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Abstract. In this paper we investigate the problem of constructing planar straight- 

line drawings of acyclic digraphs such that all the edges flow in the same direction, 

e.g., from bottom to top. Our contribution is twofold. First we show the existence 

of a family of planar acyclic digraphs that require exponential area for any such 

drawing. Second, motivated by the preceding lower bound, we relax the straight-line 

constraint and allow bends along the edges. We present a linear-time algorithm that 

produces drawings of planar st-graphs with a small number of bends, asymptotically 

optimal area, and such that symmetries and isomorphisms of the digraph are 

displayed. If the digraph has no transitive edges, then the drawing obtained has no 

bends. Also, a variation of the algorithm produces drawings with exact minimum area. 

1. Introduction 

A classical result shows that every planar graph admits a planar drawing with 
straight-line edges (straight-line drawing) [11"1, [35,1, [36-], [46,1. However, the 
existence of planar straight-line drawings with vertices placed at grid points (i.e., 

with integer coordinates) and polynomial area has been one of the most important 
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and intriguing open problems in this field [33]. This question has been positively 
settled by de Fraysseix et al. [12], [13] and, independently, by Schnyder [34], 
who show that every n-vertex planar graph admits a planar straight-line drawing 
with vertices placed at grid points and O(n 2) area. 

In this paper we investigate the problem of constructing planar drawings of 
acyclic digraphs with the additional requirement that all edges flow in the same 
direction, e.g., from bottom to top. The construction of such upward drawings is 
very important for the display of hierarchic structures in data presentation 
applications. Digraphs that are customarily represented by upward drawings 
include PERT diagrams, ISA hierarchies, Hasse diagrams, and subroutine-call 
graphs. The construction of planar upward drawings can be viewed as computing 
"geometric realizations" of planar acyclic digraphs as monotone subdivisions. 
Notice that not all planar acyclic digraphs admit a planar upward drawing [6]. 

The contribution of this paper is twofold. First we show that there exists a 
family of planar acyclic digraphs that require exponential area in any planar 
straight-line upward drawing with vertices placed at grid points. Namely, we show 
that, for any positive integer n, there exists a planar acyclic digraph Gn with 2n + 2 
vertices such that any planar straight-line upward drawing of Gn with vertices 
placed at grid points has area f2(2n). This result sharply contrasts with the one of 
[t2], [13], and [34]. Our lower bound is also valid in a very general drawing 
model, where the constraint on the vertices placed at grid points is relaxed by 
requiring only a minimum unit distance between any two vertices, or any other 
similar "finite-resolution" requirement. 

Second, motivated by the preceding lower bound, we relax the constraint that 
edges must be drawn as straight lines, and consider the problem of drawing a 
planar acyclic digraph allowing bends along the edges (polyline drawing). In 
addition to the planar and upward requirements, we investigate the detection and 
display of symmetries and of isomorphic components. We present an O(n)-time 
algorithm for constructing a planar polyline upward drawing with at most 2n - 5 
bends, O(n 2) area, and vertices placed at grid points. This algorithm is capable of 
displaying the symmetries of the digraph as well as its isomorphic subgraphs. The 
best previous algorithm for upward polyline drawings [6] uses O(n 2) area and at 
most (I0n - 31)/3 bends, without displaying symmetries or isomorphic subgraphs. 
The importance of the display of symmetries in the drawing of a graph has been 
pointed out by Lipton et al. [24], who give a model for measuring the symmetry of 
straight-line drawings. The problem of displaying symmetries was previously only 
partially solved for trees [27], [30], [38] and outerplanar graphs [26]. In general, 
it is NP-complete to detect whether a graph admits a symmetric drawing [25]. 

We also show that digraphs that do not contain transitive edges are drawn 
without bends and in such a way that the transitive closure is geometrically 
characterized by the dominance relation between the points associated with the 

vertices. Such drawings, called dominance drawin#s, display the two-dimensionality 
of the partial order defined by the digraph [21], [22]. 

Finally, a variation of the algorithm constructs dominance drawings with exact 
minimum area. Notice that the general area minimization problem for planar 

drawings is NP-hard [7]. 
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The rest of this paper is organized as follows. Section 2 surveys previous work 
on algorithms for drawing planar graphs and digraphs. The exponential lower 

bound on the area of planar straight-line upward drawings is presented in Section 

3. Drawing algorithms are given in Section 4. Section 5 concludes the paper with 
open problems. 

2. Graph Drawing Algorithms 

The problem of constructing readable drawings of graphs arises in several 

applications such as circuit schematics and diagrams for information systems 
analysis and design. Several references on graph drawing algorithms can be found 

in [9], [10], and [40]. 

Let F be a drawing of a graph G; F maps each vertex of G to a distinct point 
of the plane and each edge (u, v) of G to a simple Jordan curve with endpoints u 

and v. We say that F is a polyline drawing if each edge is a polygonal chain; F is 

a straight-line drawing if each edge is a straight-line segment; F is planar if no two 
edges intersect, except, possibly, at common endpoints. 

