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AREA AND HAUSDORFF DIMENSION
OF JULIA SETS OF ENTIRE FUNCTIONS

CURT MCMULLEN

ABSTRACT. We show the Julia set of A sin(z) has positive area and the action
of Asin(z) on its Julia set is not ergodic; the Julia set of A exp(z) has Hausdorff
dimension two but in the presence of an attracting periodic cycle its area is
zero.

1. Introduction. There is no known rational function R whose Julia set J has
positive area and yet is not the whole Riemann sphere. (Indeed there is as yet no
example for which J is proved to be a proper subset of the sphere with Hausdorff
dimension two.) On the other hand, when the forward orbits of the critical points
do not accumulate on J, the map R is expanding and Sullivan shows dim(J) < 2
(in fact J has positive finite measure in its dimension [S]). So disregarding the case
J = C, it is fairly hard to find large Julia sets.

The purpose of this note is to describe a contrasting situation for some entire
functions. We consider two families of functions:

{f(z) = Ae*: XA £ 0} (the “exponential family”),
{f(2) =sin(az + B):a # 0} (the “sine family”).

Each of these families is “topologically complete”, in the sense that any entire
function topologically conjugate to a member of the family is already (conformally
conjugate to) a member. The sine family represents the same conformal conjugacy
classes as

{f(2) = 7e* + 8¢y £0, 6 # 0}

so it contains functions conjugate to Acos(z), Asinh(z), etc.

THEOREM 1.1. The Julia set of any member of the sine family always has
posttive area.

THEOREM 1.2. The Julia set of any member of the exponential family always
has Hausdorff dimension two.

THEOREM 1.3. However, when \e® has an attracting periodic cycle (e.g. 0 <
A < 1/e), the area of its Julia set is zero.

Examples of these Julia sets are rendered in Figures 1.1 and 1.2. The member
of the exponential family shown has an attracting fixed point.

Since the Julia sets for members of the sine family have positive area, one can
study their measurable dynamics.
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FIGURE 1.1. Julia set of f(z) = 0.3 exp(z)
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FIGURE 1.2. Julia set of f(z) = 0.7sinh(z)

THEOREM 1.4. The action of f(z) on its Julia set is not ergodic for any mem-
ber of the sine family.

REMARKS. (1) The study of iterated entire functions begins with Fatou [FJ;
some of the more recent developments, especially concerning the exponential fam-
ily, appear in [B1, B2, BR, DK, and GGS]. For f(z) = €*, the Julia set is
the whole plane [M] but the measurable dynamics are more complicated than for
sin(az + B), due to the large contraction in the left half-plane. M. Ljubich has
reportedly established the nonergodicity of e®.

(2) In addition to the exponential and sine families, it is natural to consider the
family

{ f(2) = cos (x/az + ﬂ) ra# 0} (the “cosine-root” family).

This family is also topologically complete. Taken together, these three families
represent exactly those entire functions which arise as infinite sheeted coverings
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of noncompact orbifolds of Euler characteristic zero. (The exponential and sine
families give universal coverings of the (00, 00) and (oo, 2,2) orbifolds respectively;
the cosine family gives the covering of the (00, 2, 2) orbifold associated to an infinite
cyclic subgroup of the infinite dihedral group.)

The arguments applied to sin(az + ) can be used to prove analogous results for
the cosine-root family: every member of that family also has a Julia set of positive
measure on which the action of f is not ergodic. Since the proofs parallel those for
sin(az + () (but are slightly less transparent) we do not reproduce them here.

ADDED IN PROOF. A generalization of Theorem 3.1 has been announced by
Eremenko and Ljubich [EL].

OUTLINE OF THE PAPER. We begin by developing simple criteria for subsets
of R™ to have positive volume or Hausdorff dimension n (§2), and by discussing
the distortion lemma for expanding dynamical systems (§3). These results are then
applied to the Julia sets of Ae* and sin(az + ) to prove Theorems 1.1 and 1.2 (§§4,
5). In §6 we discuss distortion properties of “expanding” entire functions (analogous
to hyperbolic or Axiom A rational functions); it turns out that our hypothesis in
Theorem 1.3 is exactly that \e® is expanding. §7 completes the proof of Theorem
1.3, and §8 discusses the measurable dynamics of sin(az + 3). We have included
an appendix which gives a growth criterion for points to be in the Julia set of an
entire function of finite type. This criterion is used in many of the proofs.

