AD-A096 367 CARMEGIE-MELLLON UNIV PITTSBURGH PA DEPT OF COMPUTER --ETC F/6 9/5 AREA-EFFICIENT GRAPH LAYOUTS (FOR VLSIJ. (U) AUE 80 C E LEISERSON N00014-76-C-0370
UNCLASSIFIED
CMU-CS-80-138
NL

END

pate
filmed

$4-81$
dtic

Area-Efficient Graph Layouts (for VLSI),

Charles E. Leiserson

Department of Computer Science Carnegic-Mellon University
Pittsburgh, Pennsylvania 15213
August 1979
I dst Revised 13 August 1980

A

Abstract

Minimizing the area of a circuit is an important problem in the domain of Very large Scale Immigration We use a theoretical VI.SI model to reduce this problem to one of laying out a graph, where the transistors and wires of the circuit are identified with the vertices and edges of the graph. We give an algorithm that produces VI. SI layouts for classes of graphs that have good separator theorems. We show in particular that any planar graph of n vertices has an $O\left(n \mathrm{~g}^{2} n\right)$ area layout and that any tree of n vertices can be laid out in linear area. The algorithm maintains a sparse representation for layouts that is based on the well-known UNionFIND) data structure, and as a result, the running time devoted to management of this representation is nearly linear.

This research was gomoted want by the Defence Adware Research Projects Agent; (DOD) ARPA Order No 3597 which is

 John Here/ Jomatiton fethoushan

1. Introduction

The remarkable advance of tery large xale integrated (ViSI) citcuity has parked research into the design of algorithms suitable for direct hardware implementation. To the computer theoris. VI SI provides an attractive model of parallel computaton for thee reasons. First of all, the mumber of components that can fit on a single chip is lage, and beyond that has ben dombling every one to the lears. It is currendy possible to place 10^{5} components on a sughe chip. and it is projected that than number will wory likely grow to 10^{7} or even 10^{8}. These large numbers make asymptotic analysis and other theoretical tools applicable to this engineering discipline. Secondly. VISi hardware expense can be related directly to the sery mathematical and geometric cost tinction of area. Unlike older technologies. the components and interomnections between components are made out of the same "stuff" in V'I.SI, and henee area is a uniform cost measure for both. Finally. VI.SI provides a model of parallel computation that includes communication costs as well as operation counts. The cost of communication is represented explicitly as the area of a fixed-width wire between two processors. In fact, intereonnections can consume most of the area of an integrated circuit chip. A major goal, therefore, is to minimie the area required by particular interconnection schemes. This paper examines the problem in an dbstract setting: "Given a graph. produce an area-efficient layout."

Figure 1: An O($n \mathrm{lg} n)$ layout of a complete binary tree.

To illustrate the subteties inherent in this problem, consider laying out a complete binary tree of $n=2^{k}-1$ vertices. Figure 1 shows an ohvious shlution that requires $O(n \mathrm{~g} n)$ area- $-\mathrm{O}(n)$ across the bottom times $O(\lg n)$ height. Observe that as we axe end the tree from the leaves to the root, the number of wires is halved from one level to the next. but the length of the wife doubles. This means that the amount of wire devoted to each level of the tree is the same. The recurrence that deseribes the area required by this layout is $A(n)=1$ for $n=1$, and

$$
A(n)=2 A(\lfloor n / 2\rfloor)+n / 2
$$

for $n=2^{k}-1$ where $k>1$.
There is a more efticient solution to this embedding problem. The so-called H - 1 ere layout [17] shown in figure 2 requires only $O(n)$ area in spite of the fact that relatively long wires are used towards the foot of the tree. In wis dayom. the momber of wites is hatived from level to lewe as we asend the foon, but the length of the wires doubles only sery two kebls. Whereas the standard O($n \mathrm{~g} \mathrm{~g} n$) layout use just one dimension for routing most of the wires. the thetree makes better we of hoth spacial dimensoms. The recurrence deseribing the area requred by the l-tree is more complex than the previous one because of its nonlinear form: $A(n)=1$ fon $n=1$, and

$$
A(n)=4 . A(|n / 4|)+4 \sqrt{.1(n / 4])}+1
$$

for $n-24^{k}-1$ where $k \geq 1$.

Figure 2: The $1 /$-tree layout of a complete binary tree.

 recurrence which has solution O(\sqrt{n}) for the edge of the lajout.

The remainder of this paper is organized as follous. Section 2 thenuth 5 contait 4 ane und materal

 proned in Section 4. In Section 5 . an important nunlinear recurreace cyuathen is whed.

 Section 8. an implementation of the lagout algorithm is presonted wheh shad in tha (andFND algoritnm andyed by Tarjan [22]. It is sheun that the time required for mantuinng the reprocriation it a
 model in which the vertices of a graph are contrained to tie no a line. Finall; Sectan io tra w place the work of this paper in proper perspective.

2. The VLSI Model

Before presenting the VISI model used in this paper. it is worth hile wexamine some of the atrathute of

[^0]Intuitively, the VI.SI model should make one-to-one correspondences between edges in the graph and wires in the layout, and between vertices in the graph and transistors in the layout. The mapping between edges and wires seems straightorwatd enough, but there are many issues to be resolsed in establishing a correspondence between vertices and transistors. An important one is that a vertex in a graph may have large degree, and yet on an integrated circuit. an arbitrarily laree number of wires camot eome together at a single point. There just isn't enough room. Another problem arises from the fact that a transistor uccupies area. What assumptions should be made about the size and shape of that area?

In this paper. we rewhe these difficulties by restricting the discussion to classes of graphs with vertex degrees that are luanded by a comstant, and by firther assuming that rertices require unly a comstant area of silicon. Alchough these constraints may secm severe at first. the results of the paper are casily gencralized to more complex models. For example there is a simple transformation from an arbitrary graph to a trivalent graph such that each ventex of the orgimal graph is a block of the triatent graph. Another way that the model can be cextended is to allow several transistors to be comnected by a single wire. This is casily accomodated by considering bipartite graphs-bertices in one set represent transistors and those in the other represent wires.

Having resolsed the graph-theoretic issues, we now turn to the modeling of the layouts tuemselves. The VISI model proposed here is similar to that of Thompson [2.3] in which wires have unit width and only a constant number ((w)) may eross at a point. Vertices are placed on a rectangular grid so that each lies within a grid square Edees nun horizontally and vertically. one per grid square. except that an edge running horimontally may cruss one running vertically. ${ }^{2}$

I ayouts that are designed with this model have the property that they are sliceable. That is a horizontal or wertical line can be used to biseet the layout. the pieces can be moved apart, and the severed wires can be reconnected to realize the original topology. Slicing can be used to gencrate new layouts from old ones. For example, ligure 3 shows how slicing enables a new edge to be routed between two existing rertices in a lavout. Iuo hormontal and two vertical cuts are made through the lavout to expose the the vertices that are to be connected. (Actually, two slices in one direction and one in the other always suffice.) the pieces are separated by a grid unit, the severed edges are recomented across the gaps. and a new edge which connects the rertices is run through the gaps. If the length in grid units of the origimal layout was $/$. and the widh W, the new layout has length at most $I+2$ and widh at most $H+2$. It should be noticed that the slices through the layout must be straght--a staircase cut may require the pieces to be separated by more than a single grid unit for a new edge to be routed.

3. Separator Theorems

Recently. I ipton and Tarian [14] showed that ant plathar graph of 14 sertices can be divided into two subgraphs of appoximately the same se by remosing only $O(\sqrt{11})$ wetices. Since the subgraphe are

 comstant at the detimitum.

[^1]

Figure 3: Two horizontal and two vertical slices are more than sufficient to route an edge.

Definition: I.et S be a class of graphs closed under the subgraph relation. that is, if G is an element of S, and G^{\prime} is; a subgraph of G, then G^{\prime} is also an element of S. An $f(n)$-separator theorem for S is a theorem of the following form.

