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Abstract

Understanding and modeling the mobility of individuals is of paramount importance

for public health. In particular, mobility characterization is key to predict the spatial

and temporal diffusion of human-transmitted infections. However, the mobility

behavior of a person can also reveal relevant information about her/his health

conditions. In this paper, we study the impact of people mobility behaviors for

predicting the future presence of flu-like and cold symptoms (i.e. fever, sore throat,

cough, shortness of breath, headache,muscle pain,malaise, and cold). To this end, we

use the mobility traces from mobile phones and the daily self-reported flu-like and

cold symptoms of 29 individuals from February 20, 2013 to March 21, 2013. First of all,

we demonstrate that daily symptoms of an individual can be predicted by using

his/her mobility trace characteristics (e.g. total displacement, radius of gyration,

number of unique visited places, etc.). Then, we present and validate models that are

able to successfully predict the future presence of symptoms by analyzing the

mobility patterns of our individuals. The proposed methodology could have a societal

impact opening the way to customized mobile phone applications, which may

detect and suggest to the user specific actions in order to prevent disease spreading

and minimize the risk of contagion.
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1 Introduction

Nowadays, we leave traces of our life events, behaviors, interests, and habits on social

networks (e.g. Facebook statuses and tweets), using mobile phones and surfing the web.

All this information together works as a powerful microscope that can help us to under-

stand and predict many phenomena of our society. Hence, researchers and policy makers

have the possibility to address previously unsolved problems by using these novel sources

of data. A clear example comes from mobile phone records. There are almost  billion

of mobile phone users worldwide. The world coverage has raised from % of the world

population in  up to % in  [], and this number even reaches % of popula-

tion in the developed countries. These devices generate an incredible amount of data on

how we daily use our mobile phone and how we interact with other people. Furthermore,

they contain location data (e.g. fromwhere a person calls) that makes people’s movements
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easily traceable through the antennas to which they are connected or, even better, with ad

hoc applications that register the GPS tracks.

Previous studies have demonstrated the association between the health and behavioral

patterns of a person, and the possibility to predict health and well-being conditions using

different sources of behavioral information from social media and mobile phones. Detec-

tion of emotional states, happiness levels and depressive disorders [–], prediction of

physical health conditions [, ] and stress levels [], and modeling of influenza spreading

[–] are some common examples of the studies carried out in this area. Interestingly,

a recent work has shown that humanmobility represents a good proxy for predicting peo-

ple’s mental health conditions such as depressive states []. In this paper, we employ a sim-

ilar approach to investigate the role of human mobility for predicting the physical health

conditions of a person.

Knowing in advance if someone will present certain symptomsmay have significant im-

plications in terms of public health strategy and policy. For instance, specific prevention

strategies can be applied: a person can be informed through an early-warning mobile ap-

plication suggesting to change her/his social interactions for the next days in order to

reduce further spreading of the diseases. Thus, a predictive system of health symptoms

may allow public health officers to recommend specific social actions in order to mini-

mize the risk of contagion. Moreover, this information can also represent a valuable input

for epidemiological models. We can incorporate fine-grained human mobility behaviors

into disease spreading models like the Global Epidemic and Mobility (GLEaM) one [],

which alreadymakes use of socio-demographic data and of aggregated data on population

mobility patterns. However, despite the importance of such applications a little effort has

been put in this field, mainly because it is very difficult to have a data set which contains

both self-reported health symptoms and mobility behaviors of a single individual.

In this paper, we present an initial study to investigate the effectiveness of using indi-

vidual mobility behaviors for predicting the health conditions of a person. We address the

challenging problem of predicting future presence of physical health symptoms such as

fever, sore throat, cough, shortness of breath, headache, muscle pain, malaise, and cold by

exploring the past mobility activities of an individual, thus trying to answer the following

question: can mobility behaviors be informative regarding the future health conditions of

a person?