ACKNOWLEDGMENTS. The results here are partly based on general arguments
used by many authors, among them ﬂouady, Hubbard, Ljubich and Sullivan. I am
grateful to- Bob Devaney for suggesting that the Julia set of Asin(z) should have
positive area.

I would like to thank the Math Sciences Research Institute for its hospitality
while this work was being completed, and the Lawrence Berkeley Laboratories for
the use of its computing facilities.

2. Volume and Hausdorff dimension. To study the Julia sets, we will
construct explicit subsets of them by nested intersection of dynamically defined
sets. In this section we develop general criteria which ensure that the resulting set
has positive measure or dimension two.

For k = 1,2,..., let E}) denote a finite collection of disjoint compact subsets F
of R™; and let E), denote the compact set obtained as the union of the elements of
E}.. We assume

(a) every F € Ey, is contained in a (unique) F’ € Ej; and

(b) every F € E, contains at least one element of Ej .

Consider the set E = (7o ; Ex. Assume that for all k and all F in Ej,

VO](E]ﬂ_l N F)

>
Vol(F) = A

density(Ex41, F) :=

and
diameter(F) < d.
Here Vol denotes n-dimensional volume. Then it is easy to establish

PROPOSITION 2.1. .

(e o]
Density(E, E;) > H Ag.
k=1
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In particular, if the product is greater than zero then E has positive volume. On
the other hand, if the product of the densities tends to zero, but much slower than
di, then E still has Hausdorff dimension n.

PROPOSITION 2.2.

o Lty |log Ayl .
e=t=1 = - > . .
N e A I

In particular, if the limit above is zero then the Hausdorff dimension of F is
equal to the ambient dimension n.

PROOF. For simplicity we rescale so that the n-dimensional volume of E is one.
Construct a sequence of probability measures puy, as follows: let 1 be the restriction
of n-dimensional volume measure to E1; and construct ue; inductively so that
within each F € Ej, ug+1 is proportional to volume measure on Ej1, scaled so
that pri1(Eks+1 N F) = pg(F). These measures form a martingale relative to the
collections Ej, in the sense that (by the above) u,,(F) for F' in Ej is the same for
all m > k. Let u denote a weak limit of the uy (in fact it is unique). Then p is
supported on E, and for F € Ey,

p(F) < Vol(F)/(A14z - Ag),

(The measure of F is just its volume scaled up by the relative sparseness of E
inE;, fori=1,2,...,k.)

Consider a ball B of radius » in R®. To prove E has dimension at least 6, it
suffices to show u(B) < C(6)r? (this is the easy half of Frostman’s Lemma, see
[KS)).

Choose k so that di, > r > dg+1, and let B denote the union of all sets F' € Ex11
which meet B. Then the diameter of B is not more than twice that of B, so by the
estimate above,

— Vol(B) 5 dp=t
B) < u(B) < <C
wB) < uB) < (AAg - Agyr) — r [(AlAZ"'Ak+l)

where C is a constant depending on § and the volume of a unit sphere in dimension
n. Whenever n — § is greater than the lim in the statement of the proposition, the
quantity in brackets tends to zero as k — oo, so in particular it is bounded above.
Thus p satisfies an estimate of the required form, so the Hausdorff dimension of E
is at least &, establishing the proposition. O

3. Distortion in expanding dynamics: Telescopes. Let D be a bounded
open subset of the complex plane and let f: D — C be a map. We say f has
bounded distortion if for distinct  and y in D,

e <|f(z) = f)l/lz -yl <C

where ¢ and C are positive constants depending only on f. The ratio C/c = L(f)
measures the amount of distortion of f; it is is near 1, we say f has small distortion. -
Small distortion implies f nearly preserves relative lengths and areas. For example,
if X is a measurable subset of D, then

Area(X)

density(X, D) = Area(D] < L(f)? density(f(X), f(D)).
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For a conformal map f(z) a differential quantity related to distortion is the
nonlinearity of f, measured by the rate of change of its derivative, i.e. by the
quantity log(f') = f”/f'. If D is a ball or a square and

N(f) = (sup If”(Z)/f’(Z)I) x (diameter(D))
zeD

is small, then f has small distortion {J]; in fact when N(f) is near 0, L{f) is bounded
by 1+ O(N(f)). (The exact condition needed here is that D is a K-quasidisc, and

the relation between nonlinearity and distortion depends only on the constant K
(G].)

