera has enabled in-
vestigation of the impact of diet on gut microbiota. In a dietary intervention period ranging
from 24 to 48 h it has been shown that quick variations occur in microbial composition at
species and family levels (but not phyla) [49]. Similarly, rodent models indicate that changes
in macronutrient intake can modify gut microbiota composition in a day [50–52]. These
reported changes were caused not only by the diet composition, but also by intrinsic and ex-
trinsic factors that may play a role, such as circadian rhythm and feeding behaviors [53,54].
Emerging evidence shows how specific bacteria respond to certain dietary components.
Protein, fats, digestible and non-digestible carbohydrates, probiotics and polyphenols all
produce changes in the microbiome with secondary consequences for host immunologic
and metabolic markers.
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The impact of dietary proteins on the gut microbiota was first reported in 1977. A
culture-based study showed low levels of Bifidobacterium adolescentis and an improved
number of Bacteroides and Clostridia in humans with a high beef diet compared to subjects
with a meatless diet [55]. In vegetarians, it has been reported that the intake of whey and
pea protein extracts increases gut-commensal Bifidobacterium and Lactobacillus, moreover,
whey protein reduces the pathogenic Bacteroides fragilis and Clostridium perfringens [56].
Pea protein intake was also associated with increased intestinal short-chain fatty acid
(SCFA) levels, beneficial for the maintenance of the intestinal barrier [57]. Conversely, the
number of bile-tolerant anaerobes including Bacteroides, Alistipes and Bilophila is associated
with animal-based protein intake together with a reduction in the number of the Roseburia
E. rectale group [52,58,59].

Dietary polyphenols, such as flavonoids, anthocyanins and phenolic acids are widely
investigated because of their antioxidant properties. These compounds are contained in
many foods like fruits, seeds, vegetables, tea, cocoa products and wine [60] and they usually
determine the enrichment of Bifidobacterium and Lactobacillus genera in the gut [61–65]. Bifi-
dobacterium genera are known to have several health benefits included immune-modulation,
cancer prevention and inflammatory bowel disease management [66]. Interestingly, an inves-
tigation of the antibacterial activity of fruit polyphenols demonstrated that enteropathogens
such as Staphylococcus aureus and Salmonella typhimurium are particularly susceptible to these
polyphenols [67]. Moreover, low levels of infective Clostridium species (C. perfringens and
C. histolyticum) after fruit, seed, wine and tea intake were observed [62,65,68,69].

The standard Western diet is rich in saturated and trans fats but low in mono and
polyunsaturated fats. A high saturated fat intake has been shown to increase the number of
total anaerobic microflora and the relative quantity of Bacteroides and Bilophila [51,70]. There
are no clinical studies demonstrating an alteration of gut microbiota upon high-unsaturated
fat diets; however, in vivo studies (on mice) reported an increase in in Actinobacteria
(Bifidobacterium and Adlercreutzia), lactic acid bacteria (Lactobacillus and Streptococcus), and
Verrucomicrobia (Akkermansia muciniphila) [71].

Alcohol consumption could also modulate gut microbiota. Alcohol absorption occurs
predominantly in the small intestine [72] and it is mostly metabolized in the liver by alcohol
dehydrogenase (ADH), which converts alcohol into acetaldehyde which is lethal for tissues
and gut microbes. Moreover, alcohol consumption could lead to a disruption in the micro-
biota homeostasis, increasing the number of gram-negative bacteria [73,74], decreasing the
number of SCFA-producing bacteria [75], damaging intestinal barrier integrity through
toxins produced by gram-negative bacteria [76] and increasing the permeability of the
intestinal mucosa [77].

Increasing evidence proposed that alcohol intake may directly affect the gut microbiota
composition. Alcohol consumption in rats for 13 weeks led to reduced α-diversity and
β-diversity, reduced abundance of Lactobacilli, and enhanced Bacteroidetes compared to the
control group [72].

4. Gut Microbiota and PD

Evidence from Yang et al. [78] revealed that microbiota dysbiosis could represent a
cause of PD. Specifically, in a mouse model treated with rotenone, modifications of fecal
bacterial compositions displayed by a decrease in bacterial diversity and high levels of
Firmicutes and Bacteroidetes preceded the instauration of α-synuclein pathology [78]. In
humans, gut microbiota composition varies as the PD progresses and these alterations are
correlated with PD clinical symptoms [79]. Even though gut microbiota dysbiosis in PD are
well known, it is still not clear whether alterations in the intestinal microbiota are either a
cause or an effect of the disease.

Nowadays, it is well-established that the microbiota composition is altered in PD
patients [80–84]. The first evidence is from 2015 [83], in particular, fecal samples of PD
patients presented an important reduction in the number of Prevotellaceae (77.6%) together
with an increase in the number of Enterobacteriaceae, compared with healthy population,
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that result correlated with the severity of postural instability and gait trouble [85]. The
reduction in the number of Prevotellaceae diminishes the levels of beneficial neuroactive
SCFAs and decrease the biosynthesis of thiamine and folate, thus suggesting a cause of the
lack of these vitamins in PD patients [86,87].

