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Abstract. A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint
rectangles. These layouts are used as rectangular cartograms in cartography, as floorplans in building
architecture and VLSI design, and as graph drawings. Often areas are associated with the rectan-
gles of a rectangular layout and it is desirable for one rectangular layout to represent several area
assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a
combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition
for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is
one-sided. We also investigate similar questions for perimeter assignments. The adjacency require-
ments for the rectangles of a rectangular layout can be specified in various ways, most commonly via
the dual graph of the layout. We show how to find an area-universal layout for a given set of adja-
cency requirements whenever such a layout exists. Furthermore we show how to impose restrictions
on the orientations of edges and junctions of the rectangular layout. Such an orientation-constrained
layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts
may be listed in polynomial time per layout.
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1. Introduction. Raisz [21] introduced rectangular cartograms in 1934 as a way
of visualizing spatial information, such as population or economic strength, of geo-
graphic regions. Rectangular cartograms represent regions by rectangles; the posi-
tioning and adjacencies of these rectangles are chosen to suggest their geographic
locations, while their areas are chosen to represent the numeric values being com-
municated by the cartogram. The stylization inherent in replacing the complicated
shapes of geographic regions by rectangles is a feature of such diagrams: as Raisz
writes, “simple distortion of the map would be misleading,” because it is important
to emphasize that a cartogram is not a map.

Often more than one quantity should be displayed as a cartogram for the same set
of geographic regions. The first three figures Raisz shows, for instance, are cartograms
of land area, population, and wealth within the United States. To make the visual
comparison of multiple related cartograms easier, it is desirable that the arrangement
of rectangles be combinatorially equivalent in each cartogram, although the relative
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Fig. 1. An area-universal layout.

sizes of the rectangles will differ. This naturally raises the question: when is this
possible?

Mathematically, a rectangular cartogram is a rectangular layout : a partition of
a rectangle into finitely many interior-disjoint rectangles. We call a layout L area-
universal if, no matter what areas we require each of its regions to have, some combi-
natorially equivalent layout L′ has regions with the specified areas. For instance, the
four-region rectangular layout shown in Figure 1 with three different area assignments
is area-universal: any four numbers can be used as the areas of the rectangles in a
combinatorially equivalent layout.

Area-universal rectangular layouts are useful not only for side-by-side display of
cartograms with different data on the same regions, but also for dynamically morphing
from one cartogram into another. Additionally, in other applications of rectangular
layouts it may be advantageous to choose a layout first and then later assign varying
areas while keeping the combinatorial type of the layout fixed. For instance, in circuit
layout applications of rectangular layouts [27], each component of a circuit may have
differing implementations with differing tradeoffs between area, energy use, and speed.
In building design it is desirable to be able to determine the areas of different rooms
according to their function [7]. And, in treemap visualizations, alternative area-
universal layouts may be of use in controlling rectangle aspect ratios [4]. Thus, it is
of interest to identify the properties that make a rectangular layout area-universal,
and to find area-universal layouts when they exist.

For applications such as in cartography, where the spatial position of the rect-
angles is meaningful, we also want to impose certain restrictions on the orientations
of the adjacencies of regions of a rectangular layout. For example, in a cartogram
of the U.S., we might require that a rectangle representing Nevada be right of or
above a rectangle representing California, as geographically Nevada is east and north
of California.

1.1. Results. We identify a simple necessary and sufficient condition for a rect-
angular layout to be area-universal: it is area-universal if and only if it is one-sided.
One-sided layouts are characterized via their maximal line segments. A line segment
of a layout L is formed by a sequence of consecutive inner edges of L. A segment of
L that is not contained in any other segment is maximal. In a one-sided layout every
maximal line segment s must be the side of at least one rectangle R; any vertices in-
terior to s are T-junctions that all have the same orientation away from R (Figure 2).

s

Fig. 2. The left layout is one-sided, but the one on the right is not: the maximal segment s is
not the side of any rectangle.



AREA-UNIVERSAL AND CONSTRAINED RECTANGULAR LAYOUTS 539

Fig. 3. A graph that is not the dual of an area-universal layout: the rectangle dual to the bottom
center vertex may not be arbitrarily large [22].

Given an area-universal layout L and an assignment of areas for its regions, we de-
scribe a numerical algorithm that finds a combinatorially equivalent layout L′ whose
regions have a close approximation to the specified areas. These results can be found
in section 4. In section 5 we investigate perimeter cartograms in which the perimeter
of each rectangle is specified rather than its area. Any rectangular layout can have
at most one combinatorially equivalent layout for a given perimeter assignment; it is
possible in polynomial time to find this equivalent layout, if it exists.

The rectangles of a rectangular cartogram should have the same adjacencies as
the regions of the underlying map. Hence, the dual graph of the cartogram (a graph
with one node per region, with two nodes adjacent if their regions share a boundary
segment) should be the same as the dual graph of the map. The dual of a rectangular
layout is called a proper graph. Not every proper graph has an area-universal rectan-
gular dual; Rinsma [22] described an outerplanar proper graph G and an assignment
of weights to its vertices such that no rectangular dual of G has these weights as its
regions’ areas (Figure 3). Thus, it is of interest to determine which proper graphs
have an area-universal rectangular dual. In section 6 we describe algorithms that,
given a proper graph G, find an area-universal rectangular dual of G if it exists. These
algorithms are not fully polynomial, but are fixed-parameter tractable for a parameter
related to the number of separating four-cycles in G.

In section 7 we extend the approach of section 6 to construct a rectangular dual
with certain orientation constraints, if it exists, in polynomial time. Further, we can
list all layouts obeying the constraints in polynomial time per layout. Our algorithms
can handle constraints limiting the allowed orientations of a shared edge between a
pair of adjacent regions, as well as more general kinds of constraints restricting the
possible orientations of the three rectangles meeting at any junction of the layout. We
also discuss the problem of finding area-universal layouts in the presence of constraints
of these types.

Motivated by architectural plans, where only a subset of the room adjacencies
might be specified, Rinsma [23] considered the following related problem: given a
tree T , does there exist a rectangular layout L such that T is a spanning tree of
the dual graph of L? She showed that such a layout always exists, but the layouts
constructed by her algorithm are not necessarily area-universal. In section 8 we modify
her construction to yield area-universal layouts, proving that for every tree T there
is an area-universal layout L such that T is a spanning tree of the dual graph of L.