To address this problem, we resort to the data collected during the Mobile Territorial

Lab (MTL) study [], a longitudinal living lab that has been observing the lives of more

than  parents through multiple data sources (e.g. mobile phone data, questionnaires,

experience sampling probes, etc.) for more than two years. Then, we extract a set of daily

features capturing the spatio-temporal mobility patterns of a person (e.g. total distance

traveled, radius of gyration of visited places, maximum displacement from home, unique

number of visited places, etc.). For each individual we analyze how the mobility metrics

and the presence of symptoms correlate and change over time. We also design a machine

learning framework that, using past mobility behaviors, predicts the presence of flu-like

and cold symptoms with a time horizon of two days ahead. To evaluate ourmachine learn-

ing framework, we firstly run experiments using a feature selection step (Recursive Feature

Elimination (RFE) []). In order to select the more predictive features, we fit one of the

regression models and then we rank the features (i.e. total distance) by their weight in the

model. Then, once we have a comprehensive analysis of the participant’s mobility features,
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we use them to predict if s/he will present certain symptoms in the next days (e.g. two days

ahead).

Our results show that using themobility patterns of an individual we can obtain promis-

ing performance for our challenging prediction task. Specifically, we obtain an Area Un-

der the Receiving Operating Characteristic Curve (AUCROC) of ., a Precision score of

., a Recall score of ., and F-score of . in classifying symptoms two days ahead

with a Random Forest (RF) classifier.

This paper is structured as follows. Section  offers an overview of the related work,

while Section  describes the data sets we used. In Section , we describe themethodology

of our study, detailing the approach for identifying the places, the extraction of themobility

characteristics (e.g. the radius of gyration of the visited places, the unique number and the

diversity of visited places, the routine index, etc.) and the learning models used for the

classification tasks. Section  reports and discusses the results of our experiments, and

finally we derive some conclusions in Section .

2 Related work

Information on human mobility behavior derived frommobile phones has been shown to

be an invaluable source to leverage within the public health domain, both at an aggregated

and individual level []. In many cases, researchers were able to capture how massive

population moves or the daily routines of individuals, and thus to study critical issues for

public health like the spread of a disease or the detection of mental health problems such

as depression [].

Mobility behaviors have been captured mainly by (i) Call Detail Records (CDRs) or Mo-

bile NetworkData generated by providers, and by (ii) smartphone applications. In the case

of the former, researchers are able to understand massive phenomena such as the spread-

ing of epidemics [, ], mass-migration phenomena [] or the exposure of a popula-

tion to air-pollution []. It is worth noticing that both CDRs and Mobile Network Data

are based on the cell towers of a provider, thus resulting in a coarser spatial granularity

with respect to the GPS data. In addition, CDRs suffer from low temporal resolution since

they are event-driven (i.e. records are created by a call/SMS trigger), while the Mobile

Network Data overcome this since they are network-driven (i.e. records are generated in-

dependently of the phone usage) [].

On the other hand,mobile applications have also started being extensively used in health

and well-being domains [, , , ]. Many applications rely on the longitudinal moni-

toring of an individual outside the clinical settings, leveraging on themultiple data sources

provided by the current smartphones. The major advantage of this approach is that the

collection of human behavioral routines is completely unobtrusive, fine-grained (e.g. GPS

signal or calls/SMSs are collected directly from the user’s device) and personalized at the

individual level. In addition, the collection of potential symptoms (e.g. fever, cough, etc.)

can be self-reported by using an ad-hoc mobile phone application. In this context, Fan et

al. [] proposed a hierarchical probabilistic model to simultaneously predict individu-

als’ physical health by understanding how flu is spread within the proximity interaction

networks dynamically captured by mobile phone Bluetooth data. They tested their model

both on the MIT Social Evolution [] data set as well as on the data collected within the

iEpi Study [], where  students reported their symptoms and shared their Bluetooth

sensor data. In the former, they succeeded in predicting one step ahead the occurrence
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of the symptoms, while in the latter they revealed the underlying proximity interaction

network features related with flu exposure and spreading.