FIGURE 3.1. A telescope of expanding maps

A well-known principle in dynamics is that bounded nonlinearity combined with
uniform expansion allows one to control distortion over any number of iterates.
A form of this principle suited to our applications is the following: let (B;, © =
1,...,n) be a sequence of squares of side r in the plane, and f; a sequence of
conformal maps such that f;{B;) contains B;,;. This chain of maps forms a sort
of “telescope” (see Figure 3.1).

Assume that the maps f; have uniform expansion and bounded nonlinearity, that
is, for all 7,

Ifil>a>1 and [f'/f]] <M <o,

and assume that r (the size of the squares) is small enough to assure that each
fi has uniformly bounded distortion on B;. (Since N(F;|B;) < Mr, this will hold
whenever r is sufficiently small.) Let D = fn(B,) and let F = (fpo0---0f1)":D —
B denote the inverse of the composition of all of the f;.

PROPOSITION 3.1 (THE DISTORTION LEMMA). The distortion of F is bound-
ed by a constant depending on r, o and M (the size of the squares, the amount of
expansion and the nonlinearity), but not on n.

PROOF. Uniform expansion insures the diameters of the successive preimages
of D under the f; go to zero at a geometric rate, so the same is true of N( ) of
the restriction of f; ! to these sets. Using the relation L(f) = 1+ O(N(f)) and
L(fg) < L(f)L(g), we conclude that L(F) is controlled by the sum of a geometric
series which has a finite bound independent of n. O

4. The Julia set of sin(az + 8). For convenience, we will actually deal with
f(z) = ~ve* + 8e~#, which is conjugate to sin(az + ) by an affine change of coor-
dinates. '

Consider the region

R(h) = {z:|Re(z)| > h}.
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For z in R(R), h large, |f’| > O(e") and |f”/f’| ~ 1. Whenever we consider a
region R(h), we will always take h large enough that f is expanding by a definite
factor and the nonlinearity is near 1.

In such an R(h), we define a boz to be a square region with sides of length r,
where 7 is a fixed constant chosen small enough to guarantee small distortion—in
particular, that the image of the box under f is again nearly square. (It is possible
to choose such an r by bounded nonlinearity.)

We now estimate the size of the set of points whose iterates tend to infinity at a

given rate. Let hi be a sequence of positive numbers, a candidate for the growth
of | Re f*(z)|.

PROPOSITION 4.1. For By a boz in R(ho), the set of z in Bo such that f*(z) €
R(hg) for all k has density at least

[1(1 - Othes1/e)).
k=0

PROOF. Let B be a box in R(hi). Then the set f(B) N R(hk+1) can itself be
packed with disjoint boxes whose total density in f(B) exceeds 1 — O(hj41/e"*).
This follows from the fact that f(B) N R(hi4+1) looks very nearly like a square of
side at least O(e"), possibly with a strip of width 2hi41 deleted. We will refer to
the boxes in such a packing as pack(f(B)).

We now define collections E}, of subsets of By which satisfy the nesting conditions
of §2. Let Ep = {Bo} and define inductively

Ey = {G:G C F € E_1, and f*(G) € pack(f*F)}.

That is, Ej, consists of preimages of the boxes packing f*(F) N R(hy) for each F in
Ej_1 (see Figure 4.1). Then E = () Ej consists of points for which f*(z) € R(hs)
for all k.

Since

Density (U pack(f* F), ko) > 1— O(hgs1/€"™),

we conclude by the distortion lemma that the same is true (with a different con-
stant in O( ) for density (Ex+1,F). Then Proposition 2.1 applies to complete the
proof. O

PROOF OF THEOREM 1.1 (The Julia set of sin(az + 3) has positive area). By
the above, if we choose hy — 0o such that Z,;“;o hiy1/eM* is sufficiently small, we
will have a set of positive density in B such that for all k, Re(z) > hy. For example,
if we take hy = 2¢*(z), where g(z) = €, the sum above becomes Y ro 2/ (z)
and choosing z large, this sum becomes extremely small.