2. Preliminaries. As stated above, a rectangular layout (or sometimes simply
layout) is a partition of a rectangle into a finite set of interior-disjoint rectangles. We
assume that no four regions meet in a single point, as this is true (with a notable
exception in the American Southwest) for most geographic partitions of interest. We
denote the dual graph of a layout L by G(L); G(L) has a vertex for every rectangle
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in the layout, and an edge for every pair of rectangles that abut each other along a
shared line segment. A layout L such that G = G(L) is called a rectangular dual of
graph G. G(L) is a plane triangulated graph and is unique for any layout L. Not every
plane triangulated graph has a rectangular dual, and if it does, then the rectangular
dual is not necessarily unique.

Independently, Koźmiński and Kinnen [15] and Ungar [25] proved that a plane
triangulated graph G has a rectangular dual if and only if we can augment G with four
external vertices in such a way that the extended graph E(G) has the following two
properties: (i) every interior face is a triangle and the exterior face is a quadrangle; (ii)
E(G) has no separating triangles—a separating triangle is a separating cycle (a simple
cycle that has vertices both inside and outside) of length three. If a plane triangulated
graph G allows such an augmentation, then we say that G is a proper graph. From an
extended graph E(G) of a proper graph G we can construct a rectangular dual for G
in linear time [14] (Figure 4).

An extended graph E(G) determines uniquely the vertices of its proper subgraph
G: they are the vertices that do not belong to the unique quadrilateral face of E(G).
However, for a given proper graph there might be several possible extended graphs
and hence several possible corner assignments. In many cases we assume that a corner
assignment, and hence an extended graph, has already been fixed, but if this is not
the case then it is possible to test all corner assignments in polynomial time, as there
can be only polynomially many of them.

A rectangular layout L naturally induces a labeling of its extended dual graph
E(G). If two rectangles of L share a vertical segment, then we color the corresponding
edge in E(G) blue (solid) and direct it from left to right. Correspondingly, if two
rectangles of L share a horizontal segment, then we color the corresponding edge in
E(G) red (dashed) and direct it from bottom to top (Figure 5).

This labeling has the following properties: (i) around each inner vertex in clock-
wise order we have four nonempty contiguous sets of incoming blue edges, outgoing
red edges, outgoing blue edges, and incoming red edges; (ii) the left exterior vertex
has only blue outgoing edges, the top exterior vertex has only red incoming edges, the
right exterior vertex has only blue incoming edges, and the bottom exterior vertex
has only red outgoing edges.

Such a labeling is called a regular edge labeling. It was introduced by Kant and
He [14] who showed that every regular edge labeling of an extended graph E(G)
uniquely defines an equivalence class of rectangular duals of a proper graph G. Given
any extended graph E(G), a regular edge labeling for E(G) can be found in linear
time and the rectangular dual defined by it can also be constructed in linear time [14].
Regular edge labelings have also been studied by Fusy [12, 13], who refers to them
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Fig. 4. A proper graph G, an extended graph E(G), and a rectangular dual L of E(G).
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as transversal structures. Regular edge labelings are closely related to several other
edge coloring structures on planar graphs that can be used to describe straight line
embeddings and orthogonal polyhedra [9, 10].

Two layouts L and L′ are equivalent, denoted by L ∼ L′, if they induce the same
regular edge labeling of the same dual graph. We say that a rectangular layout L with
n rectangles R1, . . . , Rn realizes a weight function w : R1, . . . , Rn → R, w(i) > 0 as a
rectangular cartogram if there exists a layout L′ ∼ L such that for any 1 ≤ i ≤ n the
area of rectangle Ri equals w(Ri). Correspondingly, we say that a layout L realizes
w as a perimeter cartogram if there exists a layout L′ ∼ L such that the perimeter
of each rectangle of L′ equals the prescribed weight. A layout L is area-universal
(perimeter-universal) if it realizes every possible weight function as a rectangular
cartogram (perimeter cartogram).

It will be convenient to define a weaker equivalence relation on layouts than
equivalence, which we call order-equivalence. For a layout L, define a partial order on
the vertical maximal segments, in which s1 ≤ s2 if there exists an x-monotone curve
that has its left endpoint on s1, its right endpoint on s2, and that does not cross any
horizontal maximal segments. This partial order can be defined by a directed acyclic
multigraph that has a vertex per maximal segment and an edge from the segment
on the left boundary of each rectangle to the segment on the right boundary of the
same rectangle; this graph is an st-planar graph, a planar directed acyclic graph in
which the unique source and the unique sink are both on the outer face. The dual
of this st-planar graph defines in a symmetric way a partial order on the horizontal
maximal segments. We say that L and L′ are order-equivalent if their rectangles and
maximal segments correspond one-for-one in a way that preserves these partial orders
(Figure 6).

Lemma 1. A rectangular layout with n rectangular regions has n − 1 maximal
(inner) segments.

Proof. A rectangular layout can be seen as a plane graph GL with vertices located
at the corners of the rectangles and edges formed by parts of the sides of the rectangles.
Each maximal segment starts and ends with a vertex of such a graph. Each degree-
three vertex is an endpoint of exactly one maximal segment. Thus the number of
maximal segments is half of the number of the vertices of degree three in GL. The
number of degree-three vertices is (4n− 4)/2 (four corners per rectangle; each degree-
three vertex corresponds to a pair of corners, and the four outer corners of the layout
are the only ones that do not contribute to degree-three vertices); hence the number
of maximal segments in L is n− 1.

Fig. 5. A rectangular layout and the regular edge labeling of its extended dual.
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Fig. 6. Two inequivalent but order-equivalent rectangular layouts.

3. There can be only one. We first show that for any combination of layout
and weight function there can be at most one rectangular cartogram, up to affine
transformations. This result is also contained in [26]. We also show that there is
at most one perimeter cartogram with a fixed bounding box. More generally, if two
geometrically different but order-equivalent layouts share the same bounding box,
there is a rectangle in one of the layouts that is larger in both of its dimensions than
the corresponding rectangle in the other layout. The proof involves a graph-theoretic
argument in an auxiliary graph constructed from the two layouts.

Thus, let L and L′ be two geometrically different order-equivalent layouts with
the same bounding box. The push graph H of L and L′ is a directed graph that
has a vertex for each rectangle in L and an edge from vertex Ri to vertex Rj if the
rectangles Ri and Rj are adjacent and the maximal segment in L that separates Ri

from Rj is shifted in L′ towards Rj and away from Ri (Figure 7).

Fig. 7. A push graph. The layout L is shown; the relative position of the maximal segments in
the equivalent layout L′ is indicated by the arrows attached to the maximal segments.

Lemma 2. The push graph for L and L′ contains a node with no incoming or no
outgoing edges.

