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A b s t r a c t .  We introduce a new Markov point process that exhibits a range 
of clustered, random, and ordered patterns according to the value of a scalar 
parameter. In contrast to pairwise interaction processes, this model has inter- 
action terms of all orders. The likelihood is closely related to the empty space 
function F, paralleling the relation between the Strauss process and Ripley's 
K-fnnction. We show that, in complete analogy with pairwise interaction pro- 
cesses, the pseudolikelihood equations for this model are a special case of the 
Takacs-Fiksel method, and our model is the limit of a sequence of auto-logistic 
lattice processes. 
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i .  Introduction 

Since the in t roduct ion of Markov point processes in spatial statistics (Kelly 
and Ripley (1976), Ripley and Kelly (1977)) (the very similar concept of a Gibbs 
point  process was already known in statist ical  physics (Ruelle (1969), Chapter  3, 
Pres ton  (1976))) a t ten t ion  has focused on the special case of pai~vise interac- 
tion models. These provide "a large variety of complex pa t te rns  s tar t ing from 
simple potent ial  functions which are easily interpretable as a t t ract ive  an d /o r  re- 
pulsive forces acting among points" (Mase (1990)). A great  deal is unders tood 
about  pairwise interact ion models because they are very natural  with respect to 
the derivation of condit ional probabilities, Papangelou conditional intensities and 
Palm distributions; they are simple exponential  families whose sufficient statis- 
tics are often related to the popular  K-funct ion;  and they are very amenable to 
simulation and i terat ive statist ical  methods.  

However, pairwise interact ion processes do not seem to be able to produce 
clustered pa t te rns  in sufficient variety. The  original clustering model of Strauss 
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(1975) turned out (Kelly and Ripley (1976)) to be non-integrable for parameter 
values ~, > 1 corresponding to the desired clustering; Gates and Westcott (1986) 
showed that partly-attractive potentials may violate a stability condition, implying 
that they produce extremely clustered patterns with high probability; and recent 
sinmlation experiments by Moller (1994) suggest that the behaviour of the Strauss 
model with fixed 77 undergoes an abrupt transition from "Poisson-like" patterns 
to tightly clustered patterns rather than exhibiting intermediate, moderately clus- 
tered patterns. 

In this paper we introduce a family of Markov point processes that  yield both 
moderately clustered and moderately ordered patterns. They can be described as 
having interactions of infinite order. In the simplest case the probability density 
of a point pattern x = {Xl . . . . .  :r,,} (7~ _> 0) in a window A C_ ~2 is defined to be 

( 1 . 1 )  p(x )  = 03"') '-''l~) 

where .u(a:) is the area of the plane set formed by taking the union of discs of 
radius r centred at the points xi. Here 13.7. r > 0 are parameters and c~ is the 
normalising constant. Compare this with the pairwise-interaction Strauss process 
in the same situation, 

(1.2) p(m) = a /Y '7  "~{~') 

where s(x) is the number of pairs of distinct points :ri, xj that  lie within a distance 
r' of one another. Both densities reduce to a Poisson process when 7 = 1, and 
exhibit ordered patterns for 0 < ") < 1. Our process (1.1) is well-defined for all 
values of ")' > 0 and produces clustering when ~ > 1. The clustered case "y > 1 
of (1.1) is identical to tile 'penetrable sphere model' of liquid-vapour equilibrium 
proposed by Widom and Rowlinson (1970), see also Hammersley et al. (1975) or 
Rowlinson (1980, 1990). Our Definition 1 embraces both clustered and ordered 
types and Definition 2 below is a further generalisation to non-spherical shapes 
and non-uniform measures. Figure 1 shows simulated realisations of (1.1). 

It is useful to note that computation of .u(z) is easy in an image processing 
context, using the distance transform algorithm (Rosenfeld and Pfalz (1968)). 

The plan of the paper is as tbllows. In Section 2 we define the process and check 
that it is integrable for all parameter values. We show that it is a Markov point 
process with interactions of infinite order, and give various physical interpretations. 
In Section 3 we prove that the process satisfes a stability condition and that there 
is a corresponding stationary Gibbs process on ~t .  Section 4 briefly discusses 
simulation techniques. 

In Section 5 we consider statistical inference. First we show that (1.1) is 
connected to the popular empty space statistic F in the same way" that the Strauss 
process (1.2) is related to 1Ripley's K-flmction. We show that pseudolikelihood 
inference for the area-interaction process is a special ca,se of the Takacs-Fiksel 
method, analogous to the situation for pairwise interaction processes (Diggle et 
al. (1994), SSrkk'a (1989), Ripley (1989)). Finally in Section 6 we prove that the 
area-interaction process is the linfit (weakly and in total variation) of a sequence 
of autologistic lattice processes, extending the limit theorem of Besag et al. (1982). 



