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only ports and read-write ports concurrently, solving the assignment problem more efficiently for a wider range of memories
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a commercial SystemC compiler. Experiments show that in suitable circumstances these techniques result in significant reductions
in logic utilisation for FPGAs.
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1. Introduction

Hardware compilation translates a program written in a
high-level language into a description of a hardware circuit.
The ultimate aim is to take software code and produce an
efficient digital system design. SystemC [1] is a language
designed for this purpose, allowing modelling of hardware
in C++ syntax. This capability allows a designer to work at
a higher level of abstraction compared to RTL design. Fur-
thermore, SystemC offers faster simulation, enabling rapid
prototyping, and effective design exploration [2]. These
benefits can result in a significant boost in productivity.
SystemC was originally designed as a modelling language but
there are now several hardware compilers for this language,
one of which being the agility compiler [3].

This paper focusses on methods for area optimisation
in hardware compilation. For ASICs, this can significantly
reduce the chip area and thus the production costs involved.
For FPGAs, improving logic usage may be a necessity, given
that these devices have limited resources. There are a variety

of ways to improve the logic usage of a design. Most of
these are optimisation techniques that are known for a long
time, well understood, and described in, for example, [4].
These techniques are part of the domain of logic synthesis
and are performed on a gate-level description. At this level,
they can be applied to both RTL synthesis and hardware
compilation. This paper investigates two area optimisation
methods that are specific to hardware compilation and are
performed on a high-level program representation such
as an abstract syntax tree or a control and data flow
graph, rather than on a gate-level description. The first
method implements function exlining, which is the task of
mapping a function to a dedicated piece of hardware that
is shared between calls. Our method implements exlining
as a source-level transformation that can be supported in
existing compiler frameworks with relatively little effort. The
second optimisation technique automatically maps arrays in
SystemC to multiport memories in hardware. This involves a
novel procedure for automatically assigning concurrent array
accesses to memory ports whilst avoiding resource conflicts.
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Both optimisations have been implemented in the agility
compiler, which is discussed in Section 2. Sections 3 and
4 describe the two optimisation methods and their imple-
mentations and demonstrate their benefits in minimising
logic utilisation for FPGAs. Section 5 summarises the main
findings of this study. Finally, Section 6 discusses the current
limitations of the two implementations and explores possible
avenues for future research.

2. Agility SystemC Compiler

The agility compiler [3] is a commercial hardware compiler
intended for the compilation of a SystemC program to
a hardware description. It provides facilities for creation,
compilation and synthesis of a large subset of the SystemC
language. In addition to support for an extensive range of
input language constructs, the compiler back end can target a
wide range of architecture-specific functionality for a variety
of technologies, enabling efficient synthesis. Agility is a timed
synthesis tool, accepting designs composed either of SystemC
threads punctuated by wait statements, or fully synchronous
or fully asynchronous SystemC methods. As a result, the cycle
timing of synthesised output exactly matches that of an input
design, significantly aiding functional verification.

2.1. Language Support

The agility compiler language support is extensive, including
all of the synthesisable subset defined by the Open SystemC
Initiative (OSCI) Synthesis Working Group [5]. This includes
most C++ constructs, such as

(i) conditional statements — if, switch;

(ii) loop statements — while, do . . . while, for;

(iii) control flow — break, continue, return.

In addition, agility supports C++ templates for generic pro-
gramming in SystemC as well as object-oriented constructs
such as (abstract) classes, inheritance, and polymorphism.
Exceptions, dynamic (run-time) recursion, and dynamic
pointer synthesis (including dynamic dispatch of virtual
functions) are not supported, as their synthesis is either
impossible on many devices (dynamic recursion) or would
result in very inefficient hardware.

2.2. Synthesis

The agility compiler allows a designer to compile SystemC
source code and produce different output formats: EDIF,
VHDL, and Verilog. Figure 1 shows this design flow. When
targeting FPGAs, agility can directly produce an EDIF netlist
for Xilinx and Altera architectures. The EDIF is optimised
and technology mapped and can be passed directly to the
vendor’s place and route tools. Alternatively, agility can
produce RTL VHDL or Verilog for use with a third-party RTL
synthesis or simulation tool.

Simulation High-level systemC

Agility compiler

RTL systemC RTL VHDL/verilog EDIF

Synthesis /P&R P&R

ASIC FPGA

Figure 1: Agility design flow.

2.3. Verification Support

In addition to the aforementioned synthesis outputs, the
compiler also supports the output of RTL SystemC for
verification purposes. This output has exactly the same
external interface as the synthesised input design, allowing
the input design’s test bench to be reused for functional
verification. In addition, by design, this SystemC output is
structurally identical to the RTL VHDL and Verilog output,
allowing functional verification of the HDL output without
requiring the use of an HDL simulator.

After synthesis through agility and then through target-
specific place and route tools, final timing-level verification
of fully synthesised designs can be achieved. This can be
accomplished using the original SystemC test bench, a timing
back-annotation of the HDL output and one of the several
available mixed-language cycle-accurate simulators such as
Aldec’s Active-HDL [6] or Mentor Graphics’s ModelSim [7].

3. Function Call Optimisation

Functions are commonly used in SystemC to divide a
system up into tasks. Traditionally there are two methods
for handling function calls in hardware compilation. One
method, inlining, replaces each function call with the body
of the function. Another method builds a single-hardware
module for the function, which is subsequently shared
between calls. This is called function exlining. Function
exlining can potentially improve logic usage by reuse of the
hardware associated with the function.