Proof. Assume for contradiction that the push graph H has no source or sink.
ThenHmust contain a cycle. Let C be a simple cycle inH that encloses as few vertices
as possible, and assume without loss of generality that C is oriented clockwise. By
construction, C cannot contain a rightward edge immediately followed by a leftward
edge or an upward edge immediately followed by a downward edge. Hence it must
contain a rightward edge e that is followed by a downward edge. We distinguish three
cases depending on the relative positions of the bottom sides of the two rectangles L

(a) (b) (c)

L
Re

e′

L
R

e

e′
L

R
e

e′

Fig. 8. Cases for Lemma 2.
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Fig. 9. Two equivalent layouts in which corresponding rectangles have the same perimeter.

and R that are connected by e (Figure 8):

(a) If the bottom edge of L lies below the bottom edge of R, then H must contain
an edge e′ that connects L to the rectangle below R. This edge e′ shortcuts
C, contradicting the minimality of C.

(b) If the bottom edges of L and R are aligned along a maximal segment, then H
must contain an edge e′ that points downward from L. By following a directed
chain of edges starting with e′ we either reach a repeated vertex within this
chain of edges or a vertex that belongs to C. In either case we have found a
cycle that encloses fewer vertices than C, contradicting the minimality of C.

(c) If the bottom edge of L lies above the bottom edge of R, then H must
contain an edge e′ that connects the rectangle below L to R. As in case (b),
by following a chain of edges backward starting from e′ we can find a cycle
that encloses fewer vertices than C, contradicting the minimality of C.

The following result was known already [26], and also follows immediately from
Lemma 2.

Lemma 3 (see [26, Theorem 3]). For any layout L and weight function w, at
most one order-equivalent layout L′ (up to affine transformations) realizes w as a
rectangular cartogram.

Proof. Let L and L′ be order-equivalent with the same area, but geometrically
different; scale L′ horizontally and vertically so that they have the same bounding
box. By Lemma 2, one of the layouts contains a rectangle R that is strictly larger
than the corresponding rectangle of the other. Thus, R cannot have the same area in
both layouts and only one of the layouts can realize w.

For perimeter, such strong uniqueness does not hold: there are equivalent layouts
that are not affine transformations of each other in which the perimeters of corre-
sponding rectangles are equal (Figure 9). However, if we fix the outer bounding box
of the layout, the same proof method works.

Theorem 1. For any layout L and any weight function w there is at most one
layout L′ that is order-equivalent to L with the same bounding box and that realizes
w as a perimeter cartogram.

More generally the same result holds for any type of cartogram in which rectangle
sizes are measured by any strictly monotonic function of the height and width of the
rectangles.

4. Area-universality and one-sidedness. As the next lemma states, all lay-
outs are area-universal in a weak sense involving order-equivalence in place of equiv-
alence. One possible proof uses Lemma 3 to invert the map from vectors of positions
of segments in a layout to vectors of rectangle areas, along a line segment from the
area vector of L to the desired area vector. However, we omit the proof, as the result
was already known [26].
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Lemma 4 (see [26, Theorem 3]). For any layout L and weight function w, there
exists a layout L′ that has a square outer rectangle, is order-equivalent to L, and
realizes w as a rectangular cartogram.

One may find L′ by hill-climbing to reduce the Euclidean distance between the
current weight function and the desired weight function. No layout L can be locally
but not globally optimal, because within any neighborhood of L the inverse image of
the line segment connecting its weight vector to the desired weight vector contains
layouts that are closer to w. Alternatively, one can find L′ by a numerical procedure
that follows this inverse image by inverting the Jacobean matrix of w at each step.
We do not know whether it is always possible to find L′ exactly by an efficient com-
binatorial algorithm (as may easily be done for the subclass of sliceable layouts), or
whether the general solution involves roots of high-degree polynomials that can be
found only numerically.

Theorem 2. The following three properties of a layout L are equivalent:
1. L is area-universal.
2. Every layout that is order-equivalent to L is equivalent to L.
3. L is one-sided.

Proof. We show that property 2 implies property 1, that the negation of property
2 implies the negation of property 1, that property 3 implies property 2, and that the
negation of property 3 implies the negation of property 2.

2 ⇒ 1: Let L be a layout satisfying the property that every layout that is order-
equivalent to L is equivalent to L, and let w be an arbitrary weight function; we must
show that L realizes w as a rectangular cartogram. By Lemma 4, there exists a layout
L′ that is order-equivalent to L and realizes w; by the assumption, L′ is equivalent to
L, as desired.

(¬2) ⇒ (¬1): Suppose that there exists a layout L′ that is order-equivalent but
inequivalent to L. By scaling horizontally and vertically, we may assume that L and
L′ have the same bounding box. Let w be the weight function given by the areas of
the rectangles in L′. By Lemma 3, L′ is the only layout that is order-equivalent to
L and realizes w as a rectangular cartogram; therefore, there can be no layout that
is equivalent to L and realizes w as a rectangular cartogram, showing that L is not
area-universal.

3 ⇒ 2: Let L be a one-sided layout, and let L′ be order-equivalent to L. Then
L′ must be one-sided, because the property that each maximal segment is a side of a
rectangle is preserved under order-equivalence. For every pair of adjacent rectangles
R1 and R2 in L or in L′, R1 and R2 are adjacent with a given orientation if and only
if they are on opposite sides of a common maximal segment with the given orienta-
tion, and this property of being on opposite sides of a common maximal segment is
also preserved by order-equivalence, so order-equivalence preserves the adjacencies of
rectangles in L and L′.

(¬3) ⇒ (¬2): If L is not one-sided, then let s be a maximal segment of L that
has more than one rectangle on both sides of s; without loss of generality assume
that s is horizontal. We may form an order-equivalent but inequivalent layout L′ by
moving the vertical maximal segments that abut the top side of s rightward and the
vertical maximal segments that abut the bottom side of s leftward until the order of
their endpoints changes, as in Figure 6.

5. Finding perimeter cartograms. Although our proof of uniqueness for rect-
angular cartograms generalizes to perimeter, our proof that any layout and weight
function has a realization as an order-equivalent cartogram does not generalize: there
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exist one-sided layouts and weight functions that cannot be realized as a perimeter
cartogram (Figure 10). Nevertheless, one can test in polynomial time whether a so-

2
5

2
2

2

Fig. 10. The outer rectangles each contribute at most one unit of shared boundary to the
perimeter of the central rectangle, which is too large to be realized.

lution exists for any layout and weight function. The technique involves describing
the constraints on the perimeters of rectangles as linear equalities that reduce the
dimension of the space of layouts to at most two, and forming a low-dimensional lin-
ear program from inequality constraints expressing the equivalence to L of the other
layouts within this low-dimensional space.