A decrease in Prevotellaceae in PD patients may be related to the reduction in mucin
production defining an amplified intestinal permeability, known also as “leaky gut”, that
can be associated with α-synuclein aggregates through the bacteria translocation and the
production of bacterial products that induce inflammation [88] (i.e., gut-derived lipopolysac-
charide (LPS) that can support the impairment of the blood–brain barrier [89]) and the
reactive oxygen species production in the GI system thus starting the α-synuclein accu-
mulation at the level of ENS [90]. In an in vivo study, using rats injected at the level of
substantia nigra with LPS, an induction of inflammation was observed, leading to damage of
the nigrostriatal dopaminergic neurons, thus suggesting that this event could be implicated
in neurodegeneration processes [91]. Moreover, Gorecki et al. [92] further investigated
the effects of LPS in the communication between gut microbiota and α-synuclein accumu-
lation, overexpressing the gene of human α-synuclein in mice. Firstly, authors showed
that the levels of mucin-degrading Verrucomicrobiae and LPS-producing Gammaproteobacte-
ria were higher in fecal samples of severe PD patients, while in mice overexpressing the
human α-synuclein, the number of Verrucomicrobiae was lower. Secondly, the researchers
demonstrated that LPS exposure can alter the intestinal barrier function targeting cell
membrane tight junctions. Moreover, LPS intake in in vivo studies using an α-synuclein-
overexpressing mouse model showed the manifestation of early motor impairment, thus
supporting the hypothesis of proinflammatory gut microbiome environment as a leading
cause for PD pathogenesis [92].

Recently, it has been demonstrated that gut microbiota transplants from parkinsonian
mice into normal mice C57BL/6 was found to be associated with motor impairment
and striatal neurotransmitter reduction. Specifically, sequencing of 16S rRNA showed
that phylum Firmicutes and order Clostridiales diminished, while phylum Proteobacteria,
Turicibacterales and Enterobacteriales were higher in fecal samples of parkinsonian mice, in
parallel with enhanced fecal SCFAs. Notably, the fecal microbiota transplant (FMT) in
MPTP-induced PD mice exerted neuroprotective effects, indeed, it was able to inhibit the
activation of microglia and astrocytes in the substantia nigra, counteracting gut microbiome
alterations, decreasing fecal SCFAs, alleviating physical impairment and increasing striatal
dopamine and serotonin release [93].

Phage-related dysbiosis in PD is known, but recent findings suggest that phages can
represent a leading cause of α-synuclein misfolding and that lytic bacteriophages could
have a pivotal role in PD onset [94]. For example, the lytic Lactococcus phages are more
numerous in PD patients than in healthy people, which is related to a sharp decrease
in Lactococcus bacteria [94] since these bacteria are able to release the neurotransmitter
dopamine [95] and regulate gut permeability [96]. In fact, low levels of Lactococcus bacteria,
triggered by the high amounts of strictly lytic phages in PD patients, might be involved in
the generation of α-synuclein misfolding [29,97,98].

A recent study demonstrated that oral administration of microbial metabolites in
germ-free mice may lead to neuroinflammation causing the development of motor function
alterations [99]. In particular, it is well-known that the gram-negative bacterium Helicobacter
pylori is a leading cause of various GI problems, mainly peptic ulcers [100]. Moreover,
many studies demonstrated a causal link between Helicobacter pylori and PD [101,102].
Numerous mechanisms were proposed to link Helicobacter pylori with PD pathogenesis: it
could release toxins that affect the CNS or through glycosylation, generating cholesteryl
glucosides with the same molecular structure of toxin cycads. These cholesteryl glucosides
are neurotoxic and can go across the blood–brain barrier (BBB), leading to dopaminergic
neurodegeneration [103,104]. Furthermore, Helicobacter pylori can activate the immune sys-
tem through the activation of immune mediators, such as monocytes and determining the
release of both interleukins and cytokines that may cause an important neuroinflammatory
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response [105]. In line with this hypothesis, biopsies of colonic tissue form PD patients
were analyzed, and it was revealed that in PD conditions there is an increased expression
of pro-inflammatory cytokines, such as TNF-α, IFN-γ, IL-6 and IL1-β as well as the acti-
vation of enteric glial cells [106,107]. Neuroinflammation represents the leading cause of
the disruption of the BBB, microglia activation and neurodegeneration and the presence
of Helicobacter pylori may induce the production of autoantibodies against dopaminergic
neurons that extend neuro-inflammatory processes [108]. Lastly, Helicobacter pylori is able
to trigger apoptosis through the nitric oxide and mitochondrial Fas–FasL pathways that
could lead to neurodegeneration [109].

An healthy microbiota composition is beneficial for competitive exclusion activities,
immunological regulation and the production of substances such as vitamins, secondary
bile acids and SCFAs [110]. Dietary fiber is used as a food source by a large number of
colonic bacteria for the generation of metabolic bioproducts: in particular SCFAs [111].

Clinical studies reported a causal link between the decreased number of SCFA-
producing bacteria (from the genera Blautia, Coprococcus and Roseburia) which contributes
to the “leaky gut”, and the increased number of opportunistic pathogens and carbohydrate-
metabolizing probiotics [112,113].

Moreover, a substantial decrease in acetate, propionate and butyrate in PD fecal
samples compared with healthy controls has been observed [114]. This reduction in SCFA
might have a crucial role in ENS alterations and gut dysmotility in PD. Additionally, the
decrease in the number of Prevotellaceae and an increase in the number of Lactobacilliceae
have been associated with lower concentrations of ghrelin in PD patients [115]. Ghrelin is a
hormone produced by the gut involved in the homeostasis of the nigrostriatal dopamine
function and PD patients show an impairment in ghrelin secretion [116,117].