Previous studies have also employed mobile phone data in order to predict daily mood

states [] and stress levels [], and to diagnose mood changes [, , ]. For instance,

Canzian and Musolesi employed well-established and novel metrics to associate human

mobility characteristics and depressive states []. Their results show that they can identify

depressive states by analyzing the mobility routines of an individual and thus they can

enable a continuous monitoring of her/his mental state by a therapist.

3 Data

In this work we use a data set collected during theMobile Territorial Lab (MTL) study (for

a more detailed description of the study see []). During the MTL study, the researchers

have observed the lives of more than  parents for almost three years (January -

December ). The participants live in the province of Trento, an area located in the

Northern of Italy, and most of them are of Italian nationality. They have different levels

of education (from high school diplomas to Ph.D. degrees) and types of occupation. Par-

ticipants were provided with (i) an Android-based smartphone running a software able to

continuously collect different mobile phone data (e.g. calls, SMSs, locations) and (ii) a sur-

vey application which is able to periodically ask the participants some questions designed

by the researchers in the context of a specific study []. Following the Italian regulations,

all participants were asked to sign informed consent forms and the study was conducted

in accordance to them. The form and theMTL study were also approved by a joint Ethical

Committee of University of Trento and Province of Trento.

In this paper we report a study on health symptoms that we conducted on  partic-

ipants,  males and  females, with an age ranged from  to  (the study was run

during the first phase of the MTL project when only  study participants were enrolled).

Table  reports the mean and the standard deviation values of the study participants’ age.

In this study, we use a combination of two type of data: (i) location data, which we use

to characterize the daily mobility of the participant; and (ii) survey data with daily in-

formation about the health of the participant, which represents the ground truth of our

supervised machine learning models. The data set is completely anonymized in order to

ensure individuals’ privacy.

We collect symptoms data from February ,  and March ,  since in this

period we have a high presence of flu-like and cold symptoms. This is also in line with

the epidemic curve of the - influenza season, which presents a peak during our

window of time []. In particular, we focus only on collecting one month of symptoms

data in order to have a high participation rate from our study participants.

It is worth specifying that symptoms and mobility data sets do not completely overlap.

This is due to the fact that there are some gaps in (i) the mobility data (i.e. participants

switched off the mobile phones) and (ii) the survey data (i.e. participants did not fill the

Table 1 Descriptive statistics (mean and standard deviation values) of the study participants’

age

Numbers Mean Std.

Men 20 39.2 3.2

Women 50 38.5 3.3
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health symptoms’ survey). Hence, we have mobility data and at least one self-reported

symptom for only  study participants.

We now describe the two different data sets that we merge by using as key the ID of the

participant.

3.1 Location data

The software installed on the smartphone continuously keeps track of: (i) the communi-

cation events (e.g. calls and SMSs), and (ii) the participant’s location captured by means

of the Global Positioning System (GPS), which recorded % of positions with an accu-

racy within  meters []. In addition, to increase the number of location points we

also use the position retrieved by the network provider source (i.e. the cell towers to

which the phone is connected). The raw location data set consists of location point tuples

l = [ID, latitude, longitude, source,accuracy, time], where for each tuple l the study partici-

pant ID, the latitude, the longitude, the information source (i.e. GPS, Network), the accu-

racy of the location point in meters, and the timestamp are recorded, respectively.

Then, we employ the well-accepted notion of mobility trace of an individual as a set of

stops andmoves [, ]. In this notion a stop is a set of latitude and longitude points where

the individual is identified to spend a particular amount of time after performing a clus-

tering procedure,explained in Section . in detail. Formally, a stop in a place is defined

as: Place = [ID, ta, td,C], where ID, ta, td and C stand for a place identifier, the arrival time,

the departure time and the latitude-longitude coordinates, respectively. This information

defines a mobility trace of placesMT(t, t) as the sequence of places visited by an individ-

ual in a given period of time:MT(t, t) = (Pl,Pl, . . . ,PlN(t ,t)), where N(t, t) is the total

number of identified visited places.