Theorem 3. For any layout L and any weight function w we can find a layout
L′ that is equivalent to L and that realizes w as a perimeter cartogram, if one exists.

Proof. We can specify a layout by supplying one coordinate per maximal segment;
together with the length and height of the bounding box this gives us a set of n+ 1
real values to be determined in a way consistent with the given weight function and
layout. Each value of the weight function determines an equality constraint among
these variables, stating that a certain linear combination of differences of segment
positions equals the given perimeter. The constraints that the resulting layout be
equivalent to L may be translated into linear inequality constraints, stating that the
segment on the left side of each rectangle must have a smaller coordinate value than
the segment on the right, the segment on the bottom side of each rectangle must
have a smaller coordinate value than the segment on the top, and that the three-way
junctions appearing along any maximal segment of the layout appear in the correct
order.

The equality constraints determine a linear subspace S of Rn+1 which we may find
by Gaussian elimination. If there exists a layout L′ realizing w, then, by Theorem 1, S
contains only a single point with the same bounding box height and width as L′, and
hence has dimension at most two; conversely, if the dimension of this linear subspace
is greater than two, then we may immediately infer from Theorem 1 that no solution
exists.

If the dimension of the subspace is at most two, then, on the other hand, we may
translate all the inequality constraints in R

n+1 into linear inequality constraints in
this two-dimensional subspace and solve the resulting two-dimensional linear program
in linear time using standard algorithms (e.g., see [16]).

The same algorithm can be used to find an order-equivalent layout rather than
an equivalent layout by restricting the inequality constraints to the subset that deter-
mines order-equivalence.

6. Finding one-sided layouts. Recall that every proper triangulated plane
graph has a rectangular dual, but not necessarily a one-sided rectangular dual. Since
one-sided duals are area-universal, it is of interest to find a one-sided dual for a
proper graph if one exists. Our overall approach is, first, to partition the graph on its
separating four-cycles; second, to represent the family of all layouts for a proper graph
as a distributive lattice, following Fusy [12, 13]; third, to represent elements of the
distributive lattice as partitions of a partial order according to Birkhoff’s theorem [2];
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Fig. 11. An extended graph with a nontrivial separating four-cycle (left), its outer separation
component (center), and its inner separation component (right).

fourth, to characterize the ordered partitions that correspond to one-sided layouts;
and fifth, to search in the partial order for partitions of this type. Our algorithms
are not fully polynomial, but they are polynomial whenever the number of separating
four-cycles in the given proper graph is bounded by a fixed constant, or more generally
when such a bound can be given separately within each of the pieces found in the
partition we find in the first stage of our algorithms.

6.1. Eliminating separating four-cycles. Recall that a separating four-cycle
in a plane graph G is a cycle of four vertices that has other vertices both inside and
outside it. We say that a separating four-cycle is nontrivial if the number of vertices
inside it is greater than one. Although a plane graph may have a quadratic number
of separating four-cycles (for instance, this is true for the complete bipartite graph
K2,n−2) it is possible to represent all separating four-cycles in linear space by finding
all maximal complete bipartite subgraphs K2,i of G: a separating four-cycle is exactly
a four-cycle in one of these graphs that is not a face of G. Such a representation may
be found in linear time [8]. In an extended graph E(G), we allow the external vertices
to be included as part of its separating four-cycles.

If G is a proper graph with a corner assignment E(G), and C is a nontrivial
separating four-cycle in E(G), then we may form two minors of G, the separation
components of G with respect to C (see Figure 11). The inner separation component
GC is the subgraph induced by the vertices interior to the cycle, and its extended graph
E(GC) is the subgraph induced by the vertices on or interior to the cycle, interpreting
the vertices of C as a corner assignment for its interior vertices. The outer separation
component E(G) \ GC is formed by replacing the interior of C by a single vertex. We
define a minimal separation component of G to be a minor of G formed by repeatedly
splitting larger graphs into separation components until no nontrivial separating four-
cycles remain. A partition of E(G) into minimal separation components may be found
in linear time by applying the algorithm for finding all maximal complete bipartite
subgraphs K2,i as described above, and then for each such subgraph separating the
exterior of the K2,i subgraph from each of the subgraphs within one of the inner faces
of the K2,i subgraph.

Lemma 5. An extended graph E(G) is dual to a one-sided layout if and only if
both its inner and outer separation components are dual to one-sided layouts.

Proof. In any layout dual to E(G), the region enclosed by the four rectangles of the
separating cycle C must be a four-sided polygon, that is, a rectangle. If we modify
a one-sided layout of E(G) by replacing the contents of this rectangle by a single
rectangular area, or by removing the exterior of this rectangle, we obtain one-sided
layouts of E(G) \ GC and E(GC), respectively.
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Fig. 12. A move formed by recoloring the interior of an alternatingly colored four-cycle in a
regular edge labeling, and its effect on the dual rectangular layout. In the case shown, the cycle is
not separating: it contains a single edge of G, but no vertices.

Conversely, suppose that we have one-sided layouts of both E(G)\GC and E(GC).
We may transform the layout of the inner separation component E(GC) so that its
bounding box matches the rectangle in the center of C in the layout for the outer
separation component E(G) \ GC , and combine these two layouts to obtain a layout
of E(G). The adjacencies between rectangles and maximal segments of the combined
layout are unchanged except for the segments bounding the central rectangle. By the
one-sidedness of the layout for the outer separation component, each such segment
forms a side of one of the rectangles dual to the vertices of C (the inner rectangle on
the other side of the segment has sides that are subsets of the sides of the rectangles
dual to C), and this property remains true in the combined layout, which is therefore
one-sided.

Corollary 1. An extended graph E(G) is dual to a one-sided layout if and only
if all of its minimal separation components are dual to one-sided layouts.

Thus, if we seek to determine whether an extended graph E(G) is dual to a one-
sided layout, we may assume without loss of generality that E(G) has no nontrivial
separating four-cycles. The same idea of cutting the input on separating four-cycles
has been previously applied to the problem of finding sliceable duals for a given proper
graph [6, 17].