Notably, it has been shown that carbohydrates themselves induce dopamine produc-
tion from the brain by promoting the passage of tyrosine (dopamine precursor) across the
BBB into cerebrospinal fluid [118]. Overall, a balanced diet of carbohydrate and protein
mixture could ameliorate motor signs in PD patients [119].

Furthermore, many studies associated celiac disease, a gluten-induced GI disorder,
with PD pathogenesis [120]. However, additional investigation must be conducted to clarify
this association and the relevance of diet in PD.

Overall, the evidence reported suggests that gut microbiota is deeply altered in PD,
as reported in clinical studies and in vivo models, and the normalization of this dysbiosis
would open new therapeutic opportunities for this disorder, such as the use of nutraceutical
approaches, including probiotics, prebiotics or synbiotics and microbiota transplantation
approaches [115].

5. Diet and Gut Microbiota–Brain Axis in PD

Numerous epidemiological studies reported that diet affects (positively or negatively)
the onset of neurodegenerative disorders, including PD. The PD microbiome is character-
ized by reduced production of SCFA and improved LPS and these alterations may promote
the onset or exacerbation of PD [121]. As discussed above, diet strongly influences gut
microbial composition, and the Western diet is correlated with enhanced risk for PD, while
the Mediterranean diet (with high intake of dietary fiber [122])might be able to diminish
PD risk [123].

In particular, studies on PD patients correlate total caloric intake of macronutrients
and micronutrients with symptom severity, with greater caloric consumption related to
worse symptoms [124]. Diets rich in animal saturated fat have been related to a higher risk
of developing PD [125]. Other foods correlated with PD exacerbation include canned fruits
and vegetables, soda, fried foods, processed food, ice cream and cheese (all typical of the
Western diet). Mechanistically, this may be due to the high amount of LPS-containing bacte-
ria in the intestinal microbiome which affects gut barrier integrity, leading to endotoxemia
(i.e., systemic LPS), NLRP3 inflammasome activation, insulin resistance and mitochondrial
impairment and gluconeogenesis [123]. Conversely, a “healthy” diet increased the number
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of SCFA-producing bacteria and induced the release of components including glucagon-like
peptide 1 (GLP-1) and brain-derived neurotrophic factor (BDNF), positively influencing
PD risk [126].

The Mediterranean diet is related to a lower risk of PD onset [127]. Specific components
of the Mediterranean diet are the reason of this positive effect, including fresh fruits and
vegetables, nuts and other dried fruits, olive oil, wine and spices. Specifically, consumption
of flavonoid-rich foods (berries, fruits, tea and wine) positively affects the risk of developing
neurodegenerative disorders, including PD [128]. Polyunsaturated fatty acids (PUFA) are
also inversely related to PD risk (elevated intake of ω3 fatty acids is linked to decreased
PD risk) supporting the effects of fat consumption on the brain [129,130].

A daily diet enriched with plant carbohydrates and fiber is able to increase some
particular macronutrients that PD patients lack. In contrast, a Western diet rich in refined
carbohydrates and saturated fats, high fat goods and whole dairy products could lead to gut
dysbiosis and may be implicated in PD pathogenesis [131,132]. Furthermore, antibiotics
and microbial toxins produced by gut bacteria, comprising LPS and epoxomicin, may
determine substantial variations in the gut microbiota and inflammation [133,134]. Several
studies support the idea that differences in lifestyle are implicated in PD pathology. It has
been proved that coffee and smoking may contribute to reducing the development of PD
and this effect could be mediated by the gut microbiota. Beneficial effects of coffee and
smoking could be due to the role of gut microbiota in mitigating intestinal inflammatory
mechanisms [135]. Further studies showed that also red wine and tea may counteract PD
predisposition [136].

While there are no therapeutic approaches that can avoid or delay PD by directly
targeting the gut microbiota–brain axis, diet may influence both the gut microbiota–brain
axis by modifying the microbiota composition and the neuronal functions of the ENS and
CNS to ameliorate the progression of PD pathogenesis [137]. Recent investigations have
shown that specific nutritional membrane precursors and cofactors are able to improve
synaptic loss and membrane-related ENS and CNS impairments in PD and reduce motor
and non-motor signs in preclinical studies [138,139]. The combination with the intake of
prebiotic fiber may determine an amelioration in the treatment effects [126]. Moreover,
oral administration of two circulating phosphatide precursors (uridine, and docosahex-
aenoic acid) was linked with an amelioration in dopaminergic neurotransmission, synaptic
membrane formation and the density of dendritic spines [140–142].

6. Probiotics Interventions in PD

Numerous studies have shown that specific probiotics mixtures are able to restore gut
microbiota and improve immune response [143]. Probiotics are live microorganisms that
when administered in sufficient amounts can promote a restoration of gut microbiota and
ameliorate immune homeostasis in the host [144].

The most commonly used probiotic bacteria are Lactobacilli, Enterococci, Bifidobacteria,
yeasts and combinations of different beneficial bacteria [145]. Therapeutic and prophylactic
effects exerted by probiotics intake are thought to be mediated throughout a broad range of
mechanisms. Gut microbiota can be affected by probiotic supplement through competition
with nutrients, adhesion to the intestinal epithelium, antagonism and cross-feeding [146].
Three-dimensional bacterial communities surrounded by self-produced extracellular matri-
ces by probiotic bacteria (Biofilms) stimulate the colonization and extended duration in the
GI system of the host and prevent the mucosal enrichment of pathogenic bacteria [147].

