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Abstract—Iterative decoders such as turbo decoders have be-
come integral components of modern broadband communication
systems because of their ability to provide substantial coding gains.
A key computational kernel in iterative decoders is the maximum
a posteriori probability (MAP) decoder. The MAP decoder is re-
cursive and complex, which makes high-speed implementations ex-
tremely difficult to realize. In this paper, we present block-inter-
leaved pipelining (BIP) as a new high-throughput technique for
MAP decoders. An area-efficient symbol-based BIP MAP decoder
architecture is proposed by combining BIP with the well-known
look-ahead computation. These architectures are compared with
conventional parallel architectures in terms of speed-up, memory
and logic complexity, and area. Compared to the parallel architec-
ture, the BIP architecture provides the same speed-up with a re-
duction in logic complexity by a factor of , where is the level
of parallelism. The symbol-based architecture provides a speed-up
in the range from 1 to 2 with a logic complexity that grows ex-
ponentially with and a state metric storage requirement that
is reduced by a factor of as compared to a parallel architec-
ture. The symbol-based BIP architecture provides speed-up in the
range to 2 with an exponentially higher logic complexity
and a reduced memory complexity compared to a parallel archi-
tecture. These high-throughput architectures are synthesized in a
2.5-V 0.25- m CMOS standard cell library and post-layout sim-
ulations are conducted. For turbo decoder applications, we find
that the BIP architecture provides a throughput gain of 1.96 at the
cost of 63% area overhead. For turbo equalizer applications, the
symbol-based BIP architecture enables us to achieve a throughput
gain of 1.79 with an area savings of 25%.

Index Terms—Area efficient, block-interleaved pipelining, high
throughput, parallel processing, pipeline, symbol-based decoding,
turbo decoder, turbo equalizer.

I. INTRODUCTION

T
HE TURBO principle first introduced in [1] has been

adopted in a variety of communication systems. It has

been shown that turbo decoding schemes for decoding parallel

or serial concatenated convolutional codes [2] and low-density

parity check codes [3] approach Shannon’s limit for addi-

tive white Gaussian noise (AWGN) channels. A soft-input

soft-output (SISO) equalizer can be combined with a SISO
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decoder to form a turbo equalizer [4]. In the presence of

intersymbol interference (ISI) caused by frequency selective

channels and high-density read channels, a turbo equalizer

provides additional coding gain beyond that obtained from

separate equalization and decoding [4]–[8]. Turbo multi-user

detection schemes have also been presented to combat multiple

access interference [9]. These turbo decoding algorithms have

shown remarkable receiver performance improvements over

hard decision decoding or separate equalization and decoding

via soft information exchange between two independent SISO

decoding blocks. This performance enhancement has lead

turbo codes to be accepted as the coding technique in several

standards such as Wideband CDMA (WCDMA), the 3rd

Generation Partnership Project (3GPP) for IMT-2000 [10],

Consultative Committee for Space Applications (CCSDS)

telemetry channel coding [11], UMTS [12], DVB-RCS [13],

and IEEE 802.16ab.

Turbo decoders are composed of two or more constituent

SISO decoders, which correspond to the component codes em-

ployed in the transmitter, and an interconnection of these con-

stituent decoders through an interleaver/deinterleaver. The de-

coding algorithm employed in the constituent decoders is the

maximum a posteriori probability (MAP) algorithm. The MAP

algorithm provides a reliability metric, known as the log-like-

lihood ratio (LLR), on the transmitted code symbols. The LLR

output is employed by other constituent decoders, which attempt

to improve their LLR estimates iteratively. However, the use of

iterative processing results in a large computational and storage

complexity and hence high power dissipation in the receiver.

Therefore, low-power and high-throughput implementations for

turbo decoders have recently been investigated [14]–[38] for

wireless and broadband applications.