There exist constants α_{S} and c_{S} where $0<\alpha_{S} \leq 1 / 2$ and $c_{S}>0$ such that if G is an n-vertex graph in S, then by removing at most $c_{S} f(n)$ edges, G can be partitioned into disjoint subgraphs G_{1} and G_{2} having αn and $(1-\alpha) n$ vertices respectively, where $\alpha_{s} \leq \alpha \leq 1-\alpha_{s}{ }^{3}$
The set of removed edges is called the cut set of the bisection, and $f(n)$ is called the width of the bisection.

This definition is adequate for Lipton and Tarjan's \sqrt{n}-separator theorem because the class of planar graphs is closed under the subgraph relation. But there are many classes of graphs for which the same divide-and-conquer approach works, yet the class is not closed under the subgraph relation. The notion of separability can be extended by taking the closure of the original class of graphs with the suhgraphs postulated by the separator theorem. Using this interpretation of separability, it is easy to show [13] that the class of trees has a 1 -separator theorem. (The class of trees is not closed under the subgraph relation, although the class of forests of trees is.) We shall give additional separator theorems in Section 7.

[^2]
4. Areas and Aspect Ratios

The size and shape of a rectangle is uniquely determined by its length I. and its width W. where we shall assume that $L \geq W>0$. But there is another coordinate space for specifying sites and shapes of rectanglesarea and aspect rutio. Everyone is familiar with area and knows that the area can be detined as the product I. H. The aspect ratio σ is defined is the quantity W / I, which by this detinition. is less than or equal to one. Given the area and aspect ratio of a rectangle, its length and width are given by $I=\sqrt{A / \sigma}$ and $W=\sqrt{\sigma A}$.

Suppose a graph has a 11 .SI layout of area A and aspect ratio σ. It is natural to ask whether there are other layouts of the eriph that have different dimensioms but similar area. The following theorem shows that a long and skinmy layout can be made into a square layout (aspeat ratio of one) by paying only a constant factor increase in area.

Theorem 1: If the bounding rectangle of a given layout has area A, then there exists topologically equivalent liyout that can be enclosed in a square whose area is at most 3 A .

Proef. I ce the length and width of the original layout be integers I and W. If $I .<3 W$, then a square with side l. satisfies the constraints of the theorem. Now suppose $l \geq 3 W$. The layout can be sliced in several places and "folded" like a roadnap with the severed wires connected around the corners. Figure 4 shows a square with side $s=(\sqrt{3 \lambda})$ in which a rectangle has been folded. This rectangle is the longest rectangle of width W that can be folded into the square, and so if we can prove that the length of this rectangle is at least I, then we will have demenstrated that the original layout can also be folded to fit in the square.

Figure 4: A layout can be "folded" io fit into a square.
let $k=|s / W|$ be the number of pieces into which this bugest rectimehe of widh whas heon folded.

 kenthot the folded rectangic is at kat $(k-2) s / 3+?(?) 3)-3(k+?) / 3$.

$k+1$ pieces of width W^{\prime} will not fit. Therefore, the length s of the side of the square must be strictly less than $U^{\prime}(k+1)$, which means

$$
s \leq w(k+1)-1
$$

By definition of s, the quantity $(s+1)^{2}$ must be strictly larger than $3 A$, and hence

$$
3 L W \leq(s+1)^{2}-1=s(s+2)
$$

Substituting for s,

$$
\begin{aligned}
3 I W & \leq s(W(k+1)-1+2) \\
& =s(W(k+1)+1) \\
& \leq s W(k+2)
\end{aligned}
$$

since $W \geq 1$. Cancelling W^{\prime} from both sides and dividing by three yields $I \leq s(k+2) / 3$. But the righthand side of this inequality is the value that we earlier demonstrated was less than or equal to the total length of the folded rectangle. Thus I is less than this total length, which was to be prosed. ${ }^{4}$

Can one "unfold" a square layout to make it arbitrarily long and skinny without paying a large increase in area? Not always. and a unit square layout provides the counterexample. If we insist that the side of the square be large, the answer is still no. For example. we showed in the introduction that an n-leaf complete binary tre can be lad out in $O(n)$ area. But in Section 9 , we shall prove that the minimum dimension of that area must hate order at least Ig n. Thus to achieve good upper bounds for layouts, it seems prudent to aroid those that have small aspect ratios.

The technique presented in Section 6 to construct arearefficient layouts recursively bisects rectangular areas. Io avoid creating athitrarily long and skinny rectangles during the recursion, it is important that the aspect ratios of the generated rectangles be bounded below by a positive constant. The next lemma sets forth conditions wherehy a rectangle whose aspect ratio is so bounded can be bisected into turo rectangles whose aspect ratios ate similarly bounded.

I emma 2: I ct R be a rectangle with area A and aspect ratio σ_{R}. where $\sigma_{R} \geq \sigma$ for some σ in the range $0<\sigma \leq 1 / 2$. Suppose R is bisected patallel to its short side into tuo rectangles R_{1} and R_{2} whose areas A_{1} and A_{2} are ξA and $(1-\xi) A$ for some ξ in the range $\sigma \leq \xi \leq 1-\sigma$. Then the aspect ratios of the subrectangles are bounded below by σ. that is. $\sigma_{k_{1}} \geq \sigma$ and $\sigma_{R_{2}} \geq \sigma$.
Prouf. Without loss of generality, we consider R_{1} only. The proof may he broken into two cases. If $\xi \geq \sigma_{R}$. then the aspect ratio of R_{1} is σ_{R} / ξ. This is bounded below by σ since $\sigma \leq \sigma_{R}$ implies that $\sigma<\sigma / \xi \leq \sigma_{R} / \xi$. On the other hand if $\xi<\sigma_{R}$, then the aspect atio of R_{1} is ξ / σ_{R}. But σ bounds ξ from below. and hence $\sigma<\sigma / \sigma_{R} \leq \boldsymbol{\xi} / \sigma_{R}$.

Suppose a square is disided into two rectangles so that the ratio of the atea of the smather wo the larger is at worst $\sigma /(1-\sigma)$ and then the rectanges we themshes suldinded by at wom the same rato of areas, and s) forth. I emma 2 satys that if the bisection is always patallel to the short side then no rectangle is ever generated whose aspect ratio is wotse that σ. The diside-and-compuer combtustion in Section o will une this result.

[^3]
5. A Nonlinear Recurrence

Suppose S is a class of graphs for which an $f(n)$-separator theorem has been proved. In Section 6 we shall show how to lay out any graph in S. In this section, we investigate a nonlinear recurrence equation that will be used to relate $f(n)$ to the area of the layout.

Iet $A(1)$ be a positive constant, and let $A(11)$ be defined on any integer $n \geq 2$ by

$$
\begin{align*}
A(n) & =\max _{\alpha_{S} \leq \alpha \leq 1-\alpha_{S}}\left(A(\alpha n)+A((1-\alpha) n)+2 f(n) \sqrt{A(\alpha n)+A((1-\alpha) n)}+f^{2}(n)\right) \tag{1}\\
& =\max _{\alpha_{S} \leq \alpha \leq 1-\alpha_{S}}(\sqrt{A(\alpha n)+A((1-\alpha) n)}+f(n))^{2}
\end{align*}
$$

for some $0<\boldsymbol{\alpha}_{S} \leq 1 / 2$.
Given a particular $f(n)$, there are standard methods for solving such a recurrence. We shall use a technique, however, that will enable us to solve this recurence for broad classes of $f(n)$. We shall define a simpler function $B(n)$ which will be shown to have the property

$$
\begin{equation*}
A(n) \leq n B^{2}(n) \tag{2}
\end{equation*}
$$

for all n. By providing an upper bound for $B(n)$, it will be easy to use (2) to bound $A(n)$.
We define $B(n)$ as $\sqrt{A(1)}$ for $n=1$, and as

$$
B(n)=\max _{\alpha_{S} \leq \alpha \leq 1-\alpha_{S}}(B(\alpha n)+f(n) / \sqrt{n})
$$

for $n>1$. Property (2) holds for $n=1$ by the definition of $B(1)$. Making the inductive assumption that it holds for values less than n,

$$
\begin{align*}
A(n) & \leq \max _{\alpha_{S} \leq \alpha \leq 1-\alpha_{S}}\left(\sqrt{\alpha n B^{2}(\alpha n)+(1-\alpha) n B^{2}((1-\alpha) n)}+f(n)\right)^{2} \\
& \leq \max _{\alpha_{S} \leq \alpha \leq 1-\alpha_{S}}\left(\sqrt{\alpha n B^{2}(\alpha n)+(1-\alpha) n B^{2}(\alpha n)}+f(n)\right)^{2} \tag{3}\\
& \leq \max _{\alpha_{S} \leq \alpha \leq 1-\alpha_{S}}\left(\sqrt{n B^{2}(\alpha n)}+f(n)\right)^{2} \\
& \leq \max _{a_{S} \leq \alpha \leq 1-\alpha_{S}} n(B(\alpha n)+f(n) / \sqrt{n})^{2} \\
& =n B^{2}(n) .
\end{align*}
$$