3.2 Daily health symptoms

Data on physical health symptoms were collected using a daily self-reported survey in-

strument, designed by an experienced epidemiologist. The survey instrument consisted

of eight questions with yes/no responses for each of the following symptoms: fever, sore

throat, cough, shortness of breath, headache,muscle pain,malaise, and cold.

Hence, the symptom raw variables have the following form: symptom = [yes/no] In Fig-

ure  an example of daily reported cases for (i) fever, (ii) cough and (iii) malaise is depicted.

We can notice that fever and cough have their peaks mostly in the same days. In Table 

we report the frequencies of the eight symptoms during the entire study duration and for

each symptom the number of unique individuals reporting at least one case. In the cur-

rent work, we focus on all the self-reported symptoms. According with the definitions

proposed by the World Health Organization (WHO) [] and the European Centre for

Disease Prevention and Control (ECDC) [], the presence of fever, sore throat, cough,

shortness of breath, headache, muscle pain, or malaise is a symptom of influenza-like ill-

ness (ILI). Cold was also chosen given the high self-reported presence of this symptom

during the time period of our study.

The daily questions were answered at the evening by using SurveyGizmo and  partic-

ipants, over a total of , reported at least one symptom.

4 Methodology

Our main goal is to study the relationship between mobility behavior and self-reported

symptoms. To do so, we need a set of characteristics that systematically describe human
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Figure 1 Number of daily reported cases of fever, cough andmalaise.

Table 2 Description of the different Symptom Types, the number of cases that were present

and the unique number of individual reporting each symptom

Symptom Type # Symptom Cases # Unique Individuals

fever 37 18

sore throat 196 40

cough 165 27

shortness of breath 86 15

headache 211 50

muscular pain 274 41

malaise 223 41

cold 174 34

mobility behavior. Canzian et al. [] have recently introducedmetrics able to capture both

presence and absence of humanmobility. Such features appear to be promising in identify-

ing physical and mental health conditions, since many of them are related with the nature

of the movement. For instance, in [] they focus on depressive symptoms which could

go along with decreased movement patterns and increased spending time at home for a

long-term period. In our case, we expect to identify similar signals, but in a short-term

period.

4.1 Identification of places

A very important step is the identification of places where the user is stopping. To this end,

we create location clusters using raw data. In order to increase the accuracy of location

estimation we consider only location points with accuracy less than  meters. Moreover,

we ignore any location point that was collected while the user was moving. In order to

infer such location points, we compute the speed of the individual by using the distance

and the time between the last and the current location points. If the speed is less than a
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certain threshold (i.e.  km per hour) we consider that the location is collected when the

participant was not moving.

Then, we use the location clustering approach presented in [] in order to cluster the

filtered location samples. We iterate over all location samples and for each location point

we create a new cluster only if the distance of this location from the centroid of each exist-

ing cluster is more than  meters. Otherwise we add this location to the corresponding

cluster and update its centroid.

Finally, we assign a unique place identifier to each centroid for all participants. More-

over, we assign the home label to the place where an individual spends the majority of the

late evening and night hours (from  pm to  am), taking into account the habits in the

northern part of Italy []. All the remaining places are labeled as other.

4.2 Mobility features

For each individual, we compute all mobility features based on the visited Places we iden-

tify after performing the clustering procedure described above. The resulting set of mo-

bility features is the following one:

. The total distance traveled (DT (t, t)): For computing the total distance traveled we

consider: (i) the raw collected geo-location points when the individual is moving,

and (ii) the detected stops in Places. We refer to them as points p = [id, ta, td,C]

where id = – when the participant is moving and id >  when s/he stops in a Place.

For a time interval [t, t], this mobility trace is a set Np of subsequent p points

defined by a latitude-longitude pair C.