Several high-throughput VLSI architectures of turbo de-

coders have already appeared [25]–[37]. These high-throughput

architectures can be classified into parallel processing

[25]–[33], look-ahead computation [34]–[36], and algorithm re-

formulation approaches [37]. Since the key algorithm employed

in the constituent SISO processing blocks of turbo receivers

(turbo decoders and equalizers) is the MAP algorithm, most

research works have so far focused on high-throughput MAP

decoder architectures which directly lead to high-throughput

turbo receiver implementations. However, the recursive nature

of the ACS kernel in MAP decoding algorithms has limited the

reduction of the critical path delay. Hence, parallel processing

[25]–[32] and look-ahead computation architectures [34]–[36]

are viewed as practical approaches for high-throughput

implementations.

1063-8210/$20.00 © 2005 IEEE
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In this paper, we propose a new critical path reduction

technique referred to as block-interleaved pipelining (BIP),

which leads to a pipelined ACS kernel with less area over-

head compared to conventional high-throughput architectures.

Note that the proposed idea of BIP can be applied along with

the above mentioned high-throughput techniques [25]–[28],

[34]–[37]. We also propose a symbol-based MAP decoding

architecture, where multiple bits are processed as a symbol.

The symbol-based MAP architecture is derived by applying

the look-ahead transform [39], [40] to the ACS recursion loop.

In the context of a turbo equalizer, the symbol-based decoder

architecture enables us to fold the operations of the SISO MAP

equalizer and SISO MAP decoder on to the same hardware

platform leading to savings in silicon area. We show that the

throughput of the symbol-based decoder architecture can be

improved further by applying the BIP technique. Moreover, we

also provide a detailed comparison of various high-throughput

VLSI architectures in terms of their storage requirements, logic

complexity, throughput gain, and silicon area. These analyses

are validated via physical design examples for turbo decoders

of parallel concatenated convolutional codes (PCCC) and turbo

equalizers.

The rest of this paper is organized as follows. Section II

describes the algorithm and VLSI architecture of SISO MAP

decoding and explains the warm-up property which is exploited

in both parallel and BIP architectures. In Section III, the pro-

posed BIP transform is presented along with a brief summary

of other architectural transforms that result in high-throughput

implementations of recursive algorithms. In Section IV, we

apply the techniques presented in Section III, to develop several

architectural solutions for high-throughput MAP decoding.

Section V describes an area-efficient high-throughput turbo

decoder for PCCC and turbo equalizer implementations.

II. MAP DECODING

In this section, the algorithm for the SISO MAP decoder is

explained first, followed by a description of a baseline VLSI

architecture for a SISO MAP decoder.

A. Algorithm

Consider an convolutional code. An encoder is

a finite state machine with memory elements that en-

codes a -bit data symbol into an -bit code symbol as shown

in Fig. 1(a). The parameter is called the constraint length of

the code, and the code rate is defined as . Given

a current state and an input symbol , there exists a

unique pair consisting of a next state variable and an

output symbol . Hence, for an input block of data sym-

bols , the encoder starts from an initial

state at time and performs state transitions while

generating coded output symbols .

An efficient method describing all possible state transitions is a

trellis diagram. A section of the trellis of Fig. 1(a) is depicted in

Fig. 1(c), where solid edges correspond to and dashed

edges correspond to .

Note that a discrete-time channel model [see Fig. 1(b)] can be

considered as a (1,1,3) convolutional encoder, where the coded

Fig. 1. Various encoder forms for MAP decoding. (a) A (2,1,3) convolutional
encoder with two memory elements and modulo 2 adders. (b) A discrete
time channel model with two memory elements and the channel vector
h = [h ; h ; h ]. (c) A trellis section resulting from state transitions of the
encoders in (a) and (b).

symbol is computed as . Hence, the dis-

crete-time channel causing ISI can be decoded via the decoding

algorithm used for the code in Fig. 1(a).

The observed sequence at the re-

ceiver is distorted due to transmission over AWGN and/or ISI

channels. Thus, the decoding problem can be defined as deter-

mining the transmitted sequence given the noisy sequence .

Maximum likelihood (ML) decoding algorithm estimates the

transmitted symbols via searching the most likely trellis tran-

sition path which maximizes the probability . However,

the MAP decoding algorithm determines each of symbols in-

dependently via maximizing a posteriori probability .

The BCJR algorithm [41] solves the MAP decoding problem

in a multiplicative form. From an implementation perspective,

a log-domain MAP algorithm, called “log-MAP”, has the ad-

vantage that it can be formulated in terms of sums rather than

products.