This process is caused by the release of organic acids (i.e., lactic acid by Lactobacillus
and Bifidobacterium species) that lower GI pH, and bacteriocins that together can counteract
pathogens’ proliferation in the human GI system and urinary system [148]. Notably, treat-
ment with Lactobacillus probiotics (in particular Lactobacillus casei) during Helicobacter pylori
eradication therapy, ameliorated eradication efficacy, apparently through their antagonistic
mechanisms against H. pylori [149]. Cross-feeding between probiotic bacteria and host
microbiota can support the production of SCFAs such as butyrate in the gut [150].
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Probiotics can also modulate a wide range of host immune functions that include both
innate and adaptive (both cell-mediated and humoral) immunity. Particularly, probiotics
are able to improve phagocytosis and enhance secretion of antibodies, generating increased
immunological defenses against pathogens [151]. Additionally, probiotics can release a
wide range of anti-inflammatory factors, downregulating pro-inflammatory cytokines [152],
potentially counteracting intestinal inflammation. Moreover, probiotics can ameliorate GI
barrier function [153]. For example, Lactobacillus and Bifidobacterium species can overexpress
tight junction proteins and stimulate mucus secretion that can avoid the adhesion of detri-
mental microorganisms [154]. A growing body of evidence has demonstrated the protective
effects exerted by probiotics in ameliorating intestinal epithelial integrity, counteracting
barrier disruption, promoting healthy homeostasis of the mucosal immune system and
blocking pathogenic bacterial proliferation [155,156].

Additionally, several strains of probiotic bacteria can stimulate intestinal motility
and reduce GI alterations as demonstrated by a study in aging patients, where probiotics
were able to modify bowel movements, reducing symptoms such as diarrhea and consti-
pation [157]. Moreover, probiotics have a role in alleviating symptoms connected with
lactose maldigestion due to the presence of enzymes such as β-galactosidase and bile salt
hydrolase, which ameliorate lactose digestion in the host system [158].

Notably, many studies demonstrated that it is possible to regulate brain functions
by ameliorating anxiety and depression with probiotic supplement. In an in vivo model
of autism spectrum disorder (ASD), Hsiao et al., [149] indicated that Bacteroides fragilis
administration counteracted the alterations in gut permeability and ameliorated ASD
symptoms [159]. Further studies on animals showed that probiotic administration (i.e.,
Lactobacillus plantarum, L. rhamnosus, B. longum) can have anti-anxiolytic and antidepressant
effects and modify cognitive activity [160].

In fact, it has been shown that probiotics can release a wide variety of bioactive
compounds that can impact the host and its microbiota. Particularly they can release
neuroactive compounds such as oxytocin, gamma-aminobutyric acid (GABA), serotonin,
tryptophan, tryptamine, noradrenaline, dopamine, and acetylcholine [161].

Intake of specific probiotics also showed positive consequences for brain performances
in clinical studies. The ingestion of Lactobacillus casei strain Shirota in chronic fatigue
syndrome patients could drastically counteract anxiety [162].

Studies on the administration of probiotics for PD treatment are very limited. One
study reported that PD patients with chronic constipation taking fermented milk containing
Lactobacillus casei Shirota for five weeks ameliorated fecal consistency and diminished
bloating and abdominal pain [163]. Although probiotics can represent a valuable tool to
counteract alterations in PD microbiota composition and ameliorate GI function by reducing
gut leakiness, bacterial translocation and related inflammation in the ENS, ameliorating
GI functions with probiotics might not only improve GI function and/or protection of
the GI system but also increase levodopa absorption and counteract motor and cognitive
impairment including anxiety, depression and memory difficulties [164,165], which are
common symptoms in PD patients.

The most commonly used probiotics such as Lactobacilli, Enterococci, Bifidobacteria,
yeasts and specific mixtures [144,145] may modulate brain function by ameliorating anxiety
and depression [162]. In fact, in clinical studies and in vivo models of PD, probiotics
were able to alter the composition of gut microbiota and consequently may improve
gastrointestinal function, neuroinflammation and even levodopa absorption [164].

Several in vivo and in vitro models were considered to study the neuroprotective
effects of probiotics and their use as a potential treatment for PD [166]. In particular, mouse
models are the most commonly used. Hsieh and his research group [167] compared the mo-
tor functions upon probiotic administration vs. vehicle in a MitoPark PD mouse model. The
probiotic mixture was composed of six common probiotic strains (Bifidobacterium bifidum,
Bifidobacterium longum, Lactobacillus rhamnosus, L. rhamnosus GG, Lactobacillus plantarum
LP28 and Lactococcus lactis subsp. Lactis) and they observed an amelioration in motor
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performances of mice treated with the probiotic. In particular, mice showed better gait,
balance and coordination from the 16th week after supplementation. Additionally, upon
the treatment, they displayed decreased loss of dopaminergic neurons, thus suggesting a
neuroprotective effect of the probiotics [167].