A R E A - I N T E R A C T I O N  P O I N T  P R O C E S S E S  603 

+ + + §  + 
+ 

+ + + § 
+ 

+ + 
§ + + + 

§ 
§ § 

+ § + § § + + 
§ § § + 

+ + + + 

+ 
§  + +  

+ + * 
§ 

§ * + 
+ § 

+ + 

+ + 
§ + + + 

§ 
§ § § 2 4 7  

§ + + �9 + + 

+ +  + + 

+ 
+ § 

+ 
+ + 

+ 
+ ++ + 

+ § + + 
+ 

§ §  
+ + + + + 

I I I - - - r - -  

50  1 0 0  1 5 0  2 0 0  2 5 0  

+ 

4 +  

+ 

g 

g 

g 

f 

o 
I 

0 

+ 
§ 

+ + 

+ . *  
+ 

+ + * 

+ + 

§ § 
+ + , + 

+ 

+ 
+ 

+ 

+ 

+** + + + F §  + + + 
+ +  + 

+ 
+ 

§ + + + 

+ + + § 
§ 

§ + +  § 

§ § 

�9 + + 
+ + 

+ 
+ +  ,~  § + . 

+ + + 

5 0  1 0 0  1 5 0  2 0 0  2 5 0  

Pig. 1. S i n m l a t e d  rea l i sa t ions  of  an area - in terac t ion  process  c o n d i t i o n a l  on n = 100  

points ,  w i t h  r = 5 in  a w i n d o w  of  s ize  2 5 6  x 256 .  Left: ordered pat t ern ,  7 = 0 . 9 7 1 1 ,  

~ - 2 5 ~  = 10; Righ.t: c lus tered  pa t t ern ,  7 = 1 . 0 2 9 7 5 ,  7 -257r = 0 .1 .  

2. Definition of process 

2.1 Preliminaries 

As usual for Gibbs point processes we treat separately the cases of a finite 
point process (say, points in a bounded region A c_ [R ~) and a stationary point 
process on IR d. 

The formal construction of finite Gibbs point processes is described in Daley 
and Vere-Jones ((1988), p, 121 if), Preston (1976) or e.g. Section 2 in Baddeley 
and Moller (1989). Briefly, let X be a locally compact complete separable metric 
space (typically [R d or a compact subset). A realisation of a finite point process is 
a finite set of points 

X = {2:1 . . . . .  : /2, ,},  X i E ,~", 'n  ~ 0 .  

The space of all possible realisations shall be identified with the space Rf of all 
integer-valued measures on X wh ich  have  finite total mass and are simple (do not 
have  atoms of mass exceeding 1). Write n(a:) for the total mass (=total  n u m b e r  

of points), and mB for x restricted to B C_ X. The a-algebra H à  on !R f is the 
Borel or-algebra of the weak topology, i.e. N " / i s  the smallest a-algebra with respect 
to which the evaluation m ~ n(a:B) is measurable for every (bounded) Borel set 
Bc_X.  

Given a totally finite, non-atomic measure p on X, construct the Poisson 
process of intensity # (typically p is the restriction of Lebesgue measure to a 
compact window A C_ ~d, yielding the unit rate Poisson process restricted to A). 
Let re be its probability distribution on (Rf,A/'I).  Then we construct (Gibbs) point 
processes by speci ,fying their density with respect to 7r. A density is a measurable 
function p : Rf ---+ [0, oe) that is integrable with respect to re. 
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The  general pairwise interact ion process on a compact  region A C_ ~ d  is then 
defined by its density 

p(~) = a 1-I b(.~,~) I I  ~(x~, xj) 
i i < j 

(with respect  to the uni t - ra te  Poisson process on A) where b, c are nonnegat ive 
measurable  functions and a is the normalising constant .  The  Strauss process (1.2) 
is the special case where b(.) - ~ and c(u, v) = 7 if 0 < Ilu -~' l l  -< ~, c(,~,, ,,) = 1 
otherwise. Kelly and Ripley (1976) pointed out  that. (1.2) is not  integrable for 

7 > 1 .  

2.2 Area-interaction process 

DEFINITION 1. (Standard  case) The  area-interaction process in a compact  

region A C_ ~d is the process with density 

(2.1) p(x) = a~,3"(~)') '-'''(U'-(~)) 

with respect to the unit  rate Poisson process on A, where/3, 7, r > 0 are parameters  
and ct is the normalising constant ,  'm is Lebesgue measm'e, and 

g,.(x) = 0 B(:r~, r) 
i = l  

is the union of spheres or discs of radius r centred at the points of the realisation, 

B(:~~,,) -- {a e ~d: Ila --:~',11 --< "}" 

For ~ = 1 this of course reduces to a. Poisson process with in tens i ty /3p.  It is 
intuit ively clear tha t  for 0 < y < 1 the pa t t e rn  will tend to be 'ordered '  and for 
7 > 1 'clustered'  (we make this precise in Subsections 5.1 and 5.3). The  clustered 
case was in t roduced by Widom and Rowlinson (1970). See also Hammers ley  et al. 
(1975) or Rowlinson (1980, 1990). 