A log-MAP decoding algorithm estimates the LLR of data

symbol denoted as defined below:

(1)

Defining , we rewrite as

(2)

Typically, one term will dominate each sum leading to an

approximation

(3)
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The log-domain probability can be reformulated [23]

as

(4)

where and are the observed sequence before and

after the th trellis section. The first term, , referred

to as the forward metric, is related to the probability that the

trellis reaches given the past observation . The for-

ward metric is computed recursively as

(5)

by performing a forward sweep on the trellis from . The

second term in (4), , is referred to as the branch

metric and is related to the probability that a transition from

to occurs. The branch metric is computed

from the channel output, noise statistics, and the error-free

output of the branch connecting and at time . Note

that each trellis section has possible transitions. The third

term , referred to as the backward metric, is related to

the probability that the trellis reaches state given the future

observation . The backward metric is computed

recursively as

(6)

by performing a backward sweep on the trellis from state .

Hence, the decoding process consists of three steps. First,

branch metrics in each trellis section are computed. Second,

the forward and backward metrics ( and ) are computed

recursively via (5) and (6). Third, the LLR is computed

as

(7)

It is known that if the function defined as

(8)

is employed instead of , the performance of the log-domain

MAP algorithm approaches that of the BCJR algorithm [23] to

within 0.05 dB. The second term in (8) is referred to as the

correction factor.

B. MAP Decoder Architectures

Numerous architectures can be employed to implement the

log-MAP algorithm [43]. However, the trellis sweep over all

observed symbols requires large memory in order to hold the

forward and backward metrics until they are used in the LLR

computation in (7). Hence, the sliding window log-MAP algo-

rithm, considered in this paper, has become popular as it mini-

mizes the metric storage requirements [23].

The sliding window log-MAP decoding algorithm is derived

via the property that the forward and backward metrics and

Fig. 2. Scheduling of state metric recursions for � and � in the sliding
window log-MAP. For simplicity, it is assumed that the computation and
warm-up period equals L. Shadowed region indicates the computation and
storage of � . The gridded region indicates the computation of � followed by
the computation of �(u ). Here, � and � are the first and second �-recursion
outputs, respectively, at a time index k.

Fig. 3. Baseline VLSI architecture of a sliding window log-MAP decoder.

Fig. 4. Add-Compare-Select (ACS) unit.

converge after a few constraint lengths have been traversed in

the trellis, independent of the initial conditions [23]. We refer to

this property as the warm-up property and the warm-up period

is assumed to have a duration of symbols. Due to the warm-up

property, the state metrics ( and ) computation can be parti-

tioned into windows of size . Further, the computations in each

window can be done in parallel. Fig. 2 shows an example of a

decoding flow where the warm-up property is employed only

for computing backward metrics. The warm-up or initialization

period is depicted by dashed lines and the computation period

by solid lines. This warm-up property will be exploited later in

deriving parallel and BIP architectures.

Fig. 3 shows the VLSI architecture of a decoder whose

data-flow graph is shown in Fig. 2. The architecture has units

for the computation of branch metrics ( -unit), one forward
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Fig. 5. Parallel processing. (a) Original. (b) Sub-block parallel architecture.

recursion ( -unit), two backward recursions and a buffer to

store backward metrics and ( -unit), and the metric

processing unit ( -MPU). The computations in -MPU and

-MPU can be implemented in a feedforward manner and

thus these do not limit the throughput. However, the forward

and backward recursions are computed via an array of ACS

kernels in a state-parallel manner. An ACS kernel is depicted

in Fig. 4, where the correction factor in (8) is implemented via

a look-up-table (LUT) and state metric re-scaling is employed

to avoid overflows [14]. Therefore, it is the critical path delay

of the ACS unit shown in Fig. 4 that limits the throughput.

III. BLOCK-INTERLEAVED PIPELINING TECHNIQUE

In this section, we present techniques for improving the

throughput of recursive data-flow graphs. First, we review

the existing techniques of parallel processing [25], [26] and

look-ahead transform [39], [40]. Then, we present the BIP

technique, which is one of the contributions of this paper. These

techniques are applied to design high-throughput MAP decoder

architectures in Section IV.