I ine (3) in this proof follows from the consideration of tho cases. If $B(\alpha n) \geq B((1-\alpha) n)$ for the walue of α that realues the maximum. then (3) be derised from the previous line by staightorward substitution of $B(\alpha \prime \prime)$ for $B((1-\alpha) M)$. On the wher hand. if $B(\alpha, A)<B((1-\alpha) n)$, then substitution of $B(1-\alpha) n)$ for $B(\alpha n)$ followed by a change of tariate of $1-$ or for a yoch the same rewht.

It remains to csalutte $B(11)$ which, except for the maximation, is a smple divideand-conquer recurrence that can be solsed by iteration. Thus

$$
\begin{equation*}
B(n)=\frac{f(n)}{\sqrt{n}}+\frac{f\left(\alpha_{1}^{\prime \prime}\right)}{\sqrt{\alpha_{1} n}}+\frac{f\left(\alpha_{1} \alpha_{2} n\right)}{\sqrt{\alpha_{1}\left(\alpha_{2} n\right.}}+\ldots+B\left(\alpha_{1} \alpha_{2} \ldots \alpha_{r} n\right) \tag{4}
\end{equation*}
$$

iteration: and the product $\alpha_{1} \alpha_{2} \ldots \alpha_{r}$ equals $1 / n$. Upper bounds for liquation (4) can be determined on the basis of suitable assumptions about $f(n)$. The upper bounds in Tible 1 were determined by evaluating this summation according to the indicated assumptions about $f(11)$. The lower bounds for $A(11)$ were derived by defining a function $C(n)$ which is similar $(0) B(n)$ but which provides the bound $A(n) \geq n C^{2}(n)$.

Table 1: Solutions of Recurrence (1).

$f(n)$	$B(n)$	$A(n)$
$O\left(n^{q}\right), q<1 / 2$	$\mathrm{O}(1)$	$\Theta(n)$
$\Theta\left(\sqrt{n} \lg ^{k} n\right), k \geq 0$	$\mathrm{O}\left(\lg ^{k+1} n\right)$	$\mathrm{O}\left(n \lg ^{2 k+2} n\right)$
$\Omega\left(n^{q}\right), q>1 / 2 \dagger$	$\mathrm{O}(f(n) / \sqrt{n})$	$\Theta\left(f^{2}(n)\right)$

\dagger See text for an explanation of this entry.

To demonstrate the upper bound results for the third entry. it is insufficient wassume only that $f(n)=\Omega\left(n^{4}\right)$ for some $q>1 / 2$ as the table implies. In addition the function $f(n) / \sqrt{n}$ must be ucll-behated in the following sense.

Definition: A function $g(n)$ is said to satisfy R_{1}; wharity (omditon $(\%)$ if there cast positive constants c_{1} and β_{1} such that $c_{1}<1, \beta_{1} \leq 1 / 2$, and $g(\beta n) \leq c_{1} g^{\prime}(m)$ for all wificiently large n and all β in the ange $\beta_{1} \leq \beta \leq 1-\beta_{1}$.

Making the assumption that $f(n) / \sqrt{n}$ satisfies Condition Cl with $\beta_{1}=\alpha_{S}$. we can now prove the third line of the table. For large n and $\alpha_{S} \leq \alpha_{1} \leq 1-\alpha_{S}$, we have

$$
\frac{f\left(\alpha_{1} n\right)}{\sqrt{\alpha_{1} n}} \leq c_{1} \frac{f(n)}{\sqrt{n}}
$$

and in general for each term in Fquation (4)

$$
\frac{f\left(\alpha_{1} \alpha_{2} \ldots \alpha_{k} n\right)}{\sqrt{\alpha_{1} \alpha_{2} \ldots \alpha_{k} n}} \leq c_{1}^{k} \frac{f(n)}{\sqrt{n}} .
$$

Substituting these terms in Equation (4) gives the bound

$$
B(n) \leq \frac{f(n)}{\sqrt{n}}\left(1+c_{1}+c_{1}^{2}+\ldots\right)+\text { constam }
$$

which is $O(f(n) / \sqrt{n})$ since $c_{1}<1$. The constant arises from the finite number of talues that are not sufficiently large according to the regularity condition.

We have just shown that the third entry in the table holds if $f(m) / \sqrt{n}$ satisfies Condition Cl. What can be deduced from a waker assumption? Suppose, for example, that we only asume that $f(n) / \sqrt{n}$ is monotonically nondecreasing, that is

$$
\frac{f(\alpha n)}{\sqrt{\alpha n}} \leq \frac{f(n)}{\sqrt{n}}
$$

for all $n \geq 2$ and all α in the range $\alpha_{S} \leq \alpha \leq 1-\alpha$. Since there are only $O(\lg n)$ terms in the summation (4), it follows that $B(n)=O((f(n) \lg n) / \sqrt{n})$ and $A(n)=O\left(f^{2}(n) \lg ^{2} n\right)$. \wedge factor of $\lg ^{2} n$ in arca is paid because monotonicity is a weaker constaint than Regularity Condition Cl on the well-behavedness of $f(n) / \sqrt{n}$.

The layout construction of the following section will need to assume that $A(n)$ is itself well-behaved according to a different regularity condition.

Definition: Λ function $g(n)$ is said to satisfy Regularity Condition (2 if there exist positive constants c_{2} and β_{2} such that $\beta_{2} \leq 1 / 2$ and $g(\beta n) \geq c_{2} g(n)$ for all $n \geq 2$ and for all β in the range $\beta_{2} \leq \beta \leq 1-\beta_{2}$.
The qualification "for all $n \geq 2$ " in this definition seems to be stronger than the phrase "for all sufficiently large n " which was used in the definition of Resularity Condition Cl . If all the values of $g(1)$ are positive, however, the two qualifications are equivelent-aluough the values for the constams may be different.

Condition C2 is always satisfied by the solutions of A(17) shown in the first wo lines of Table 1 , but not necessarily by that in the third line. Jo guarantee that $1(1)$ satisfies Condition C 2 in this instance, it is sufficient to assume that $f(n)$ itself satishes Condition C2 in addition to the previous assumption that $f(11) / \sqrt{n}$ satisfies Cl .

The reader should be aware that most of the functions arising from a separator theorem will indeed satisfy these regularity conditions. As an cxample, the conditions are satislied by all functions of the form $\mathrm{cn}^{q} \mathrm{Ig}^{k} n$ for constants c. q. and k such that $(c$ and q are postive. Similar regularity conditions are assumed elsewhere in the literature (e.g. [1], [3], and [4]) in order to determine the asymptotic behavior of general complexity functions.

6. Area-Efficient Layout Construction

Area-efficient layouts can be obtained through the use of the divide-and-conquer paradigm. This section presents a construction which takes a graph and divides it into two subgraphs which are recursively embedded. The two sublayouts are then sliced to expose the vertices with edges in the cut set and then those edges are routed as described in Section 2.