Various modifications are of interest,  for example,  one may wish to replace 
U,.(x) by A A U~(x), or to allow the radii of the discs B ( x i , r )  to vary across the 
region (Lawson (1993)). More generally, the discs B(x i , r )  can be replaced by 
compact  sets Z(xi)  depending on xi. We assume tha t  the mapping Z onto the 
space K] of all compact  subsets is continuous with respect, to the myopic topology 
(Matheron (1975), p. 12) generated by {K E ~2 : K n F = ~} for all closed F C X 
and {K  E/C : K N G r 0} for all open subsets G C_ X. 

DEFINITION 2. (General  case) Let  lJ be a total ly finite, Borel regular mea- 
sure on 2( and Z : 2( ~ K: a myopically continuous function, assigning to each 
point a E X a compact  set Z(a) C_ 2(. Then  the general area-interaction process 
is defined to have density 

(2.2) p(m) = a/3~(x)7-~(u(~)) 
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with respect to rr (the distr ibution of the finite Poisson process with intensity #), 
where U ( x )  is the compact set [,Ji~__l Z (x i ) .  

In a parametric  statistical model the measure u and the definition of Z(.) 
might also be allowed to depend on the parameter  0. 

LEMMA 2.1. The density (2.2) is measurable and integrable for all fixed val- 
ues of [3, 3" > O. 

PROOF. Let t > 0 and consider V = {x E ~}~f : b'(U(x)) < t} .  We show tha t  
V is open in the weak topology. 

Choose x E V. Since u is regular, there is an open set G c_ X containing U ( x )  
such tha t  u(G) < t. Consider W = {y E )R f : U(y )  C_ G}; we have y E reV iff y has 
no points in H = {a E 32 : Z ( a ) A G  ~ r 0}. Now H is closed in 32 since a ~-+ Z(a)  is 
myopically continuous and the class of all compact sets intersecting a given closed 
set is closed in the myopic topology on/C.  Thus W = {y E ~S : n(yH)  = 0} is 
open in the weak topology. But  x E W C_ V and x was arbi trary so V is open in 
the weak topology. 

In fact this shows tha t  x ~ u ( U ( x ) )  is weakly upper semicontinuous. It 
follows tha t  the map g : .~f -+ [0, oc) defined by x ~ e x p [ - u ( U ( x ) )  log 3 ]̀ is weakly 
upper semicontinuous for 7 E (0, 1) and lower semicontinuous for 3' > 1. Hence g 
is measurable. By definition of the weak topology, x ~-+ [3'~(~) is measurable, and 
hence the density (2.2) is met~surable. 

To check integrability, observe tha t  

(2.3) o <_ < < 

Now the fimction f ( x )  = fl~'(~) is integrable, yielding the Poisson process with 
intensity measure fl#. Hence (2.2) is dominated by an integrable function, hence 
integrable. [] 

In fact (2.3) establishes a slightly stronger result. 

LEMMA 2.2. The distribution P~,~ of th, e general area interaction process 
is uniformly absolutely continuous with respect to the distribution of the Poisson 
process 7r/3 with intensity fl#, that is its Radon-Nikodym derivative is uniformly 
bounded in x .  

In particular, the general area-interaction model satisfies the linear stability 
condition in Gates and Westcott  (1986). Explicit bounds on the density f with 
respect to a Poisson process with intensity [3tt are 

min{3 ' , (x)  .,/-,,(x)} G f <_ max{~ "(x), 3"-~(x)}. 

This suggests tha t  the 'singularity'  (highly clustered behavior) of the Strauss model 
is unlikely for moderate values of 3'. 
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As usual, the normalising constant ct is difficult to compute, since 
ct -1 = E[y~(x),,/-~(u(x)) 

where the expectation is with respect to the reference Poisson process; this entails 
computing the moment generating function of ~(U(X)), or equivalently, the va- 
cancy distribution in the coverage problem (Hall (1988)). A notable exception is 
the 1-dimensional penetrable sphere model of Widom and Rowlinson (1970). 

2.3 Markov  property 
The purpose of this paragraph is to place (2.2) in the context of Markov point 

processes in the sense of Ripley and Kelly (1977), see (Baddeley and Moller (1989), 

Kendall (1990)) Their defining property is that  the likelihood ratio p(~u{~}) for �9 p ( x )  

adding a new point a to a configuration x depends only on those x.i E x that  are 
'close' to a. Surveys can be found in Cressie ((1991), pp. 673-689), Stoyan et al. 
((1987), pp. 148-166) and Stoyan and Stoyan ((1992), pp. 342-359). 

As in Baddeley and Van Lieshout (1991, 1992, 1993) define two points a, b E X 
to be neighbours (and write a ~ b) whenever Z(a)  N Z(b) ~ ~. In the standard 
case a ~ b iff I l a -  bll < 2r. 