Thus there is always a set of positive area in C which tends to infinity at the
rate of iterated exponentiation. This set must lie in the Julia set of ve* +ée~%, and
so the Julia set itself has positive measure, establishing Theorem 1.1. O

Why is the last sentence of this proof true? One can prove by elementary ar-
guments that for f(z) = ~e* + de=* or Ae?, f¥(w) — oo always implies w is in
the Julia set of f. Rather than proving this, we show in the Appendix that for a
general class of entire functions (those of finite type), points which tend to infinity
very rapidly (say at the rate of iterated exponentiation) lie in the Julia set. This is
enough for the proof above.
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FIGURE 4.1. Dynamics of ~e® + fe—?

5. Behavior of \e*: Dimension = 2. Our study of f(z) = Ae? is rather
similar to the discussion of sin(az+ ) in §4. Only two properties of f are essential:
first, that f(2) is rapidly expanding in the right half-plane; and second, that about
half of the points in the right half-plane remain there after applying f.

To make this precise, let I = [fp —arg ), §; — arg \] be an interval of angles; then
arg f(z +1y) is in [fo, 61] whenever y € I (mod 27). Set [0y, 0:] = [-7/4,7/4], and
consider the region § = {z:Im(2) € I (mod 2n)}. For z in S, we have the estimate
Re f(2) > O(eR®#). Thus as long as the iterates of a point remain in S, the point
moves to the right at the rate of iterated exponentiation. We will show the set of
points with this behavior always has dimension two (and by the Appendix, such
points must lie in the Julia set).

It is useful to start out far enough to the right to assure that f is very expanding;
so choose zg such that |f'(z)| > 1 when Re(2) > 2o, and set T = {z € S:Re(z) >
Zo}. As in the study of sin(az + 8), we define a boz to be a square region in T
of side length r, where r is chosen small enough to insure that f is injective on B
and that the image f(B) is itself very nearly square-shaped. This is possible by
bounded nonlinearity (f/f = 1).

PROOF OF THEOREM 1.2 (The Julia set of Ae* has dimension 2). The proof
parallels that for sin(az 4 §). Let B be a box in T. Then the set f(B) N T can
itself be packed with disjoint boxes whose total density in f(B) is near to 1/4. This
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FIGURE 5.1. Dynamics of \e®

follows from the fact that f({B) is a very nearly square region much larger than
the width of the strips forming 7'. As before we will refer to the boxes in such a
packing as pack(f(B)).

Let Ey = { By} and define inductively

Ex={G:G C F € Ey_;, and f*(G) € pack(F*F)}.

Ej, consists of preimages of the boxes packing f*(F) N T for each F in Ej_; (see
Figure 5.1). Then E = [ E consists of points for which f*(z) € T for all k.

Since density (|Jpack(f*F), f*F) is nearly 1/4, we conclude by the distortion
lemma that density (Exy1,F) > A for some A independent of k. Using the fact
that Re f(z) > O(eRe?) for z € T, and f'(z) = f(z), one easily checks that for
z € F € Ey,

Re(f*(2)) > O(¢g*(1)) and diameter(F) < dy = O(1/g%(1)),

where g(z) = €®. Since dj tends to zero much faster than A¥, Proposition 2.2
applies to prove the Hausdorff dimension of E = ) Ex is two. By the above, the
iterates (f*(z)) tend to infinity at the rate of iterated exponentiation for any z
in E; in particular, E lies in the Julia set of f (see the Appendix), establishing
Theorem 1.2. O

REMARK. The method of Proposition 2.2 shows in fact that the Julia set of Ae*
has infinite Hausdorff measure for the gauge function

h(r) = r?loglog - - - log(1/r)
for any number of iterations of the logarithm.

6. Expanding entire functions. To begin the proof of Theorem 1.3, we first
develop general results concerning the expansion and distortion properties of certain
entire functions.

DEFINITIONS. Let f(2) be an entire function. A point w € C is a singular value
of f if there is no neighborhood U of w such that f: f~}(U) — U is a covering
map. The post-singular set P is the union of the singular values and their forward
orbits; i.e. '

P = {f"(w):n >0, and w is a singular value of f}.
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We say f is ezpanding if P is compact and PN J is empty (where J is the Julia set
of f). The terminology is justified by

PROPOSITION 6.1. If f(2) is an expanding entire function, then |f™(z)| — oo
for all z in J.