DT (t, t) =

Np(t ,t)
∑

i=

d(Ci,Ci+), ()

. The standard deviation of the total distance traveled (σDT
(t, t)): the deviation from

the average total distance (Feature ), which is defined as:

AvgDT
(t, t) =



Np(t, t) – 

Np(t ,t)
∑

i=

d(Ci,Ci+). ()

It is worth noticing that the number of movements is equal to the number of points

minus .

. The total displacement (DisT (t, t)): The total displacement is a measure of the

distance covered by an individual. It takes into account the distance between one

Place where the participant stopped and the subsequent one. Formally is defined as:

DisT (t, t) =

N(t ,t)
∑

i=

d(Ci,Ci+), ()

where d(Ci,Ci+) is the geodesic distance between two visited identified places Pl

and Pl with latitude-longitude coordinates Ci and Ci+, respectively.

. The standard deviation of the displacements (σDis(t, t)): the deviation from the

average displacement in [t, t] as defined in [].
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. The maximum displacement between two visited Places (DisM(t, t)): this metric

quantifies the maximum displacement covered in [t, t].

. The radius of gyration of the visited Places (G(t, t)): We measure the radius of

gyration as in [], quantifying the span of the area the participant covers. It is the

deviation from the centroid of the visited places in a [t, t] interval weighting the

contribution of each Place with coordinates Ci within the set N by the time spent

there.

G(t, t) =

√

√

√

√



T

N(t ,t)
∑

i=

Ti · d(Ci,Ccen), ()

where Ti equals to tdi – tai representing the time spent in the place Pli and T is the

total time spent in all the visited places in [t, t].

. The maximum displacement from Home (DisH(t ,t)): this metric quantifies the

maximum span the participant covered from its home. The ID and coordinates of

the home for each participant is computed by considering the place with the

maximum frequency of visits in Places considering time intervals between

 pm- am, as explained in Section ..

. The number of different Places visited (Ndif (t, t)): Here we simply count the number

of visits in different Places (i.e. the number of different places where the individual

had a stop) within the studied period. For example, if a participant visits within the

study period Pl and Pl for one and two times, respectively, then the Ndif = .

. The number of different significant Places visited (Nsig(t, t)): Here, we count the

number of visits in significant Places within the period under observation. We

consider significant a visited place if it belongs to the top- list of the most frequent

visited Places in the time period of the study. In Figure  the average number of

participants’ stops over the top-N most frequent Places is depicted. It shows that for

N >  the frequencies of the stops to Places start to converge into a constant

minimum number for our users, thus we do not consider them as significant.

Therefore, we select N =  as a cut-point for the significant Places lists.

Figure 2 Average number of stops in the top-Nmost frequent Places for the 29 participants.
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. The number of moving geo-location points (Nmoves(t, t)): This is the count of the p

geo-location points where id = – indicating that the participant was moving in the

time interval [t, t]. It serves to quantify the moving behavior of a person.

. The unique number of visited Places (Nunq(t, t)): This feature quantifies the distinct

number of stops done or places visited.

. The diversity of the visited Places (Divvisits(t, t)): This metric measures how an

individual spreads its visits among places in a specific time interval. This metric is a

sort of entropy and was initially introduced by [] to measure mainly the diversity

in social communication, but we apply it in a spatial context. Formally it is defined

as:

Divvisits(i) =
–

∑k
j= vij log vij

logk
, ()

where vij is the volume of visits user i pays to the place j normalized by the total

number of i’s visits, and k is the distinct number of places visited in the time

interval, respectively. High values of the diversity measure indicate that participants

distribute their visits more evenly among the places.

. Aggregated mobility features: Previously observed mobility patterns in a participant’s

historical time-line can be useful to describe the trend of the participant’s human

mobility. In order to capture this information we defined a set of rolling statistics

computed for each of the aforementioned mobility features. In particular, given a

time window [t, t] we aggregate the feature with the following statistics: mean,

standard deviation, maximum, minimum and the difference of the feature values

between the time t and t.