LEMMA 2.3. The area-interaction pwcess  (2.2) is a Markov  point process 
with. respect to ~ in the sense of Ripley and Kelly  (1977). 

PROOF. The likelihood ratio 

(2.4) p(= u {a}) _ 9 _,~(z(o)\u~)~ 
p(=) 

is computable in terms of a and {xi : x / ~  a}, since 

Z(a) \ u ( ~ )  -- Z(a) n Z(~,) 

= z(a) n (.~) 
X 

Hence (2.2) defines a Markov point process with respect to ~. [] 

The Ripley-Kelly analogue of the Hammersley-Clifford theorem (Ripley and 
Kelly (1977)) then implies that  the density p can be written as a product of clique 
interaction terms 

J'(~) = 1-I q(Y) 
yc_~ 

where q(y)  : 1 unless yi ~ yj for all elements of y. To compute the interaction 
terms explicitly, invoke the inclusion-exclusion formula: 

.(u(x)) = ~ . ( z ( z i ) )  
i=1 

i<j  \ i = l  
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which gives 

(2.5) 

q ( 0 )  = 

q ( { a } )  = /~,~-v(Z(a)) 

q (  { Y l ,  . . . , Y k  } ) : "~ (-1)ku(N: '=lZ(yi))  k > 2 .  

T h a t  is, the process exhibits interactions of infinite order. 
It is also trivial to verify tha t  the process satisfies a spatial Markov proper ty  

(cf. Kendall  (1990), Ripley and Kelly (1977)). Define the dilation of a set E _C X 
by 

(2.6) D z ( E )  = {u C X :  3e E E such tha t  Z(u)  N Z(e)  r 0}; 

in the s tandard  case this becomes the classical dilation of mathemat ica l  morphol-  
ogy 

(2.7) D z ( E )  = {u �9 ~d : d (u ,E )  <_ 2r} 

where d(u, E)  = inf{Hu - vii : v �9 E}.  Then  the spatial Markov proper ty  states 
tha t  the restrict ion of the process to E is condit ionally independent  of the restric- 
t ion to D z ( E )  ~ given the information in D z ( E )  \ E. 

2.4 Limiting cases 
Here we s tudy  the convergence of the area-interact ion process as "y ~ 0, ~ .  
Let  u* = maxx u(U(x) ) ,  typically the measure of the observation window or 

its (generalised) dilation and 

H = { x :  u(U(x ) )  = u*}. 

Fur ther  let 7r/3 be the dis tr ibut ion of the Poisson process of ra te /3  in A and finally, 
in the s tandard  case, denote 

HC = { z :  = 

LE~VIMA 2.4. Let P/~,~ be the distribution of the area interaction process with 
density (2.2). 

I f  "~ -~ 0 with/3 fixed, then P~,~. converges to a uniform process on H, i.e. 
. 3(E n 

In the standard case, if  "~ ---* 0 and ,2 ---* 0 so that/3"7 - ' r :  ---* ~ E (0, oc), then 
P~,~ converges to P ( E )  = 7r((E A HC) /Tc( (HC) ,  a hard core process. 

If  ~ ---+ oo with/3 < oo fixed, then PZ,~ converges to a process that is empty  
with probabil i ty  1. 

PROOF. First  consider ~ ---* 0. Then  fw"-~(u(~))dTrZ(x) ~ 7re(H), hence 

7 " ' - ' (U(~))  l { x  C H} 

p~,~(x) = f~/ . ._.(u(~))dTcZ(x ) 7cZ(H) 
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f rom which the first assert ion follows. To prove the second assert ion,  note tha t  for 
m(U~(x) )  < n ( x ) r r r  2, 3 ....... -~ ... .  (u',.(~)) __+ O. Hence 

r C HC} 
JHc 

The  thi rd  s t a t emen t  follows similarly, by not ing t ha t  the densi ty  converges point-  
wise to zero unless the pa t t e rn  is empty.  [] 

2.5 Interpretation and motivation 
Area- in te rac t ion  seems a plausible model  for some biological processes. For 

example  the points  xi m a y  represent  p lants  or animals  which consmne food within  
a radius  r of their  current  location. The  to ta l  a rea  of accessible food is then  U(x) ,  
and the herd will tend to maximise  this area,  so an area- in terac t ion  model  with 
7 < 1 is plausible. Al te rna t ive ly  assume tha t  the animals  or p lants  are hunted 
1) 3, a p reda to r  which appea r s  at  a r a n d o m  posi t ion and catches any prey  within a 
dis tance r. Then  U(x)  is the area  of wflnerabil i ty,  and the herd as a whole should 
tend to minimise  this (see, e.g. Hami l ton  (1971)) so an area- in terac t ion  model  with 
~' > 1 is plausible. 