PROOF. The proof uses the Poincaré metric as in Douady’s proof of the corre-
sponding result for rational functions [D]. Let V denote the unbounded component
of the complement of P. We claim J is contained in V; indeed, on any bounded
component the boundary values of f™ lie in the compact set P and by the maximum
principle the iterates form a normal family.

It is easy to see that U = f~1V is contained in V and f:U — V is a covering
transfecrmation. Except for the case of f conformally conjugate to f(z) = 2™ (for
which the proposition is true by inspection), U is a proper subset of V. For if
U =V then f is a polynomial (consider the preimage of a neighborhood of infinity)
and the claim follows easily.

Let A(z)|dz| denote the Poincaré metric on V'; then the Schwarz lemma shows
that for z in U (in particular for z in J),

I/ ) > 1

where || -|| denotes the norm of the derivative of f at z in the A metric. To complete
the proof we combine this fact with the observation that A(z) — 0 as z — oo.
The ordinary absolute value of the derivative of f is related to the lambda norm

|7 (@) = I (2) | M2)/A(F™(2))-

Fixing z now, we distinguish two cases. If the iterates f™(z) return infinitely often
to some fixed compact subset K of J, then the derivative of f™ in the lambda
metric tends to infinity since f expands by a definite amount on K. But A(f™(z))
is bounded above (since A tends to zero at infinity) so |f™(z)] — oo as claimed.

On the other hand, if f*(z) tends to infinity then A(f™(z)) — 0 and since the
A-norm of f(z) is always > 1 we have the same conclusion. O

Using the more precise fact that A(2) is O(1/(]z|log|z|)) as z tends to infinity
(since P is bounded), the same reasoning yields the following

by

COROLLARY 6.2. If f is expanding, then for all z in J,
[F™ ()l > C|f"(2)|log | f™(2)]

for some constant C (depending on z).

The next result shows that a Julia set of an expanding entire function is quasi-
self-similar in the sense that all of its microscopic features are reflected with bounded
distortion in its macroscopic features. This property is discussed for expanding ra-
tional functions by Sullivan [S]. The implications for entire functions are not quite
as strong as for rational functions because the Julia set is not compact. For exam-
ple, the Julia set of an expanding rational function always has measure zero—this
is a microscopic reflection of the macroscopic fact that J is nowhere dense. But the
corresponding result is not true for expanding entire functions—as we have seen,
the Julia set of f(z) = sin(az + 3) always has positive measure, even when f is
expanding.
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We will use the Koebe distortion theorem for univalent functions to control the
shape of the Julia set of f(z) when f is expanding. The Koebe theorem is related to
the distortion lemma introduced in §3, but is more generally applicable since it only
requires the hypothesis of univalence. Indeed some of the preceding proofs could
have relied on the Koebe theorem instead; however the arguments would become
somewhat more cumbersome.

PROPOSITION 6.3 (KOEBE THEOREM). Let B(r) denote the ball of radius r
centered at the origin, and let g: B(r) — C be a univalent map. Then for any s < r,
the restriction of g to B(s) has distortion bounded by a constant K(s,r) tending to
1ass/r—0.

PROOF. See for example Ahlfors [A].

PROPOSITION 6.4. Let f(z) be an expanding entire function. Then there is a
countable family of balls { B, } whose diameters tend to infinity, with the following
property: every z in the Julia set has a sequence of neighborhoods U,, whose diam-
eters tend to zero, such that f™ maps U, onto a member of the family {B,} with
distortion bounded by a constant L independent of z and f.

PROOF. For {B,} we take a locally finite covering of J by balls with centers in
J, each of the form B(z,dist(z, P)/2). Since P is compact, the diameter of balls in
this family tends to infinity.

Now fix z in J. For each n let B,, be a member of the family {B,} containing
f™(z). The critical values of f™ are contained in P, so f* admits a univalent
inverse on the ball with the same center as B, but twice the radius. Let f—"
denote the branch of the inverse carrying f™(z) back to z, and let U,, = f~"(B,).
By the Koebe theorem this map has distortion bounded by a universal constant.
It remains only to verify that the diameters of the U,,’s tend to zero.

By bounded distortion,

diam(U,) = O(diam(B,)/|f™(z)]).