6.2. The lattice of regular edge labelings. Fusy [12, 13] (see also [24]) defines
a family of moves by which one regular edge labeling can be changed to another. Let
C be a four-cycle in E(G) in which the colors alternate between red and blue around
the cycle. Then a move consists of reversing the colors of the edges within C; when
such a move is made, there can be only one way of setting the orientations of the
recolored edges. In a graph with no nontrivial separating four-cycles, each move
changes the edge labeling either of a single edge (as shown in Figure 12) or of all four
edges surrounding a degree-four vertex. At each of the two or five vertices adjacent
to the recolored edges, one of the boundaries between incoming red edges, incoming
blue edges, outgoing red edges, and outgoing blue edges shifts by one position in the
cyclic ordering of edges around the vertex. These shifts are the same direction for
each affected vertex, and can also be interpreted as twisting the boundary between
two rectangles in the dual layout by 90 degrees in the opposite direction. Consider
the graph with one vertex per regular edge labeling of E(G) and with an edge between
every two labelings connected by one of these moves; direct each edge of this graph
from the labeling in which the boundaries are more clockwise to the labeling in which
the boundaries are more counterclockwise. Then this graph of labelings is acyclic and
defines a partial ordering on the family of all regular edge labelings of E(G). Figure 13
shows an example in which the edges in the graph of labelings are directed from the
lower labelings to the higher ones.
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Fig. 13. The family of rectangular layouts dual to a given extended graph E(G), the correspond-
ing regular edge labelings, and the corresponding partial order partitions. Two layouts are shown
connected to each other by an edge if they differ by reversing the color within a single alternatingly
colored four-cycle; these moves are labeled by the identity of the edge or vertex contained by the
four-cycle.

Moreover, as Fusy shows, the partial order defined in this way is a distributive
lattice. A lattice is a partially ordered set in which each pair of elements (a, b) has
a unique smallest upper bound (such an element is called the join of a and b and is
denoted a ∨ b) and a unique largest lower bound (such an element is called the meet
of a and b and is denoted a ∧ b). A distributive lattice is a lattice in which the join
and the meet operations are distributive over each other: a∨ (b∧ c) = (a∨ b)∧ (a∨ c)
and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). An element b of a lattice is said to cover an
element a if a < b and b are immediate neighbors in the lattice, that is, a < b and
there exists no element c such that a < c < b. In the distributive lattice defined in
this way from the regular edge labelings of E(G), the covering pairs are exactly the
pairs of labelings connected by Fusy’s moves. The minimal element of the lattice may
be found from any lattice element by repeatedly performing clockwise moves until no
more such moves are possible, and the maximal element may similarly be found by
repeatedly performing counterclockwise moves. We say that a sequence of moves of
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the latter type, in which each move is counterclockwise, is monotone.

Birkhoff’s representation theorem [2] states that the elements of any finite dis-
tributive lattice may be represented by sets in such a way that the join and meet
operations may be represented by unions and intersections of sets. More precisely, let
P be the partial order induced by the subset of the lattice consisting of elements that
have exactly one predecessor in the covering relation. Then we may represent any
lattice element x by a partition of the partial order into two sets (L(x), U(x)), where
L(x) consists of the members y of P with y ≤ x and U(x) consists of the remaining
members of P . Clearly, L(x) is downward-closed (if y ≤ z in P and z ∈ L(x), then
y ∈ L(x)) and conversely U(x) is upward-closed. If x and y are two members of the
distributive lattice, then x ≤ y if and only if L(x) ⊂ L(y) if and only if U(x) ⊃ U(y),
x∧y is represented by the partition (L(x)∩L(y), U(x)∪U(y)), and x∨y is represented
by the partition (L(x)∪L(y), U(x)∩U(y)). The lattice itself can be reconstructed as
the set of all partitions of P into downward- and upward-closed subsets (L,U): each
such partition corresponds in this way to a lattice element x.

6.3. The partial order of flippable items. We have seen that the layouts
of an extended graph E(G) may be described as partitions of a partial order P into
downward-closed and upward-closed subsets; P is the order induced from the dis-
tributive lattice of layouts by the subset of layouts that have exactly one downward
neighbor. Our goal in this section is to describe a partial order equivalent to P in a
more concrete way, with elements that are not whole layouts themselves but rather
correspond to individual features of rectangular layouts and their dual graphs in a
way that helps us relate the distributive lattice operations more closely to their effect
on a layout. Our more concrete partial order, and the partitions of it into subsets
L(L) and U(L) that correspond to each rectangular layout L, are depicted alongside
the layouts in Figure 13.

Define a flippable item in the extended graph E(G) to be either a degree-four
vertex v or an edge e that is not adjacent to a degree-four vertex, with the additional
property that there exists some regular edge labeling of E(G) in which the four-cycle
surrounding v or e is alternately colored and oriented. Thus, a flippable item is the
edge that changes color, or the endpoint of a set of four edges that change color, in
some move of E(G). If x is a flippable item, and L is a rectangular layout represented
by an element of the distributive lattice of labelings, define fx(L) as the number
of moves involving x on any monotone sequence of moves from the minimal lattice
element to L.

The numbers fx(L) are in fact equivalent to the potentials defined by Felsner [11].
This equivalence can be shown using the theory developed by both Fusy [13] and
Felsner [11]. The following lemma can also be found in [11] for potentials, but, for
the sake of clarity, we include a proof using our notation.

Lemma 6. The number fx(L) is well defined and independent of the monotone
path chosen to reach L from the minimal element.

Proof. By Birkhoff’s theorem, the length of any two upward paths between two
elements of a distributive lattice is equal (it is equal to the size of the difference of
the downward-closed subsets of the partial order representing those elements). By
results of Birkhoff and Kiss [3], any three elements a, b, c of a distributive lattice have
a unique median m(a, b, c) = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)
belonging to shortest paths between any two of the three items (Figure 14). We prove
by induction the following strengthening of the lemma: let L ≤ L′ be two layouts.
Then for any item x, and any two monotone paths from L to L′, x is flipped the same
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Fig. 15. Notation for the proof of Lemma 6.

number of times on both paths. Note that the number of times x is flipped, mod 4,
must be the same on both paths, as the color and orientation of x may be determined
from the number of flips mod 4.

As base cases for the strengthening, if the distance from L to L′ is one, there can
be only one monotone path, and if the distance is two, each path can flip x only once
while the number of flips of x on both paths must be the same mod 4, so x must be
flipped equally often. To finish the induction, suppose that we have two monotone
paths π1 from L to L1 and π2 from L to L2 such that we can perform one more
upward flip F1 from L1 to L′ and a flip F2 from L2 to L′. We must show that the
number of flips of x on the two paths π1F1 and π2F2 are equal. Let m = m(L,L1,L2).
Then there must exist a path π3 from L to m, and flips F3 and F4 from m to L1 and
L2, respectively, such that π3F3 and π3F4 are monotone paths from L to L1 and L2,
respectively. By induction the number of flips of x on π1 equals the number of flips of
x on π3F3, and the number of flips of x on π2 equals the number of flips of x on π3F4.
Thus, the numbers of flips of x on L1 and L2 can differ only by one, and the numbers
of flips of x on π1F1 and π2F2 can differ only by two. But again, these numbers of
flips must be equal mod 4, so the result holds (see Figure 15).