Function exlining has been implemented in several
hardware compilers, such as [8, 9]. For these tools however,
there is no description of how this optimisation is performed.
This paper investigates the benefits of function exlining in
hardware and describes a method for implementing this
optimisation in SystemC compilation. It is shown that exlin-
ing can be adequately described in SystemC with the addition
of asynchronous channels. This approach makes it possible
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to implement the method as a source transformation in
existing compiler frameworks with relatively little effort. A
further benefit of this method is that it allows arguments to
be passed by value as well as by reference without relying
on run-time pointer resolution, a feature not supported by
many hardware compilers.

The effects of function exlining on the efficiency of the
produced hardware are discussed in the next section. Then
in Section 3.2, the mentioned method for function exlining
in SystemC is explained. Finally, Section 3.3 presents results
that demonstrate function exlining in the agility compiler for
various SystemC programs.

3.1. Function Calls in Hardware

This section describes function inlining and exlining in
hardware compilation and the effect that these methods have
on the size and speed of hardware designs. The benefits
of function exlining are discussed, as well as the design
restrictions that apply when using this function call method.

3.1.1. Inlining Versus Exlining

In software, a call to a function causes execution to jump
to a new part of the code. Assuming the typical execution
environment for a C++ program with registers and a stack,
the registers and parameters get written to the stack just
before the function call, then the parameters get read from
the stack inside the function and read again to restore the
registers when the function returns. These operations can
add a significant time overhead, in particular for functions
that take little time to execute. An inline function call
is expanded without causing a function call. That is, the
compiler inserts the complete body of the function in every
context where that function is used. Inline expansion is
typically used to eliminate the transfer of control overhead
that occurs in calling a function. However, because inline
calls are replaced with a copy of the function body, they can
result in a significant increase in code size.

The notion of inline and exline functions applies sim-
ilarly to hardware compilation. Here, exline functions are
synthesised to separate modules that are shared between
calls. Alternatively, inlining replaces function calls with the
bodies of the called functions. Figure 2 shows a SystemC
thread calling two functions f and g that have been defined
elsewhere. Each wait statement represents the end of a clock
cycle, except for the first wait, which marks the end of the
reset cycle.

Function f has a single adder and a single multiplier in
its datapath and has two states. States essentially correspond
to wait statements in SystemC and their number largely
determines how large the control logic for this function is
in hardware. Function g is larger, both in terms of datapath
logic and number of states.

Figure 3(a) describes the structure of the hardware
synthesised from this program by exlining f and g. In
this case, one hardware module is synthesised from one
function. Therefore, only a single module is synthesised
from function f despite having been called twice. After

inlining, however, the function accessor will contain multiple
instances of the function and the resulting hardware is larger.
This is illustrated in Figure 3(b), which shows the hardware
structure that is generated by inlining calls to f and g.
From this example, it follows that function exlining results
in smaller logic compared to inlining as hardware is being
shared. However, this view is not the whole picture and
there are other factors involved that affect the results when
exlining.

(1) Exlined Functions Require Additional
Multiplexers

If arguments are passed to an exlined function, and the
function is called multiple times, multiplexers must be
created in hardware to switch between arguments from
different calls. The logic depth of these multiplexers and
thus the delay through them increase with the number of
function calls and so do their sizes. Function exlining can
therefore potentially decrease the maximum frequency fmax

of a design, if these multiplexers are in the critical path.
Furthermore, the size of multiplexers can be significant,
in particular, for FPGAs where they are implemented in
general-purpose lookup tables [10]. If the function that is
exlined is small, this means that the overhead of multiplexers
could outweigh the benefits of exlining the function.

(2) Function Exlining May Hinder Resource Sharing

Resource sharing is an optimisation that automatically shares
hardware resources between arithmetic operations in a
program and is performed by many hardware compilers.
Resource sharing is generally only performed on resources
within the same module and those in different modules can-
not be shared due to the difficulty of determining exclusive
access to a resource from multiple threads of execution. This
means that the hardware produced by function inlining,
in which all hardware resources associated with functions
become part of the same module, is more suited to resource
sharing than exlining, in which a separate module is pro-
duced for each function. As a result, the size of the data path
after exlining functions may be larger than the size after inlin-
ing [11]. Similarly, memory port sharing, as described in the
second part of this paper, may also be hindered by function
exlining.

When making the decision on whether to inline or exline
calls to a function, it is therefore necessary to balance the
circuit area saved by exlining against the added overhead
associated with exlining.

3.1.2. Restrictions of Exlined Functions

The SystemC standard [1] does not specify when function
calls should be inlined or exlined. In C++, functions
are shared or exlined by default. By analogy, one could
assume that exlining is a suitable default implementation of
functions in SystemC. However, exlined functions are more
restrictive in their use than inlined functions.
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void thread( )
{

wait ( ) ;
f ( ) ;
wait ( ) ;
g ( ) ;
wait ( ) ;
f ( ) ;
wait ( ) ;

}
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Figure 2: SystemC program calling two functions f and g.
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Figure 3: Function call methods in hardware. (a) Function exlining. (b) Function inlining.

(1) A Single Instance of an Exlined Functions
Cannot Be Called in Parallel

Exlined functions cannot be called simultaneously from
different threads as there is only one instance of each
function to perform the task. Inlined functions do not have
this restriction, as function instances are not shared in this
case.

(2) Exlined Functions Cannot Be Called Recursively

Exlined functions cannot be called recursively as there is
no stack in hardware. Functions labelled as inline can be
called recursively without the use of a stack by means of
recursive instantiation of the function, provided that the
maximum recursion depth can be determined at compile
time.

(3) Calls to a Particular Exlined Function Must Be
in the Same Clock Domain

An exlined function must be in the same clock domain as its
callers to avoid cross-clock domain synchronisation issues.
Resynchronisation logic that is commonly used to resolve
such issues would break SystemC timing semantics. Exlined
functions can not therefore be called from multiple clock
domains.

Despite these restrictions, exline functions are useful in
hardware. They can greatly reduce the hardware size by
sharing resources between calls. Unlike automatic resource
sharing, exline functions allow sharing resources between
threads and allow sharing of control path as well as data
path logic. A hardware compiler will therefore benefit from
supporting exlining as a method for synthesising function
calls.
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int f( int x )
{

// function body

}

class Module : public sc module

{

sc in < bool > clock;
sc in < int > input1, input2;
sc out < int > result;

void thread( )
{

wait ( ) ; // end of reset cycle

result = f( input1 ); // inlined call 1

wait ( ) ;
result = f( input2 ); // inlined call 2

wait ( ) ;
}

Module(sc module name name) : sc module(name)
{

SC CTHREAD( thread, clock.pos( ) );
}

};

Listing 1: SystemC program with function calls.

3.2. Synthesising Function Calls

This section describes a method for exlining function calls
in SystemC synthesis. It explains how function exlining can
be modelled in the SystemC language and how it has been
implemented in the agility compiler.

3.2.1. Exlining in SystemC

In order to synthesise exline functions, it is useful to
manually describe exlining in SystemC. This way, it can be
evaluated and tested before implementation in a compiler.
Furthermore, if function exlining can be modelled in
SystemC, it can be conveniently implemented as a source
transformation in a hardware compiler, rather than treating
function exlining as a special case requiring significant
additional functionality. To manually exline a function in
SystemC, the following steps can be taken.

(1) The body of the function is moved to a newly created
thread, inside an infinite loop.

(2) Handshaking is added between the function calls and
the new thread to signal the start and end of function
execution.

(3) Communication channels are added between the
function calls and the new thread to transfer argu-
ments and return value.

Step (1) is straightforward and involves creating a new
thread that runs on the same clock as the calling thread or

class Module : public sc module

{

sc in < bool > clock;
sc in < int > input1, input2;
sc out < int > result;

// handshaking
sc async signal < bool > start, done;
// argument and return value

sc async signal < int > arg chan, rtn chan;
void thread( )
{

wait ( ) ; // end of reset cycle

// exlined call 1 :
arg chan.write( input1 ); // send argument

start.write( true ); // start execution

while( !done.read( ) ) { wait( ); }
result = rtn chan.read( ); // recv return value

wait ( ) ; // end of clock cycle

// exlined call 2 :
arg chan.write( input2 ); // send argument

start.write( true ); // start execution

while( !done.read( ) ) { wait( ); }
result = rtn chan.read( ); // recv return value

wait ( ) ; // end of clock cycle

}

// newly created thread for function f

void f thread( )
{

wait ( ) ; // end of reset cycle

while (1)
{

while( !start.read( ) ) { wait( ); }
intarg = arg chan.read( ); // recv argument

int rtn = f( arg ); // inlined call to f

rtn chan.write( rtn ); // send return value

done.write( true ); // end execution

}

}

Module(sc module name name) : sc module(name)
{

SC CTHREAD( thread, clock.pos( ) );
SC CTHREAD( f thread, clock.pos( ) );

}

};

Listing 2: SystemC program modelling function exlining.

accessor. Steps (2) and (3) require asynchronous commu-
nication between two clocked threads for which SystemC
has no facilities. To communicate between threads, SystemC
uses synchronous sc signal channels that introduce a
clock cycle latency. This means that if they were used for
exlined function calls, there would be an overhead of several
clock cycles in calling a function. While this is perhaps



6 International Journal of Reconfigurable Computing

void f( int ∗ x, int ∗ y )
{

(∗x) ++;
(∗y)−−;

}

void thread( )
{

int x = 1; //initialise x

wait ( ) ; // end of reset cycle

f( &x, &x ); // x remains unchanged

wait ( ) ;

output = x; // output = 1

wait ( ) ;
}

Listing 3: SystemC program illustrating pointer aliasing.

int f( int arg )
{

// function body

}

ag share routine( f ); // exline all calls to f

Listing 4: Agility directive for exlining a function.

acceptable in untimed synthesis, it would break the timing
semantics of SystemC in which only wait statements take
clock cycles. For the purpose of exlining, a new channel type
is therefore introduced, called sc async signal. A channel
of this type has the same interface as sc signal, but imple-
ments asynchronous communication between synchronous
threads. This channel type is used both for handshaking and
transferring arguments.

3.2.2. Example

Listing 1 shows a SystemC program with two (inlined) calls
to a function f.

In order to exline calls to f, a new thread f thread is
created, as shown in Listing 2. Two asynchronous channels,
start and done, are introduced to signal the start and end of
function execution. Two additional channels, arg chan and
rtn chan, transfer argument and return value between the
callers and the function.

The result is that only one instance of function f

is created, rather than the two instances in the original
program.

3.2.3. Passing Arguments by Reference

Function arguments in SystemC can be passed either by
value or by reference. If an argument is passed by reference,
a pointer to the argument is passed to the function. This
pointer may then be derefenced inside the function which
allows the argument to be modified. If the function is
exlined, it can be accessed by multiple callers and pointers to
arguments that need to be resolved during execution inside
the function. This feature relies on a hardware compiler
being able to synthesise pointers. Although pointer synthesis
is possible, it tends towards producing inefficient hardware
in terms of area and speed and at the same time offers little
modelling benefit in the absence of dynamic memory allo-
cation [12]. For this reason, not many hardware compilers
support this feature, including agility. As a consequence,
it would not be possible to modify arguments within a
function.

Fortunately it turns out that if the value of a pointer
argument is known at compile time for every caller of an
exline function, then the call-by-reference can be replaced by
a call-by-value without the need for pointers in hardware.
This is achieved by dereferencing the pointer at the point
of call rather than inside the function, and passing the
result over an asynchronous channel to the function. The
function receives this value and may modify it. After the
function finishes execution, the modified value is sent back
to the caller on a second, different channel and the call
finishes.

Although this method allows arguments to be modified
inside an exlined function, it has some limitations as well.
By sending arguments over a channel rather than passing
them by reference, the function will operate on a copy of
the argument rather than the original. This requires that
the argument must be of a copyable type that can be sent
over a channel. Furthermore, the copy requires extra storage
in the function and potentially increases sequential logic.
Fortunately, this usually does not lead to an overall increase
in logic area in FPGAs, except for register-rich designs such
as those containing large register files.

Another potential issue arises when several arguments
are passed by reference to a SystemC function where two
or more pointers refer to the same object. In this case,
changing one of the arguments inside the function may have
an indirect effect on another argument. This effect is called
pointer aliasing and is illustrated in Listing 3.

In this example, two pointers are passed to f that
both point at the same integer x. The result is that x

will first be incremented and then decremented and the
effect is that x remains unchanged. When function f is
exlined using the method described in this section, then
x is sent on two different channels and the function will
operate on two distinct copies of x. This would remove any
pointer aliasing and cause a mismatch in behaviour between
SystemC and hardware implementation: depending on the
order in which channel communication happens, x will
either be incremented or decremented. Fortunately, given the
restriction that pointers must be resolved at compile time,
pointer aliasing can be detected by the compiler.
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int f( int arg )
{

// function body

}

int f1( int arg )
{

return f( arg ); // create instance of f

}

int f2( int arg )
{

return f( arg ); // create instance of f

}

ag share routine( f1 ); // exline all calls to f1

ag share routine( f2 ); // exline all calls to f2

Listing 5: Creating multiple shared instances of a function.

3.2.4. Function Calls in Agility

Early versions of Agility only supported inlining as a method
for synthesising function calls. In order to achieve better
synthesis results, function exlining was added based on
the method described in this section. Together with the
addition of asynchronous channels to Agility, the method
was implemented as a source-to-source transformation on
the abstract syntax tree (AST), the compiler’s internal
representation of a SystemC program.

The obvious way to control function call expansion
in Agility is to use the inline keyword and other C++
rules set out in [13]. This approach however has several
disadvantages. Firstly, it would change the behaviour of
existing designs that rely on functions being inlined rather
than exlined. Exlining function calls that were previously
inlined would not only affect the hardware that is produced,
but would potentially break the design due to the restrictions
of exline functions that were mentioned in Section 3.1.2.
Furthermore, the rules for inlining in C++ are not strict and
merely hint to the compiler that inlining is preferred. This
would not provide many users the control they desire. For
these reasons, a new synthesis directive, ag share routine,
was added to Agility to exline a function and automatically
perform the described source-to-source transformation.
This directive takes the function to be exlined, which is
illustrated in Listing 4.

In this example, all calls to function f are exlined
and a single instance is created in hardware. In order to
decrease multiplexer depth and improve clock frequency, it
is sometimes beneficial to map a function to multiple shared
instances instead. This can be achieved in Agility by creating
several exline functions for each call f as is illustrated in
Listing 5.

In this example, if f is always called via f1 or f2, no more
than two shared instances of f are created in hardware.

3.3. Results

Experiments were performed to demonstrate the effect of
function exlining and inlining on the efficiency of hardware
produced by Agility. For this purpose, three designs in
SystemC were used: an inverse discrete cosine transform
(IDCT), calculating the determinant of a 3×3 matrix (DET),
and multiplying two 3 × 3 matrices (MULT). These designs
all contain a function that is called multiple times and can be
exlined. Each design was compiled to EDIF and implemented
on an Xilinx Virtex-4 device in two versions: one inlining
and another exlining the function. Post-implementation
simulations were performed to verify that both versions are
equivalent. Table 1 shows the number of slices and maximum
clock frequency fmax for each design for the two function call
methods as reported by the Xilinx tools. For each design, the
table also lists the size of the function that is exlined as well
as the number of calls to this function and the number of
arguments. All arguments are 32-bit wide.

From these results, it follows that function exlining
reduces the size of all designs, in particular those containing a
large function such as MULT. For smaller functions and those
with many arguments, the overhead of multiplexers that are
created to switch between arguments from different calls
becomes noticable. This is true for the IDCT example, where
exlining only has marginal effect. The same multiplexers also
add to the logic delay and can reduce fmax if they become
part of the critical path. This is the case for DET and MULT,
where the the maximum frequency is significantly reduced
by exlining.

4. Array Optimisation

The array is a commonly used data structure in SystemC
and can be mapped in different ways to hardware. Normally,
arrays are mapped to register files. This implementation
matches the behaviour of arrays in SystemC, but is not
very efficient in terms of performance and logic area. ASIC
libraries generally include efficient RAM components and
modern FPGAs typically contain a large number of RAM
blocks which can be used to implement arrays instead.
Memories have a limited number of ports, and part of
the process of mapping arrays to memories is assigning
each memory access to a port such that contention is
prevented. Many RTL synthesis tools can infer RAMs from
arrays, but they require that the designer assigns access
to ports manually. High-level languages do not offer this
kind of control and a hardware compiler must therefore
be able to automatically assign each array access to a
memory port such that no port is accessed multiple times in
parallel.

The problem of automatically assigning memory accesses
to ports has received little attention by itself. The reason is
that this problem has traditionally been solved using general
resource sharing methods such as described in [14]. As we
shall show, these methods cannot be used for all types of
memories and thus a different approach must be taken. This
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Table 1: Comparison between function call methods for various designs targeting an XC4VLX40 FPGA.

Example Func size (slices) Calls Args Method Size (slices) fmax (MHz)

IDCT 1,008 2 9
inline 6,213 69

exline 6,165 69

DET 541 3 4
inline 2,418 74

exline 1,715 61

MULT 2,424 3 3
inline 7,218 78

exline 2,747 64

paper proposes an algorithm to solve this problem. The
algorithm has been implemented in the agility compiler.

The effects of mapping arrays in SystemC to memories
in hardware are discussed in the next section. Then in
Section 4.2, existing research in this field is examined. Our
proposed method for assigning array accesses to memory
ports is discussed in Section 4.3. Finally, Section 4.4 presents
results that show the benefits of using this method in
minimising logic utilisation for FPGAs.

4.1. Arrays in Hardware

In C++, an array is represented by a continuous memory
segment containing all array elements in a representation
corresponding to their type. By analogy, one could assume
that a memory is a suitable hardware implementation
of an array in SystemC, both being multi-dimensional
representations of bits. However, arrays in SystemC have
different semantics from memories.

(1) SystemC Arrays Offer Parallel Access to Elements

In SystemC, a design can access multiple array elements in
the same clock cycle and there are no restrictions to the
number of parallel accesses. A memory on the other hand has
a limited number of ports which means that only a limited
number of simultaneous accesses is allowed.

(2) SystemC Arrays are Accessed in One Cycle

In timed SystemC threads, only wait statements take clock
cycles and nothing else. An array access must therefore
finish within one cycle. Many architectures however support
synchronous memories, where a read operation is controlled
by the system clock and takes two cycles: one to setup the
address and one to read the data. To match the SystemC
timing semantics, memory accesses could be pipelined in an
attempt to establish the address one cycle ahead. However,
this is only possible in certain program contexts.

(3) SystemC Arrays Have Write-Before-Read
Semantics

In SystemC, when an array write is followed by an array
read in the same cycle from the same address, the value that
is read is the value that has just been written in the same

Address
decoder

.

.

.

0 1 2 · · · n− 1

x

y

Figure 4: Array read access in hardware.

cycle. In hardware, many multi-port memories have read-
before-write behaviour, which means that a value that is
written does not become available until the next clock cycle.
Consequently, any value that is read has always been written
in an earlier cycle. This behaviour can cause a mismatch
between SystemC model and implementation.

Because of the difference in behaviour between arrays in
SystemC and memories in hardware, not all arrays can be
implemented in memory. For this reason, Agility implements
an array as a register file by default, consisting of registers and
combinational logic. This implementation however may use
considerable logic resources. This is illustrated in Figure 4,
showing the hardware that is built for a read operation
y = Array[x] from a register array with n elements. Each
array element requires a register in hardware. An address
decoder translates address x into a bit vector which controls
the output multiplexer. This multiplexer selects the output of
the particular element that is indexed by x. If an array is read
several times, several address decoders and multiplexers are
required.

Figure 5 shows the hardware that is built for a write
operation Array[x] = y to a register array with n elements.
In this case, the output lines of the address decoder are
connected to the write enables of the registers to select which
element to write to. If an array is written to multiple times,
multiplexers are required on the inputs of the registers to
select which data to write.

With more complex systems being developed onFPGA
platforms, the need for storage in these devices is increasing.
Thus modern FPGAs contain a large amount of on-chip
memory. This memory can be targeted automatically from
arrays in a SystemC program. Mapping arrays to memory
rather than general purpose logic can significantly reduce the
logic usage of a design.
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Figure 5: Array write access in hardware.

4.2. Related Research

The problem of synthesising memories from arrays has
received attention in the past, though most of this research
has focussed on efficient mapping of arrays to physical
memory blocks [15, 16]. The problem of assigning memory
accesses to ports has not been investigated by itself. The rea-
son is that memory accesses are treated as normal data path
operations and are covered by general sharing methods such
as described in [14, 17]. In these methods, a compatibility
graph is built where two operations are compatible when
they can be assigned to the same resource, independent of
the type of resource. This is not always the case for memory
accesses. For example, suppose a particular memory has
one read only port and one read-write port. Whilst read
operations can use either port, write operations can only be
assigned to the read-write port. The compatibility between a
read access and a write access thus depends on which port
the read access will be assigned to. Consequently, a global
clique partitioning algorithm operating on a compatibility
graph cannot be applied to solve this problem.

Assigning array accesses to memory ports can also
be performed using a constructive approach, in which
operations are assigned to functional units in a step-by-step
fashion [18]. For each memory access, such an algorithm
attempts to find a memory port that is capable of executing
the read or write operation and that has not been assigned
yet in the current clock cycle. In the case where there are
two or more memory ports that meet these conditions, the
one which results in minimum multiplexer depth is chosen.
Whilst this method is simple, it is based on local information
only and therefore often leads to suboptimal results. This is
true particularly in the presence of exclusive branches, where
an efficient assignment of accesses in one branch depends on
the accesses present in the other branches.

Another paper that addresses the problem of assigning
operations to functional units is [19]. This method builds,
for each clock cycle, a bipartite graph containing the
operations that are executed in this cycle together with
functional units that the operations can be assigned to. All
edges in the graph run between operations and functional
units and specify whether an operation can be performed
on a certain unit. As with clique partitioning, weights can be
associated with these edges, representing the costs associated
with particular assignments. The problem of assigning each
operation to a unique functional unit, such that the sum
of all edge weights is minimal, is called weighted bipartite
matching.

The bipartite graph does not contain information regard-
ing compatibility between operations and it is therefore not
possible to assign operations that are executed in mutually
exclusive branches to the same functional unit. To overcome
this limitation, the method proposed in this paper uses
a transformed bipartite graph which, instead of nodes
representing operations, contains nodes representing sets of
operations that are executed in mutually exclusive branches.
Each of these sets can then be assigned to functional units
using weighted bipartite matching. To build this type of
bipartite graph for assigning memory accesses, the algorithm
must analyse the program to gather all memory accesses that
are executed in a particular cycle and merge those that occur
in mutually exclusive branches. An algorithm for performing
this analysis is presented in the next section.

4.3. Proposed Method

To assign memory accesses to ports, the algorithm needs
to determine which accesses may occur simultaneously and
which are independent. If two accesses are erroneously
determined to be independent, incorrect hardware will be
produced that suffers from memory port contention. On the
other hand, it is acceptable if the algorithm is conservative
and determines that two accesses can occur at the same time,
when in fact they cannot. The proposed method is divided
into two parts: access analysis and port assignment. The
first part analyses the semantic structure of the program to
determine which memory accesses are independent. This is
the case if they are separated by a wait statement or are in
different branches of an if/switch statement. The information
that is gathered by access analysis is then used by the port
assignment algorithm in order to assign accesses to ports.

4.3.1. Control Flow Representation

In order to describe the algorithm, a SystemC program is
represented in a control flow graph (CFG). A CFG is a
representation, using graph notation, of all paths that might
be traversed through a program during its execution. The
nodes represent operations and directed edges are used to
represent jumps in the control flow. For the purpose of
assigning memory accesses, a CFG is presented in which
there are four node types: conditional forks, conditional joins,
waits, and basic blocks. A basic block is a sequence of
operations that is always entered at the beginning and exited
at the end. Without loss of generality, it is assumed here that
a basic block contains at most a single-memory access.

Figure 6(a) shows a SystemC program with conditional
constructs in which an array is accessed. Figure 6(b) shows
the corresponding CFG, containing three basic blocks.

Cycles in the CFG are created by loops in the SystemC
program. It is assumed that all combinational loops in
SystemC will have been unrolled by the compiler at this
stage. Consequently, cycles in the CFG always contain at least
one wait node, as they cannot otherwise be implemented in
synchronous hardware.
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void thread( )
{

sc uint 〈8〉 i = 0;
wait ( ) ;
while (1)
{

y = ram[i];
if (i < 128}

{

ram[i + 1] = x;
}

else

{

ram[i− 1] = x;
}

i ++;

wait ( ) ;
}

}

(a)

Wait

y=ram[i];

1

ram[i+1]=x; ram[i-1]=x;

2 3

Wait

(b)

Figure 6: Control flow representation. (a) SystemC description, (b)
control flow graph.

4.3.2. Access Analysis

The access analysis algorithm gathers, for each clock cycle,
sets of independent memory accesses that are assigned to dif-
ferent memory ports. It performs this process independent of
the number of memory ports available and the access types of
these ports. It attempts to combine memory accesses in such
a way that the final number of sets, and thus the number of
required memory ports, is minimal. Some sets may contain
both read and write accesses and must be mapped to read-
write ports. As not all memories have these ports, these sets
may later have to be split into sets that can be assigned to
simple ports. This increases the number of required memory
ports and the algorithm therefore attempts to minimise the
number of sets with mixed accesses.

The algorithm takes the CFG as the input. It then splits
it into directed acyclic subgraphs (sub-DAGs) corresponding
to individual clock cycles and processes them separately. One
way of doing this is to remove all wait nodes and edges
incident upon them from the CFG. Then the graph can
be split into subgraphs by temporarily regarding all edges
as undirected, and finding all connected nodes (e.g., using
depth-first search). As all cycles in the CFG contain at least
one wait node, all directed subgraphs thus obtained will be
acyclic. To assign accesses to memory ports, the basic blocks
in each sub-DAG corresponding to a clock cycle are traversed
in topological order, starting with accesses early in the cycle.
During traversal, the algorithm gathers sets of independent
memory accesses that can be mapped to the same memory

Assign(CFG)
{

result := ∅

for each g ∈ subDAGs(CFG)
{

accesses := ∅

for each blk ∈ topsort (basic blocks in g)
{

// merge control flows into blk

merged := merge {accesses [b] | b ∈ pred[blk]}

// add the effect of a memory access in blk

accesses [blk] := effect blk merged

}

result[g] := merge {accesses [b] | succ[b] =∅}

}

return result

}

Listing 6: Memory access analysis algorithm.

port. This information is represented as a triple list of sets
(r,w, rw) of accesses as follows:

(i) r contains sets of independent read accesses;

(ii) w contains sets of independent write accesses; and

(iii) rw contains sets of independent read and write
accesses.

Accesses in the same set can be mapped to the same
memory port and accesses in different sets must be mapped
to different ports to prevent resource conflicts. Consequently,
the minimum number of memory ports required to assign all
accesses in the triple to ports is equal to the total number of
sets in the triple. For example, suppose the triple is equal to

(r,w, rw) =
([{

r1, r2

}]

,
[{

w1

}

,
{

w2

}]

,
[{

r3,w3

}])

. (1)

In this case, at least four memory ports are required to
assign all accesses: one port capable of reading, two ports
capable of writing, and one port capable of both reading and
writing.

Pseudocode for the algorithm that gathers all accesses to
a particular memory in a program is shown in Listing 6.

The map accesses store the access triple at each basic
block and are used for temporary storage. pred and succ,
respectively, return the parents and children of a basic block.
When a particular basic block is encountered, the access
triples of its predecessors are merged to combine accesses
from mutually exclusive branches. Then, the memory access
in the current basic block is added to the triple. After all
basic blocks in a clock cycle have been visited, the final
access triple is calculated by merging those basic blocks
without successors. Function effect models a memory
access in a basic block and appends the access as a singleton
set to the end of the appropriate list in the access triple
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mergetwo : triple − > triple − > triple

mergetwo (r1,w1,rw1) (r2,w2,rw2) = (fr, fw, frw)
where (r1r2, r1′, r2′) = combine r1 r2

(w1w2, w1′, w2′) = combine w1 w2

(rw1rw2, rw1′, rw2′) = combine rw1 rw2

(r1rw2, r1′′, rw2′′) = combine r1′, rw2′

(w1rw2, w1′′, frw2) = combine w1′, rw2′′

(rw1r2, rw1′′, r2′′) = combine rw1′, r1′′

(rw1w2, frw1, w2′′) = combine rw1′′, w1′′

(r1w2, fr1, fw2) = combine r1′′, w2′′

(w1r2, fw1, fr2) = combine w1′′, r2′′

−− take sets of accesses from two lists

−− xs and ys and combine them into zw

combine xs ys = (zw,drop n xs,drop n ys)
where zw = zipwith (∪ ) xs ys

n = length zw

−− the merged triple is created from the

−− combined sets plus any remaining sets

fr = r1r2 ++ fr1 ++ fr2

fw = w1w2 ++ fw1 ++ fw2

frw = rw1rw2 ++ r1rw2 ++ w1rw2 ++
rw1r2 ++ rw1w2 ++ r1w2 ++
w1r2 ++ frw1 ++ frw2

Listing 7: Function for merging two control flows.

(r,w, rw). Read accesses are added to r and write accesses
to w. Function merge combines the memory acesses in a
number of mutually exlusive branches, for example at the
end of an if statement. The aim of merge is to combine
accesses in the most efficient way as to minimise the number
of memory ports required. The algorithm for merging two
triples is shown in Listing 7 in functional programming
notation.

The merging of two triples P and Q consists of repeatedly
picking a set of accesses from P and a set from Q and taking
the union until either P or Q is empty. If any sets remain in P
or Q, these sets are just inserted into the merged triple. There
are many ways in which sets in P or Q can be combined,
where some combinations are more favourable than others.
For example, suppose two access triples P and Q are defined
as

P =
([{

r1

}]

,
[{

w1

}]

, []
)

,

Q = (
[{

r2

}]

,
[{

w2

}]

, []
)

.
(2)

One possible way to merge P and Q is to combine
read accesses with write accesses: ([], [], [{r1,w2}, {r2,w1}]).
Although this requires two memory ports, not all memories
have read-write ports. A better way to merge P and Q
is ([{r1, r2}], [{w1,w2}], []), which requires one read port
and one write port. The merge function therefore favours
combinations between accesses of the same type over accesses
of different types. In addition, merge attempts to avoid
combining sets that merely contain read accesses with those

Table 2: Steps showing progress of access analysis.

Operation Accesses (r,w, rw)

a = ram[p]; ([{1}], [], [])

ram[q] = b; ([{1}], [{2}], [])

c = ram[r]; ([{3}], [], [])

ram[s] = d; ([], [{4}], [])

merge (3,4); ([], [], [{3, 4}])

ram[t] = e; ([], [{5}], [{3, 4}])

merge (2,5); ([], [{2, 5}], [{3, 4, 1}])

that merely contain write accesses. For example, if P and Q
are defined as

P =
([{

r1

}]

, [], []
)

,

Q =
(

[],
[{

w1

}]

,
[{

r2,w2

}])

,
(3)

then P and Q can be merged by combining {r1} and
{w1}: ([], [], [{r2,w2}, {r1,w1}]), or {r1} and {r2,w2}:
([{r1}], [], [{r2,w2, r1}]). Both solutions require two mem-
ory ports. However, when read access {r1} and write access
{w1} are combined, a set with mixed access types is created
which requires an additional read-write port.

Figure 7 shows a fragment of a SystemC program,
together with the control flow subgraph for the particular
clock cycle.

The code contains two read accesses (1 and 3) and three
write accesses (2, 4, and 5). Table 2 shows the progress of
access analysis whilst traversing the CFG. The final access
triple for this clock cycle is ([], [{2, 5}], [{3, 4, 1}]), which can
be assigned to a memory with one write port and one read-
write port.

4.3.3. Assigning Accesses to Ports

To assign accesses to ports, a bipartite graph is constructed
for each clock cycle from the access triple (r,w, rw). The
sets of accesses in r and w can be mapped to read/write
only ports as well as read-write ports whilst the sets in rw
can be mapped to read-write ports only. The latter therefore
gives the algorithm less freedom in assigning accesses to ports
optimally. Furthermore, not all memories have read-write
ports. For this reason, the access triples are transformed as
to minimise the size of rw. This transformation involves
repeatedly splitting sets in rw into two sets: one containing
the read and one containing the write accesses. These are
then added to r and w respectively. This process increases
the number of required memory ports and is repeated until
the number of required ports is equal to the number of
ports on the memory or until rw is empty. For example,
the final access triple in the example of Figure 7 was
([], [{2, 5}], [{3, 4, 1}]), requiring one write port and one
read-write port. If these accesses are mapped to a memory
with one read-only and two write only ports instead, the
triple is transformed as ([{3, 1}], [{2, 5}, {4}], []).

After the transformation, the bipartite graph is built.
Each edge in the graph has a weight associated with it. This
is a measure of the cost of binding the accesses in a set to
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· · ·

wait ( ) ;
if (c1)
{

a = ram[p]; // 1
ram[q] = b; // 2

}

else

{

if (c2)
{

c = ram[r]; // 3
}

else

{

ram[s] = d; // 4
}

ram[t] = e; // 5
}

wait ( ) ;
· · ·

(a)

a = ram[p];

1

ram[q] = b;

2

c = ram[r];

3

ram[s] = d;

4

Merge(3, 4)

ram[t] = e;

5

Merge(2, 5)

(b)

Figure 7: Memory access analysis. (a) SystemC fragment, (b) control flow subgraph corresponding to clock cycle.

a particular port. In the proposed algorithm, the weight on
an edge (ai, p j) is based on the total number of accesses
bound to port p j if the set of accesses ai is assigned to
it. This weight is a global cost which takes into account
accesses that were assigned in other cycles as well. This way,
memory accesses will be balanced between ports and the
depths of multiplexers on the input of ports is minimised.
After building the graph, bipartite matching is performed to
assign all accesses to ports.

4.4. Results

Experiments were performed to demonstrate the effect
of mapping an array to memory. For this purpose, an
inverse discrete cosine transform (IDCT) was used. An
implementation of this algorithm was written in C by
the MPEG Software Simulation Group (MSSG) [20] which
contains an array requiring 1 kb of storage. This design
was ported to SystemC and compiled to EDIF with and
without mapping the array to memory. The generated EDIF
for both array implementations was passed to the Xilinx
design tools and implemented on a Virtex-4 device. Post-
implementation simulations were performed to verify that
both implementations are functionally correct. Table 3 shows
the number of flip-flops and slices for the IDCT design for
the two array implementations as reported by the Xilinx
design tools.

From these results it follows that mapping the array to
memory significantly reduces the size of the IDCT design.
The proportion of used slices on the particular FPGA device

Table 3: Comparison between array implementations for IDCT
design targeting an XC4VLX40 FPGA.

Array impl. Flip-flops Slices Logic usage (%)

registers 1,687 6,213 34

memory 663 2,724 15

is reduced from 34 percent to 15 percent, whilst only 1
out of 96 available RAM blocks is needed for implementing
the array. As a result, the design can be implemented on a
smaller, and thus cheaper, FPGA device.

5. Conclusion

This paper has presented two area optimisation procedures
for FPGAs in SystemC hardware compilation. The first is
function exlining, which aims to reduce the logic size of
a design by mapping a function to a separate piece of
hardware that is shared between calls. It has been shown
that function exlining can be described in SystemC with the
addition of an asynchronous channel to the language. This
method can be easily implemented in a hardware compiler as
a source transformation and performed automatically. The
second optimisation algorithm deals with mapping arrays
in SystemC to memories in hardware. This method analyses
the program and gathers sets of independent accesses that
can be mapped to the same memory port whilst avoiding
resource conflicts. Compared to previous methods, it solves
the assignment problem more efficiently for a wider range
of memories. Both optimisations can help to transform a
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behavioural specification into an efficient implementation
in hardware. This is in the spirit of hardware compilation,
where designers should focus on the algorithm itself rather
than on manually optimising code.

The proposed methods were implemented in the agility
compiler and experiments were performed that showed the
benefits of these methods in reducing logic utilisation in
FPGAs. It was found that function exlining can greatly
improve the logic usage of a design. However, sharing a func-
tion between different callers also introduces multiplexers
to switch between arguments. The overhead of these mul-
tiplexers in terms of logic size and delay is potentially large
for FPGAs, where they are implemented in general-purpose
lookup tables. It is therefore necessary to balance the circuit
area saved by exlining against the added overhead associated
with exlining. Whilst function exlining saves resources by
sharing them between tasks, mapping arrays to memories is
based on choosing a different hardware implementation for
a given task. Modern FPGAs contain a large amount of on-
chip memory and this method allows a designer to target this
abundant resource without significantly changing a design’s
specification. As experiments showed, this can significantly
reduce logic area such that the design can be implemented
on a smaller, and thus cheaper, FPGA device.

6. Limitations

Although the optimisation techniques described in this paper
have shown promising results, there are several opportunities
for improvement as well as for further research. Function
exlining in agility is currently controlled by the user via the
ag share routine directive. If a function is specified as
shared, all calls to this function are exlined and care must
be taken that no resource conflicts arise due to simultaneous
calls to the function. The decision to exline a function could
be made by the compiler instead. A method to achieve this is
described in [21].

In the current implementation, all calls to an exline
function share the same hardware module. In order to
optimise multiplexer usage and avoid resource conflicts, a
SystemC function could be mapped to multiple hardware
modules instead. In this approach, function calls with
common arguments could be detected through static analysis
and combined in order to reduce multiplexer depth and thus
improve clock frequency.

The current implementation supports arguments passed
by reference without the need to resolve pointers during
execution. As discussed, this not only poses restrictions on
the type of arguments passed, but also increases sequential
logic. A solution using run-time pointer resolution would
avoid these issues, a method for which is presented in [22].

In the proposed algorithm for synthesising arrays, each
array is mapped to a separate logical memory. This can
be inefficient if a program contains several arrays that are
smaller in size than the available memory components.
In theory, those arrays could be implemented in a single
memory thereby reducing memory cost. Schmit and Thomas
[16] propose a method for grouping arrays of different sizes

and dimensions and packing them into memories, which is
suited to this purpose.

The bipartite matching algorithm that is used to assign
memory accesses to ports is based on a cost function. In the
current implementation, this function only takes multiplexer
depth into account and attempts to balance accesses between
ports. The algorithm could be improved by using true delay
information instead.

Finally, this paper discussed the interaction between
function exlining and other optimisation techniques. It
was mentioned that function exlining may hinder other
optimisations, such as resource sharing and memory port
sharing, which are typically performed on each module
individually rather than globally. More research is required to
investigate how the proposed optimisation techniques can be
extended to operate optimally together and in synergy with
other optimisations.
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