Theorem 3: I.et S be a class of eraphs for which an $f(n)$-separator theorem has been proved, and let α_{S} and c_{s} be the constants pontulated by the separator theorem. If $A(n)$. which is detined by $A(n)=1 / c_{5}^{2}$ for $n=1$, and

$$
\begin{equation*}
A(n)=\max _{\alpha_{S} \leq \alpha \leq 1-\alpha_{S}}(\sqrt{A(\alpha n)+A((1-\alpha) n)}+f(n))^{2} \tag{5}
\end{equation*}
$$

for $n>1$, salisfies Regularits Condition C_{2} with $c_{9}=\sigma_{S}$ and $\beta_{2}=\alpha_{s}$, then any n-vertex graph fim S can he embedded in ans rectanse whow aca is at least

$$
\begin{equation*}
A_{S}(n)=\left(+c_{S}^{2} / \sigma_{S}\right) A(n) \tag{6}
\end{equation*}
$$

and whome apect ratio in at worst $\sigma_{S} .{ }^{5}$

[^4]Proof. l.ct G be an n-vertex graph in S. The following recursive construction shows how to embed G in a rectangle R whose aspect ratio σ_{R} is at most σ_{S} and whose area is $\Lambda_{S}(n)$. Without losis of generality, view rectangle R so that the longer side which has length $\ell(R)=\sqrt{A_{s}(n) / \sigma_{R}}$ is parallel to the horizontal axis, and so that the shorter side which has length $W(R)=\sqrt{\sigma_{R} A_{S}(\prime)}$ is vertical.

Step 0. Initial condition. If $n=1$ then the graph G is just a single vertex. Rectangle R, which has area $A_{S}(1)$, must contain a grid square because each dimension of R is at least two, a fact that is easily verified. Thus the theorem is true for the initial condition by simply embedding the single vertex in the grid square and returning this layout as the result of the construction.

Step 1. Partition. Using the $f(n)$-separator theorem, divide G into two disjoint subgraphs G_{1} and G_{2} which have $\alpha_{G} n$ and $\left(1-\alpha_{G}\right) n$ vertices respectively, where $\alpha_{S} \leq \alpha_{G} \leq 1-\alpha_{S}$. The number of edges in the cut set is at most $c_{S} f(n)$.

Figure 5: The relationships among rectangles in Step 2.

Step 2. Solve the subproblems. Remembering that rectangle R is oriented with its longer side horiontal, define R_{0} to be a similar rectangle to R that has area $A_{S}\left(\alpha_{G} \prime \prime\right)+A_{s}\left(\left(1-\alpha_{G}\right) n\right)$ and sits in the lower left corner of R. (Sce ligure 5.) Apply 1 cmma 2 with

$$
\xi=\frac{A\left(\alpha_{G^{\prime}} n\right)}{A\left(\alpha_{G} \prime \prime\right)+A\left(\left(1-\alpha_{c_{i}}\right) n\right)}=\frac{A_{S}\left(\alpha_{G^{\prime}}\right)}{A_{S}\left(\alpha_{G_{i}} \prime \prime\right)+A_{S}\left(\left(1-\alpha_{G}\right) n\right)}
$$

to divide R_{0} into two rectangles R_{1} and R_{2} whose areas are $A_{S}\left(\alpha_{G}{ }_{j}\right)$ and $A_{S}\left(\left(1-\alpha_{6}\right) n\right)$. The aspect ratios of R_{1} and R_{2} are bounded below by σ_{S} since

$$
\sigma_{S} \leq \frac{A\left(\alpha_{G} n\right)}{A(n)} \leq \frac{A\left(\alpha_{i,} n\right)}{A\left(\alpha_{i} n\right)+A\left(\left(1-\alpha_{i ;}\right) n\right)} \leq 1-\frac{A\left(\left(1-\alpha_{G_{i}}\right) n\right)}{A\left(\alpha_{i j} n\right)+A\left(\left(1-\alpha_{i ;}\right) n\right)} \leq 1-\frac{A\left(\left(1-\alpha_{G}\right) n\right)}{A(n)} \leq 1-\sigma_{S}
$$

which follows from the definition (S) of $A(n)$ and Regularity Condition C2. Now solve the subproblems by recursively embedding G_{1} in R_{1} and G_{2} in R_{2}.

Step 3. Marry the subproblems. For each of the $c_{s} f(n)$ edges in the sel of removed edges, make at most two horizontal and wo vertical slices through R_{0} to route the edge between its incident vertices as was shown in Figure 3. The length of this new layout is $\mathcal{L}\left(R_{0}\right)+\sum_{c_{s}} f(n)$ and its width is $W\left(R_{0}\right)+2 c_{S} f(n)$. It remains to be shown that this layout actually tits in rectangle R, vi\%.

$$
\begin{align*}
& \mathcal{L}(R) \geq \mathcal{L}\left(R_{0}\right)+2 c_{S} f(n) \tag{7}\\
& W(R) \geq W\left(R_{0}\right)+2 c_{S} f(n) . \tag{8}
\end{align*}
$$

To prove these inequalities mathematical induction can be used to give an alternative definition of $A_{s}(n)$ to that of Equation (6): $A_{S}(n)=4 / \sigma_{S}$ for $n=1$. and

$$
A_{S}(n)=\max _{\alpha_{S} \leq \alpha \leq l-a_{S}}\left(\sqrt{A_{S}(\alpha n)+A_{S}((l-\alpha) n)}+2 c_{S} f(n) / \sqrt{\sigma_{S}}\right)^{2}
$$

for $n>1$. We can now use this defmition prove Incquality (7) since

$$
\begin{aligned}
\mathscr{L}(R) & =\sqrt{\lambda_{S}(n) / \sigma_{R}} \\
& \geq \sqrt{\left(A_{S}\left(\alpha_{G} n\right)+A_{S}\left(\left(1-\alpha_{G}\right) n\right)\right) / \sigma_{R}}+2 c_{S} f(n) / \sqrt{\sigma_{S} \sigma_{R}} \\
& \geq \mathscr{L}\left(R_{0}\right)+2 c_{S} f(n) .
\end{aligned}
$$

which follows from the fact that $\sigma_{S} \sigma_{R} \leq 1$. The proof of Incquality (8) makes use of the fact that $\sigma_{S} \leq \sigma_{R}$, whence

$$
\begin{aligned}
\mathscr{W}(R) & =\sqrt{\sigma_{R} A_{S}(n)} \\
& \geq \sqrt{\sigma_{R}}\left(\sqrt{A_{S}\left(\alpha_{i} n\right)+A_{S}\left(\left(1-\alpha_{G}\right) n\right)}+2 c_{S} f(n) / \sqrt{\sigma_{S}}\right) \\
& \geq W\left(R_{0}\right)+2 c_{S} f(n) \sqrt{\sigma_{R} / \sigma_{S}} \\
& \geq W\left(R_{0}\right)+2 c_{S} f(n) .
\end{aligned}
$$

We have shown that the layout actually fits within the hounds of rectangle R which completes the proof of Theorem 3.

7. Corollaries of the Main Result ${ }^{6}$

Upper bounds on the areas of VI.SI layouts for many graphs can be immediately derived as consequences Theorem 3 and Table 1 . Some of these corollaries are enumerated in Table 2.

Tible 2: Areas of graphs.

Class of graphs	Area of layout
Trest \dagger	$O(11)$
Plamar graphs	$O\left(n g^{2} n\right)$
Outerplanar graphs \dagger	O(11)
X -trees $\left(n=2^{k}\right) \dagger$	O(11)
k-dimensional meshes ($k>2$) \dagger	$\mathrm{O}\left(12^{-2 / k}\right)$
Graphs of genus $k(k>0)$	$\mathrm{O}\left(\mathrm{k}^{2} n \lg ^{2} n\right)$
Shuffle-exclaugi ($n=2^{2}$)	$\mathrm{O}\left(n^{2} / \mathrm{lg} n\right)$
Cube-connected-cycles ($n=k 2^{k}$) \dagger	$O\left(n^{2} / g^{2} n\right)$

\dagger These results are optimal to willin a constant factor

The separator theorems of Section 3 produce the first two results of the table. Since the class of tree eraphs has a 1 -separator theorem, the first line of lable 1 says that any tree or forest of trees has a layout whose area is linear in the number of vertices. Iipton and Tarjan's \sqrt{n}-separator theorem for planar graphs ases, weording to I ine 2 of lable I. an $O\left(n g^{2} n\right)$ area upper bound for the layout of any planar graph of n urtices.