Similarly, neuroprotective effects of another probiotic combination containing L. rham-
nosus GG, Bifidobacterium animalis lactis, and Lactobacillus acidophilus were observed in in
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and rotenone toxin-induced PD
mouse models [168]. In these models, the probiotic supplementation promoted the butyrate
production, which plays a role in rescuing nigral dopaminergic neurons from MPTP- and
rotenone-induced neurotoxicity. Moreover, high levels of BDNF and glial cell line-derived
neurotrophic factor (GDNF) together with the inhibition of MAO-B were detected, which
can lead to increased dopamine synthesis and the promotion of dopaminergic neurons
survival thus helping cell survival and cell proliferation [168].

In another study, in 6-hydroxydopamine (6-OHDA) mice, a novel probiotic mix
SLAB51 (sold as Sivomixx, composed of nine bacterial strains: Streptococcus thermophilus,
B. longum, Bifidobacterium breve, Bifidobacterium infantis, L. acidophilus, L. plantarum, Lacto-
bacillus paracasei, Lactobacillus delbrueckii subsp. Bulgaricus and Lactobacillus. brevis) was
administered [169]. Notably, this formulation was associated with neuroprotection with
a reduction in dopaminergic neuronal loss in the substantia nigra and striatum, assumed
to be mediated through the activation of the peroxisome proliferator-activated receptor
gamma (PPAR-γ) by microbial metabolites, thus leading to anti-inflammatory and an-
tioxidant effects, as well as an increase in BDNF and consequently the activation of its
pro-survival pathway [169].

Moreover, probiotics can be genetically manipulated to increase their beneficial effects.
In a recent study, Fang et al. used Lactococcus lactis cremori carrying a GLP-1 expression vec-
tor as a treatment for an MPTP mice model [170]. Treated mice showed increased expression
of tyrosine hydroxylase into the nigrostriatal pathway, reduced locomotor impairment and
lower inflammation, compared with the control group. Moreover, the probiotic was also
able to counteract the proliferation of intestinal pathogen Enterobacteriaceae, increasing the
number of probiotic Lactobacillus and Akkermansia species. Interestingly, GLP-1 can cross
the BBB and binds GLP-1 receptors in the brain. This insulin-signaling pathway is crucial
in neurogenesis, neuronal metabolism and synaptic plasticity [170], and GLP-1 agonists are
currently treatments of clinical trials on PD patients [171].

In a Caenorhabditis elegans α-synuclein model of PD, treatment with Bacillus subtilis
PXN21 was associated with a reduction in α-synuclein accumulation in the host [172].
Bacillus subtilis PXN21 could exert neuroprotective effects through modifications of host
sphingolipid metabolism. This results were in line with the hypothesis that an alteration
in lipid metabolism, in particular ceramides and sphingolipids, contributes to PD patho-
genesis [173]. Additionally, the beneficial effect of B. subtilis is partially due to a biofilm
formation in the gut of the model [172]. Furthermore, an in vitro study demonstrated that,
by co-culturing peripheral blood mononuclear cells isolated from PD patients with probi-
otic species (Lactobacillus salivarius, L. plantarum, L. acidophilus, L. rhamnosus, Bifidobacterium
animalis subsp. lactis and B. breve), the release of pro-inflammatory cytokines was inhibited,
in parallel with stimulation of the release of anti-inflammatory cytokines [174]. Among the
tested probiotics, L. salivarius and L. acidophilus showed leading activities. Moreover, in this
study, the probiotics were able to inhibit the proliferation of potentially pathogenic bacteria
such as Escherichia coli and Klebsiella pneumoniae [174].

7. Prebiotics Intervention in PD

Also, prebiotics represent non-digestible compounds that may be beneficial for the
host by modulating the gut microbiota [175]. A prebiotic is defined as “a substrate that is
selectively used by host microorganisms exerting a health benefit”. Most of the prebiotic
are fermentable dietary fibers but not all the dietary fibers are prebiotics. Commonly, the
consumption of a high percentage of fiber in the diet promotes an in increase in bacterial
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diversity and leads to an expansion and/or an increase in the activity of beneficial bacteria
(i.e., Bifidobacterium sp., Lactobacillus sp., Akkermansia sp., Faecalibacterium sp., Roseburia sp.,
Bacteroides sp. and Prevotella) together with a decrease in the number of detrimental bacteria
(e.g., Enterobacteriaceae) [176].

Examples of prebiotics include pectins, inulin, fructo-oligosaccharides (FOS) and
galacto-oligosaccharides (GOS). Particularly, the chemical characteristics of fibers, such
as polymerization, solubility and viscosity determine the metabolism inside the GI tract,
resulting in definite microbiota transformations after the ingestion [177].

Preclinical and clinical studies showed that the intake of wholegrain food that con-
tains β-glucans (soluble non-starch polysaccharides) helps the growth of Lactobacilli and
Bifidobacteria in rats and humans. It has been reported that supplementation with intact
cereal fibers (i.e., wholegrain cereals, barley fibers, wheat bran and rye fibers) supported the
growth of Actinobacteria, Bifidobacterium, Clostridium, Lachnospira, Akkermansia, and Roseburia
in humans. Finally, the consumption of resistant starch determined the proliferation of Bifi-
dobacterium, Faecalibacterium and Eubacterium, while reducing the amount of Ruminococcus
strains [178,179].