The area of a drawing F can be defined in several ways: Regarding lower 

bounds, we define it as the area of the smallest polygon covering F. Regarding 
upper bounds, we define it more restrictively as the area of the smallest rectangle 

with sides parallel to the x and y axes covering F. The finite resolution of display 

and printing devices (and of the human eye) requires that some constraint be 
placed on the drawing so that its dimensions cannot be arbitrarily scaled down. 

Any constraint which implies a finite minimum area for the drawing of a graph 
is called a resolution rule. Two typical resolution rules are requiring integer 

coordinates for the vertices or a minimum distance 6 between any two vertices. 

When a resolution rule is given, it is meaningful to consider the problem of finding 

drawings with minimum area. This problem is important in data-presentation 
applications and circuit layout. 

Planarity is a fundamental aesthetic criterion of readability for the drawing of 
a graph, and the problem of constructing planar drawings of planar graphs has 

been extensively investigated. Every planar graph admits a planar straight-line 

drawing [11], [35], [36], [46]. However, the algorithms for constructing planar 

straight-line drawings given in [3], [29], and [45] use real arithmetic for the 
computation of the vertex coordinates, and if a resolution rule is given, then the 

area of the drawing appears to become exponential. 
The important question whether there is some resolution rule such that every 

planar graph admits a planar straight-line drawing with polynomial area has been 

positively settled in [12], [13], and [34] where it is shown that every n-vertex 
planar graph admits a planar straight-line drawing with vertices placed at grid 

points and O(n 2) area. Such drawings can be constructed in O(n) time [4], [34]. 

If bends are allowed along edges, algorithms for constructing planar polyline 
drawings of undirected graphs with O(n 2) area are-presented in [7], [37], [39], 

[43], and [47]. A visibility representation of a planar graph maps each vertex v to 

a horizontal segment F(v) and each edge (u, v) to a vertical segment F(u, v) that 
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Fig. 1. 

) 
A planar straight-line upward drawing 

has endpoints on F(u) and F(v) and does not intersect any other vertex-segment. 
This representation can be constructed in O(n) time [33], [42]. 

In addition to planarity, the display of symmetries and of isomorphic subgraphs 
are crucial features in graph drawing. In general, it is NP-complete to detect 
whether a graph admits a symmetric drawing [25]. A model for measuring the 
symmetry of a straight-line drawing of a graph is given in [24]. Algorithms for 
detecting and displaying symmetries in planar straight-line drawings of binary 
trees are presented in [30] and [38]. The problem of displaying symmetries in 
straight-line drawings of free trees and outerplanar graphs is investigated in [26] 
and [27]. An effective approach to symmetry display in (nonplanar) straight-line 
drawings is given in [8]. 

Now we consider directed graphs, and we say that a drawing of a digraph is 
upward if each edge is a curve monotonically increasing in the y-direction. An 
example of a straight-line upward drawing is shown in Fig. 1. 

A characterization of the class of digraphs that admit a planar upward drawing 
has been given in [6] and [20]. This class consists of the subgraphs of planar 
st-graphs [23], which are planar acyclic digraphs with exactly one source (vertex 
without incoming edges), s, and one sink (vertex without outgoing edges), t, 
embedded in the plane with s and t on the boundary of the external face (see Fig. 
1). Planar upward drawings with convex faces are investigated in [44]. 

Algorithms for constructing planar upward drawings are given in [6]. A first 
algorithm constructs, in O(n log n) time, straight-line drawings with vertices placed 
at real coordinates. Another algorithm constructs, in O(n) time, polyline drawings 
with vertices placed at grid points, O(n 2) area, and at most (10n - 31)/3 bends. 

Covering digraphs of partial orders (order diagrams) are usually represented 
by straight-line upward drawings. A survey on drawing techniques for order 
diagrams appears in [31]. Characterizations of planar diagrams are presented in 

[20], [21], and [28]. 

3. An Exponential Lower Bound 

In this section we exhibit a class of planar acyclic digraphs which require 
exponential area in any planar straight-line upward drawing, for brevity, straight- 

line drawing. 
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Fig. 2. A class of digraphs that require exponential area. 
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Let us define the following class of digraphs (see Fig. 2). Digraph G~, shown 

in Fig. 2(a), consists of vertices s o, st, to, and tl and edges (s o, to), (s 1, So), (t o, t 0, 

(sl, to), and (So, tl). For n >_ 2, digraph G. is constructed from G.-1 by adding 

vertices s. and t. and edges (s., s.-O, (t.-1, t.), (s.-2, t.), (s., t.-2), (s., t._ 0, and 

(s._ 1, t.), as shown in Fig. 2(b). 

It is easy to verify that G. is a planar s.t.-graph with 2n + 2 vertices and 6n + 1 

edges. Also, G. is triconnected for n >_ 2, and thus has a unique embedding. We 

show that the minimum area of a straight-line drawing of G. is f~(2") for every 

possible resolution rule. 

Theorem 1. Given any resolution rule, a planar straight-line upward drawin9 of 
dioraph G. (with 2n + 2 vertices) has area D.(2"). 

Proof Let A. be the minimum area of a planar straight-line upward drawing of 

G.. We use induction to prove that A. _ 4-A._ 2. Since A 1 > c, for some constant 

c depending on the resolution rule, this implies the claimed result. 