Outerplanar graphs are triangulations of polygons, perhaps with some edges removed. The author has been able to prove a 1 -separator theorem for the class of outerplanar graphs, and thus these graphs hate linear area layouts. The separator theorem for trees is subsumed by this result because every tree is an outerplanar graph.

The X-tree graph [19], which is shown in Figure 6, is a complete binary tree with brother connections. One could attempt to lay out this gaph by modifying the H-tree layout. but proving that the chass of X -trees has a $\lg n$-separator theorem is casier. Bisect the graph with a tertical line that cuts at most $(\mathrm{g} n)+1$ edges.

[^5]

Fach of the two halves can be bisected similarly, once again cutting at most $(\lg n)+1$ edges, where 11 is now the number of vertices in the half. Since $\lg n=O\left(n^{q}\right)$ for any positive q. 1 ine 1 of lable 1 shows what any X-tree can be laid out in lincar area.

Figure 6: The X -tree on $31=2^{5}-1$ vertices.
A k-dimensional mesh is a graph in which each vertex is connected to its nearest neighbor in each of k dimensions. Any class of k-dimensional meshes for some constant k has an easily proved $n^{1-1 / k}$-separator theorem, and thus if $k \geq 3$, an n-vertex graph in the class has an $\mathrm{O}\left(n^{2-2 / k}\right)$ area layout by virtue of I ine 3 of Table 1.

A graph of genus k is a graph that can be drawn with no crossovers on a sphere that has k handes attached. It has been shown [2] that there is a subset of $\mathrm{O}(k \sqrt{n})$ vertices whose removal yields a planar graph. Applying lipton and Tarjan's result gives a $k \sqrt{n}$-separator theorem. I ine 2 of lable 1 provides an upper bound of $O\left(k^{2} n \lg ^{2} n\right)$ for the layout arca of an n-vertex graph of genus k.

In [9]. Hocy and this author prove a separator theorem for the shuffle-exchange graph [20] on $n=2^{2^{k}}$ vertices. Alhough the function in this separator theorem does not satisfy the regularity conditions of Section 5, the techniques of this paper do apply, and a $\mathrm{O}\left(n^{2} / \mathrm{Ig} n\right)$ area layout can be obtained. Recently, hon ever, we have been able to improve this result by showing that the $\mathrm{O}\left(n^{2} / \mathrm{g} n\right)$ bound holds for all shuffleexchange graphs on $n=2^{k}$ vertices. This new result. however, does not the techniques in this paper.

Preparata and Vuillemin provide an $O\left(n^{2} / \lg ^{2} n\right)$ area VISI layout for their cube-comected-cycles network [18] on $n=k 2^{k}$ vertices. The topology of this network, which is depicted in Figure 7 , can be derived from a bootean hypercube of 2^{k} vertices by replacing cach vertex with a cycle of k vertices. This graph has a $n /$ Is n separator theorem since removing all edges in one dimension of the original hypercube bisects the groph, removal of those in another bisects the halves, and so forth for all k dimensions. The area bound $O\left(n^{2} / g^{2} n\right)$ that is given by line 3 of Table 1 is the same as the area of the layout which is given in [18].

Higure 7: The cube-conneted cycles network on 2. $=32^{3}$ vertices.

Upper bounds in Table 2 that are optimal to within a constant factor are so designated in the table. The linear upper bounds are clearly optimal because every graph requires $\Omega(n)$ area. The other lower bounds can be obtained from a result of Thompson [23]. The minimum bisection widh of a graph is defined to be the minimum number of edges that must be cut to divide the graph into a $\lfloor n / 2\rfloor$-vertex graph and a $\lceil n / 2\rceil$-vertex graph. Thompson proves that the area of a graph has order at least the square of the minimum bisection width of the graph. This lower bound argument is surprisingly similar to an analysis of printed circuit boards given in [21].

Using another of Thompson's arguments. it can be shown that the shuffle-exchange graph and the cube-connected-cyeles graph have minimum bisection widths of order at least $n / \mathrm{g} n$. This atrises from the fact that these networks can realize an arbitrary permutation in $O(\lg n)$ communication steps. Thus if one of these graphs is partitioned into two halves, it must be possible to swap data items between the hatves in $O(\lg n)$ time. Since there are $\Omega(n)$ data items to be swapped. at least order $n / \mathrm{g} n$ data cross between the halves during each time unit, and hence the minimum biscetion width of these graphs is $\Omega(n / \mathrm{g} n)$. The area of any VISI layout for these graphs must therefore have order at least $n^{2} / g^{2} n$. Thus the upper bound for the cube-connected-cycles graph is optimal, but there is a discrepancy in the bounds for the shufle-exchange graph.

There is also a diserepancy in the the upper and lower bounds for planar graphs. The methods given above give only a linear area lower bound compared with the $O\left(n \mathrm{~g}^{2} n\right)$ upper bound. The author believes it more likely that the upper bound can be improved because he knows of no planar graph that requires more than linear area, and in addition. planar graphs appear to have considerably more structure than is captured by the \sqrt{n}-separator theorem alone.

8. An Efficient Implementation of the Layout Algorithm

If a separator theorem can be proved for a class of graphs. Theorem 3 can be used to give an upper bound on the ace of a VISI layout for a graph in the class. If. however, a separator algorithm is given for the class of graphs. the steps in the proof of Theorem 3 constitute an algorithm that can construct a VI SI layout for a graph in the class. In this section, we provide an efficient implementation of this algorithm and analye its performance.

The layout algorithm uses the separator algorithm as a subroutine. and therefore, has an execution time that depends upon the efficiencies of both this subroutine and the bookkecping necessary for the production of a layour. The analysis here reflects this dichotomy. The total time required to lay out a graph of n vertices can be expressed as the sum of (i) the cotal time devoted to the repeated exceutions of the separator subroutine on the generated subgraphs plus (ii) the time devoled to the management of the bayout representation. Later in this section. we shall present a fast bookkeeping scheme that is based on the LINoNFNO algorithm analyzed by Tarjan [?2]. But first, we anal!ae the amount of time required by the many executions of the separator subroutine.

The layout procedure has no direct control ower the efficiency of the separator subroutine. In fact. it might be the case that all the graph bisections have been previously computed so that the subroutine is decentively fint. For the andysis hers. however, we asome that the subroutine is invoked in-line and that $s(a)$ is the time required by the sepaftor subroutine to biecet a griph of 17 vertices. We can express the
 wit of a griph of n vertices. (o s(n) by the recurence $S(n)=1$ for $n=1$. and

$$
\begin{equation*}
S(n)=S(\alpha n)+S((1-\alpha) n)+S(n) \tag{9}
\end{equation*}
$$

for $n>1$, where α varies in the range $\alpha_{S} \leq \alpha \leq 1-\alpha_{S}$.
Bounds for $S(n)$ can be determined by the same technique used to solve Recurrence (1). Define $R(n)=S(1)$ for $n=1$, and

$$
R(n)=\max _{\alpha_{S} \leq \alpha \leq 1-\alpha_{S}} R(\alpha n)+s(n) / n .
$$

for $n>1$. The bound

$$
S(n) \leq n R(n),
$$

which holds for the case $n=1$, also holds for all values of n greater than one, as is shown by induction:

$$
\begin{aligned}
S(n) & \leq \alpha n R(\alpha n)+(1-\alpha) n R((1-\alpha) n)+s(n) \\
& \leq \max _{a_{S} \leq \alpha \leq 1-\alpha_{S}} \alpha n R(\alpha n)+(1-\alpha) n R((1-\alpha) n)+s(n) \\
& \leq \max n R(\alpha n)+s(n) \\
& \leq n R(n) .
\end{aligned}
$$

The results emumerated in Table 3 are derived by evaluating $R(n)$ to provide an upper bound on $S(n)$, and using a similar function to bound $S(n)$ from below. I.ct us look at this table in greater detail.