The  following trivial  in te rpre ta t ions  are also possible: 

LEMMA 2.5. Let X ,  Y be independent Poisson pTvcesses in A with intensity 
measures ,'3p and ]log').lu 7rspectively. If  "y > 1 then the conditional distribution of 
X given { Y A U ( X )  = 0} is an area-interaction process with, parameter 7. I f 7  < 1 
then the conditional distribution, of X given {Y C U ( X ) }  is an area-interaction 
process with parameter "y. 

PROOF. If  ~ > 1 

P{}/" 0 U(X)  = 0 ] X }  ~- e - u ( U ( X ) ) l ~  ~_ , . y - u ( u ( x ) )  

hence the condit ional  d is t r ibut ion of X given Y N U(X)  = 0 has a densi ty  propor-  
t ional  to the right hand side. Sinfilarly if "~ < 1 

P{a  g u(x) I x }  = p ( y  (A \ U(X)) = O} 
= eu(A\U(X))log7 = .,fu(A),)-u(U(X)). [] 

Other  in te rpre ta t ions  are available in t e rms  of spat ia l  b i r th -and-dea th  pro- 
cesses (see Section 4). Briefly, if the points  represent  p lants  again, we may  consider 
a process in which exist ing plants  have exponen t i a l ( I )  lifetimes, and a new seed 
takes root  at  location a with ra te  p(x  @ {a}) /p (x )  related to the area  accessible 
to a tha t  is not a l ready accessible to an exist ing plant.  Al terna t ive ly  we may  
assume the plants  or animals  arrive at  a cons tan t  ra te  uniformly over space, and 
an exist ing an imal  xi dies at a ra te  p(x  \ { x i } ) /p (x )  re la ted to the risk of being 
a t tacked  by a predator .  
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3. Stationary area-interaction process 

Here we use the methods  of Pres ton  (1976) to check tha t  the area interact ion 
model (s tandard case) can be considered as the restrict ion to a bounded sampling 

window of a s ta t ionary  point  process on the whole of ~ .  
Let  ~ be the space of all locally finite counting measures (i.e. integer-valued 

Radon  measures) on ~d with the vague topology, and .h/" its Borel a-algebra; tha t  
is, Af is the smallest ~-algebra making x ~-+ n(xB)  measurable for all bounded 
Borel sets B. 

Write C for the class of all bounded Borel sets in Nd. For every B E C let 
~B be the subspace of those x E ?R contained in B (i.e. put t ing  no mass outside 

J~ the distr ibution on (~ ,N ' )  of B),  JV'B C N" the induced G-algebra on ~ and rc B 
the homogeneous Poisson process of rate /) on B. Note tha t  any x E R can be 
decomposed as x = XB U XB~:. Define f B  : ~ __~ [0, c~) by 

(3.1) f S  ( x ) = aB( XB,, )7-"(U,-(~)nB+, ) 

where U,.(x) = U~:,E~ B(x i ,  r) ,  Be~ the dilation of B by a ball with radius r and 
O'B(XB~) is the normalising constant  

' B 

To check tha t  (3.1) is measurable and integrable, observe tha t  

U,,(x) n Be, = U,.(xs§ n B+,. 

so tha t  the map g : x ~ m(U, . (x )  N B@~) is measurable with respect to .N'Be>. 

and a fortiori with respect to A/'. Clearly g is integrable with respect to rc '~ B~2,-" 
Regarding the Poisson process on Be2~ as the independent superposit ion of Poisson 
processes on B and Bo2,. \ B we can apply Fubini 's theorem to integrate over the 
B component  and conclude tha t  CtB(') -1  is YB§ and integrable. 
Hence, (3.1) is Af-measurable and integrable, and we may define for x E .~, F E A/" 

(3.2) ~:B(X, F)  = s 1F(XB~ U y),fB(xB,: O y)dTr~(y).  
B 

THEOREM 3.1. There exists a stationary point process X on ~d such that 

P { x  E F I XB~-} = ~:B(X, F)  a.s. 

for" all B E C and F E N'. That is, (3.2) is a specification without forbidden states 
(Preston (1976), p. 12) and the distribution of X is a stationary Gibbs state 'with 
this specification. The corresponding potential V : ,~f ---+ 0~, 

v ( x )  = ( -  log-y),,~(u(x)) 
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is stable (Preston (1976), p. 96). 

Note that this result does not exclude the possibility that the Gibbs state is 
not unique, i.e. there may be 'phase transition' (Preston (1976), p. 46). 

PROOF. First we prove consistency condition (6.10) of Preston ((1976), 
p. 91). For any bounded Borel sets  A c_ B 

.fB(x) aB(XB~) -,,,(U,.(x..v-)nB§ 
fA(x  ) -- aA(XA,,)~/ 

On the other hand 

s .fS(XA~ U y)drC~A(y) = aB(XB~) ~ a  ~/-"(u"(~":uu)cn'*")dzc!~(Y) 

Since 

m(U,-(XA~ O y) N Be,. ) = m(U~(Xd~ U y) N Ae,. ) 

+ m(U,-(XA~) C~ Be,. \ Ae,.), 

f~..~ fB(xAc t2 y)drcl~(y ) = fS (x ) / fA(x ) .  It follows (Preston (1976), pp. 90-91) 
that {tcB : B E C} is a specification in the sense of (Preston (1976), p. 12). 

Now we check the conditions of Theorem 4.3 of Preston ((1976), p. 58). Con- 
dition (3.6) of Preston ((1976), p. 35) is trivially satisfied. Arguments sinfilar 
to those used to derive Lemma 2.2 above yield that for any K E K~ the fanfily 
{Tr/~-(y, .)}y~.~ considered as a class of measures on (~,Aff<) is unifornfly abso- 

lutely continuous with respect to rc~.; hence Preston's condition (3.11) (Preston 
(1976), p. 41) holds, which implies his (3.10). It remains to check (3.8) of Preston 
((1976), p. 35). Let K: be the class of all compact subsets of It~d; then we claim 
that 

for any B E C and F E A/'K where K E ]C, there exists L E ]C such that 

riB(', F)  is measurable with respect to AlL. 

To check this, choose L to contain K t2 Be2 ,. and observe that 1F(XB; [2 y) and 
fu(x~ O y) are measurable with respect to HL | then apply Fubini's theorem 
(in the same way as was used to prove measurability of (3.1)). This proves the 
claim, which implies Preston's (3.8) and hence the conditions of his Theorem 4.3. 

It is easy to see that V is the unique canonical potential corresponding to our 
densities fB (cf. Preston (1976), p. 92). Since 0 <_ m(Ur(x))  _< rcr2n(x), V is 
stable. [] 
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4. Simulation 

In this section we explore methods for simulating (2.1) using spatial birth- 
and-death processes (Baddeley and Moller (1989), Moller (1989), Preston (1977)). 
Other techniques such a~s Metropolis-Hastings algorithms (Geyer and M011er 
(1993), Moller (1992)) are clearly possible. The general cause can be dealt with 
similarly, but for simplicity we focus on the standard case. 

A spatial birth-and-death process (Preston (1977)) is a continuous time, pure 
jump Markov process with states in ~ f  specified by its transition rates D(x  \ 
{x~},xi) for a death (transition from x to x \ {xi}) and b(x,u)dp(u) for a birth 
(transition from x to x U {u}). Write D(x)  = ~ : ~ . ~  D(x  \ {xi},x~) and B(x)  = 
fA b(x, u)dp(u) for the total transition rates out of state x. 

We consider two standard cases, the constant death rate process (Ripley 
(1977)) which has death rate D(x  \ {xi}, xi) = 1 and birth rate 

(4.1) b(x,u) - 
u 

- - /3exp[ -  log(7)u(U(x U {u}) \ U(x))] 

and the constant birth rate process which has b(x, u) -- 1 and 

(4.2) D(x  \ {xi} ,xi)  - - /3  exp[log(7),(u( ) \ u(x \ {x,}))]. 

LEMMA 4.1. For any % the constant death .rate and constant birtlz rate pro- 
cesses exist and converge in distribution to the area-interaction process (2.1) from 
any initial state. 

PROOF. Note that p(x) > 0 for all x. Hence we only have to check the 
summability condition of Theorem 2.10 in Baddetey and Moller (1989) (see Propo- 
sition 5.1, Theorem 7.1 in Preston (1977)). These are obviously satisfied since the 
birth rates are bounded by a constant times/3 '~(~). [] 

On a practical note, computation of the ratios (4.1) or (4.2) at every u is 
equivalent to computing the Hough transform of U(x); see e.g. Baddeley and 
Van Lieshout (1992) or Illing~vorth and Kittler (1988). The fixed n, alternating 
bir th/death technique of Ripley (1977) was used to generate Fig. 1. This requires 
that we generate a point u E A with density proportional to (4.1); this is relatively 
easy using rejection sampling, since (4.1) is dominated by a known constant by 
virtue of (2.3) which in practice will be a good bound when "7 is not far from 1. 

5. Inference 

5.1 Sufficient statistics, exponential families 
Consider a family of area-interaction processes (2.1) indexed by parameter 

0 -- (/3, "),), with r and A C_ ~a fixed. This is an exponential family with canonical 
sufficient statistic 

T(x)  = M(x ,  .)) 
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where 

r) = = m ( 0  B(x ' r ) )  " 

Modifying this slightly we obtain a connection with the 'empty space statistic' 
F( t )  -- P{X A B(O,t) r 0} (Diggle (1983), Ripley (1981)). Define 

(5.1) F( r )  = m(A(_~) n (Ui%l B(xi ,  r))) 
m(A(_r)) 

where 

A(-t) = {a r A :  B(a, t )  C_ A}. 

This is the 'border method' (Ripley (1988), p. 25) or 'reduced sample' estimator 
(Baddeley and Gill (1992)) of the empty space function. 