A. Parallel Processing

In general, pipelining or parallel processing becomes diffi-

cult for a recursive datapath. However, if the data is being pro-

cessed in blocks and the processing satisfies the following two

properties: 1) computation between blocks are independent and

2) computation within a block is recursive, then a block par-

allel processing architecture can be achieved. Further, if a block

can be segmented into computationally independent sub-blocks,

parallel processing can be applied at the sub-block level leading

to high-throughput architectures presented in [25] and [26].

Consider the recursive architecture in Fig. 5(a). Note that the

architecture in Fig. 5(a) cannot be easily pipelined or paral-

lelized due to the presence of the feedback loop. However, if a

data block of length is processed independent of other blocks

and the computations within a block can be segmented into com-

putationally independent sub-blocks, then one can parallelize

the architecture as shown in Fig. 5(b), where the parallelization

factor and a block is divided into sub-blocks,

and . It is obvious that the critical path is not affected and

the throughput is increased by a factor of at the expense of a

factor of increase in hardware complexity.

B. Look-Ahead Transform

Another transform to achieve high-throughput for recursive

data-flow graphs is look-ahead computation [39]. Look-ahead

Fig. 6. Look-ahead transform.

leads to an increase in the number of symbols processed at each

time step as shown in Fig. 6, where two symbols are processed

in one clock cycle. If and

, then look-ahead results in the output being

expressed as . Note that will

have a longer critical path delay than the original computation of

Fig. 5(a). However, it has been shown that the function can

be optimized via logic minimization so that an overall increase

in throughput can be achieved. For example, in the context of

Viterbi decoding, it has been shown that a 1.7 times increase in

throughput is feasible via radix-4 computation [40].

C. Block Interleaved Pipelining (BIP)

The parallel architecture in Fig. 5(b), where the level of

parallelism is equal to 2, has two identical computation units

processing on two independent input symbols. Therefore, the

hardware complexity increases linearly with the level of par-

allelism . To achieve an area-efficient implementation, we

propose the block interleaved pipelining (BIP) technique. First,

the data-flow of Fig. 5(b) is folded [39] to a single computation

unit as shown in Fig. 7(a) where two independent computations

are carried out in a single computational unit. Note that the

resulting BIP architecture in Fig. 7(a) is inherently pipelined.

Therefore, an application of retiming [39] [see Fig. 7(b)] results

in reduction of the critical path delay by a factor of two over

that of the original architecture in Fig. 5(a). It is clear that the

retimed BIP architecture in Fig. 7(b) leads to high-throughput

at the cost of a marginal increase in memory due to pipelining

latches when compared to the architecture in Fig. 5(a).

The BIP technique is applicable to general recursive

data-flow graphs that satisfy the following two properties: 1)

computation is block-based with computation between the

blocks being independent and 2) operations within a block

is recursive. Further, if block computation can be partitioned

into sub-block computation via algorithmic transforms while

maintaining independence between sub-blocks, the BIP can

be applied in a sub-block level. In such a case, processing

sub-blocks in a parallel manner leads to the BIP architecture

which is inherently pipelined.
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Fig. 7. Block-interleaved pipelining (BIP). (a) BIP architecture. (b) Retimed BIP architecture.

Fig. 8. Parallel architecture. (a) Scheduling for parallel sub-block processing
withM = 2. (b) VLSI architecture withM -level parallel sub-block processing.

IV. HIGH-THROUGHPUT MAP DECODER ARCHITECTURES

In this section, we apply the techniques in Section III to

develop parallel, BIP, symbol-based, and symbol-based BIP

decoder architectures.

A. Parallel Architecture

Due to the warm-up property of MAP decoding described in

Section II-B, a block of information bits can be segmented

into sub-blocks with the warm-up period overlapped

among sub-blocks. Thus, by employing the parallelization

technique in Section III-A, identical processing units are

implemented in parallel. This sub-block parallel architecture

was presented in [25]–[28] and leads to a linear increase in

hardware complexity for a linear speedup in throughput. For

example, a block size of can be divided into

sub-blocks of size . Thus, the trellis sections between the

th and th trellis nodes are used as the warm-up period for

the recursion of the second sub-block. Fig. 8(a) shows the

data-flow for an example with and . Note that

Fig. 9. BIP architecture. (a) M -level BIP architecture. (b) BIP ACS
architecture.

the beginning and ending states of the trellis are known to the

decoder and hence warm-up period is not required for the first

and last computation windows. Fig. 8(b) depicts an -level

parallel architecture.