Table 3: Time devoted to the separator subroutine.

$s(n)$	$S(n)$
$O\left(n^{q}\right), q<1$	$\Theta(\mathrm{n})$
$O\left(n \lg ^{k} n\right), k \geq 0$	$\Theta\left(n \lg ^{k+1} n\right)$
$\Omega\left(n^{q}\right), q>1 \uparrow$	$\Theta(s(n))$

TThe function $s(n) / n$ must also satisfy Regularity Condition Cl

The first line is a bit of a red herring. It says that if the execution time of the separator subroutine is polynomially less than linear in the number of sertices in the graph. then the contribution to the total running time is linear. It should be apparent, however, that this precondition is rarely satisfied in practice. After all, it takes the subroutine at least linear time just to look at all of its input.

The second line of Table 3 is more usual-the subroutine requires approximately linear time. In this case, the total time required by all executions of the subroutine is only a logarithmic factor larger than the time needed by the initial invocation of the separator subroutine on the graph presented as inpur to the layout procedure. Iree graphs have a linearetime 1 -separitor atgomithm that is not dificult to construct, and thes according to the table, the layout dgorithm would spend a total of $O(n g n)$ time exccuting this as a
subroutine when producing a lavout for an n-vertex tree. It is remarkable, but I ipton and Tirjan's \sqrt{n}. separator algorithm for planar graphs also runs in lincar time, and dus only $O(n / g n)$ time in weded for all of its exceutions.

The third line of the table says that if the execution time of the separator subroutine is polynomially greater than linear, the time required by the first call. which bisects the \boldsymbol{w} vertex input graph. dominates the time for subsequent invocatuons. This analysis is based on the supponituon that s(n)/n atisfies Regularity Condition Cl . When only monotonicity is assumed. the wtal time is $\mathrm{O}(\mathrm{s}(n) \lg n)$).

Now that the costs due to the $f(n)$-separator algorithm have been determined. we turn our attention to the bookkeping required to maintain the layout representation. The implementation proposed here makes
 for the manipulation of disjoint sets. F A N$)(x)$ determines the name of the unique set containing element x, and $[\backslash 10 \cup(X . Y . K$) combines the elements of sets X and Y into a new set $\%$. The andysis in [22] shows that the the equired to exceute n UNiON operations intermixed with $m>n$ FiNos is $\mathrm{O}(m a(m, n))$ where $a(m, n)$ 1- related to a functional inverse of Ackermann's function and grows extremely slowly? We do not go into a deseription of the algorithm here-a good one can be fornd in [1]-but we shatl use the (ivon and lind) operations and the results of Tarjan's analysis.

Figure 8: The representation of a layout.
The key to the performance of the layout procedure is the sparse representation of layouts depieted in Figure 8. Fach important point of the layout is kept in two sets, an $x-\operatorname{sef}$ which represents its x-coordinate in the layout and a y-se which represents its y-coordinate. The important points in the layout are the bertices in the eraph and the endpoints of the horizontal and vertical edge segments. The UNov-finn data structure maintains the relationship between a point and its corresponding x - and y-sets. In 1 igute S, this asociation is denoted by the curved ares. All the x - and y-sets for a layout are kept in linked lists. The actuat x-comrdinate represented by a given x-set is therefore determined by its distance from the head of the list. Pointers are

[^6]used to maintain relationships between points. For example, an edge segment is represented by a pointer between its endpoints.

Figure 9: Routing an edge by slicing.

There are two important operations that must be performed during the layout algorithm-slicing a layout to route an edge and combining two sublayouts into a single layout. Routing a new edge between wo vertices by slicing can be accomplished casily by the following procedure which is illustrated in Figure 9.

1. For each of the vertices, FiNo the x-set and the y-se to which it belongs.
2. Adjacen to these x and 1 -sets in the linked lists, insert new x-and y-sets. effectively adding new slices of layout. Becatue pointers represent the horivomal and vertical components of previously routed edges. the components are not severed and recomected as was described in Section 2. Instead, they "stretch" automatically.
3. Add the new points for the edege to be routed to the appropriate x and y sets, and route the edge using pointers to represent the edge components. Dach new point belongs to the x - and f-sets of the previous two steps.

Because we are comsidering only those classes of graphs which hate bounded vertex degree, the number of edges to be routed during the entire course of execution of the layout procedure is linear in n, the number of vertices in the imput graph. The routing algorithm above is called once for cach edge, and hence total number of innocations is linear in n. During each invocation, a constant number of finos are executed, and the rest of the work takes only constant time. Thus the overall cost is the time to execute a linear number of FNDS plus another term which is linear. Since each fiND requires more than constant time, the linear number offinis dominates.

The cost of the Findes cannot be determined without also knowing the number of UNows that must be performed. The hyout algorithm uses the UNiON operation in the following procedure which combines two bavots merone. (Without loss of generality, assume the layouts are side-by-side in x.)

1. Append one linked list of x-sets to the other. This will produce a list of x-sets for the combined lay out such that all of the x-coordinates of one sublayout lie to one side of all the x-coordinates of the other.
2. Traverse both linked lists of y-sets, and Uviox corresponding y-sets to produce the linked list of 1-sets for the the resultant layout. That is the k th y-set of final layout is obtained from the LVION of the k th y-sets of the sublayouts.

Dine nember of UNox's varies each time two layouts are combined because it is dependent upon the Enethe of the linked lists that are merged. If σ_{k} is the aspect ratio of R. the rectangle that contams the combined layout, then the length of the linked list is $\sqrt{\sigma_{R} A_{S}(n)}$ since R is always bisected parallet to the shent sde. Thes leads to the following recurrence which describes the total number of livons executed by the layout aggrithom: $V^{\prime}(n)=0$ for $n=1$, and

$$
U(n)=U^{\prime}(\alpha n)+U((1-\alpha) n)+\sqrt{\sigma_{R} A_{S}(n)}
$$

for $n>1$. where α warics in the range $\alpha_{S} \leq \alpha \leq 1-\alpha_{S}$ and σ_{R} varics in the range $\sigma_{s} \leq \sigma_{R} \leq 1-\sigma_{S}$. This recurrence equation is similar to Recurrence (9) which describes time devoted to the execution of the eparator subroutine. In fact, the same asymptotic results enumerated in lable 3 are salid when $\sqrt{A_{S}(n)}$ is substututed for $s(n)$. Notice in particular that if $A_{S}(n)=O\left(n^{4}\right)$ for some $y<2$, then $U(n)=O(n)$.

We now have a relationship between the area of the layout $A_{S}(1)$ and the number of UNION゙S $L^{\prime}(1)$. But $A_{S}(\prime)$ uas determined. after all, by $f(n)$. the width of the separator. (1 o not confine $f(n)$ with $s(1)$, the time required to execute the separator subroutine.) Carrying this relationship through, the number of UNox's $L^{\prime}(11)$ can be expresed in terms of $f(1)$, and then. using the fact that there are only a lincar number of finds. the wal time required by the mandgement of the layout representation can be determined. lable 4 enumerates these results, where $7(1)$ is the time required by the bookkeping to lay out a graph of m vertices.

The first line of the table can be derived by oberving that if $f(n)=0\left(n^{\prime \prime}\right)$ for $q<1$ wid is monotonic if $f(n)=\Omega(\sqrt{n})$, then $A_{s}(n)=\Omega 2\left(n^{2 \prime \prime}\right)$ and. as was noticed carlicr. $I^{\prime}(n)=0(n)$. Bacatace the total mumber of

Table 4: Time devoted to the management of the layout representation.

$f(n)$	$T(n)$
$O\left(n^{4}\right), y<1 \dagger$	$O(n a(n, n))$
$O(n)$	$O(n \lg n)$

\dagger The function $f(n)$ must also be monotonic if $f(n)=\$ 2\left(n^{1 / 2}\right)$.