Moreover, fiber solubility also has an impact on the gut microbiome. Soluble fiber
has a stronger effect on microbial composition and diversity in piglets in comparison with
insoluble fiber. However, cellulose—an insoluble and non-fermentable fiber and a source
of fiber in fruit and vegetables—is transformed by Ruminococcus and Fibrobacter, which for
this reason are called “cellulose-degrading microbes” [180]. In vivo studies have shown
that cellulose intake leads to an increase in microbial species such as Eptostreptococcaceae,
Clostridiaceae, Akkermansia, Parabacteroides, Lactobacillus, Clostridium, Eisenbergiella, Marv-
inbryantia, Romboutsia, Helicobacter, Enterococcus and Desulfovibrio together with a lower
proliferation of Sutterellaceae, Lactobacillaceae and Coriobacteriaceae [43].

In addition to the effects on microbiota composition, dietary fibers have a role in
microbial enzymatic function and in metabolite absorption. Chemical properties, including
fiber solubility and fermentability influence the degree and location of microbial fermenta-
tion and which type of metabolite is produced. Two important fibers are GOS, based on
lactose and FOS, synthesized from fructose [181]. GOS and FOS arrive to the colon mainly
unaltered and are mostly transformed by Bifidobacteria. Metabolic products such as SCFA,
lactose, hydrogen, methane and carbon dioxide induce an acidic milieu in the colon, which
leads to death, or reduced multiplication, of deleterious bacteria [182].

A large number of clinical studies demonstrated that lowering carbohydrate intake or
wholegrain cereals reduced the amount of butyrate-producing bacteria, such as Bifidobac-
teria, as well as SCFAs themselves [183]. Soluble and fermentable fiber can intensify the
microbiota enzymatic activity to transform complex carbohydrates in health-promoting
SCFAs such as acetate, propionate and butyrate. These SCFAs, in particular butyrate,
have been involved in colonocyte metabolism, thus helping intestinal barrier functionality,
in glucose homeostasis, lipid oxidation and they have anti-inflammatory and mucosal
immunomodulatory effects [177].

While insoluble fibers (i.e., cellulose) are not implicated in SCFA production, it has been
observed that they probably have a role in the linoleic acid, nicotinate and nicotinamide,
glycerophospholipid, glutathione and sphingolipid pathways as well as the valine, leucine
and isoleucine metabolic pathways [184].

In fact, through computational-experimental framework a relationship between PD
and branched-chain amino acid transferase 1 (BCAT-1) was found. This enzyme is involved
in the first step of branched chain amino acid (BCAA) catabolism [185] and it has been
discovered that BCAT-1 levels are usually high in PD-susceptible regions of the healthy hu-
man brain, and that its expression is lower in the substantia nigra of sporadic parkinsonian
patients [186]. While this correlation has been observed, further studies on in vivo models
are needed to clarify the underlying mechanisms. Moreover, glutathione exerts anti-oxidant
effects reducing reactive oxygen species (ROS) [187] and glutathione S-Transferases (GSTs)
enzymes catalyze the conjugation of glutathione to various electrophiles and the role of
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GSTs in the protection of dopaminergic neurons has been examined using several models
of Parkinson’s disease [188].

Prebiotic fibers may be beneficial in the activity of the immune system, bowel mobility
and constipation. For these reasons, enriching the diet with prebiotics might be beneficial
for inflammation and GI alterations occurring in PD patients. Furthermore, it has been
observed that GOS and FOS determine an increase in BDNF levels at the level of the
dentate gyrus of the hippocampus in rats [189]. Since BDNF is a neurotrophin implicated
in neuronal protection, survival and plasticity, GOS and FOS supplementation in the diet
might affect brain health. Despite all the evidence reported, the use of prebiotics in patients
with PD has not yet been investigated but since PD patients present a lower abundance of
SCFA butyrate-producing bacteria, prebiotic fibers may be used as a supplement to correct
this dysbiosis [190,191]. Notably, SCFAs are able to activate microglia, inducing T-regulatory
cells to increase cytokine release to regulate neuroinflammatory mechanisms [99].

8. Synbiotic Intervention in PD

The concept of synbiotic indicates food components or dietary supplements fusing
probiotics and prebiotics [192]. In particular, synbiotics arise from the necessity to overcome
possible probiotics survival difficulties, for this reason in these formulations the prebiotic
compound must selectively promote the activity and the survival during the passage
through the upper GI tract of the probiotic fraction [193]. Synbiotics are beneficial by
favoring the survival and implantation of microbial supplement in the GI system. In fact,
they selectively induce the proliferation and activate the metabolism of a small group
of healthy bacteria. A wide range of factors such as pH, hydrogen peroxide, organic
acids, oxygen and moisture stress affect probiotic viability [194]. Most commonly used
probiotic strains in synbiotic formulations include Lactobacilli, Bifidobacteria spp., S. boulardii
and B. coagulans, while the prebiotics used include oligosaccharides such as FOS, GOS
and xyloseoligosaccharide (XOS), inulin and prebiotics from food like chicory and yacon
roots. [66].

The positive effects exerted by synbiotic intake in clinical investigations comprise:
(1) balanced gut microbiota increasing the levels of Lactobacilli and Bifidobacteria, (2) amelio-
ration of liver function in cirrhotic patients, (3) enhancement of immune system function
and (4) inhibition of bacterial translocation and decreased occurrence of nosocomial infec-
tions in patients after surgery [195].