B. BIP Architecture

Following the approach described in Section III-C, the BIP

architecture is obtained by processing sub-blocks of size

. For simplicity, we refer to this architecture as a BIP ar-

chitecture even though the interleaving is done at the sub-block

level and we assume that the block-size and the sub-block

size is a multiple of the warm-up period .

Fig. 9(a) depicts the BIP architecture, where the , , and

MPUs are pipelined in order to reduce the critical path delay

and delay-line blocks are required to compute sub-blocks

in a block-interleaved order. The and units have the folded

block-interleaved ACS architecture shown in Fig. 9(b), where

the block-interleaving factor is . The BIP architecture pro-

cesses trellis sections

in consecutive clock cycles. Compared with the con-

ventional implementation in Fig. 4, the block-interleaved ACS

architecture in Fig. 9(b) has delays in the feedback loop of

the ACS recursion. Thus, retiming can be employed to pipeline
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Fig. 10. Proposed symbol-based decoding scheme for a example with [5; 7]
RSC encoder.

the critical path by levels in order to achieve speed-up by a

factor of . The price we pay is an increase in the pipelining

registers. Hence, the BIP architecture will consume less area

than the parallel architecture.

C. Symbol-Based Architecture

We apply an -level look-ahead transform to the and re-

cursions. Doing so enables us to compute the and metrics

by merging trellis sections and to decode bits per each clock

cycle [40]. We refer to this approach as symbol-based MAP

decoding. For simplicity, a 2-bit symbol decoding, where two

trellis sections are grouped (see Fig. 10), is described next. Ex-

tension to the multi-bit symbol case is straightforward.

We reformulate the recursion in (5) by applying a two-level

look-ahead transform as follows:

(9)

since the operation is associative and addition distributes

over . Here, is the branch metric of the path

connecting and . In a similar way, the recursion in (6)

is rewritten as

(10)

In order to compute via 2-bit symbol decoding, either

or in (7) can be extended to or . Here, we

extend the recursion. Employing (5), we substitute for

in (7) as follows:

(11)

and since operation is associative and addition distributes

over , we have

(12)

Similarly, can be computed as

(13)

The first term in (13) can be expressed as

(14)

where corresponds to the transition with and

. By defining symbol reliability metric as

(15)

we can compute and as follows:

(16)

Note that LLR outputs of (16) equal those computed from the

bit-wise decoding algorithm in (7). The modified ACS architec-

ture and the -MPU are depicted in Fig. 11. In general, (16) can

be derived for an -bit symbol-based decoding as follows:

(17)

where is the symbol made up of bits from

to and . Although the symbol-based

decoding increases the number of decoded bits per clock cycle,

the critical path delay is increased as shown in Fig. 11. How-

ever, this architecture reduces the storage requirement for state

metrics by a factor of .

In general, assuming that and are equal to delays of

an adder and a , respectively, and the delay of the re-scaling

block is negligible, the critical path delay of -bit symbol-based

algorithm equals as shown in Fig. 11. The expected

speed-up is written as

(18)
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TABLE I
STORAGE REQUIREMENT, LOGIC COMPLEXITY, CLOCK FREQUENCY, AND SPEED-UP OF HIGH-THROUGHPUT ARCHITECTURES

Fig. 11. Symbol-based architectures with r = 2 for: (a) ACS recursion, and
(b) the �-MPU.

where the numerator and the denominator in (18) are the compu-

tation times for processing a block of bits using the ACS ar-

chitectures of Fig. 4 and Fig. 11, respectively. In general,

and hence a speed-up in the range of is ex-

pected at the cost of an increase in logic complexity due to the

look-ahead transform. In a typical scenario, without any logic

optimization, we get . Hence, approaches 1.5

asymptotically as increases. Employing appropriate logic op-

timizations, it is possible to reach as shown in [40] for

a Viterbi decoder.