Let F~ be a straight-line drawing of G. with minimum area A.. By removing 

from F. vertices s. and t. and their incident edges, we obtain a straight-line drawing 

F._  1 of G._ 1. Also, by removing from F._ t vertices s._ 1 and t._ l and their 

incident edges, we obtain a straight-line drawing F . -2  of G.-2. Let tr and z be 

horizontal lines through vertices s._ 2 and t._ 2, respectively. Define 0 t as the angle 

formed by edge (t._ 3, t._ 2) and the x-axis. Also, define 02 as the angle formed by 

edge (s._ 2, s._ 3) and the x-axis. We distinguish two cases: 

Case 1:01 -> 02 (see Fig. 3). Let Pl be the line extending edge (t.-3, t .-2) and let 

21 be the line parallel to Pl through vertex s.-2. Also, let 22 be either the line 

extending edge (s.-2, s._ 3) (Fig. 3(a)) or the line through vertices s._ 2 and t._ 2 

(Fig. 3(b)), whichever forms the largest angle with the x-axis. Vertex s._ 1 must lie 

in the region S._ 1 below tr and to the right of Pl, since it is connected to vertices 

s._ 2 and t._ 2 from the right. Similarly, vertex t._ 1 must lie in the region T._ 1 
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Fig. 3. Illustration of the proof of Theorem 1 for 01 > 0z. 

above t and to the left of 22. With regard to vertices s~ and t~ we have that s~ 

must lie in the region Sn = Sn-1, since it is connected to t~_ 2 and tn-~ from the 

right, and t, must lie in the region T~ above t and to the left of 21, since it is 

connected to s,_ ~ from the left. (Actually, sn and tn must lie in proper subregions 

of S,_l and T~-I.) 

Let P be the parallelogram delimited by lines a, t, 21, and pl. Since sn-3 is 

vertically below t,_ 3, the area of P is at least twice the area of Fn-2- Also, the 

area of Fn-2 is greater than or equal to An-2, the minimum area required for 

drawing Gn-2. Hence, 

Area(P) >_ 2. Area(Fn_ 2) > 2"An_ 2- 

Now consider the triangle delimited by lines t, Pl, and the line 6 parallel to 

edge (s._ 1, t.) through vertex s._ 2 (see Fig. 4). Clearly, Fn must contain this triangle. 

Let Al be the triangle delimited by a, Pl, and 6, and let A2 be the triangle delimited 
by t,  2~, and & It follows that 

A. = Area(Fn) > Area(P) + Area(A1) + Area(A2). 
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Fig. 4. Regions P, Al, and A 2. 

Since A 1 and A 2 are similar, the minimum of Area(At) + Area(A 2) is equal to 

Area(P). Hence we have 

A n >_ 2"Area(P) > 4"Area(F n_ z) = 4"An-2.  

Case 2:01  < 02 (see Fig. 5). The proof for this case is symmetric to the one for 

the previous case. In fact, notice that Fig. 5 is a 180 ° rotation of Fig. 3. [ ]  

F~. I = T a ' a ~  2 . . . . . . . . . .  tn-2 01 T .............. 

- o 

(a) 

Cr sn-2\ Sn.1. ~ S  n 

(hi 

Fig. 5. Illustration of the proof of Theorem I for 0~ ~ 0~. 
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4. Algorithms for Drawing Planar Acyelic Digraphs 

In this section we present a drawing algorithm for planar st-graphs that has several 

remarkable features: linear time complexity, small number of bends, small area, 

detection and display of symmetries, and geometric characterization of the 

transitive closure by means of the dominance relation between the points asso- 

ciated with the vertices. First we describe the algorithm for reduced digraphs, and 

then we extend it to the general case. 

4.1. Reduced Digraphs 

An edge (u, v) of a digraph is said to be transitive if there exists a directed path 

from u to v that does not contain the edge (u, v). An acyclic digraph is said to be 

reduced if it has no transitive edges. Notice that by removing all transitive edges 

from an acyclic digraph G we obtain a reduced digraph G- that has the same 

transitive closure as the original digraph G. Reduced planar st-graphs are used in 

several applications, including VLSI layout compaction [ 17] and motion planning 

[15], [32-1, [41]. Also, they are important in the theory of partially ordered sets, 

because they represent the covering digraphs of planar lattices [21]. 

Let G be a reduced planar st-graph with vertex set Vand edge set E. We recall 

that G is embedded in the plane with s and t on the external face. We denote with 

u ~ v a directed path from vertex u to vertex v in G (or the existence of such path). 

In this subsection we show how to construct a planar straight-line upward drawing 

of G. 
A straight-line drawing of a digraph is a dominance drawing if, for any two 

vertices u and v, there is a directed path from u to v if and only if x(u) < x(v) and 

y(u) < y(v). Notice that these two conditions cannot be simultaneously satisfied 

with equality since distinct vertices must be placed at distinct points. Dominance 

drawings have the important feature of characterizing the transitive closure of the 

digraph by means of the geometric dominance relation among the vertices. A 

dominance drawing may have horizontal edges. In this case a counterclockwise 

rotation by any angle between 0F and 90 ° yields an upward drawing. 