4.3 Classificationmodel

We model our problem as a binary classification task, where the target variable is called

Symptom Presence and the possible values of the label are {Yes/No}, that is if a user has or

not at least one of the symptoms. Given a target date, our ultimate goal is to understand

if a user will present or not symptoms in the forthcoming days by looking into its very re-

cent mobility behavior. We expect to capture even slight changes in the mobility behavior

(e.g. changes in covered distance) that can testify an upcoming flu and cold symptoms.

Formally, given a date t we define:

• thist as the number of days we go back in individual’s historical data from the date t;

• historical time interval as the time interval [t – thist, t];

• thor as the number of days ahead we answer our Symptom Presence: Yes/Not question.

To sum up, we assign the label Symptom Presence: Yes to a user who presents flu-like

and cold symptoms at time thor, by using historical data in the interval [t – thist, t].

Due to the limited size of the data set, we decide not to built a specific model for each

user. Indeed, we design a relatively general machine learning framework that can work for

each user u. A sample for themodel is built whenmore than three consecutive days ofmo-

bility data are available. Thus, given a date t, we consider valid a time window of five days

if the following conditions are satisfied: (i) mobility data for thist ∈ [, ], and (ii) symptoms

data for the time thor ∈ [, ]. As mentioned in Section , the data set contains gaps (i.e.

location points and symptoms are not available for every day). Thus, it is possible that for
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Figure 3 Example of problem setting with thist = 2 and thor = 2.

some samples we do not have symptoms information for all the thor ∈ [, ]. In order to

keep the dimension of train/test consistent and independent from the horizon time, we

created different training and test sets for each thor. In this way, we avoid the possibility to

have training samples with missing classification labels.

In Figure  we present a toy example of the prediction task and the constraints that apply

for thist =  and thor = . Given a starting day t (e.g. March, th), we impose two constraints

on each participant: (i) her/his mobility data must be available from day t until two days

back in the past (e.g. fromMarch, th until March, th), and (ii) her/his health data must

be available from day t up to two days in the future (e.g. from March, th until March,

th). Those constraints lead to strict requirements in terms of data availability that can not

always be fulfilled, because of the limitations in both data sets. Due to the aforementioned

constraints we end up with a final set of  ( males and  females) users out of .

On the one hand the reduction of the sample size may affect the generalization of the

results, but it allows us to strengthen the analysis by exposing all remaining users to equal

experimental settings.

As previously said, among the symptoms described in Section , we classify if a user

will present at least one instance of fever, sore throat, cough, shortness of breath, headache,

muscle pain,malaise, or cold. Although we selected a period of the year with many cases

of flu-like and cold symptoms, we dealt with a highly unbalanced data set, meaning that

the dominant class is the NO for the Symptom Presence variable. We used the common

approach to randomly under-sample the data set by removing samples from the over-

represented class. To give an example, with t = Wednesday we want to know if a user

u will present flu-like and cold symptoms at t +  = Friday considering her/his previous

mobility behaviors from the time interval t –  =Monday, t =Wednesday.

In order to carry out our experiments, we split the data set in two parts: train and test.

Then, we extract the features described in Section .. For the classification task, we test

four state-of-the-art machine learning models: Logistic Regression (LR) [], Random

Forest (RF) [] and Gradient Boosted Trees (GBT) []. We selected these models be-

cause of their demonstrated effectiveness and, hence, popularity.

Due to the high number of features and the limited number of samples (i.e.  sam-

ples), we perform a feature selection step. For each classification model we evaluated sev-

eral feature selection approaches by using -fold-cross-validation. Then, for each model

we selected the best one. We found that Recursive Feature Elimination (RFE) is the best-

performing feature selectionmethodwhen using Logistic Regression (LR), RandomForest

(RF), and Gradient Boosted Trees (GBT). We evaluate the quality of the feature selection

through -fold-cross-validation, training the models with the reduced set of features on
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the training set. At this point, we can proceed with the parameters’ optimization for each

model by using the selected set of features. In both, feature selection and parameters se-

lection, we choose an optimal set in order tomaximize the precision of the algorithm. The

last step regards the selection of the best model. Again, through cross-validation, we train

each model with its best set of features and the optimal parameters selecting the one that

shows the highest precision.

5 Results

In our experiments we compare three different models (LR, RF, GBT) to classify if a user

will present flu-like and cold symptoms or not (i.e. fever, sore throat, cough, shortness of

breath, headache, muscle pain, malaise, or cold) at a time thor. To train our models, we

use the machine learning library scikit-learn []. Due to the unbalanced nature of our

data set, we use well-known metrics for assessing the accuracy of classification systems:

(i) Precision, (ii) Recall, (iii) F-score, and (iv) AUCROC. Precision is defined as the ratio
tp

tp+fp
, where tp is the number of true positives and fp is the number of false positives, while

Recall is defined as the ratio tp
tp+fn

, where tp is the number of true positives and fn is the

number of false negatives, which are samples erroneously not labeled as belonging to the

positive class. F-score is the harmonic mean of Precision and Recall. Finally, AUCROC

refers to the Area Under the Receiver Operating Characteristic curve and provides infor-

mation about the ability of the models to correctly classify users with or without flu-like

and cold symptoms.

5.1 Symptoms classification

In Table  we present the classification results in terms of (i) Precision, (ii) Recall, (iii) F-

score, and (iv) AUCROC.We report the different performances for thist ∈ [–, ] and thor ∈

[, ]. The results are obtained with -fold-cross-validation and using the best setup for

each different model.

As expected, we observe that mobility features are relevant for predicting the presence

of flu-like and cold symptoms. Interestingly, we obtain one of the best classification per-

formance using Gradient Boosted Trees (GBT) with thist =  and thor =  (AUCROC of

., a Precision score of ., a Recall score of ., and F-score of .). This is a con-

sequence to the fact that people may change their mobility habits during the days before

the self-reported registration of flu-like and cold symptoms, i.e. they change the mobility

once they start to feel not very well. For instance, if a person is getting sick, he/she would

likely go home after work instead of doing other activities.

Table 3 Precision (Pr.), Recall (Re.), AUCROC and F1-score of the classifiers obtained with

10-fold-cross-validation and variations of thor and thist

thist = 0 thist = 1 thist = 2

Pr. AUCROC Re. F1 Pr. AUCROC Re. F1 Pr. AUCROC Re. F1

thor = 0 LR 0.67 0.5 0.96 0.79 0.67 0.5 1.0 0.8 0.68 0.51 1.0 0.81

RF 0.68 0.51 0.72 0.7 0.71 0.56 0.74 0.73 0.73 0.59 0.78 0.75

GBT 0.69 0.53 0.81 0.74 0.74 0.61 0.84 0.79 0.7 0.56 0.82 0.76

thor = 1 LR 0.68 0.5 0.93 0.78 0.67 0.49 0.95 0.78 0.68 0.52 0.96 0.8

RF 0.74 0.6 0.73 0.73 0.71 0.55 0.76 0.73 0.7 0.54 0.72 0.71

GBT 0.7 0.54 0.77 0.73 0.74 0.62 0.87 0.8 0.71 0.56 0.8 0.75

thor = 2 LR 0.68 0.51 0.99 0.81 0.68 0.51 0.91 0.78 0.68 0.5 0.95 0.79

RF 0.71 0.55 0.76 0.73 0.73 0.58 0.72 0.73 0.72 0.57 0.74 0.73

GBT 0.71 0.55 0.85 0.77 0.72 0.57 0.81 0.76 0.72 0.57 0.84 0.77
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Table 4 The confusionmatrix for the two-class classification task

No symptoms Symptoms

No symptoms 0.32 0.68

Symptoms 0.18 0.82

Secondly, we can observe that asmore days ahead we consider, more difficult it becomes

to classify correctly the presence of symptoms by only looking at the mobility behaviors.