The second line of the table gives the worst-case romning time for the bookkeeping which occurs when there is no better than an n separator theorem. In this case the area given by the layout procedure is $\Theta\left(n^{2}\right)$, and the time to combine layouts is $\mathrm{O}(n \mathrm{~g} n)$. Other bounds are readily derived for cases when the growth of $f(n)$ lies between n^{q} for $q<1$ and n. For example, if $f(n)=n / l g n$, then the time for bookkecping is $\mathrm{O}(n \lg \lg n)$. Thus even if the separator algorithm is only marginally good, the bookkecping time is nearly linear.

9. Layouts with Collinear Vertices ${ }^{8}$

The results of previous sections can be applied to models in which different constraints are placed on the layouts. In this section, we consider layouts in which vertices are required to lie on a straight line. The results for this modet can be easily generalized to other models such as that in which all vertices are constrained to lie on the (convex) perimeter of the layout. In this section. the techniques used in previous sections are employed to provide area bounds for graphs based on separator theorems for the graphs. In addition, some lower bound results are presented on the optimality of these constructions for trees and planar graphs.

Figure 10 shows how an $f(n)$-separator theorem can be used to construct a layout with collinear vertices. First, the graph is bisected by cutting at most $c_{S} f(n)$ edges. Then layouts are recursively constructed for the subgraphs and are placed side-by-side along the baseline. Vertical slices are made through the layouts, and edges are routed in the space above.

The analysis of this construction is much casier than that of Section 6. Since at most two vertical slices are made for each edge, the length of the layout along the bascline is $O(n)$. The height $H(n)$ of the layout is a constant for $n=1$, and

$$
H(n)=\max _{\alpha_{S} \leq \alpha \leq 1-\alpha_{S}} H(\alpha n)+c_{S} f(n)
$$

for $n>1$.
If $f(n)$ is nondecreasing then $H(n)=O(f(n) \lg n)$ and the total area $A_{s}(n)$ is therefore $O(f(n) n \lg n)$. In particular. if $f(n)=O\left(\lg ^{k} n\right)$, then $\left.A_{S}(n)=O(n)^{k+1} n\right)$. If $f(n)$ is $\Omega 2\left(n^{4}\right)$ for some $y>0$ and $f(n)$ satisfics Regularity Condition Cl, then $H(n)=\mathrm{O}(f(1))$ and $A_{S}(11)=O(n f(n))$.

[^7]

Figure 10: The construction of a layout with collinear vertices.

This means that planar graplis can be embedded on a line in $O(n \sqrt{n})$ area and trees in $O(n \lg n)$ area. We now show that these embeddings for trees and planar graphs are optimal to within a constant factor. Λ similar result on trees was independently discovered by Brent and Kung [5] in which they show that in any layout of a complete binary tree, the area devoted to wire must have order at least $n \lg n$. The approach here differs in that we show that the convex region containing the layout must have $\Omega(n) n)$ area.

Lemma 4: For any complete-binary-tree layout of $n=2^{k}-1$ collinear wertices where $k \geq 0$. there exists a perpendicular to the bascline that lies between the leftmost and rightmost vertices and cuts at least $[k / 2\rceil$ edges and vertices.

Proof. (Induction.) The lemma is easily satisfied for the initial cases of $n=1$ and $n=3$. For the general case, consider the four subtrees of size $2^{2 h-2}-1$. (See ligure 11.) Call the leaf that is leftmost on the baseline v, and let w be the rightmost leaf that is in a different subtree from v. Choose one of the two subtrees that contann neither v nor w. The inductive hypothesis gives us a perpendicular that cuts $\lceil(k-2) / 2\rceil$ edges or wertices in the subtrec. Since r and w are in different halfplanes as determined by the perpendicular, the path between them must be cut by the perpendicular. But uis path is disjoint from the subtree, which means that one more edge or vertex is cut for a total of $[k / 2\rceil$.

Figure 11: The construction in 1. cmma 4.

This lemma can be used to show that the minimum area of any concex region containing a bayout for a complete binary tree must be $\Omega(n \lg n)$. The length of the layout along the baseline must be $\Omega(11)$. and as demonstrated by the previous construction, there is a point in the layout Ω (ig n) away from the baseline. This point and the cuo points on the limits of the baseline determine a triangle which has $\Omega(n \lg n)$ area. Since any convex region that contains these thre points must contan the triangle. so must any comer region containing the layout have $\Omega(n$ len n area.

Similarly, the $O(n \sqrt{n})$ upper bound on the area for the layout of an n vertex planar graph is tight to within a constant factor because a square mesh requires $\Omega(n \sqrt{n})$ area. This can be shown by considering that the minimum bisection width of in n-vertex square mesh is \sqrt{n}. Thus the perpendicular to the baseline which divides the vertices on the baseline into $\lfloor n / 2\rfloor$ and $\{n / 2\rceil$ vertices must cut \sqrt{n} edges. The rest of the proof follows that for the complete binary tree.

The lower bound results here generalize immediately to the model in which all vertices ate constraned to lie on the perimeter of a comex region. The perimeter of the region must hate length $\Omega(n)$ since there are n bertices on it. The dianeter of the region (the line segment which realies the greatest distance between two poincs) must atso be $\Omega(n)$ since it is no less than a factor of π times the length of the perimeter. Apply ing the previous constructions to the layout, and using the diameter of the region as a baseline sields the same lower bound results as before. In the case of the mesh, an exact bisection by a perpendicular may not be possible because some vertices may lie on the perpendicular itself. This situation can be avoided (see [23]) by putting a unit jog in the perpendicular so that it looks like a lowercase aitch without a left leg. "The "perpendicular" can then be adjusted vertically to bisect the graph. For the VISI model used in carlier sections, a similar construction shows that minimum dimension of any layout of a complete binary tree muse be $\Omega(\lg n)$.

10. Perspective

Most wire-routing programs for printed circuit boards have two phases. First, the chips are placed on the printed circuit hoard. Then leaving the chips fixed. wires are routed one by one using hemistic searchwhatly a variant on the path-finding algorithm attributed to I .ec [12]. Most hardware designers concede that the firv of these two steps is harder. With a good placement, routing is casy; with a bad placement, routing is impossible.

Mont routers for integrated circuits use much the same approach. Variations include polforlis $[15]$ and gate arras. In the polycell ipproach. the components are laid down in horizontal strips and the channels hetween the strips are ued for routing the wires. The advantage is that the channel width is not fixed. If a channel has too much congeston, extra tiacks can be added casily in a manner reminiscent of slicing. The channels run both horiontally and vertically in gate arrass (also called master slices). but are a tixed width determined in advance. Typically, all cells are identical and are connected up with a final layer of metaliation.

Recently. Johannsen [10] has introduced bristle blocks as a technique for laying out integrated circuits. Rather than using standard wire routing to comect cells in a design, the cells plug together. This would seem to mean that all cells must have the same width or pitch. Instead, howeter, the cells are designed with places to stretch so that a cell with smaller pitch can be adjusted to plug into a wider cell with no routing necessary.

The idea of using divideand-conquer to help with the general wire-routing problem is not new. As far back as 1969 . (iunther [s] gave a heuristic procedure for arranging machines in a workshop given the frequeney of travel betucen machines. This algorithm, which applies as much to circuit placement as to machine placement, partitions the transportation graph and places the subgraphs in subrectangles of the original area. Ciunthers techngue for partitioning is highty heuristic. and be comments that it is the critical step. Another heuristic for graph partitioning is giten by Kermighan and linfll. Among the applications they mentom is that of pattioming chips among printed circuit boards so as to mimimise the comections betuec boards. There is an algorithmic whtion to the partitioning problem. howner. It is bated on the fiet
that the graphs of intercomnections which arise in practice are almost planar. By replacing each crossover in some drawing of the graph with an artificial vertex that performs the crossover, Lipton and Tarjan's separator algorithm for planar graphs can be applied.

It is unlikely that a fast general partitioning algorithm will be found because the problem of finding the minimum bisection width of a graph is NP-complete [7]. In other words, graphs are hard to partition. This unfortunate situation brings up the question, "Can the divide-and-conquer approdech used in this paper, which performs placement and routing simultaneously compete with or enhance those techniques already in use?"