D. Symbol-Based BIP Architecture

In order to increase the throughput gain of the symbol-based

decoding architecture, we apply an -level BIP transform along

with an -level look-ahead transform. First, a block is divided

into sub-blocks using the warm-up property and a -bit

symbol-based decoder is employed to process each sub-block.

Then, the identical symbol-based decoders are folded on to

a single hardware unit resulting in a -level pipelined -bit

symbol-based decoder. Retiming the latches results in a

symbol-based BIP decoder architecture. The symbol-based BIP

architecture has a speed-up of

(19)

Thus, the symbol-based BIP is expected to achieve the highest

speed-up among the above mentioned architectures. The

symbol-based BIP architecture is same as the architecture of

Fig. 9(a) except for the fact that the -MPU, -MPU, -MPU,

and -MPU have symbol-based datapaths.

E. Comparison

Table I summarizes the storage requirement, logic com-

plexity, clock frequency, and expected speed-up of each

high-throughput architecture, where -level parallelism is

considered, is the number of states in the trellis, , ,

, and are precisions of branch metrics, state metrics,

received symbol , and LLR, respectively. As mentioned

previously, the hardware complexity including the storage

requirement and logic complexity of the parallel processing

architecture increases linearly with speed-up . Compared to

the parallel architecture, the BIP architecture provides the same

speed-up with a reduction in logic complexity by a factor of .

The symbol-based architecture provides a speed-up in the range

1 to 2, with a logic complexity that grows exponentially with

but with a state metric storage requirement that decreases

by a factor of as compared to a parallel architecture. The

symbol-based BIP architecture has a speed-up in the range

to with a logic complexity that increases exponentially

with and a state metric memory complexity that decreases

roughly by a factor of .

We estimate the area based on a complexity analysis in

Table I. A standard cell-based design methodology is con-

sidered. Actual areas of a 1-bit adder, 1-bit latch, , and

1-bit buffer cell are obtained from a 0.25- m CMOS standard

cell library, and precisions are determined via computer sim-

ulations ( , , , and ).

The interconnect area is not included. For and , the
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Fig. 12. SISO MAP decoder area comparison.

estimated silicon area, computed from Table I, is shown in

Fig. 12 in terms of the normalized area, which is defined as

the ratio of the area of the high-throughput architecture over

that of the original architecture . The BIP architecture

consumes 65%–80% of the area of the parallel architecture for

and . The symbol-based BIP architecture occupies

30% and 7% more area than the parallel architecture for

and , respectively, for . However, the normalized area

increases exponentially with and hence the symbol-based

BIP architecture is not considered as practical for .

Different memory access patterns for input and output mem-

ories (interleavers/deinterleavers in turbo decoders and equal-

izers) should be considered for each different high-throughput

MAP architecture. In case of an -level parallel architecture,

the clock frequency is , which is same as that

of a nonparallel MAP decoder architecture, but at each clock

symbols need to be decoded in parallel. Thus, memory ac-

cesses are executed within period unless input and

output memories are partitioned and accessed in parallel such

that no access conflict occurs. The symbol-based architecture

has the same problem that memory accesses are executed

during period, but the clock period is increased

approximately by a fact of . On the other hand, the BIP ar-

chitecture needs one memory access per one clock cycle, but

the clock period is reduced by a fact of in comparison with

Fig. 13. Block diagram of a PCCC encoder and a turbo decoder. Here I and
I denote block interleaving and deinterleaving, respectively.

Fig. 14. Serial VLSI turbo decoder architecture.

a parallel architecture. Since the memory and logic clock net-

works are synchronized with one clock source, the BIP archi-

tecture requires more simple clock networks than the parallel

and symbol-based architectures.

In summary, the parallel and symbol-based decoder architec-

tures improve throughput at the expense of increased area. The

area increases linearly and exponentially with the speed-up

for the parallel and symbol-based architectures, respectively.

The BIP reduces this area penalty without sacrificing the

throughput gains.

V. APPLICATIONS

In this section, the proposed high-throughput MAP decoder

architectures are employed for high-throughput implementa-

tions of turbo decoders and turbo equalizers, and architectural

benefits of each approach are compared.

A. Turbo Decoder

The turbo code considered in this paper is made up of two re-

cursive systematic convolutional (RSC) encoders concatenated

in parallel as shown in Fig. 13. The bit sequences transferred

from one encoder to the other are permuted by an interleaver.

The decoder contains two SISO MAP decoders which are asso-

ciated with two RSC encoders as depicted in Fig. 13. The de-

coding of the observed sequences is performed iteratively via

the exchange of soft output information between the

constituent decoders. The decoding process is repeated itera-

tively until a proper stopping criterion terminates the iterations.

The turbo decoder can be implemented via a serial architec-

ture as shown in Fig. 14, where one SISO MAP decoder is time-

shared. Hence, increasing the throughput of the SISO MAP de-

coder directly leads to an overall improvement in throughput of

the turbo decoder. Based on the area estimation results in Table I,

it is predicted that BIP MAP decoder architecture achieves the

best speed-up at the minimum area cost for the turbo decoder

implementation.

In order to validate our analysis, three high-throughput MAP

decoders were designed using the techniques in Section IV.
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TABLE II
TURBO DECODER APPLICATION RESULTS

Fig. 15. Transmitter and receiver model of turbo equalizer. The superscripts
E and D denote equalizer and decoder, respectively.

These decoder architectures were implemented in VHDL for

and and their functionality was verified. The speed-up

factor was in all cases. Encoder polynomials were

chosen to be and for

and , respectively. The design was synthesized using the

Synopsys Design Compiler using 2.5-V 0.25- m CMOS tech-

nology standard cell library. The synthesized design was placed

and routed using the Cadence Silicon Ensemble. Pathmill was

used to determine the critical path from post layout simulations.

Measured results on the critical path delay, speed-up, silicon

area, and throughput are summarized in Table II. The measured

normalized area is close to the predicted results in Fig. 12, and

the measured memory and logic areas clearly show that the BIP

technique reduces the logic complexity nearly by a factor of

keeping the memory complexity same as the parallel pro-

cessing. As we predicted previously from the analysis, the BIP

architecture achieves high-throughput with minimal area cost.

It should be noticed that the BIP symbol-based decoding archi-

tecture shows the maximum throughput gain for two-level par-

allelism as expected in Section IV-D. However, as is

increased, the logic complexity is expected to increase expo-

nentially (see Fig. 12). Hence, the BIP symbol-based decoding

architecture does not provide a good tradeoff between the area

overhead and the throughput gain for large values of .

B. Turbo Equalizer

In the case where the transmitted symbols are protected by

RSC encoders (see Fig. 15), the equalizer and decoder modules

can be related in the same way as in turbo decoding of seri-

ally concatenated convolutional codes [2], [4]. Hence, in order

to achieve iterative processing gain, the SISO MAP equalizer is

employed and provides the SISO MAP decoder with soft out-

puts as depicted in Fig. 15. If a binary phase shift

keying (BPSK) modulation is concatenated with an RSC en-

coder in Fig. 15, one SISO MAP decoder can be shared to im-

plement both SISO MAP equalizer and decoder as in a serial ar-

chitecture (Fig. 14). However, if quadrature phase shift keying

(QPSK) modulation is employed, then the MAP SISO equal-

Fig. 16. Decoding flow of the conventional turbo equalizer implementation.

izer processes one QPSK symbol, composed of two bits, but the

SISO MAP decoder decodes one bit at each clock. Hence, the

equalizer and the decoder need separate hardware platforms as

they have different trellis structures. Furthermore, since block-

based equalization and decoding are carried out iteratively be-

tween two SISO blocks, one of the blocks, either the equalizer

or the decoder, is in an idle state as shown in Fig. 16. This inef-

ficient use of computational resources can be overcome by em-

ploying the proposed symbol-based MAP decoder.