Constipation is one of the main symptoms in PD patients affecting their quality
of life. Synbiotics may be useful for PD-related non-motor side effects by ameliorating
immune function, dysbiosis and bowel functions. In a clinical study, Lactobacillus salivarius
was able to decrease inflammatory markers in healthy subjects with a higher effect in
combination with prebiotics [196]. In a different investigation, treatment with synbiotic
yogurt containing Bifidobacterium animalis and prebiotics in females with constipation,
produced increased gut movement and defecation, compared to controls [197]. Moreover,
it has been assessed that the daily intake of a fermented milk containing multiple probiotic
strains and prebiotic fiber for four weeks was able to increase in the number of complete
bowel movements in patients with PD [124].

Another main symptom of PD is small intestinal bacterial overgrowth (SIBO) and
patients that are SIBO positive usually present increased motor dysfunction [198]. Khalighi
et al., [199] demonstrated that the association between antibiotic treatment and synbiotic
supplementation containing Bacillus coagulans and prebiotic ameliorated the treatment
response. Moreover, it decreased abdominal pain, flatulence and diarrhea [199].

Overall, the evidence reported in this review support the potential of probiotic, prebi-
otic and synbiotic supplementation in PD patients.

9. Discussion and Conclusions

PD is a one of the most common neurodegenerative disorders, characterized by motor
and non-motor sign and symptoms, including gut dysfunctions, which may appear before
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the motor symptoms. PD underlying mechanisms involve increased oxidative stress
and neuroinflammation [200]. So far, the existing therapies can alleviate PD-associated
symptoms, but there is no cure to control the development and exacerbation of this disorder.
Accumulating evidence suggests a crucial role of gut microbiota and an influence on
the CNS, via the gut–brain axis, mediating different pathways. In particular, a healthy
microbiota is correlated with lower risk of developing CNS disorders, including PD, while
microbiota dysbiosis is correlated with higher incidence of PD. Diet may influence both
positively and negatively the development of neurodegenerative disorders. Specifically,
the Mediterranean diet (rich in fibers, flavonoids and PUFA) has positive effects on the
gut microbiome and thus may reduce the development or exacerbation of PD; on the
other hand, the Western diet (rich in meat, processed food and fried food) could lead to
detrimental effects on the gut–brain axis (Figure 1).
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Figure 1. Representative scheme of the gut–brain axis. The influence of different diets and the
potential effects of probiotics, synbiotics and prebiotics on gut microbiota. PD: Parkinson’s Disease.

Numerous preclinical and clinical studies suggested that dietary interventions with
prebiotics, probiotics or synbiotics, by modifying the microbiome composition, may im-
prove brain health and decrease the risk of developing PD (Figure 1).

Dietary interventions are of high importance in particular at the very early stages of PD.
Patients with PD may experience non-motor symptoms at early stages such as constipation,
dysphagia, hyposmia and depression, that may influence dietary choices and thus may be
responsible for the alterations of nutritional status reported in PD [201,202]. For example,
as we mentioned above, PD patients are affected by constipation for more than 20 years
before the onset of motor symptoms, therefore the use of nutraceutical interventions at this
stage, including prebiotics, probiotics or synbiotics may be of high relevance [127,203].

Further studies in PD should take into consideration the role of the gut–brain axis and
a deeper investigation into the underlying mechanism is required. Moreover, additional
studies are needed to define the potential beneficial effects of the use of prebiotics, probiotic
and synbiotics in maintaining protein and oxidative homeostasis in the ENS and to better
understand the biochemical influences of these interventions on people affected by neu-
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rodegenerative diseases. Another point to be considered is whether constant exposure to
probiotics, prebiotics or synbiotics affects the gut microbiome composition in a long-term
way or, once the intervention is ceased, the microbiome composition would revert.

Also, it is important to design studies considering the duration of intervention, the
dosages and the combination of different interventions. Finally, in this scenario, it is
crucial to define the best approach based on prebiotics, probiotics or synbiotics for PD
and, analyzing the specific gut microbiome composition of a single patient, could help in
creating a personalized therapy. Overall, we can postulate that prebiotics, probiotics and
symbiotics may represent a potential therapeutic approach for PD.
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34. Çelik, T.; Kamişli, Ö.; Babür, C.; Çevik, M.; Öztuna, D.; Altinayar, S. Is there a relationship between Toxoplasma gondii infection
and idiopathic Parkinson’s disease? Scand. J. Infect. Dis. 2010, 42, 604–608. [CrossRef] [PubMed]

35. Prandovszky, E.; Gaskell, E.; Martin, H.; Dubey, J.P.; Webster, J.P.; McConkey, G.A. The Neurotropic Parasite Toxoplasma Gondii
Increases Dopamine Metabolism. PLoS ONE 2011, 6, e23866. [CrossRef]

36. Beach, T.G.; Adler, C.H.; Sue, L.I.; Shill, H.A.; Driver-Dunckley, E.; Mehta, S.H.; Intorcia, A.J.; Glass, M.J.; Walker, J.E.; Arce, R.;
et al. Vagus Nerve and Stomach Synucleinopathy in Parkinson’s Disease, Incidental Lewy Body Disease, and Normal Elderly
Subjects: Evidence against the “Body-First” Hypothesis. J. Park. Dis. 2021, 11, 1833–1843. [CrossRef]