Lemma 7. The number fx(L) is O(n), where n is the number of rectangles in the
layout.

Proof. Define a flipping graph where the nodes are the degree-four vertices and
nondegree-four edges of G and where two nodes are connected if they belong to the
same triangle of G. In any monotone sequence of moves, whenever a move on x
increases fx(L), x cannot be flipped again until all its neighbors in the flipping graph
have been flipped. Therefore, if x and y are adjacent in the flipping graph, then fx(L)
and fy(L) are always within one of each other. But because the outer edges (or outer
degree-four vertices) of the layout can never change color or orientation, the flippable
items adjoining them can have fx at most equal to one. Therefore, the maximum
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value of fx(L) for any x is at most the length of the shortest path in the flipping
graph to one of the boundary nodes, and is O(n).

Let L̂ denote the maximal element in the distributive lattice of labelings. We
define a partial order P (G) that has as its elements the pairs (x, i), where x is a
flippable element and i is an integer satisfying 0 ≤ i < fx(L̂). Thus, if element x has
k different states in different layouts, then it participates in k−1 pairs of P ; the pairs
correspond not to states but to transitions between states. In this partial order P (G),
we define (x, i) ≤ (y, j) when for all layouts L with fx(L) ≤ i, it holds that fy(L) ≤ j;
that is, it is not possible to move fy from j to j + 1 prior to moving fx from i to
i + 1. We may represent a layout L by the partition of P (G) into two subsets L(L)
and U(L), where (x, i) ∈ L(L) when i < fx(L) and (x, i) ∈ U(L) otherwise.

Lemma 8. We can construct P (G) in polynomial time.

Proof. We may compute fx(L̂) for each x, determining the set of elements in P (G),
by repeatedly performing downward moves in the lattice of layouts until we reach the
minimal layout, repeatedly performing upward moves from there until we reach the
maximal layout, and counting the number of times a move involves each element x.
The partial order of the pairs (x, i) may be determined from the neighboring objects
of x in E(G): we may make an upward move involving pair (x, i) in layout L if there
is no pair (x, i′) in U(L) with i′ < i and when the regular edge labeling corresponding
to L has the boundaries between incoming red edges, incoming blue edges, outgoing
red edges, and outgoing blue edges in a position that would allow such a move at each
of the vertices affected by a move at x. Each condition that one of these boundaries
be in an appropriate position can be characterized by a pair (x′, i′) that must be
moved prior to (x, i) in any monotone sequence of moves starting from the minimal
layout, where x and x′ are two features of E(G) that belong to the same triangle. The
minimal pair (x, i) in U(L) can be characterized by a constraint that (x, i′) < (x, i)
in the partial order for each i′ < i. Thus, by such local considerations, we may find
O(n2) order relations between pairs in P (G) that include all covering relations in
P (G). These order relations define a directed acyclic graph from which the partial
order P (G) itself may be recovered as the transitive closure.

In Figure 13, each layout is placed next to the corresponding partition of P (G)
into two subsets L(L) and U(L). Among the eight layouts in the figure, five of them
have exactly one downward neighbor, and these five induce a partial order that is
isomorphic to P (G). This isomorphism is no coincidence.

Lemma 9. P (G) is order-isomorphic to the partial order P defined in Birkhoff’s
representation theorem, and the representation of a layout as a partition of this partial
order is the same as the representation in Birkhoff’s representation theorem.

Proof. We correspond elements of P (G) one-for-one with elements of P : each
element of P is a layout L with only one downward move, to a layout L′. If this move
is on item x, then we associate L with the pair (x, i), where i = fx(L) − 1 = fx(L′).
This pair (x, i) is the single member of the singleton set L(L) ∩U(L′). Conversely, if
(x, i) is any pair in P (G), then we may associate with (x, i) a layout L that has only one
downwardmove, as follows: starting from L̂, repeatedly perform downward moves that
do not reduce fx(L) to i or below, until no more such moves exist; let L be the resulting
layout. Each move between two layouts changes both the Birkhoff representation
(L,U) and the representation (L(L), U(L)) in corresponding ways. Thus, the two
representations are the same. Since P (G) and P have a one-to-one correspondence
between elements that causes the distributive lattices of their partitions into downward
and upward components to have the same elements and the same covering relation,
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they must be order-isomorphic.
Thus, we may search through the space of all possible layouts for a given extended

graph by instead searching through partitions of P (G) into a downward-closed and
an upward-closed subset; the possible layouts correspond one-for-one with partitions
of this type. The layout represented by a given partition (L,U) may be found by
starting from the bottommost layout in the partial order, and repeatedly performing
upward moves that do not increase fx(L) (where x is the flippable item involved in
the move) to a value i such that (x, i− 1) ∈ U , until no more such moves are possible.
In the following sections we will simply denote P (G) by P to simplify notation.

6.4. Order-theoretic characterization of one-sidedness. We say that a
flippable item x is free in a layout L if there is a move on x available in L, and
fixed otherwise. Let F (L) denote the set of free flippable items for L. The follow-
ing characterization of this set follows immediately from our representation of the
distributive lattice of layouts in terms of the partial order P .

Lemma 10. F (L) consists of the items x such that some pair (x, i) is a minimal
element of U(L) or a maximal element of L(L).

We may then characterize the one-sided layouts in terms of F (L):
Lemma 11. Let layout L be dual to an extended graph E(G). Then L is one-sided

if and only if F (L) contains no edges of G.
Proof. If L is not one-sided, let s be a maximal segment of L with multiple

rectangles on both of its sides. Then some edge e of the layout from which s is formed
must have as one of its endpoints a T-junction formed by the corners of two rectangles
on one side of s, and must have on the other endpoint a T-junction formed by the
corners of two rectangles on the other side of s, as shown in Figure 12. These four
rectangles form an alternatingly colored cycle in the regular edge labeling dual to L,
containing a single edge dual to e; thus, one may perform a move on this cycle that
recolors e, as shown in the figure, and e ∈ F (L). Conversely, if an edge e belongs to
F (L), then the layout edge dual to e must be part of a segment that (because of the
alternating coloring of the regular edge labeling cycle surrounding e) can be extended
in both directions to a maximal segment of L that is not one-sided. Thus, in this
case, L is itself not one-sided.