This reveals an interesting aspect related to the fact that there is a short time period (e.g.

few days) between feeling bad and reporting the symptoms. In summary, the obtained

results suggest that mobility behavior can be used for our purpose, but only looking at a

short period in the future (e.g. thor = ) and considering a limited historical period. A long

history of mobility data seems to be not relevant, a bigger sample size might be useful to

better understand this point.

Moreover, for all the built models the following selected features (see Section .)

emerge as the most important ones in predicting correctly the presence of symptoms:

(i) the diversity of visited places, (ii) the unique number of visited places, (iii) the number

of different significant visited places, (iv) the number of moving geo-location points and

(v) the aggregated mobility features. The first three features (i.e. diversity, unique num-

ber of visits and number of different significant visits) effectively capture a daily mobility

routine of an individual. While the moving geo-location points quantify only the moving

patterns of the participant, without considering the stops in places. Finally, the aggregated

mobility features summarize the essential short-term history in people’smobility to detect

changes (i.e. the aggregatedmobility behavior during the crucial days before reporting the

symptoms).

To summarize, the significant features belong to three different families: (i) visited

places’ routine, (ii) moving behavior and (iii) overall short-term historical mobility be-

havior.

For sake of completeness, we also report in Table  the confusion matrix for the case

thist =  and thor =  using Gradient Boosted Trees (GBT), which refers to the best results in

the setting of predicting future presence of flu-like and cold symptoms, i.e. one day ahead.

The confusion matrix describes the performance of our classification model on the test

set. We can observe that our model presents a sufficiently high accuracy in classifying the

presence of symptomswhile,mainly due to the difficult nature of the problem and thewide

variety of symptomswe are considering, the performancewith respect to the classification

of the not presence of symptoms shows room for improvement.

Turning to the limitations of our study, we list the small number of study participants

used in our analyses (i.e.  individuals) and the short temporal duration of our study

(i.e. only  weeks). However, it is worth noticing that the epidemic curve of -

influenza season presents a peak during the four weeks selected for our study. In addi-

tion, the symptoms data are self-reported by the study participants. Finally, our sample is

composed by parents. Hence, it may be plausible that the predictive performance of our

approach is affected also by the changes in parents’ mobility behavior related to the health

status of the kids. For example, a parent may change her/his mobility behaviors in order

to take the children to the doctor or to stay at home with the sick children. Moreover, the

parent may get sick from her/his children, thus showing the symptoms few days later. Un-

fortunately, we do not collect data about the health status of the children due to privacy
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reasons. Therefore, future studies on different samples of study participants (e.g., students,

older adults) should be conducted to better investigate the predictive role of changes in

human mobility behaviors for the emergence of flu-like and cold symptoms.

6 Conclusions

In this paper we have shown how to use individuals’ mobility behavior for a novel and

challenging task: predicting the future presence of flu-like symptoms such as fever, cough

and cold. To this end, we used themobility information collected bymobile phones and the

daily self-reported flu-like symptoms of  individuals in the time interval from February

 toMarch  of . Previous work has exploited the use of mobility features to predict

mental health and well-being dimensions such as positive and negative emotions, stress

level, and depression symptoms. To best of our knowledge, this work represents the first

study that utilizes inference algorithms to predict the presence of influenza-like symptoms

by only looking at the mobility behaviors of a specific individual. Our results represent a

promising starting point for dealingwith influenza-like public health issues. The evolution

of our proposed methodology could have significant societal impact opening the way to

customizedmobile phone applications, whichmay detect the users’ condition and suggest

specific actions to them in order to prevent disease spreading and minimize the risk of

contagion.

In the future we plan to evaluate the predictive performance of models combining mo-

bility information and communication interactions (e.g., number of calls, number of dif-

ferent contacts and so on).
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