By Proposition 6.1, |f™(2)| — oo, so we need only worry about the n such that
diam(B,,) is large. But for such n, diam(B,,) is comparable to | f*(z)|, and applying
Proposition 6.2 we have diam(U,) = O(1/log|f™(z)|), so the diameters tend to zero
for these n as well.

7. Behavior of Ae*: Area = 0. Using the results of the preceding section,
we can now easily show that if the Julia set of an expanding function is “thin at
infinity” then its area is zero. We begin by establishing some properties of \e*
which make it clear that this result includes Theorem 1.3 as a special case.

PROPOSITION 7.1. If Ae* has an attracting periodic cycle then it is expanding.

In fact the converse is true (but we do not use this).

PROOF. Assume f has an attracting cycle. Note that f has only one singular
value (namely 0) and any attracting cycle must attract this value (by the usual
Schwarz lemma argument—otherwise f is a local isometry in the Poincaré metric on
the immediate basic of attraction). Since some neighborhood of the attracting cycle
does not meet the Julia set, we conclude that PNJ is empty and f is expanding. O
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Theorem 1.3 clearly depends on some property besides expansion, since the Julia
set of an expanding entire function can have positive area. To isolate this property,
we say a subset E of C is thin at infinity if its density is bounded away from
1 in all sufficiently large balls: there exists an R and an ¢ such that for all z,
density(E, B(z,R)) < 1 —&.

PROPOSITION 7.2. When Xe? i3 expanding, its Julia set is thin at infinity.

PROOF. For Ae* expanding a neighborhood U of 0 is in the complement of J
(since 0 is a singular value); the preimage of U contains some left half-plane H, and
the preimage of H consists of periodic horizontal strips S. Any sufficiently large
ball must either lie in H or meet a definite amount of . 0O

A set E in C is said to be totally tnvariant under f if f~!(E) = E. Since the
Julia set is totally invariant, Theorem 1.3 is a special case of

PROPOSITION 7.3. Let f(z) be an expanding entire function and suppose E s
a measurable totally invariant subset of the Julia set of f. Then if E s thin at
nfinity, its area 18 zero.

This general form will prove useful in studying the measurable dynamics of
sin(az + B). .

PROOF. The proof parallels Sullivan’s argument for rational functions [S]. For
f(2) expanding, we may choose a family of balls {B,} as in the statement of
Proposition 6.4. The diameters of these balls tend to infinity and E is thin at
infinity, so there is a uniform upper bound to the density of E in these balls. Since
E is totally invariant, we may apply Proposition 6.4 to conclude that every point in
E has arbitrarily small neighborhoods in which the density of E is less than one by a
definite amount. Furthermore these neighborhoods have bounded geometry—they
are images of round balls under maps of uniformly bounded distortion. Therefore
E has no points of Lebesgue density and consequently its area is zero. 0O

8. Measurable dynamics of sin(az + ). The results in §3 indicate that
many points in the Julia set of f(2) = sin(az + 3) tend towards infinity at a
definite rate. In this section we construct a function which measures this tendency
and establishes a measurable semiconjugacy between the action of f on its Julia
set and the action of g(z) = €®/e on [1,00]. It will turn out that the push-forward
of area measure on J gives positive measure to any subinterval of (1, 00); since the
action of g is properly discontinuous on this open set, it follows immediately that
f is not ergodic.

As usual, it will be more convenient to put the function f in the form f(z) =
~eF + be 7.

Define, for all z in C,

n
&(z) = inf {z >1: lim =)l :O}.
n—oo gn(z)
This 1s a semicongugacy: (f(2)) = g(é(2)), as is easily verified. A computation
establishes
¢(2) < [Re(z)| + £(| Re 2])

where ¢ — 0 as |Re z| — co. (In particular, ¢(z) is always finite.) Here is a sort of
converse.
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PROPOSITION 8.1. For any fized €, let E = {z:|¢(2) — |Rez|| < €}. Then
density (E, B(z,1)) — 1 as |Rez| — co. In other words, when |Re z| is large, ¢(z)
1s very probably quite close to |Rez|.

PROOF. Let z = |Rez|. A calculation shows we can choose a sequence o; >
ag > ag > --- such that e = oy and

i g**t (e — apq1)

’C+1(m—ak) —0 asz— o0.