37. Schaeffer, E.; Kluge, A.; Böttner, M.; Zunke, F.; Cossais, F.; Berg, D.; Arnold, P. Alpha Synuclein Connects the Gut-Brain Axis in
Parkinson’s Disease Patients—A View on Clinical Aspects, Cellular Pathology and Analytical Methodology. Front. Cell Dev. Biol.
2020, 8, 573696. [CrossRef]

38. Pan-Montojo, F.; Schwarz, M.; Winkler, C.; Arnhold, M.; O’Sullivan, G.; Pal, A.; Said, J.W.; Marsico, G.; Verbavatz, J.-M.; Rodrigo-
Angulo, M.; et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in
mice. Sci. Rep. 2012, 2, 898. [CrossRef]

39. Pan-Montojo, F.; Anichtchik, O.; Dening, Y.; Knels, L.; Pursche, S.; Jung, R.; Jackson, S.; Gille, G.; Spillantini, M.G.; Reichmann, H.;
et al. Progression of Parkinson’s Disease Pathology Is Reproduced by Intragastric Administration of Rotenone in Mice. PLoS
ONE 2010, 5, e8762. [CrossRef]

40. Cannon, J.; Greenamyre, J.T. The Role of Environmental Exposures in Neurodegeneration and Neurodegenerative Diseases.
Toxicol. Sci. 2011, 124, 225–250. [CrossRef]

41. Scarpellini, E.; Ianiro, G.; Attili, F.; Bassanelli, C.; de Santis, A.; Gasbarrini, A. The human gut microbiota and virome: Potential
therapeutic implications. Dig. Liver Dis. 2015, 47, 1007–1012. [CrossRef]

42. Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [CrossRef]
43. Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut

Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14.
[CrossRef]

44. Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904.
[CrossRef]

http://doi.org/10.1016/j.parkreldis.2020.10.042
http://www.ncbi.nlm.nih.gov/pubmed/33158747
http://doi.org/10.1155/2017/8124624
http://www.ncbi.nlm.nih.gov/pubmed/28465861
http://doi.org/10.5688/aj710478
http://doi.org/10.1016/S0022-3999(02)00429-4
http://doi.org/10.1002/cphy.c150015
http://www.ncbi.nlm.nih.gov/pubmed/27065163
http://doi.org/10.1590/S1980-57642011DN05010003
http://doi.org/10.1053/j.gastro.2014.02.037
http://www.ncbi.nlm.nih.gov/pubmed/24583088
http://doi.org/10.1155/2016/6762528
http://doi.org/10.14802/jmd.15008
http://doi.org/10.3389/fneur.2017.00037
http://www.ncbi.nlm.nih.gov/pubmed/28243222
http://doi.org/10.1007/s00702-002-0808-2
http://www.ncbi.nlm.nih.gov/pubmed/12721813
http://doi.org/10.1111/nan.12298
http://doi.org/10.1152/ajpcell.00322.2014
http://www.ncbi.nlm.nih.gov/pubmed/25810260
http://doi.org/10.1212/WNL.0000000000003961
http://doi.org/10.1016/j.neures.2021.04.001
http://www.ncbi.nlm.nih.gov/pubmed/33887355
http://doi.org/10.3109/00365541003716500
http://www.ncbi.nlm.nih.gov/pubmed/20380545
http://doi.org/10.1371/journal.pone.0023866
http://doi.org/10.3233/JPD-212733
http://doi.org/10.3389/fcell.2020.573696
http://doi.org/10.1038/srep00898
http://doi.org/10.1371/journal.pone.0008762
http://doi.org/10.1093/toxsci/kfr239
http://doi.org/10.1016/j.dld.2015.07.008
http://doi.org/10.1042/BCJ20160510
http://doi.org/10.3390/microorganisms7010014
http://doi.org/10.1152/physrev.00045.2009


Nutrients 2022, 14, 380 15 of 21

45. Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al.
Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [CrossRef] [PubMed]

46. Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients
and other food components. Eur. J. Nutr. 2018, 57, 1–24. [CrossRef]

47. Conlon, M.A.; Bird, A.R. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients 2014, 7, 17–44.
[CrossRef] [PubMed]

48. Yang, Q.; Liang, Q.; Balakrishnan, B.; Belobrajdic, D.P.; Feng, Q.-J.; Zhang, W. Role of Dietary Nutrients in the Modulation of Gut
Microbiota: A Narrative Review. Nutrients 2020, 12, 381. [CrossRef] [PubMed]

49. Sonnenburg, J.L.; Bäckhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64.
[CrossRef]

50. David, L.A.; Materna, A.C.; Friedman, J.; Campos-Baptista, M.I.; Blackburn, M.C.; Perrotta, A.; Erdman, S.E.; Alm, E.J. Host
lifestyle affects human microbiota on daily timescales. Genome Biol. 2014, 15, R89. [CrossRef] [PubMed]

51. Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.;
et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [CrossRef]

52. David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.;
Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [CrossRef]

53. Liang, X.; Fitzgerald, G.A. Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. J. Biol. Rhythm. 2017, 32, 505–515.
[CrossRef]

54. Parkar, S.G.; Kalsbeek, A.; Cheeseman, J.F. Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and
Metabolic Health. Microorganisms 2019, 7, 41. [CrossRef] [PubMed]

55. Hentges, D.J.; Maier, B.R.; Burton, G.C.; A Flynn, M.; Tsutakawa, R.K. Effect of a high-beef diet on the fecal bacterial flora of
humans. Cancer Res. 1977, 37, 568–571.
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