Fig. 17 depicts the proposed area-efficient VLSI architecture

for turbo equalizers, where instead of two separate MAP equal-

izer and decoder a single symbol-based MAP decoder is em-

ployed thereby both achieving the dual goals of saving area and

fully utilizing the hardware resources. Since the equalizer pro-

cesses the received symbols from the channel and LLR values

on each bit from the SISO decoder, the branch metric of the

SISO MAP equalizer is computed as

(20)

if

else

(21)

where a symbol is made up of bits, ,

and the channel length is . On the other hand, the branch

metric of SISO MAP decoder is defined as

(22)

where one code symbol is composed of bits. Thus, Fig. 17

has two branch metric computation units, but other computation

units such as , , and are shared.
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Fig. 17. Proposed area-efficient VLSI architecture for turbo equalizers.

Fig. 18. Predicted area ratio � for two different scenarios: (a) QPSK (r = 2), l = 3, and (b) 8-PSK (r = 3), l = 2.

Though the parallel processing transform can be applied in

addition to symbol-based decoding for improving throughput,

the BIP symbol-based decoder consumes much less silicon area,

and hence provides the better trade off between throughput gain

and area cost. In this paper, we compare the area-efficient high-

throughput turbo equalizer architecture with the conventional

architecture where two SISO MAP equalizer and decoder are

separately implemented.

1) Area: By following the approach of Section IV-E, we can

predict the normalized area of the area-efficient high-throughput

turbo equalizer over that of the conventional architecture.

The normalized area is given by

(23)

where is the area of the proposed area-efficient high-

throughput architecture employing the symbol-based BIP

processing and and are the area of MAP equalizer

and decoder for the separate implementation of two SISO

MAP blocks. The predicted normalized area is computed using

Table I and plotted in Fig. 18 for two examples where a MAP

equalizer is considered for QPSK modulation with the channel

length ( states) and 8-PSK modulation with

the channel length ( states). It is observed that

the normalized area is minimized when the number of states in

the equalizer and decoder are equal. Further, as the difference

between the numbers of states of two SISO blocks is increased,

the normalized area increases. This is because the proposed

symbol-based SISO decoder is designed to accommodate the

larger of the two trellises.

2) Speed-Up: The processing time required for one block

iteration of equalization and decoding is expressed as

(24)

where and are the critical path delays of SISO MAP

equalizer and decoder, respectively. Assuming that the equalizer

processes -bit symbols and hence, , the speed-up is



LEE et al.: AREA-EFFICIENT HIGH-THROUGHPUT MAP DECODER ARCHITECTURES 931

Fig. 19. Turbo equalizer core layouts. (a) Conventional architecture with separate equalizer and decoder. (b) Symbol-based architecture with r = 2.
(c) Symbol-based BIP architecture with M = r = 2.

TABLE III
TURBO EQUALIZER APPLICATION RESULTS

the ratio of of the conventional approach over the proposed

high-throughput architecture

where extra cycles are caused by a block-interleaved

computation and is the critical path delay of the proposed

high-throughput architecture. Note that the speed-up becomes

larger as gets closer to .

3) Experimental Results: We employ a RSC encoder at the

transmitter with a generator polynomial . The

coded bit stream is mapped to four-level pulse amplitude mod-

ulation signals. We considered a static channel model,

, and hence 16 states exist in each

SISO equalizer and decoder. The conventional and proposed ar-

chitectures were designed in VHDL, then synthesized via the

Synopsys Design Compiler, and placed and routed via the Ca-

dence Silicon Ensemble by using 2.5-V 0.25- m CMOS stan-

dard cell library. The core layouts are shown in Fig. 19. The area

and the critical path delay of each architecture are summarized

in Table III, where the parallel architecture occupies two times

area of Fig. 19(a). The throughput is improved by 1.79 while

25% less area is consumed compared with the conventional ap-

proach. The measured normalized area matches well with re-

sults of Fig. 18.

VI. CONCLUSION

In this paper, we have presented BIP and symbol-based

BIP architectures as being area efficient and providing

high-throughput. Further, we synthesized the VLSI archi-

tectures in a 2.5-V 0.25- m CMOS process and demonstrated

that the proposed architectures achieved the dual goals of high

throughput and area- efficiency for turbo decoders and turbo

equalizers.

Future work needs to be directed toward further improving

the area-efficiency and throughput gains exploiting circuit-level

optimization techniques. Developing efficient interleaver archi-

tectures is of interest. New architectures based on factor-graph

representations of iterative decoders are also a promising area

of research.
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