Applying Proposition 3.2 w1th hy, = g¥(x — ax), we conclude that in a box centered
at z, the density of

{w:|Re f*(w)| > g*(|Re 2| — ay) for all k}

tends to 1 as | Re z| — oo. But clearly for any such w, ¢(w) > | Re 2| —e. Combining
this with the preceding upper bound on ¢(z) yields the proposition. C

COROLLARY 8.2. ¢~ 1(I) has positive area for any interval I of positive length
contained in (1, 00).

PROOF. By the proposition above, {z: ¢(z) € [z — 1,z + 1]} has positive area for
z large enough, since it contains all the z such that | Re z| is near z. But for any
interval I, g"(I) contains an interval of the form above once n is large enough. Since
f is absolutely continuous with respect to area measure and ¢ is a semiconjugacy,
we conclude that ¢—1(I) itself has positive area.

PROOF OF THEOREM 1.4 (f is not ergodic on its Julia set). First, notice that
any z such that ¢(z) > 1 tends to infinity at the rate of iterated exponentiation
and consequently (by the Appendix) lies in the Julia set. Let I and J be any two
intervals in (1, 00) such that their grand orbits under ¢ are disjoint (such I and J
clearly exist since g has a fundamental domain). Then the grand orbits under f of
¢~ 1(I) and ¢—1(J) are also disjoint, because ¢ is a semiconjugacy. By the preceding
corollary, these are subsets of J of positive measure; so f is not ergodic. 0O

When f is expanding the action of g on (1,00) seems to entirely capture the
measurable dynamics of f. One aspect of this is the following:

PROPOSITION 8.3. If f(z) is expanding, then the area of J N¢~1(1) 1s zero.

Thus in the expanding case almost every point in the Julia set tends to infinity
at the rate of iterated exponentiation.

PROOF. J N ¢~1(1) is totally invariant, and by Proposition 8.1 it is thin at
infinity; so by Proposition 7.3 it has measure zero. O

We conjecture that when f is expanding, the semiconjugacy ¢ gives exactly the
measurable small-orbit quotient for the action of f on J.

Appendix: Points zipping towards infinity are in the Julia set. An
entire function is said to be of finite type if it has finitely many singular values (see
§6).

PROPOSITION A.1. Let f(z) be an entire function of finite type and let w be a
point not lying in the Julia set of f. Then there exist a constant P > 1, such that
log | f*(w)] < O(P¥).

PROOF. By Goldberg and Keen [GK], functions of finite type have no wandering
domains; so the forward orbit of w eventually lands in a component U of the
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complement of the Julia set which is fixed by a power of f. For simplicity, assume
this power is one, and assume w was in U to start with. Let d(z,w) denote the
Poincaré metric on U. By the Schwarz lemma, f:U — U is distance nonincreasing
for this metric. Since inclusions are contracting, d(z, w) > D(z,w) where D denotes
the Poincaré metric on C — {a,b} for {a,b} two points chosen to lie outside of U.

Using estimates for the Poincaré metric on a triply punctured sphere (see Ahlfors
[A]), we find that for z, w large,

D(z,w) > O(]loglog |z| — loglog |w] |).
Therefore,
C|loglog | f*** (w)| — loglog | *(w)| |
< D(F¥ (), fE(w)) < d(F*H (w), fH(w)) < d(f (w), w)

for some positive constant C. Since the quantity on the right is independent of k,
an easy computation now yields the proposition. O

REMARKS. (1) The rate of approach P* is realized in the basin of attraction of
infinity when f is a polynomial of degree P.

(2) Since Ae?, sin(az + B) and cos(y/az + 3) are of finite type, any point whose
forward orbit under one of these functions tends to infinity at the rate of iterated
exponentiation must lie in the Julia set. (If g(z) = €%, then for k large enough,

log g*(1) = g*~1(1) > CP*

for any given C and P.) This fact was used in the proofs of Theorems 1.1, 1.2 and
1.4.

(3) The example f(z) = e~# + z + 1 shows that an entire function can have an
open set which is attracted to infinity; therefore f k(2) — oo does not always assure
2z is in the Julia set. This example, which is due to Fatou [F], was pointed out by
Lisa Goldberg. Notice Fatou’s example is not of finite type. Is there a finite-type
map with a basin at infinity?

ADDED IN PROOF. A negative answer to this question has been announced by
Eremenko and Ljubich [EL].
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