LEMMA 5.1. (n(x),  fi) is a sufficient statistic for the area-interaction process 
(2.2) 'with. parameters (fi, ~/) when Z(a) = B(a, r) and the measure ~, is Lebesgue 
measure restricted to A(-r).  

The canonical parameter is 0 = - log ~/but we prefer to use "), to maintain the 
comparison with the Strauss process. 

5.2 Maximum likelihood 
As usual for Markov point processes, the likelihood (2.2) is easy to compute 

except for a normalising constant c~ that is not known analytically. Maximum 
likelihood estimation therefore rests on numerical or Monte Carlo approximations 
of c~ (Ogata and Tanemura (1981, 1984, 1989), Penttinen (1984)) or recursive ap- 
proximation methods (Moyeed and Baddeley (1991)). For a more detailed review 
see Diggle et al. (1994), Ripley (1988) or Geyer and Thompson (1992). 

We will not explore this further here, except to note that the maximum like- 
lihood estimating equations are as usual 

(5.2) 
(5.3) = Eg,..(u(x)) 

where x is the observed pattern and X is a random pattern with density (2.2). 
For the model conditioned on n(x)  = n the ML estimating equation is analogous 
to (5.3) with fl absent. 

Other estimation techniques have been proposed in Diggle et al. (1987) and 
Diggle and Gratton (1984). 
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5.3 Takacs-Fiksel 
The Takacs-Fiksel estimation method exploits the Nguyen-Zessin identity 

(Nguyen and Zessin (1979)) 

(5.4) Afg!~f(X) = n=[A(a; X ) f ( X ) ]  

holding for any bounded measurable non-negative function f : R ~ R+ and any 
stationary Gibbs process X on Nd with finite intensity A, see G15tz (1980a, 1980b), 
Kozlov (1976), Matthes et al. (1979), Kallenberg (1984) or Ripley ((1988), pp. 54- 
55), Diggle et al. ((1994), w 2.4). The expectation on the left side of (5.4) is 
with respect to the reduced Palm distribution of X at a E Rd and A(a; x) is the 
Papangelou conditional intensity of X at a. The idea (Fiksel (1984, 1988), Takacs 
(1983, 1986)) is then to choose suitable functions and estimate both sides in the 
above formula. The resulting set of equations is solved, yielding estimates for the 
parameters of the model. 

When X is a Gibbs point process the conditional intensity can be computed 
in terms of the potential (Kallenberg (1984)). For the standard area-interaction 
process the conditional intensity is 

(5.5) ,X(u; x) - 
p(~ u {~}) _/3,./-.~(B(~,r)\U,.(~\{~})). 

In  case u ~ x th is  reduces  to 

/3,./-m( B(u,r)\ U~(~) ). 

One interesting instance of (5.4) is 

f ( x )  = 
l {x  N B(0, s) = 0} 

~(o;x)  

using 0 as an arbitrary point of Nd (cf. Stoyan et al. (1987), (5.5.18), p. 159). Then 
~[A(0; X ) f ( X ) ]  = 1 - F(s)  where F(s)  = P{X N B(0, s) r 0} is the empty space 
function of X. Now if s > 2r then 

AE0f(X ) = A / I { X  N B(0, s) = O}/3-17'~(B(~ 

= A / I { X  n B(0, s) = O}~-lTm(B(~ 

: /~/3--1"}jrr~- [1 -- a(8)] 

where G(s) = P0{X N B(0, s) r 0} is the nearest neighbour distance distribution 
function of X. Equivalently, 

1 - G(s) _ / 3 7 _ ~  
(5.6) ~ 1 - F(~) 
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for all s > 2r. This suggests that parameter estimates for the area-interaction 
process can be extracted directly from the standard statistics F and G. For further 
development of this idea see Van Lieshout and Baddeley (1995). 

The identity (5.6) provides a further description of the typical pattern gener- 
ated by an area-interaction process, since the ratio (1 - G)/(1 - F)  is less than 
1 for clustered patterns, 1 for a Poisson process and greater than 1 for regular 
patterns. 

5.4 Pseudolikelihood estimation 
The pseudolikelihood is defined (Besag (1977), Jensen and Moller (1991)) by 

(5.7) PL(/3,~/; x) = exp { -  ~4 ,~(u; x)du.} f i  A(xi; x) 
i=1 

and can be interpreted as the limit case of pseudolikelihood for lattice processes 
(Besag (1977), Besag et al. (1982), Jensen and Moller (1991)). For Markov pro- 
cesses of finite range, maximum pseudolikelihood estimators are consistent (Jensen 
and M011er (1991)); asymptotic normality is considered in Jensen (1993). 