We present a temma that characterizes the relation between dominance draw- 

ings and planarity; some terminology is needed. Given a dominance drawing F 

of G, we now consider the point F(u) = (x(u), y(u)) where vertex u is placed, and 

define the following four regions of the plane (see Fig. 6): 

b(u) = {(x, y): x < x(u) and y _< y(u)}, 

t(u) = {(x, y): x >_ x(u) and y >_ y(u)}, 

l(u) = {(x, y): x < x(u) and y > y(u)}, 

r(u) = {(x, y): x > x(u) and y < y(u)}. 

Lenuna 1. An); dominance drawing F of  a reduced planar st-graph G is planar. 

Proof. Suppose, for a contradiction, that there is a crossing between edges (u, v) 
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U 

b(u) ~ 

Fig, 6. Regions b(u), t(u), l(u), and r(u). 

and (w, z) in F. Consider the edge (u, v): since G is reduced and F is a dominance 

drawing, no vertex p is placed in the rectangle defined by F(u) and F(v) (see Fig. 

7). Otherwise, by the definition of dominance drawing, there would be paths u ~ p 

and p --* v, which implies that (u, v) is a transitive edge, thus contradicting the fact 

that G is reduced. 

Without loss of generality, assume that F(w, z) crosses F(u, v) from left to right. 

First, F(w) cannot be in b(u),  in fact in this case (w, z) would be transitive with 

respect to the path consisting of w ~ u and u --, z. Analogously, z cannot be in 

t(v). Hence, the only possible case is that w ~ l(u) - l(v) and z e r(v)  - r(u). 

Consider paths s--* u and s ~ w,  and let s' be the last (farthest from s) vertex 

common to such paths. Similarly, let t' be the first (farthest from t) vertex common 

to paths v ~ t and z ~ t. By the above definitions and the dominance property, 

G has the following pairwise vertex-disjoint (except in the endpoints) paths (see 

Fig. 8): 

s' ~ w, s' --, u, v ~ t', z ~ t', 

U "-~ I)~ W -'~ Z,  U'- '* Z,  W "-* IL 

Since s and t are on the external face, we can add to G the edge (s, t) while 

preserving planarity. It is easy to verify that the paths listed above plus the edge 

(s, t) form a graph that is homoeomorphic to K3. 3. This fact contradicts the 

planarity of G. [ ]  

Now we present the drawing algorithm. If not already given, a planar embed- 

ding of G can be constructed in O(n)  time using variations of well-known 

v ~ t(v) 

b(u) 

Fig. 7. Regions around edge (u, v) in the proof of Lemma 1. 
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ptanarity-testing algorithms [2], [14], [16], [23]. The algorithm consists of three 

phases: the first phase, Preprocessing, sets up a linked data structure; the second 

phase, Preliminary Layout, assigns to each vertex v a distinct X- and Y-coordinate 

in the range [t3, n - 1]; the third phase, Compaction, adjusts the position of the 

vertices to reduce the area of the drawing. The Preliminary Layout phase performs 

essentially two topological sortings of the vertices of G, which scan the successors 

of each vertex from left to right (e.g., clockwise) and from right to left (e.g., 

counterclockwise), respectively. It is a variation of the algorithm for constructing 

the "vector representation" of a planar st-graph described in [19]. The Compac- 

tion phase scans the vertices according to the order given by the preliminary 

X- and Y-coordinates. 

Algorithm Straight-Line-Draw 

Input: Reduced planar st-graph G. 

Output: Dominance drawing F of G. 

Preprocessing: Set up a linked data structure for G where each vertex v points 

to the list of its outgoing edges sorted according to their clockwise 

sequence around v. This list is doubly connected by means of pointers 

next(e) and pred(e), and is accessed by means of pointers firstout(v) and 

lastout(v) to its leftmost and rightmost edge, respectively. Also, v has 

pointersfirstin(v) and lastin(v) to its leftmost and rightmost incoming edges, 

respectively. Finally each edge e = (u, v) stores a pointer head(e) to its 

head-vertex v. 

Preliminary Layout { Assign preliminary coordinates X and Y } 

{ Assign preliminary coordinate X } 

Set count := 0 and call LabelX(s): 

procedure LabelX(v: vertex); 

begin 

X(v) := count; 
count:= count + 1; 

if v ~ t then begin 

e := firstout(v); 
repeat 

w.= head(e); 
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if e = tastin(w) 

then LabelX(w); 

e := next(e); 

until e = nil 

end 

end; 

{ Assign preliminary coordinate Y } 

Set count .= 0 and call LabelY(s): 

procedure LabelY(v: vertex); 

begin 
Y(v) := count; 

count := count + 1; 

if v =~ t then begin 
e := lastout(v); 

repeat 

w := head(e); 

if e = firstin(w) 

then LabelY(w); 

e "= pred(e); 

until e = nil 

end 

end; 

Compaction { Assign final coordinates x and y } 
Set-up two lists of vertices sorted by increasing X- and Y-coordinate by 

means of pointers nextX(v) and nextY(v). 