Hence, the problem of finding a one-sided layout for E(G) becomes equivalent to
one of searching for a partition (L(L), U(L)) of the partial order P in which the free
items consist only of degree-four vertices.

As special cases, it follows from Lemma 11 that for an extended graph with no
flippable degree-four vertex, a one-sided layout exists if and only if there is exactly
one possible layout, for only in that case can F (L) be empty. Thus, we may find
such a layout by constructing any layout and testing whether it is one-sided. In an
extended graph with a single flippable degree-four vertex, a one-sided layout must
be either the minimal or the maximal element of the distributive lattice of layouts,
for only those two elements can correspond to partitions (L,U) in which L has no
maximal elements or U has no minimal elements. Thus, in this case, we need merely
construct both layouts and test them for one-sidedness.

Lemma 12. Let E(G) be 4-connected. Then E(G) has more than one regular edge
labeling.

Proof. Consider a regular edge labeling of E(G). Let C be a cycle of G that
is smallest, where the size of a cycle is the number of vertices on or inside C, with
the property that it consists of four nonempty chains: a directed chain of red edges,
followed by a directed chain of blue edges, followed by another directed chain of red
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edges, and another directed chain of blue edges. Note that each pair of chains with the
same color must necessarily have opposite orientations. Since E(G) is 4-connected, C
must exist, because the outer edges of G have this property. We claim that each chain
of C consists of at most one edge. This would imply that this regular edge labeling
has a move and the stated result follows. Assume that C contains a chain with more
than one edge. Assume without loss of generality that this chain consists of red edges.
Choose an internal vertex of this chain and follow a directed sequence π of blue edges
(either consistently following the direction of the edges or the opposite direction) from
this vertex going into C until it hits a vertex on C again. The endpoints of π cannot
be on the same chain, for then the order of the different types of edges around one
of these vertices would be incorrect. One of the two cycles formed by C and π has
the property described above and is smaller than C, contradicting the fact that C is
smallest.

Corollary 2. Let E(G) be 5-connected. Then every rectangular dual of E(G) is
not area-universal.

6.5. Searching for extreme sets. We have seen in the previous section that
one-sided layouts correspond to partitions (L,U) in which the maximal elements of L
and the minimal elements of U correspond to degree-four vertices of G. Each vertex v
of G can take only one of these roles: it can be a maximal element of L or a minimal
element of U , but not both, because only one move on v is possible in any layout.
Thus, if G has k degree-four vertices, then either the maximal elements of L or the
minimal elements of U consist of at most k/2 members of P . This motivates the
following algorithm for finding one-sided layouts dual to a given graph G:

For each possible extended graph E(G) of the given graph G, and each minimal
component G′ of the extended graph, test whether G′ has a one-sided layout. If every
minimal component has a one-sided layout, form a layout for E(G) by gluing these
component layouts together. If some minimal component does not have a one-sided
layout, then neither does E(G). To test whether G′ has a one-sided layout, let k be
the number of degree-four vertices in G′, and loop through all sets S consisting of at
most k/2 members of P (G′) such that each member of S is a pair (x, i), where x is a
degree-four vertex of G and all such degree-four vertices are distinct. For each set S of
this type, form a partition (L1, U1) in which L1 consists of all elements in the partial
order that are less than or equal to an element in S; if U1 has no minimal elements
corresponding to single edges of G, then return the one-sided layout corresponding
to (L1, U1). Otherwise, form another partition (L2, U2) in which U2 consists of all
elements in the partial order that are greater than or equal to an element in S. If
L2 has no maximal elements corresponding to single edges of G, return the one-sided
layout corresponding to this partition. If neither partition formed in this way from
each of the sets S gives rise to a one-sided layout, then G′ has no one-sided layout.

Theorem 4. Let K be the maximum number of flippable degree-four vertices in
any minimal separation component of G. Then the algorithm described above finds a
one-sided layout dual to G, if one exists, in time O(nK/2+O(1)).

Proof. The correctness of the algorithm follows from the sequence of lemmas
above. The choice of the extended graph E(G) multiplies the number of steps of
the algorithm by a factor of O(n4). Within each minimal component G′ we loop
through O(nK/2) sets S; there are O(2k) ways to choose a set of at most k/2 distinct
degree-four vertices, and there are O(nk/2) ways to choose numbers for each degree-
four vertex (note that we hide a constant in the base). For each set we perform a
polynomial amount of work. Thus, the total time is as stated.
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6.6. Fixed-parameter tractability. Although conceptually straightforward,
the algorithm of Theorem 4 is unsatisfactory from the point of view of fixed-parameter
tractability [18]: not just the constant factor in the O-notation, but also the exponent
of n, grows with the parameter K. We address this shortcoming by describing an
alternative fixed-parameter tractable algorithm for the same problem.

In a layout L of an extended graph E(G) with no nontrivial separating four-
cycles, define an ordered pair (v, w) of degree-four vertices to be a stretched pair if
there is no sequence of upward moves from L that moves v without moving w and no
sequence of downward moves from L that moves w without moving v (see Figure 16).
That is, if all relevant pairs belong to the partial order P , (v, fv(L)) > (w, fw(L))
and (v, fv(L) − 1) > (w, fw(L) − 1). We introduce a special symbol ∅, and we also
define (v, ∅) to be a stretched pair if v is in its maximal state (fv(L) = fv(L̂)), and
we define (∅, w) to be a stretched pair if w is in its minimal state (fw(L) = 0).
Thus, the stretched pairs form a directed graph on the vertex set V consisting of the
degree-four vertices together with the special symbol ∅. We say that a stretched pair
(v, w) fixes an edge e if (v, fv(L) − 1) ≥ (e, fe(L) − 1) (or v = ∅ and fe(L) = 0) and
(w, fw(L)) ≤ (e, fe(L)) (or w = ∅ and fe(L) = fe(L̂)).

Lemma 13. If an edge e is fixed by a stretched pair, then e cannot belong to
F (L).

Proof. Let the stretched pair be (v, w). Because (v, fv(L) − 1) ≥ (e, fe(L) − 1)
(or v = ∅ and fe(L) = 0), (e, fe(L)− 1) is not a maximal element of L(L). Similarly,
(e, fe(L)) is not a minimal element of U(L), because (w, fw(L)) ≤ (e, fe(L)) (or w = ∅
and fe(L) = fe(L̂)). Therefore, e is fixed in L.

Lemma 14. Upward moves on flippable items that are part of the same triangle
of G have a strict cyclical order.