For the area-interaction model, the maxinmm pseudolikelihood estimates of/3 
and 3' are the sohltions of 

=/3 ./~ "/-ti U) dzt (5.8) n, 

71 

t(xi) = /3  ~2 t(u)')'-t(")d~t (5.9) 
i = l  

where t(r -- X U,.(x X 
Note that these have exactly the same form as the pseudolikelihood equations 

for the Strauss model (Ripley (1988), p. 53); in that case - t ( u )  is the nmnber of 
points in a: with 0 < - .,',11 -< , .  

For inhibitory pairwise interaction models it is known that pseudolikelihood 
estimation is a special case of the Takacs-Fiksel method when the interaction 
radius r is fixed (Diggle et al. ((1994), Section 2.4), Ripley ((1988), p. 54), S/irkk/i 
((1990), Section 4)). The same is true for the area-interaction model. 

THEOREM 5.1. For a stationary, area-interaction process, the pseudolikeli- 
hood equations (5.8) and (5.9) are special cases of the Takacs-Fiksel method. 

PROOF. Take f to be either of 

f/3(x) =/3 -1, 
L ( x )  = - 7 - ' m ( B ( o , , ' )  \ u,,(x \ {0})). 

These are the partial derivatives of log A(0; x) with respect to /3 and % When 
f = f~ an unbiased estimator for the left hand side of (5.4) is 

n 1 

m.(A)/3 
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and, by stat ionari ty,  
1 

m(A) fA ~[3"/-t('')du 

is an unbiased es t imator  of the right hand side. When  f = fT, the average over 
the observed events 

n 1 @, --t(xi) 
re(A) n/--."i=1 ?' 

is an unbiased es t imator  of the left hand side of (5.4) by the Campbei1-Mecke 
formula, while an unbiased es t imator  for the right hand side is the window mean 

 )aa. 
Y 

These  reduce to (5.8)-(5.9). [] 

6. Approximation by lattice processes 

Besag et al. (1982) proved tha t  any purely inhibi tory (or hard core) pairwise 
interact ion point  process is the weak limit of a sequence of lattice processes, and 
remark tha t  this is also t rue of general Gibbs point processes, again of purely 
inhibi tory type. Here we prove a similar result for the area-interact ion model, 
which is not purely inhibitory. 

Consider a par t i t ion  { C 1 , . . . ,  C,,} of the observation window A and choose 
fixed points c ~i C Ci. Denote the area of Ci by Ai > 0 and the set of all repre- 
sentatives by E. We shall construct  a 0, 1-valued stochastic process n = {hi : i = 
1 . . . .  , m} which is auto-logistic, 

P(n  = 1 I' ,j ,  J r i) 
(6.1) P(nz = 0 I r "i) = tt (C ) 

where 

pi(Ci) = Ai U q((i U y),l(y); 

the p roduc t  ranges over all (possibly empty)  subsets of E \ {~i}, the set function q 
is the clique interact ion function (2.5) of the area-interact ion model, and 71(y) = 
[I~j~y 'nj is ei ther 0 or 1, defining 0 ~ = 1. 

Given a realisation of n,  construct  a point  process x such tha t  if ni = 0 
then x N Ci is empty, while if ni = 1 then x ~ Ci consists of one point  uniformly 
dis t r ibuted in Ci independent ly  of other  points. 

LEIVIMA 6.1. 
of the forth 

The conditional distributions (6.1) specify a distribution fo'r n 

P (n )  _ ]-[ A!~, H q(y),l(y). 
. l .J .  t 

i O:~yC_Z 
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The point process x is absolutely continuous with respect to the unit rate Poisson 
process on A, with, density 

f ( x ) = f ( ~ )  H q(Y)"=(u)" 
O#yC = 

Here '7=(Y) = 1-In( x A Cj) and the product ranges over all j such th, at ( j  E y. 

PROOF. Use Besag's factorisation theorem (Besag (1974), p. 195). [] 

THEOREM 6.1. Consider a sequence of partitions C~ = {C,-.1 . . . . .  C,.,,,(,.)} 

such that maxi diam(Cr,i) --+ O. Then the corresponding point process x (~) co'n- 
verges weakly and in total variation to the area-interaction process. 

PROOF. Let fr  be the density of x ('). For fixed x 

f (x) 
r162 

q(y)  : /3 . (~ )7- , . (u (~) )  

since all ceils contain at most one point, and q is continuous in all its arguments.  
By dominated convergence, 

- - - a T r t x  ) ~ = - ;  
f,.(O) f,.(O) c~ a 

thus, 
f , , ( x )  

L . ( x )  - - - L . ( O )  -+ p ( x )  
f,.(•) 

pointwise and the theorem is proved. [] 

7. Final remarks 

The Strauss process is a special case of the general pairwise interaction process. 
In the same way, there is a generalisation of the area-interaction process to a 
process with density 

where d(x ,  u) = mini Hxi - "ull and f : [0, ~c] + ( -oc ,  oc]. The area-interaction 
process is then the special case f ( t )  = l[t _< 7"]. Thus f is the analogue of the 
general interaction function in pairwise interaction. 
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