A difficulty with applying the techniques of this paper concerns constant factors in the areas of layouts. The model in Section 2 assumes that each vertex fits into a square of the grid, and furthermore, that the sizes of vertices and edges are comparable. For many patctical applications, the vertices are somewhat larger than the edges. This means that the grid size is substantially larger than the edge width, and thus each slice through the layout wastes a large constant factor. Λ solution to this problem is to design the cells represented by vertices with places where they can be sliced, and then use the largest unsliccable portion of a cell as the granularity of the grid. This technique complements the bristle blocks approach because places where a cell can stretch are frequently places where it can be sliced.

There is another solution, however, which does not require the cells to be sliceable, and yet does allow the granularity of the grid to be the width of a wire. The limitation is that sizes and shapes of vertices must not bary widely. Fach vertex is placed in a rectangle whose area is four times the area of the vertex. The layout algorithm is allowed to slice this rectangle, but slicing is allowed only in one direction. In the other direction the space between or next to the layouts is used as a channel for routing. When a slice is made through a vertex. the vertex is not sliced. but instead the edge simply crosses over. When the algorithm terminates, each dge that crosses over a vertex is moned around the vertex in the unused area provided by the rectangle. The author is currently working on another approach based on weighted separator theorems where at each stage of the recursion. all edges that are to be routed at a higher level are brought to the periphery of the current layout

Where vertices are large, unsliceable, and of widely varying sizes. the problem becomes one of twodimensional bin-packing with constraints. This formulation seems the least tractable. It may be, however, that as with bin-packing, simple heuristics can be found that give reasonable solutions for commonly occuring instances.

Acknowledgements

I would like to thank H. T. Kung for his copious comments on several drafts of this paper, Jon I.. Bentley for stecring me in the right directions, Bernd Brucge for his help in translating [8]. Harl Mounts for his aid in library searches, and especially James B. Saxe for the idea of introducing $B(n)$ to prove the bounds on Fquation (1) and for suggestions that led to a simpler proof of Theorem 1.

References

1. Alfred V. Nho, John E. Hoperoft, and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Massachusetts, 1974.
2. Michael O. Albertson and Joan P. Hutchinson, "On the independence ratio of a graph," Journal of Gruph Theory: Vol. 2, 1978, pp. 1-8.
3. Jon Louis Bentey. Dorthea Haken, and James B. Saxe, " \wedge general method for solving divide-andconquer recurrences." I echnical report CMU-CS-78-154, Deparunent of Computer Science, CarnegicMellon University, December 1978.
4. R.P. Brent and H. T. Kung, "Fast algorithms for manipulating formal power series," Journal of the Association for Computing Machiner, Vol. 25. October 1978, pp. 581-595.
5. R. P. Brent and H. T. Kung, "On the area of binary tree layouts," Technical report TR-CS-79-07, The Australian National University, Department of Computer Science, July 1979.
6. Robert W. Floyd and Jeffey D. Ullman, "The compilation of regular expressions into integrated circuits," February 1980, draft.
7. M. R. Garey. D. S. Johnson, and I.. Stockmeyer. "Some simplified polynomial complete problems," oth Amnual Symposium on Theory of (omputing. ACM, April 1974, pp. 47-63.
8. Th. Günther. "Dic räumliche anordnung von cinheiten mit wechsclbezichungen," Elektronische Datenverurbeilung. May 1969, pp. 209-212.
9. Dan Hoey and Charles F. leiserson, "A layout for the shuffle-exchange network," I 980 Intermational Comference on Parallel Processing. August 1980.
10. Dave Johannsen. "Bristle blocks: a silicon compiler," Caltech Conference on Very Large Scale Imegratom, Jantary 1979. pp. 303-310.
11. B. W. Kernighan and S. I in, "An effective heuristic procedure for partitioning graphs," Bell Systems Technical Journal, Vol. 49. February 1970, pp. 291-308.
12. C. Y. I.ec. "An algorithm for path connection and its applications," IRE Transactions on Electronic Computers. Vol. IC-10. No. 3. September 1961, pp. 346-365.
13. P. M. I.ewis, R. E. Stearns, and J. Hartmanis, "Memory bounds for recognition of context-free and context-sensitive languages." IFEE Symposium on Switching Circuit Theory and logical Design, IEFE, 1965.
14. Richard J. I ipton and Robert E. Tarjan. "A separator theorem for planar graphs," A Conference on Theoretical Compuler Science. University of Waterloo, August 1977.
15. Roland I., Mattison. " \wedge high quality, low cost router for MOS/I.SI," Proceedings of the ACM-IEEE Design Automation W'orkshop, Dallas. Texas. June 1972. pp. 94-103.
16. Carver A. Mead and I ynn Λ. Conway, Introduction to FlSI Systems, Addison-Wesley, Reading, Massuchusetts. 1980.
17. Carser Mead and Martin Rem. "Cost and performance of VI SI computing structures," IEFER Journal of Solid State (ircuas. Vol. SC-14. No. 2, April 19') pp.455-462.
18. Franen P. Preparata and Jean Vuillemin. "The cube-connected-cycles: a versatile netuork for parallel computation." Iechnical report 356. Institut de Recherche d'Informatique et d'Automatique. June 1979.
19. C. H. Sóquin. A. M. Devpatn, and 1). A. Patterom, "Communication in X-tree, a modular muhtiprocosoor system." A $1 / 7$ Procedenes ACM1. 1978.
 (C-20. No. 2. Febru.a1 1971.pp. 153-161.
20. Ivan E. Sutherland and Donald Oestreicher, "How big should a printed circuit board be?," IEEE Transactions on Computers. Vol. C-22, May 1973, pp. 537-542.
21. Rohert Endre Tarjan, "Efficiency of a good but not linear set union algorithm," Journal of the Association for Computing Machinery, Vol. 25, No. 2, 1975, pp. 215-225.
22. C. D. Thompson, A Complexity Theory for VLSI, Ph.D. dissertation, Department of Computer Science, Carnegic-Mcllon University, 1980.
23. I. G. Valiant, "Universality considerations in VLSI circuits," December 1979, draft (to appear in IEEE Transactions on Computers).

UN:CLASSIFITD

REPORT DOCU!..EHTATION PAGE	READ INSTRECT:O:SS BEFORE COMiLETHO FORM
	3. Recipient's catalos nimaía
4. Title (and Subtile) AREA-EFFICIENT GRAPH LAYOUTS (FOR VLSI)	5. TYPE OF REPORT \& PERIOO COVEAED Interin
	6. Perforuing org. ridoñt mumber
7. AUTMOR(e) CHARLES E. LEISERSON	Q. CONTRACT OR GAAMT NJHEER(s) N00014-76-C-0370
9. Performing organizaticn mane and address Carnegie-Nellon Lniversity Computer Science Derartment Pittsburch, PA 15213	
iI. CONTROLLING OFFIEE NAME AND ADORESS Office of Naval Recearch	12. REPART OATE August 1979 (revised $8 / 80$
Arlington, VA 22217	13. Numánof ofages
14. MONITORING AGENGY NAME A ADERESS(ll dilleront from Controlling Oflita)	15. SECURITY CLASS. (o! thi: ropori) UNCLASSIFIED
	ise. DECLESSSIFICATIOM =Jingradins

16. DISTRIBUTION STATEMENT (OR RAS ROpOII)

Approved for public release; distribution unlimited
17. DISTRIEUTION STATEMENT (Ot the abstract entered in Block 20, ff dilferent from Report)
18. SUPPLEMENTARY NOTES
89. KEY KOROS (Csmince on reverse slpe if neceseary mandidentlly oy block nutiber)
20. ABSTRACT (Conllnue on reverse alde (f neceeadry and ldentity bs block number)

[^0]:

[^1]:

[^2]: 3.hroughout the paper it is assumed without loss of generality that α is chosen to permit an to cialuate to an megral value This
 Fecause a mates the mathemateal fombate more readable.

[^3]:

[^4]:

[^5]:

[^6]: ${ }^{7}$ Iarinn comments that for all pratheal purpones, it is tess than or equal to three

[^7]:

