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Area under the expiratory 
flow‑volume curve: predicted 
values by artificial neural networks
Octavian C. Ioachimescu1*, James K. Stoller2 & Francisco Garcia‑Rio3

Area under expiratory flow‑volume curve (AEX) has been proposed recently to be a useful spirometric 
tool for assessing ventilatory patterns and impairment severity. We derive here normative reference 
values for AEX, based on age, gender, race, height and weight, and by using artificial neural network 
(ANN) algorithms. We analyzed 3567 normal spirometry tests with available AEX values, performed 
on subjects from two countries (United States and Spain). Regular linear or optimized regression 
and ANN models were built using traditional predictors of lung function. The ANN‑based models 
outperformed the de novo regression‑based equations for  AEXpredicted and AEX z scores using race, 
gender, age, height and weight as predictor factors. We compared these reference values with 
previously developed equations for AEX (by gender and race), and found that the ANN models led 
to the most accurate predictions. When we compared the performance of ANN‑based models in 
derivation/training, internal validation/testing, and external validation random groups, we found 
that the models based on pooling samples from various geographic areas outperformed the other 
models (in both central tendency and dispersion of the residuals, ameliorating any cohort effects). In 
a geographically diverse cohort of subjects with normal spirometry, we computed by both regression 
and ANN models several predicted equations and z scores for AEX, an alternative measurement 
of respiratory function. We found that the dynamic nature of the ANN allows for continuous 
improvement of the predictive models’ performance, thus promising that the AEX could become an 
essential tool in assessing respiratory impairment.

Abbreviations
AAE  Average absolute error
AEX  Area under expiratory �ow-volume curve
AEXk  Area under expiratory �ow-volume curve approximation based on number = k 

isovolumic �ows
AFVx  Area under maximum expiratory �ow-volume curve
AI  Arti�cial intelligence
ANN  Arti�cial neural network
ATS  American �oracic Society
BMI  Body mass index
CI  Con�dence intervals
ECSC  European Community for Steel and Coal
ERS  European Respiratory Society
FDR  False discovery rate
FEF25,  FEF50 and  FEF75  Forced expiratory �ow at 25, 50 and 75% of forced vital capacity
FEV  Forced expiratory volume
FEV1  Forced expiratory volume in 1 s
FVC  Forced vital capacity
GLI  Global lung initiative

OPEN

1Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta 
VA Sleep Medicine Center, 250 N Arcadia Ave, Decatur, GA 30030, USA. 2Jean Wall Bennett Professor of Medicine, 
Chair-Education Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA. 3Servicio de Neumología, 
Hospital Universitario La Paz, IdiPAZ-Departamento de Medicina, Universidad Autónoma de Madrid-Centro 
de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain. *email: oioac@
yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-73925-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16624  | https://doi.org/10.1038/s41598-020-73925-0

www.nature.com/scientificreports/

HSD  (Tukey–Kramer) honest signi�cant di�erences test
IQR  Inter-quartile range
IRB  Institution Review Board
NHANES III  National Health and Nutrition Survey 3
PEF  Peak expiratory �ow
RASE  Square root of the mean squared prediction error (square root of [sum of square 

error divided by number of observations])

Interpretation of pulmonary function testing by spirometry relies mainly on comparing measured volumes 
and �ows with their predicted and lower limit of normal (LLN) values. �ese functional parameters are largely 
dependent on anthropometric characteristics such as race or ethnicity, gender, age, height and weight. Over the 
past 50 years, multiple equation sets have been developed and used, generally in separate nominal categories 
de�ned by gender and  race1–5. In current practice, for every lung function measurement (e.g., Forced Vital 
Capacity, FVC) or calculated variable, values smaller than the 5th percentile (or z scores < − 1.645) of gender and 
race-referenced healthy individuals de�ne the LLN.

More than four decades ago, an analogue lung function index called the area under the maximum expira-
tory �ow-volume curve (abbreviated AFVx) was computed and proposed for use by Vermaak et al.6. In order 
to describe functional abnormalities, a predicted AFVx based on age, gender and height was computed, and a 
measured to predicted AFVx ratio was assessed against other established lung function parameters. �is ratio 
appeared to be a sensitive indicator of the degree of lung function  impairment6. More recently, we published on 
the utility of a digital functional measurement called Area under Expiratory �ow-volume loop (AEX)7–10 and its 
approximations  (AEX1 through  AEX4, based on the instantaneous isovolumic �ows at 25%, 50% and/or 75% of 
FVC, or  FEF25,  FEF50 and  FEF75, respectively)7 as global tools for diagnosis and severity strati�cation of respira-
tory functional impairment. �e  AEX1–4 are good approximations of AEX, and they are especially relevant when 
the pulmonary function testing so�ware does not provide the actual, measured AEX (as the integral function 
of �ow by variable volume). It is currently unknown if constructs such as predicted  AEX1–4, which are derived 
from individual predicted volumes and �ows, are useful as surrogates of  AEXpredicted, since  FEF25,  FEF50 and  FEF75 
tend to have high inter-test variability (or coe�cients of variation), and thus wide con�dence intervals for their 
predicted values. Several authors have also derived and published in the past linear regression-based predictive 
equations for normal AEX, based on subjects’ age, gender and/or  height6,11.

In this study, in order to de�ne functional impairments by using AEX, we aimed to �nd a set of equations 
for  AEXpredicted and its z scores (standard deviations) by using arti�cial neural networks (ANN). �e ANN rep-
resent a modern computational methodology able to model more complex response surfaces and to circumvent 
limitations related to �xed equations, variable collinearities, non-gaussian distributions, wide variances and 
non-linear relationships between predictors. We performed analyses on two groups of normal spirometry tests, 
one originating from Cleveland, OH (USA), and one from the region of Madrid (Spain), and we compared this 
approach with optimized regression models using the same variables. �e advantage conferred by this approach 
is that ANN-based models are adaptive and their learning capability could lead to improved predictive perfor-
mance, thus allowing us to better di�erentiate between normal and abnormal, and to further de�ne impairments 
in respiratory physiology.

Results
We analyzed 3111 spirometry tests constituting the Cleveland group, which were randomly divided into a deriva-
tion/training (66%) and an internal validation/testing set (33%). In this group of tests originating from the USA, 
approximately 66% of the subjects were women; 87% of the tested individuals were White and 13% self-identi�ed 
as Black. In addition, we analyzed 457 normal spirometry tests from Spain, which constituted the Madrid group. 
In this group, 61% were women, and all subjects were characterized as White. �e main anthropometric char-
acteristics and pulmonary function measurements of the two groups are shown in Table 1. Figure 1 shows the 
AEX distributions by gender and race, while Fig. 2 shows the relationship between AEX and the subject’s age at 
the time of testing.

Next, we computed the AEX approximations called  AEX1 through  AEX4 from FVC, Peak Expiratory Flow 
(PEF),  FEF25,  FEF50 and  FEF75, based on the areas of the triangles and trapezoids delineated by these �ows and 
volumes, as described  elsewhere7. �en, we compared them with their predicted values, as derived from the 
main predictive equation sets for FVC, PEF and for the respective isovolumic �ows (for the latter, we computed 
the same triangles and trapezoids’ areas from the predicted values of the instantaneous �ows and volumes). For 
comparison, we used European Community of Steel and Coal (ECSC), National Health and Nutrition Evalua-
tion Survey (NHANES) III and the more recent Global Lung Initiative (GLI) formulas (Fig. 3). �e  AEX1,  AEX2, 
 AEX3 and  AEX4 approximations of AEX based on one, two, three or four �ows, respectively were very close to 
the actual AEX values (i.e., small deviance and dispersion, Fig. 3—dark grey box plots). First and as iterated 
before, these approximations are valuable when the pulmonary function so�ware does not provide the actual 
AEX. All in-between group comparisons showed correlation coe�cients > 0.97 and p < 0.0001 (Table 2), �ndings 
consistent with our prior  investigations7–10. Second, we found that predicted  AEXk (k = 1–4) based on the major 
equation sets overestimated on average the actual AEX or its approximations  AEXk (k = 1–4)—Fig. 3, light grey 
box plots. Among the three predicted sets compared, the ECSC equations overestimated the  AEX1 through  AEX4 
and, indirectly AEX, the most (correlation coe�cients were the lowest, i.e., ~ 0.80, p < 0.0001).

In a side-by-side bar graph format, Fig. 4 illustrates the median and interquartile ranges (IQR) of  AEX1–4, 
actual AEX and the four predictive models for AEX, i.e., derived from the formulas published by Vermaak 
et al.6, Garcia-Rio et al.11, the current linear regression and the ANN-based models. Standard least square-based 
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regression predictive equations for AEX developed de novo in the two groups combined found  R2 between 0.62 
and 0.71, depending on the gender and race-based subset. In these models, weight was a predictive variable 
only in White men, while race, gender, age, and height remained signi�cant predictors in all the other groups. 
Regression optimization by transforming the AEX variable for normalization and variance reduction (either by 
logarithmic or by gamma function transformation), and by using regression regularization techniques (‘gener-
alized regression’) such as ridge penalty regression, single or double lasso (with or without adaptive features), 
and elastic net led to only minor improvements in Akaike Information Criterion (AICc, maximal delta 2324), 
generalized  R2 (maximal delta 0.01, up to 0.75), in Average Absolute Error (AAE, delta 0.24, ~ 2.11) or in the 
square root of the mean squared prediction error (RASE, likely one of the most important performance measure-
ments here, with maximal delta 0.02, > 3.39) in the random validation subsets of the entire population of tests, 
by either tenfold crossvalidation or �xed rate holdback validation methods.

For the ANN, we used as inputs the same parameters, i.e., age, weight, height, gender and race, and the output 
was AEX or its gender plus race-determined z scores [derived from the formula (X − Mean)/Standard Deviation]. 
As mentioned earlier (see full details here: Supplemental_Material_S1), the chosen neural network architecture 
included two ‘hidden’ layers, each containing three sigmodal, three linear and three gaussian activation function 
nodes. In our analyses, this represented the best architecture in the trade-o� between performance and speed, 
bias and variance, under�tting and over�tting (see also Table 3, which shows the results of ANN ablation experi-
ments). Expectedly, mean predicted AEX was larger in Whites vs. African Americans, and in men vs. women. 
�e ANN–based model predicted the AEX with the highest accuracy, with a median di�erence of − 0.01 (IQR 
− 1.66 to 1.30)  L2/s, and a correlation coe�cient of 0.89. �e residuals remained low in the external validation 
lot (Madrid group, Fig. 5a): median di�erence of − 0.36 (IQR − 1.66 to 1.30)  L2/s, and a correlation coe�cient of 
0.76. �e model performed well due to its small dispersion, without signi�cant heteroscedasticity, i.e., residuals 

Table 1.  Demographic and functional characteristics of the study participants. *Depicts  AEX2,  AEX3 and 
 AEX4 obtained based on an Estimated  FEVPEF**, as this variable was not available in the Madrid group. �e 
formula used was: estimated  FEVPEF** = 0.157174 + 0.176439*FEV1 and was derived in the Cleveland group by 
modeling the variable based on  FEV1 only. �e coe�cient of correlation between actual  FEVPEF and Estimated 
 FEVPEF** was 0.54, standard deviation of the di�erence was 0.12, p < 0.0001).

Mean ± standard deviation Median 25th–75th interquartile range

Cleveland Group Madrid Group Cleveland Group Madrid Group Cleveland Group Madrid Group

Age (years) 53 ± 15 73 ± 5 53 72 42–65 68–77

Height (cm) 166 ± 10 158 ± 9 165 157 159–173 151–164

Weight (kg) 82 ± 20 70 ± 12 79 70 67–95 62–78

Body Mass Index 
(BMI, kg/m2)

30 ± 7 28 ± 4 29 28 25–33 26–30

PEF (L) 6.8 ± 2.1 5.6 ± 2.0 6.6 5.3 5.3–8.1 4.2–6.8

FEVPEF (L) 0.7 ± 0.3 – 0.6 – 0.5–0.8 –

Estimated  FEVPEF** 
(L)

0.7 ± 0.1 0.5 ± 0.1 0.6 0.5 0.5–0.7 0.5–0.6

FEV1 (L) 2.8 ± 0.8 2.2 ± 0.6 2.7 2.1 2.2–3.3 1.7–2.6

FEV1 z score − 0.35 ± 0.8 − 0.06 ± 0.9 − 0.46 − 0.15 − 0.95 to 0.15 − 0.70 to 0.63

FEV1% pred 95.0 ± 10.8 98.6 ± 15.1 93.8 97.6 87.1–102.0 88.7–109.8

FVC (L) 3.5 ± 1.0 2.8 ± 0.8 3.4 2.7 2.8–4.1 2.2–3.3

FVC z score − 0.39 − 0.15 ± 0.8 − 0.48 − 0.18 − 0.94 to 0.07 − 0.71 to 0.40

FVC % pred 94.5 ± 10.7 97.4 ± 13.2 93.3 97.0 86.7–101.0 88.0–106.4

FEV1/FVC 0.80 ± 0.06 0.78 ± 0.06 0.79 0.78 0.75–0.84 0.74–0.82

FEV1/FVC z score 0.09 ± 1.02 0.12 ± 0.99 0.00 0.12 − 0.67 to 0.73 − 0.52 to 0.66

FEV1/FVC % pred 100.1 ± 6.7 100.7 ± 7.0 100.0 100.9 95.4–104.7 95.9–105.1

FEF25 (L/s) 6.1 ± 1.8 4.8 ± 1.7 5.9 4.6 4.8–7.1 3.6–5.8

FEF50 (L/s) 3.4 ± 1.4 2.5 ± 1.1 3.3 2.3 2.5–4.2 1.6–3.2

FEF75 (L/s) 1 ± 0.6 0.5 ± 0.3 0.9 0.5 0.6–1.3 0.3–0.7

FEF25–75 (L/s) 2.6 ± 1.2 1.7 ± 0.8 2.5 1.5 1.8–3.3 1.1–2.1

AEX  (L2/s) 11.9 ± 6.8 7.3 ± 4.3 10.4 6.1 7.2–14.8 4.2–9.6

AEX1  (L2/s) 12.7 ± 7.1 8.3 ± 5.1 11.0 6.9 7.6–15.9 4.8–10.8

AEX2  (L2/s) 11.4 ± 6.6 – 9.9 – 6.8–14.1 –

AEX2*  (L2/s) 11.6 ± 6.6 7.1 ± 4.3 10.1 5.9 6.9–14.6 4.1–9.5

AEX3  (L2/s) 10.9 ± 6.3 – 9.4 – 6.4–13.5 –

AEX3*  (L2/s) 11.0 ± 6.3 6.7 ± 4.0 9.5 5.7 6.6–13.9 3.8–8.8

AEX4  (L2/s) 10.8 ± 6.4 – 9.3 – 6.4–13.4 –

AEX4*  (L2/s) 11.0 ± 6.3 6.6 ± 3.9 9.5 5.6 6.5–13.8 3.7–8.8
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Figure 1.  Shadowgrams (overlayed histograms with various X axis bin widths) of AEX by gender and race/
ethnicity. To understand the concept of a shadowgram, consider that if the bin width (on the X axis) of a 
histogram is di�erent, its appearance changes. As such, a shadowgram overlays histograms with di�erent 
bin widths. Dominant features of the distribution are less transparent on a shadowgram. B black, W white, F 
females, M males. Color codes—dark green: blacks; light green: whites.

Figure 2.  Bivariate linear �t by standard least square method of AEX  (L2  s−1) by age (years). r correlation 
coe�cient. Color codes—green: Cleveland group; black/grey: Madrid group. Dark colors (green and black): 
males; light colors (green and grey): females.
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were not progressively larger at higher values. �e model’s  R2 ranged from 0.80 and 0.83 in the derivation/training 
and the internal validation/testing sets, and 0.55 in the external validation set (Fig. 5a). �ese were much higher 
than prior models’  R2 (regression-based), which ranged from 0.39 to 0.4211. More importantly, other measure-
ments of model error (Fig. 5a) remained lower vs other regression techniques used. By contrast, in our analyses, 
the regression-based predicted AEX had a median di�erence of 0.12 (IQR − 1.90 to 2.03)  L2/s, and a correlation 
coe�cient of 0.86; in the external validation lot (Madrid group), the median di�erence was − 1.04 (IQR − 2.73 
to 1.21)  L2/s, and the correlation coe�cient was 0.78. Similarly, in our ANN models, the AEX z score predic-
tion, which is important for determining LLN, was also very robust (Fig. 5b). While all inputs were signi�cant 
independent predictors, the most important factors (total e�ects, %) for predicted AEX were gender (28.6%), 

Figure 3.  Box-and-whisker plots of AEX and  AEX1 through  AEX4 by ECSC, NHANES III and GLI predicted 
equations (Tukey–Kramer and Welch ANOVA tests: p < 0.0001). AEX area under expiratory �ow-volume curve, 
ECSC European Community of Steel and Coal, GLI global lung initiative, NHANES III National Health and 
Nutrition Examination Survey III.
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race (28.6%), height (21.6%) and age (20.5%), while for AEX z scores (which are computed by gender and race) 
were height (50.3%), age (30.7%) and weight (18.8%), respectively.

Figures 5 and 6 show two possible modelling approaches by ANN methods. �e approach shown in Fig. 5a,b 
is represented by models developed for  AEXpredicted and AEX z scores, respectively, on two thirds of the Cleveland 
group (derivation/training set) and veri�ed on the rest of the subjects (internal validation/testing set), followed 
by validation (external validation) in the Madrid group. In this case, one can observe the classic ‘cohort e�ect’, 
i.e., the model is ‘over�tting’ in the Cleveland group and it loses its precision when applied to another cohort, 
of di�erent subjects. �e alternative approach, which is shown in Fig. 6a,b, takes advantage of the adaptability 
or optimization functions of the ANN models, by mixing the two cohorts and deriving a model on ~ 50% of 
the subjects, followed by testing in 25% of the cohort (internal validation) and validation on the rest of the tests 
from the two groups combined. �is allowed for better �tting models, in this case with larger  R2 (0.79–0.82) and 
improved precision of  AEXpredicted (consistently lower measurements of error/bias and dispersion). Figures 5 and 
6 also show that the condition of homoscedasticity for the models is generally met, i.e., residuals remain roughly 
in the same range at higher values, with the exception of very few outliers.

In a more comprehensive one-on-one analysis of various variables, Table 2 illustrates the main di�erences 
(with 95% Con�dence Intervals, CI) between observed AEX, computed  AEX1 through  AEX4, predicted AEX 
values by previously published  formulas6,11, and by the new regression and ANN-based models.

Discussion
�e main �nding of this article is that arti�cial neural networks (ANN) can provide a great alternative to tradi-
tional methodologies in computing normal predicted equations, as well as LLNs based on z scores, in this case 
applied to Area Under Expiratory �ow-volume curve (AEX). �e adaptive, machine learning model performed 
better than a de novo linear regression model (smaller dispersion) and was superior to two previously published 
equations for  AEX6,11.

Traditional regression-based models used for deriving predictive equations for pulmonary function have 
been �awed by internal and external validity biases (‘cohort e�ects’), or by various degrees of untrue assumptions 

Table 2.  Mean di�erences (with 95% Con�dence Intervals, CI) between actual AEX, AEX approximations 
 (AEX1 through  AEX4) and predicted AEX values by four di�erent formulas (Vermaak et al.6; Garcia-Rio 
et al.11, regression and arti�cial neural networks or ANN, 2020) in the training, testing and validation sets. 
While the deviance (central tendency) seems slightly larger in the ANN-based model, the dispersion is smaller 
vs regression-based model using the same parameters (gender, race, age, height and weight), based on RMSE 
(Root Mean Square Error), RASE (square root of the mean squared prediction error, calculated as the square 
root of the sum of squares error divided by n) and AAE (average absolute error).

Comparison of X vs Y (by actual values, 
regular linear regression, or standard least 
squares) Set Mean di�erences (Y–X) 95% CI lower limit 95% CI upper limit RMSE RASE AAE R2 p value

AEX vs  AEX1

Training 0.613 0.527 0.700 1.865 1.965 1.400 0.911 < 0.0001

Testing 0.493 0.371 0.616 1.851 1.921 1.387 0.921 < 0.0001

Validation 0.491 0.363 0.619 1.840 2.016 1.453 0.915 < 0.0001

AEX vs  AEX2

Training − 0.493 − 0.531 − 0.455 0.719 0.904 0.665 0.982 < 0.0001

Testing − 0.500 − 0.555 − 0.445 0.737 0.924 0.661 0.982 < 0.0001

Validation − 0.509 − 0.563 − 0.455 0.749 0.922 0.659 0.983 < 0.0001

AEX vs  AEX3

Training − 1.018 − 1.077 − 0.959 1.024 1.561 1.121 0.946 < 0.0001

Testing − 1.047 − 1.132 − 0.961 1.074 1.602 1.164 0.946 < 0.0001

Validation − 1.066 − 1.157 − 0.976 1.165 1.675 1.168 0.942 < 0.0001

AEX vs  AEX4

Training − 1.096 − 1.138 − 1.054 0.574 1.380 1.104 0.958 < 0.0001

Testing − 1.097 − 1.155 − 1.040 0.668 1.371 1.106 0.961 < 0.0001

Validation − 1.102 − 1.163 − 1.41 0.725 1.406 1.111 0.959 < 0.0001

AEX vs AEX pred Vermaak et al.6

Training 4.838 4.665 5.012 2.960 6.117 5.439 0.679 < 0.0001

Testing 4.669 4.411 4.927 3.014 6.085 5.373 0.674 < 0.0001

Validation 4.720 4.468 4.973 2.974 6.097 5.393 0.691 < 0.0001

AEX vs AEX pred Garcia-Rio et al.11

Training 5.904 5.653 6.154 5.039 8.001 6.675 0.461 < 0.0001

Testing 5.846 5.482 6.210 5.091 8.030 6.702 0.461 < 0.0001

Validation 5.821 5.453 6.189 5.220 8.093 6.717 0.458 < 0.0001

AEX vs AEX pred Regression, 2020

Training 0.040 − 0.119 0.198 3.107 3.421 2.521 0.731 < 0.0001

Testing − 0.243 − 0.473 − 0.013 3.062 3.483 2.628 0.739 < 0.0001

Validation − 0.157 − 0.374 0.059 2.928 3.314 2.420 0.770 < 0.0001

AEX vs AEX pred ANN, 2020

Training − 0.244 − 0.386 − 0.102 2.734 3.066 2.089 0.785 < 0.0001

Testing − 0.470 − 0.674 − 0.267 2.672 3.104 2.175 0.798 < 0.0001

Validation − 0.400 − 0.590 − 0.211 2.558 2.925 1.961 0.824 < 0.0001
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of normality, additivity or  linearity12. For these reasons, we used here a more modern method of modelling, 
able to circumvent collinearities and non-linear relationships, and which can be used in spirometry reference 
equation derivation, i.e., the ANN. In addition, we found that this methodology outperformed more advanced 
regression regularization techniques in reducing the bias and the dispersion of the residuals. Nowadays, in an 
era of exploding computational capabilities, neural networks represent the backbone of many emerging arti�cial 
intelligence techniques, which could successfully be applied in our  �eld13–16.

We explored �rst a comparison between measured AEX and its approximations called  AEX1,  AEX2,  AEX3 
and  AEX4. As described  before7, these parameters are computed based on FVC and PEF  (AEX1); FVC, PEF and 
 FEF50  (AEX2); FVC, PEF,  FEF25 and  FEF75  (AEX3), FVC, PEF,  FEF25,  FEF50 and  FEF75  (AEX4). �en we used 

Figure 4.  Bar graph showing median values of AEX,  AEX1 through  AEX4 and AEX predicted by three di�erent 
models (Vermaak et al.6; Garcia-Rio et al.11; and current model, based on arti�cial neural networks (ANN). 
Whiskers represent 25th–75th interquartile ranges (IQR).

Table 3.  Comparison of the Linear Regression (LR) using Standard Least Squares method, Generalized 
Regression (GR) model using a logarithmic transformation and the double-lasso method, and the main 
ablation experiments of the Arti�cial Neural Network (ANN) methods tried. �e ablation study identi�ed the 
2 hidden-layer ANN design (i.e., each layer with three sigmodal, three linear and three Gaussian activation 
functions) as the best compromise between improved performance and processing speed (bold characters). 
*Using an additive sequence of 100 models based on a learning rate of 0.1. **Using for optimization a robust �t 
with a squared penalty method and transformed covariates.

# Layers # Hidden nodes

Activation functions R2
Root Mean Square 
Error (RMSE) Mean absolute deviance

Average processing 
time (s)

Sigmoidal Gaussian Linear Train Test Valid Train Test Valid Train Test Valid

1 (LR) 0 0.731 0.739 0.770 3.107 3.062 2.928 0.040 − 0.243 − 0.157 1

1 (GR) 0 0.757 0.770 0.783 3.261 3.174 3.155 − 0.229 0.035 − 0.993 1

2** 0

2 2 2 0.794 0.780 0.822 3.174 3.221 3.088 2.195 2.308 2.123 100

2* 2* 2* 0.809 0.787 0.831 3.117 3.192 3.038 2.117 2.273 2.070 240

4 4 4 0.814 0.784 0.824 3.102 3.269 3.092 2.088 2.289 2.114 120

4* 4* 4* 0.813 0.789 0.832 3.097 3.196 3.031 2.092 3.196 3.031 660

6 6 6 0.818 0.789 0.824 3.065 3.178 3.083 2.066 2.262 2.117 150

6* 6* 6* 0.818 0.797 0.830 3.066 3.144 3.022 2.066 2.222 2.075 1800

3**

6 2 2 2 0.798 0.785 0.822 3.147 3.214 3.091 2.177 2.285 2.126 75

12 4 4 4 0.810 0.790 0.832 3.088 3.193 3.030 2.110 2.256 2.065 90

18 6 6 6 0.828 0.797 0.824 3.010 3.165 3.115 2.005 2.217 2.217 180
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Figure 5.  Machine learning (arti�cial neural network) models predicting AEX (a) and AEX z scores (b) using 
as inputs gender, race, age (years), weight (kg) and height (m). Le� upper corner shows the model diagram, 
while le� lower corner illustrates the prediction pro�ler by gender and race. �e main table reveals the high 
performance of the model predicting AEX/Z scores in all subject groups (derivation, internal and external 
validation sets), with a ‘cohort e�ect’—a drop in the generalized  R2 from internal to external validation sets. 
For comparison, the  R2, RASE and AAE of the regression model are shown in grey (in brackets). Color codes—
green: Cleveland group; black/grey: Madrid group. dark colors (green and black): males; light colors (green and 
grey): females. AEX area under expiratory �ow-volume curve, B black, W white, F female, M male, AAE average 
of absolute error, R2 R squared statistic, RASE square root of the mean squared prediction error, calculated as the 
square root of the sum of squares error divided by N.
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Figure 6.  Machine learning (arti�cial neural network) models predicting AEX (a) and AEX z scores (b) using 
as inputs gender, race, age (years), weight (kg) and height (m), with Ongoing Validation. Le� upper corner 
shows the model diagram, while le� lower corner illustrates the prediction pro�ler by gender and race. �e main 
table reveals the high performance of the model predicting both AEX and AEX z scores in all subject groups 
(derivation and validation sets), without a ‘cohort e�ect’—a drop in the  R2 from internal to external validation 
sets. For comparison, the  R2, RASE and AAE of the regression model are shown in grey (in brackets). Color 
codes—green: Cleveland group; black/grey: Madrid group. dark colors (green and black): males; light colors 
(green and grey): females. AEX area under expiratory �ow-volume curve, B black, W white, F female, M male, 
AAE average of absolute error, R2 R squared statistic, RASE square root of the mean squared prediction error, 
calculated as the square root of the sum of squares error divided by N.
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the most common, validated predictive equations such as  ECSC17,18, NHANES  III19 and  GLI2 sets, strati�ed by 
gender and race to derive predicted values for  AEX1 through  AEX4.

We illustrate in Fig. 3 several salient �ndings of our investigation. First, we con�rmed our previously pub-
lished  �ndings7, i.e., that  AEX1–4 are acceptable approximations of AEX (with great metrics of central tendency 
and dispersion for the estimations). �e analyses were performed on a subset of subjects with normal lung func-
tion from the Cleveland group (in which inclusion was adjudicated by normal lung volume determinations), 
and on an external validation set of non-smoking elderly subjects with normal spirometry (the Madrid group). 
Second, we show that the ECSC equations tend to overestimate these spirometric parameters the most, while 
GLI-based predicted values for  AEX1 through  AEX4 are the closest to the actual normal AEX values.

In Fig. 4 we show both central tendency (medians) and dispersion (IQR) metrics for actual AEX,  AEX1 
through  AEX4, and for two AEX predicted values, as published before by Vermaak et al.6 and Garcia-Rio et al.11. 
Of note, the distribution of these parameters was non-gaussian (sinusoidal or logarithmic-like). In addition to 
these functional parameters, we included in Fig. 4 the values derived from the linear regression and ANN-based 
models developed de novo in this article. �e ANN-based median  AEXpredicted (dark blue bar in Fig. 4) was the 
closest to the actual median AEX (red, double-hashed bar), while the model’s dispersion (as assessed by the 
IQR) was also the smallest in the ANN-based model. Supplemental Figures S2 and S3 show the distributions of 
residuals  (AEXpredicted—AEX) by both methods and by gender and race, combining all tests from the two groups. 
In the �gures, highlighted (dark green in Supplemental Figure S2 and dark blue in Supplemental Figure S3) rep-
resent the men, while lighter colors illustrate the distributions in women. �e linear regression model tended to 
overestimate AEX in males, while the ANN model provided a more precise estimate of the central tendency in 
all subgroups. In Table 2, we show the in-between variables’ average di�erences and their 95% CIs (yet we cau-
tion the reader that the residuals are non-normally distributed), together with RMSE (root mean square error), 
RASE (square root of the mean squared prediction error, calculated as the square root of the sum of squares 
error divided by n, measurement considered by some as equivalent to an o�-sample RSME) and  R2. As such, we 
con�rmed the high correlations and small dispersions for ANN-based model, both in aggregate and by cohort 
(for the latter, data not shown).

�e ANN-based models described here had as input parameters traditional predictors of lung function, i.e., 
subjects’ gender, race or ethnicity, height, weight, and age, two layers of nine ‘hidden’ nodes (with three sigmoi-
dal, three linear and three gaussian activation functions), and AEX as the output. �e model developed in the 
Cleveland group was also validated internally—dark green (males) and light green (females) dots, followed by 
external validation in the Madrid group—black (males) and grey (females) dots, Fig. 5a,b. Expectedly, there was 
a signi�cant ‘step-down’ in the model’s performance, even when ANN methodology was used and by employ-
ing a traditional approach of derivation and internal validation in a population, followed by external validation 
in another cohort. Instead, taking advantage of the learning property of the ANN models (Fig. 6a,b), pooling 
all tests from the two groups leads to better predictive ability (better central tendency, smaller dispersion and 
higher percentage of variance explained by the model). See additional online information (link: Supplemen-
tal_Material_S1), which also shows the formulas and the code used, for future validation or re�nements of the 
models in other pulmonary function sets.

Several limitations of this investigation deserve to be mentioned. First, the current predictive models for 
AEX do not consider the intra-individual, test-to-test variability of the AEX measurement, which needs to 
be explored in future investigations. It is conceivable that, similarly to the large variability of  FEF25,  FEF50 and 
 FEF75, AEX could also present large variations. �is intrinsic variability can be explored and, if found to be 
high, could potentially be minimized by using AEX variables in concert with other spirometric measurements, 
approach which can further re�ne the characterization of the functional impairments. Second, the Madrid cohort 
included very di�erent subjects, i.e., older, White, and from a small geographic footprint. �is limitation could 
be overcome in the future by extending the geographic coverage and the diversity of the pooled tests. �is will 
allow the ANN models to continue to evolve (trying to the minimize the gradient descent) and to further re�ne 
the node equations based on additional variation of the inputs. �ird, additional predictors of lung function can 
be assessed, as modern computational techniques allow us to employ fast and powerful mathematical models, 
leveraging the unprecedented access to big data, unavailable decades ago, or when using traditional modeling 
methods. Fourth, one of the disadvantages of the ANN is the complexity of the equations in the hidden nodes, 
leading to a perceived lack of transparency or ‘black box’ e�ect, yet it can be visualized easily at each node and 
in all layers. Fi�h, the accuracy of the presented models or equations may not be optimal in a new experimental 
study that considers di�erent ranges of age, weight and height or other racial pro�les. In future training, testing 
and validation sets, ANN-based models may di�er mathematically and deal di�erently with possible new sources 
of variance from other factors and with the potential of higher systematic bias. However, this is exactly the point 
we are making here when we illustrate modeling outcomes in one population with external validation in a dif-
ferent cohort vs ‘pooling’ of all tests together and devising the ANN models that use input variability from all 
demographic categories. Lastly, the utility of AEX needs to be explored in relationship to speci�c conditions and 
outcomes, as most measurements in modern medicine need to be ‘anchored’ against prevention, early diagnosis 
and development of personalized therapies.

Conclusion
In this investigation, we used neural network models in a pooled, geographically diverse cohort, in order to 
compute predicted Area Under Expiratory �ow-volume curve, a spirometric measurement that may have great 
impact on how we de�ne respiratory functional impairment in the future. In a large pool of normal spirometry 
tests, we found that the learning property of the arti�cial neural networks allows continuous improvement of the 
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predictive models that compute the reference values for AEX and that these models may outperform traditional 
methods and validation approaches.

Methods
Analyses were performed on a development cohort (the Cleveland group) of 3111 consecutive adult subjects who 
had normal spirometry and normal same-day lung volume testing in the Cleveland Clinic Pulmonary Function 
Laboratory over a 10-year time span. A second cohort (the Madrid group) was constituted by 457 never-smoker 
healthy volunteers who met the American �oracic Society criteria for reference subjects and participated in a 
Spanish study that was aimed at deriving spirometry reference values for elderly European  individuals11.

Spirometry was performed and interpreted per the current, joint American �oracic Society (ATS) and 
European Respiratory Society (ERS) standards and  recommendations1,20–23. Lung volume  assessments4 were 
performed only in the Cleveland group, by either body  plethysmography24–26 or helium  dilution27,28 methods. 
Normal lung volume testing was de�ned as values between lower and upper limits of normal for the following 
parameters: total lung capacity, functional residual capacity and residual volume. All tests were done using a 
Jaeger-Viasys Master Lab Pro system (Wurzberg, Germany). �e most recent, validated and widely applicable 
reference values, as developed in ‘semi-parametric’ regression-type models and published by the Global Lung 
Initiative (GLI) were used for spirometry interpretation and de�nition of  normality2,19. For lung volumes, the 
reference values used were those published by Crapo et al.29. We did not use the previously published lung volume 
reference values developed for 65–85 year-old  Europeans30, as the Cleveland group (the only group with lung 
volume determinations, which constitute gold standard in pulmonary function testing) was overall younger and 
likely with di�erent anthropometric characteristics. We calculated the parameters  AEX1 through  AEX4 from FVC, 
 FEF25,  FEF50 and  FEF75, as done  elsewhere7, and compared them with their predicted values using three of the 
most popular and widely used equation sets, i.e., European Community for Steel and Coal (ECSC)18, National 
Health and Nutrition Survey (NHANES)  III19 and Global Lung Initiative (GLI)2. �e largest AEX was selected 
from all the pre-bronchodilator spirometry trials performed. In addition, predicted AEX was computed by using 
two predictive equations for AEX, as published before by Vermaak et al.6 and Garcia-Rio et al.11.

Statistical analyses were performed using JMP Pro15 (SAS Institute, Cary, NC, USA) and open-access R so�-
ware (R version 3.6.2, R: A Language and Environment for Statistical Computing, R Core Team, R Foundation 
for Statistical Computing, Vienna, Austria, 2019, https:// www.R- proje ct. org, R Studio 1.2.5033, RStudio, Inc).

Descriptive statistical analysis of available variables was performed. Categorical variables were summarized 
as frequencies or percentages. Continuous variables were characterized by mean, standard deviation, median 
and  25th–75th interquartile range (IQR), as appropriate (as most distributions were non-gaussian).

�e GLI  equations2 were developed and made available as Generalized Additive Models for Location, Scale 
and Shape (GAMLSS) in the R so�ware package. �e methods are ‘parametric’ in the sense that they require a 
parametric distribution assumption for the response variables, and ‘semi’ because modelling of the parameters 
of distribution as functions of exploratory variables may involve non-parametric smoothing functions (link: 
GAMLSS).

Some of the prior models for pulmonary function normal values used regular linear regression (standard 
least squares method) by gender and race, relying on predictive variables such as age, height and, occasionally, 
weight. In this work, regular regression models were improved by several types of optimization approaches, 
e.g., generalized additive models de�ning splines for means, variance and skewness (as in the GLI  equations2), 
regression regularization techniques such as ridge regression, lasso, elastic net and double lasso techniques, with 
and without adaptive features, using both native values and logarithmic or gamma transformations (as they rep-
resented the closest distribution �ts) and comparing them with deep learning algorithms or arti�cial intelligence 
(AI) methods. �e latter models were based on ANN, which could adjust for more complex relationships and 
interactions between variables, thus modeling more e�ciently complex response surfaces. �e machine learning 
models used here are described in more detail online (link: Supplemental_Material_S1). We tried di�erent ANN 
architectures, with variable number of nodes (3–5) in the �rst and second layer, and di�erent activation func-
tions in the hidden nodes. During ablation study experiments, we selected the simplest models that provided the 
lowest dispersion of the predicted variables (variance) vs smallest bias, and the best trade-o� between speed and 
performance, �tting and over�tting. We used the approach of a derivation (training) and an internal validation 
(testing) set from the Cleveland group with a random holdback method at 33% rate for the internal validation; 
following this step, we applied the model on an external validation (validation) set constituted by data points 
from the Madrid group (Fig. 5a,b). In another approach (Fig. 6a,b), we pooled the data from the two cohorts 
and developed new ANN-based models; we used a 50–25–25% random partition for training–testing–valida-
tion (‘ongoing validation’), respectively. In the AI models used, we performed an analysis of the residuals (i.e., 
the di�erences between predicted and actual AEX), checking for normality, internal consistency by various 
parameters and for homoscedasticity of the residuals. �e variables’ weight in various models, independent of 
the model type and �tting used, was assessed by the dependent resampled inputs methods in JMP Pro15, in 
which factor values are constructed from observed combinations using a k-nearest neighbors’ approach (k = 5 
was used), in order to account for correlation. �is method, used mainly when there is an assumption that the 
inputs (such as height, weight, gender, race and age) are possibly correlated, and treats observed variance and 
covariance as representative of the covariance structure for the used  factors31. �e performance of the standard 
least squares �t method (regression) and ANN models were assessed by using the JMP Pro15 platform and 
comparing the means, the residuals, as well as  R2, square root of the mean squared prediction error (RASE) and 
average absolute errors (AAE).

https://www.R-project.org
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Institutional research oversight approvals were obtained to conduct the study and to waive subjects’ informed 
consent (Cleveland Clinic IRB EX#0504/EX#19-1129; Emory IRB# 00049576/Atlanta VA R&D Ioachimescu-002; 
and Ethics Committee of the University Hospital of La Paz HULP #PI-70).

Ethics. �ese analyses were performed were performed in accordance with the relevant rules, guidelines and 
regulations (and regulatory approvals obtained from Institutional Review Boards).

Informed consent. No informed consent was necessary, as these were data analyses of existing databases.
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