{ Assign final coordinate x } 

let u be the vertex with X(u) = 0; 

x(u):= 0; 
while nextX(u) ¢ nil do begin 

v := nextX(u); 

if Y(u) > Y(v) or (firstout(u) = lastout(u) and firstin(v) = lastin(v)) 

then x(v):= x(u) + 1 

else x(v):= x(u); 
U : =  /2; 

end; 

{ Assign final coordinate y } 

let u be the vertex with Y(u) = 0; 

y(u) := O; 

while next Y(u) ~ nil do begin 

v := nextY(u); 

if X(u) > X(v) or (firstout(u) = lastout(u) and firstin(v) = lastin(v)) 

then y(v):= .v(u) + 1 

else y(v)-'= y(u); 

U : =  /); 

end; 
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Let u and v be a pair of vertices with consecutive (preliminary) X-coordinates. 

In general, the (final) x-coordinate is not incremented if (u, v) is an edge° and is 

incremented otherwise. However, in the special case when (u, v) is the only outgoing 

edge of u and the only incoming edge of v, the x-coordinate is incremented. This 

is done to prevent the possibility that u and v be assigned the same pair of 

coordinates. Similar considerations can be made for the y-coordinates. 

Algorithm Straight-Line-Draw is simple to implement and appears to be 

eminently practical. A run of Algorithm Straight-Line-Draw is illustrated in Fig. 

9. The preliminary drawing (X- and Y-coordinates) is shown in Fig. 9(a) (arrows 

are omitted because they are implied by the upward requirement). The final 

drawing (x- and y-coordinates) is shown in Fig. 9(b), Perhaps the best aesthetic 

result is obtained by a 45 ° rotation, as shown in Fig. 9(c). Given a vertex u of G 

we define B(u) (resp. T(u)) as the set of vertices distinct from u that can reach (resp. 

can be reached from) u by a directed path. Also, we define L(u) (resp. R(u)) as the 

set of vertices that are on the left (resp. right) of every path from s to t through 

u (see Fig. 10). Note that {u}, B(u), T(u), L(u), and R(u) form a partition of the 

vertices of G. 

. . . . .  F r . . . . .  
I : I I I I : : I I : I 

,.....,.....,.....,....., ..... ~ L ~ ~  , '  . . . . . .  

" - - - - ,~- - . -~- . -  ' - L . . . . i  

i i i : i ~' 

~ . - ~ ~ ~ _ . 4 - . . . ~ . . . . !  
, - - , . . . . , - - . , , . - . , , _ . . . , . . . . . , . . _ . , . . . . , . . _ , . . . . . , . . . . . ,  

(a) 

! - - i  . . . . .  i . . . . .  ! . . . . .  i " ' " i  

I I I I I |  
,.....,._.,__._.,.....,....., 

(b) 

F-- -T- - -T ' "T- " ! - " ]  ..<, ~ 

" - " ' " ' - " ' " ' ' - - ' - ' - - ' '  . (  . . . .  3 .  

i . . . . . . . .  i ",< , >," 

L . . . . . . .  j 
i . . . . . . .  j , < , y , ,  

(d) "v / (c) 

Fig. 9. A run of Algorithm Straight-Line.Draw: (a) preliminary drawing; (b) final drawing; (c) final 

drawing rotated by 45°; (d) minimum area drawing. 
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Fig. 10. Vertex sets B(u), T(u), L(u), and R(u). 

Lemma 2. The X- and Y-coordinates computed in the Preliminary Layout phase 

of Algorithm Straight-Line-Draw have the following properties: 

1. X(u) < X(v) if and only if u e B(v) w L(v). 

2. Y(u) < Y(v) if and only if u e B(v) w R(v). 

Proof We give the proof" of property 1. A similar argument holds for property 

2. For  the "if"  part, observe that the recursive calls of procedure LabelX define 

a directed spanning tree T of G rooted at s and containing the rightmost incoming 

edge of each vertex, Suppose, for a contradiction, that X(u) > X(v). Since vertex 

u is visited after vertex v by LabelX, vertex u is either a descendant of v in T, or 

it is on a path to the right of the path r~ from s to v in T. In the first case we have 

v ~ u, which contradicts the hypothesis that u e B(v)u L(v). In the second case 

vertex u cannot  be in B(v), because no directed path in G can enter vertex v to 

the right of the path  n; also, vertex u cannot be in L(v), since it is to the right of 

the path of G from s to t obtained by extending n with leftmost outgoing edges. 

The "only-if" part  follows from the fact that u e B(v)u L(v) if and only if 

v e T(u) u R(u). [] 

Theorem 2. The drawing H of G described by the X- and Y-coordinates computed 

in the Preliminary Layout phase of Algorithm Straight-Line-Draw is a dominance 

drawing. 

Proof By Lemma 2, we have u e B(v)¢~ X(u) <_ X(v) and Y(u),<<. Y(v). [] 

Lemma 3. Let u and v be a pair of  vertices of G such that X(v) = X(u) + 1. Then 

Y(u) < Y(v) if and only if  G has an edge from u to v. 

Proof The "if" part  is trivial. For  the "only-if" part, suppose that Y(u) < Y(v). 

Since X(u) < X(v), we have v E T(u). If  (u, v) is not an edge, then the path (u ~ v) 

has a vertex w distinct from u and from v. Hence, X(u)< X(w)< X(v), thus 

contradicting the hypothesis that X(v) = X(u) + t. [] 

Theorem 3. Let G be a reduced planar st-graph with n vertices. Algorithm 

Straight-Line-Draw takes O(n) time and constructs a planar dominance drawing F 

of G with vertices placed at grid points and O(n 2) area. 
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P r o o f  Let 17 be the drawing given by the X- and Y-coordinates. By Theorem 2, 

1I is a dominance drawing. To prove that the drawing F given by the x- and 

y-coordinates is also a dominance drawing we show that: 

1. u ~ B(v) ~ x(u) <_ x(v) and y(u) _< y(v). 

2. x(u) < x(v) =*" u e B(v) u L(v). 

3. y(u) < y(v) ~ u ~ B(v) u R(v). 

4. x(u) = x(v) ~ u ~ B(v) u T(v). 

5. y(u) = y(v) =~ u ~ B(v) u T(v). 

6. N o  two vertices are drawn at the same point (x, y). 

It is immediate to verify that, for any two vertices u and v, we have 

x(u) < x ( o  =~ x(u) <_ x(v), 

r(u) < r(O ~ y(u) _< y(O, 

x(u) < x(v) ~ X(u) < x(v), 

y(u) < y(v) =~ r(u) < Y(v). 

Hence, properties 1-3 follow by Lemma 2. Assume that X ( u ) <  X(v)  and 

x(u) = x(v). Let u = wl, w2 . . . . .  w k = v be the sequence of vertices with X-co- 

ordinate in the range [X(u), X(v)]. Since the x-coordinate is not incremented on 

these vertices, we must have Y ( w O  < Y(w2) < "  < Y(Wk), and hence Y(u) < Y(v). 

Since H is a dominance drawing, we have that u ~ B(v). Thus property 4 is verified, 

and a similar argument proves property 5. 

Regarding property 6, assume, for a contradiction, that it does not hold and 

there are vertices u and v with x(u) = x(v) and y(u) = y(v). By properties 1-4, we 

may assume that X ( u ) <  X(v)  and Y ( u ) <  Y(v). By Lemma 3, all the vertices w 

such that X(u)  < X ( w )  < X(v)  form a path from u to v, and all the vertices with 

Y-coordinate between Y(u) and Y(v) form exactly the same path. Let z be the vertex 

such that X(z )  = X(v)  - 1 and Y(z) = Y(v) - 1. We have that x(z)  = x(v) and 

y( i )  = y(v). Since both procedures LabelX and LabelY visit v immediately after z, 

edge (z, v) must be the only outgoing edge of z and the only incoming edge of v. 

However, this causes the Compaction phase to increment both x and y at vertex 

v, thus contradicting the previous conclusion that x(z)  = x(v) and y(z) = y(v). 

The area of the drawing F is given by x(t)" y(t). Consider the assignment of the 

x-coordinates. At the end of the Preliminary Layout phase we have X ( t ) =  

Y(t) = n - 1. The Compaction step scans the X-list from s to t and, for each pair 

of consecutive vertices u and v, either x(v) = x(u) or x(v) = x(u) + 1. Hence, since 

x(s) = O, x(t)  _< n - 1. Similar arguments show that y(t) < n - 1. 

Concerning the time complexity, procedures LabelX and LabelY traverse each 

edge twice. At the beginning of the Compaction phase the two lists can be 

constructed using a bucket sort. The remaining while-loops take linear time to 

scan the lists and perform a constant-time test for each vertex. [ ]  

The correctness of the algorithm can also be proved by exploiting the fact that 

the partial order underlying a planar lattice has dimension two, i.e., it can be 
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generated by the intersection of two linear extensions [19], [21], [22]. Notice that 

a quadratic bound on the area is asymptotically optimal even if bends are allowed 

[47]. A tighter bound on the area is presented in Section 4.3. 

4.2. Display of  Symmetries 

Besides producing a dominance drawing, Algorithm Straight-Line-Draw has the 

important  feature of displaying the symmetries and isomorphic components of the 

digraph. Before describing these features we introduce some definitions on symme- 

tries of planar st-graphs. 

A digraph G is weakly connected if its underlying undirected graph is connected. 

Let G be a planar st-graph. An open component of G is a maximal weakly connected 

subgraph G' of the digraph obtained from G by removing a separation pair {p, q}, 

such that G' does not contain s or t. A closed component of G is an induced 

subgraph G' of G such that (see Fig. ll(a)): 

1. G' is a planar pq-graph. 

2. G' contains every vertex of G that is on some path from p to q. 

3. G' contains every outgoing edge of p, every incoming edge of q, and every 

incident edge of the remaining vertices of G'. 

A component of G is either a closed or an open component. Notice that G is a 

trivial closed component  of itself. 

........... r ..... ,,'----7 ..... r ..... ,," ..... i 
I I I I I I 

F'"T , , T r r'--i 

(a) 

/% 2",, (b) 

,(  ", '>( , "  ",,, 

.,,,, " ,~  ~j ;~ , . ".,, 

( ")~,,  ~K" "'i" ('"> "--." , • )( ",," 
",~" ~,~* ~.~" ,y"  

Fig. 11. (a) A planar st-graph G with two rotationaUy isomorphic components. (b) Drawing of G 
constructed by Algorithm Straight-Line-Draw. (c) Rotated drawing. 
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The digraph obtained from a closed component by removing its source and 

sink is not necessarily an open component, but, in general, the union of several 

open components. Also, the digraph obtained from an open component by adding 

the separation pair is not necessarily a closed component, since properties 2 and 

3 above might not be verified. The concept of an open component generalizes the 

one of a subtree of a rooted tree, as follows. Let T be a tree rooted at vertex s. We 

construct a planar st-graph GT by connecting all the leaves of T to a new vertex 

t. It is simple to verify that the subtree of T rooted at a vertex v # s is an open 

component of Gr. 

Let C l and C 2 be two components of a planar st-graph G that are isomorphic 

if we ignore the directions of the edges. C1 and C 2 are said to be simply isomorphic 

if the isomorphism preserves the directions of the edges and the clockwise 

boundaries of the faces. C1 and C2 are said to be axially isomorphic if the 

isomorphism preserves the directions of the edges and inverts the clockwise 

boundaries of the faces. C1 and C 2 a r e  said to be rotationally isomorphic if the 

isomorphism inverts the directions of the edges and preserves the clockwise 

boundaries of the faces. A component is said to be axially (rotationaIly) symmetric 

if it is axially (rotationally) isomorphic to itself. For example, the digraph of Fig. 

1 l(a) has two rotationally isomorphic components, and each such component is 

axially symmetric. Figures 1 l(b) and (c) show the drawing produced by Algorithm 

Straight-Line-Draw for the digraph of Fig. 1 l(a). 

Let E L be the set of edges (u, v) such that (u, v) is the rightmost incoming edge 

of v and the leftmost outgoing edge of u. Let E R be the set of edges (u, v) such that 

(u, v) is the leftmost incoming edge of v and the rightmost outgoing edge of u. Also, 

we define En as the set of edges (u, v) such that (u, v) is the only outgoing edge of 

u and the only incoming edge of v. Observe that E n = E L ~  Eg. We write 

mL = tELl, mg = [ERI, and m n = [En]. In the example of Fig. 9 the set E n contains 

exactly one edge. 

I.emma 4. Let (u, v)~ E. Then u and v appear consecutively in the X-list if and 

only if (u, v)~ E L. Also, u and v appear consecutively in the Y-list if and only if 

(u, v) ~ E R. 

By Lemmas 3 and 4 the tests for incrementing the x and y-coordinates in the 

Compaction step can be rewritten as follows: 

i f  (u, v) ~ EL -- En 
then x(v):= x(u) 
else x(v):= x(u) + 1; 

if (u, v) ~ E R -- E n 

then y(v):= y(u) 
else y(v):= y(u) + 1; 

Theorem 4. Let G be a reduced planar st-graph and let F be the corresponding 

straight-line drawing constructed by Algorithm Straight-Line-Draw. We have: 

1. Simply isomorphic components of G have drawings in F that are congruent up 

to a translation. 
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2. Axially isomorphic components of G have drawings in F that are congruent up 

to a translation and reflection. 

3. Rotationally isomorphic components of G have drawings in F that are con- 

9ruent up to a translation and a 180 ° rotation. 

4. The drawing of an axially symmetric component of G is symmetric with respect 

to the straight line that passes through its source and sink. 

5. The drawin9 of a rotationally symmetric component of  G is symmetric with 

respect to a 180 ° rotation around its centroid. 

Proof In the Preprocessing phase the vertices of a component are visited 

consecutively by procedures LabelX and LabelY. Hence, the layout of a compo- 

nent is independent from the rest of the digraph. This proves property t. With 

regard to properties 2 and 4, reversing the orientation of the faces exchanges the 

set L(u) with R(u) for every vertex u. By Lemma 2, this corresponds to exchanging 

the X-coordinate with the Y-coordinate, and similarly for the final x- and 

y-coordinates. This yields drawings that are congruent up to a translation and a 

reflection with respect to a 45°-slope line. Now we consider properties 3 and 5. 

Reversing the direction of the edges exchanges B(u) with T(u) and L(u) with R(u) 

for every vertex u. Hence, by Lemma 2, the X-lists of two rotationally isomorphic 

components are one the reverse of the other, and similarly for the Y-lists. This 

implies that properties 3 and 5 hold for the preliminary layout. The sets E L, E n, 

and ER stay the same after reversing the direction of the edges. Thus, the final 

x- and y-coordinates are incremented for the same pairs of vertices and properties 

3 and 5 hold for the final layout. [ ]  

4.3. Minimum-Area Drawings 

As shown in Theorem 3, Algorithm Straight-Line-Draw produces drawings with 

O(n z) area. Here we give a tighter upper bound on the area and present a 

modification of the algorithm that constructs a minimum-area drawing among all 

dominance drawings of G. We can express x(t) and y(t) in terms of n, m L, m R, and 

mn as follows: 

LemmaS.  x(t) = n -- l -- (mL -- mn) and y(t) = n -- l -- (mR -- mn). 

Proof The number of times that the x-coordinate (resp. y coordinate) is not 

incremented is equal to mL - mn (resp. m R - ran). [] 

Recalling that the area of the drawing constructed by Algorithm Strai#ht-Line- 

Draw is given by x(O'Y(O, we obtain the following tight bound. 

Theorem 5. Algorithm Straight-Line-Draw produces drawings with area 

(n  - 1 - ( m L  - m H ) )  × (n  - 1 - ( m R  - m x ) ) .  

Suppose that E n = ~ .  Ir}/this case we can prove that the area of the drawing 

is optimal. Next we show hrw to modify the algorithm to obtain a minimum-area 

drawing in the case when E n ~ ~ .  
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Theorem 6. Given a reduced planar st-graph G such that En = ~ ,  Algorithm 

Straight-Line-Draw produces a dominance drawing of G that has minimum area 

among all dominance drawings that place vertices at grid points and preserve the 

embedding of  G. 

Proof. First we observe that any dominance drawing that preserves the embed- 

ding of G must place the vertices of L(v) in l(v) and the vertices of R(v) in r(v). Let 

vi be the vertex that is assigned X-coordinate i by the Preliminary Layout  phase 

of Algorithm Straight-Line-Draw. By Lemma 2, in any drawing of G we have 

x(vi) < x(vi+l). Now consider the n -  m L pairs of vertices {vi, v~+~} such that 

Y(vi) > Y(vi+ 1). By Lemma 2, vi+ t e R(vl) so that we must have x(v~+ 1) > x(vi). We 

conclude that x ( v ~ _ t ) -  X(Vo)> n -  m r . -  t. A similar argument shows that 

y ( v n - 1 ) -  y(vo)-> n -  m s - 1 .  Hence, by Theorem 5, the drawing constructed 

by Algorithm Straight.Line.Draw has optimal area. []  

Theorem 7. Let G be a reduced planar st-graph with n vertices. A minimum-area 

dominance drawing of G that places vertices at grid points and preserves the 

embedding of  G can be constructed in O(n) time. 

Proof. To take into account the set E n, we use the following variation of 

Algorithm Straight-Line-Draw. In the Preprocessing phase we compute mL and 

mR. In the Compact ion phase we replace the first " i f"  test with 

if Y(u) > Y(v) or (firstout(u) = lastout(u) and firstin(v) = lastin(v) and m L < mR) 

and the second "if"  test with 

if  X(u) > X(v) or (firstout(u) = lastout(u) and firstin(v) = lastin(v) and mr. > mR). 

This yields a drawing with area 

A = (n - 1 - min(mL, mR) + ran) x (n -- 1 - max(mL, mR)). 

Clearly, for any dominance drawing of G, we must have an increment of the x or 

y coordinate in correspondence of every edge of E n. If mx and m r are respectively 

the increments of x and y, with m~ + my = m H, the area is at least 

( n - -  1 -- m L + m~) x (n - -  1 -- m R + my). 

It is easy to see that the minimum of the above quantity is equal to A, and is 

achieved by setting 

{ 0  n i f m L < m R '  [] 
rex= if mL > mR. 

Note that minimum-area drawings may not have the symmetry properties of 

Theorem 4. 
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4.4. General Planar st-Graphs 

Algorithm Straight-Line-Draw can be extended to general planar st-graphs by 

inserting a new dummy vertex on every transitive edge. 

Algorithm Polytine-Draw 

Input: Planar st-graph G. 

Output: Planar polyline upward drawing F of G. 

I. If G is not reduced, replace each transitive edge (u, v) with a chain of length 

two consisting of a new vertex, x, and two new edges, (u, x) and (x, v). Let 

G' be the resulting reduced planar st-graph. 

2. Construct a straight-line drawing F' of G' using Algorithm Straight-Line- 

Draw. 

3. A polyline drawing F of the original digraph G is finally obtained by 

considering the dmnmy vertices of F' as bends of F. 

Since the number of transitive edges is at most 2n - 5, we have 

Theorem 8. Let G be a planar st-graph with n vertices. Algorithm Polyline-Draw 

has O(n) time complexity and constructs a planar polyline upward drawing F of G 

with vertices placed at grid points, O(n 2) area, and at most 2n - 5 bends. Also, the 

drawing has all the symmetry properties 1-5 of Theorem 4. 

5. Open Problems 

We conclude the paper with the following open problems: 

1. Find a polynomial-time algorithm for testing whether a digraph G admits 

a planar upward drawing (i.e., whether G is a subgraph of a planar st-graph 

[6]), or show that the problem is NP-complete. Polynomial-time algorithms 

exist for special classes of digraphs, namely bipartite [5], triconnected [1], 

and single-source [18]. 

2. Give upper bounds on the area of planar straight-line upward drawings with 

vertices placed at grid points. 

3. Study the tradeoff between area and number of bends in polyline planar 

upward drawings. 

4. Is there an O(n)-time algorithm for constructing a straight-line planar 

upward drawing of an n-vertex planar st-graph? 
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