Proof. First assume that the triangle consists of three edges e1, e2, and e3 not
incident to degree-four vertices. In every valid regular edge labeling, a triangle (i)
cannot be monocolored and (ii) the two edges with the same color must both be
oriented toward or from the shared vertex. Let e1 and e2 have the same color in
a layout L. Any move on e3 would violate property (i). Furthermore, it is easy to
verify that we cannot do an upward move on both e1 and e2 (if this is allowed by
the surrounding edges). Assume that we can do an upward move on e1 resulting in

vw vw

Fig. 16. Two layouts with a stretched pair (v, w). From both layouts there is no sequence of
upward moves that moves v without moving w and no sequence of downward moves that moves w
without moving v.
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L′. In L′ we cannot do a move on e2. Another upward move on e1 can be performed
only after performing upward moves on all surrounding edges, including e2 and e3.
Hence we can do an upward move only on e3. Continuing this argumentation, the
sequence of upward moves on e1, e2, and e3 from L must be e1, e3, e2, e1, . . . . Hence
the upward moves on e1, e2, and e3 must follow a strict cyclical order. If a triangle
contains a degree-four vertex, then only two flippable items v and e are part of this
triangle. Using similar argumentation as above, upward moves on v and e have to
alternate and hence these moves also must follow a strict cyclical order.

Lemma 15. Let (y, j) cover (x, i) in the partial order P . Then x and y belong to
the same triangle of G.

Proof. If (y, j) covers (x, i), then there must exist a monotone sequence of moves,
starting from the minimal element of the distributive lattice of regular edge labelings,
such that the penultimate move of the sequence changes fx(L) from i to i + 1 and
the final move of the sequence changes fy(L) from j to j + 1. But if x and y did
not belong to the same triangle of G, then the four-edge cycle surrounding y would
not have its colors or orientation changed by the move on x, and the final move on y
could have been performed one step earlier, contradicting the assumption that (y, j)
covers (x, i) in the partial order.

Lemma 16. Suppose (x, i), (x, i+ 1), (y, j), and (y, j + 1) all belong to P . Then
(x, i) ≤ (y, j) if and only if (x, i + 1) ≤ (y, j + 1).

Proof. By Lemma 15 it suffices to prove that, if (y, j) covers (x, i), then (y, j+1) ≥
(x, i+1). For, if we can prove this, then the opposite implication, that if (y, j+1) covers
(x, i + 1), then (y, j) ≥ (x, i), will follow by clockwise-counterclockwise symmetry.
And, if (y, j) ≥ (x, i) but (x, i) and (y, j) do not form a covering pair, then we can
find a chain of covering pairs connecting them in the partial order, and this result will
prove that there exists a corresponding chain of order-related pairs four steps higher,
proving that (y, j + 1) ≥ (x, i + 1). By Lemmas 14 and 15, upward moves on x and
y alternate if (y, j) covers (x, i). It easily follows that (x, i) ≤ (y, j) if and only if
(x, i + 1) ≤ (y, j + 1).

Lemma 17. Layout L is one-sided if and only if every flippable edge e is fixed by
some stretched pair.

Proof. If e is in its minimal state in L, let v = ∅; otherwise, (e, fe(L)− 1) belongs
to L(L) and there is a maximal element (v, fv(L)− 1) of L(L) above it in the partial
order. If e is in its maximal state in L, let w = ∅; otherwise, (e, fe(L)) belongs
to U(L) and there is a minimal element (w, fw(L)) of U(L) below it in the partial
order. We claim that (v, w) is a stretched pair. For, if all relevant pairs exist in P ,
then P contains a chain of inequality (v, fv(L)) ≥ (e, fe(L)) ≥ (w, fw(L)), where the
first inequality arises by Lemma 16 and the second comes from the construction of
w. Using Lemma 16, we also get (v, fv(L) − 1) ≥ (w, fw(L) − 1), so (v, w) must be
stretched in L.

Lemma 18. If an edge e is fixed by a stretched pair (v, w) in layout L, then e is
fixed in any layout for which (v, w) are stretched.

Proof. Assume that (v, w) are stretched in L′, so that (v, fv(L′)) ≥ (w, fw(L′)).
This means that fv(L′) − fv(L) = fw(L′) − fw(L), because if fv(L′) − fv(L) <
fw(L′)− fw(L), then, by Lemma 16, (v, fv(L)− 1) ≥ (w, fw(L)), which implies that
L does not exist. Also, because of Lemma 16 and (v, fv(L)) ≥ (w, fw(L)), it must hold
that fv(L′)− fv(L) ≤ fw(L′)− fw(L). Now let k = fv(L′)− fv(L) = fw(L′)− fw(L).
Because e is fixed in L, we get that (e, fe(L) − 1) ≤ (v, fv(L) − 1) and (w, fw(L)) ≤
(e, fe(L)). By Lemma 16 we also get that (e, fe(L) + k − 1) ≤ (v, fv(L′) − 1) and
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(w, fw(L′)) ≤ (e, fe(L) + k). This implies that k = fe(L′) − fe(L), from which the
lemma follows.

Lemma 19. Let H consist of a set of pairs (v, w) that should be stretched. Then
in polynomial time we may determine whether there exists a layout L of E(G) in which
all pairs in H are stretched.

Proof. We perform a sequence of upwards moves, starting from the minimal
layout, until either a layout satisfying the requirements of H is found or we reach
the maximal layout L̂. At each step, if the current layout L does not already meet
the requirements, then it must contain a pair (v, w) that should be stretched but are
not. If v = ∅, we terminate the search, as no sequence of upward moves can make w
minimal if it is not already. Otherwise, we find a pair (x, fx(L)) that is minimal in
U(L) and below the pair (v, fv(L)) (possibly v = x), and move upward on x. Such
a move must eventually be made to reach any layout that meets the requirements of
L and is above L in the distributive lattice, so each move preserves the set of valid
solutions and a solution will eventually be found if one exists.

Theorem 5. Let K be the maximum number of degree-four vertices in any
minimal separation component of E(G), as before. Then it is possible to find a one-

sided layout for E(G), if one exists, in time 2O(K2)nO(1).

Proof. As above, we test each minimal separation component separately. Within
each minimal separation component, we try all possible choices of the information H ,
consisting of a set of stretched pairs. For each value of H , we determine whether the
stretched pairs in H fix all of the edges in E(G). There are 2O(K2) choices, and each
can be tested in polynomial time by Lemma 19.

It may be possible to improve the 2O(K2) term in this time bound to 2O(K logK)

by using the embedding structure of E(G) to restrict the graph of stretched pairs to
be a planar graph, but we have not worked out the details of such an improvement.

7. Orientation-constrained layouts. The approach of section 6, representing
layouts as partitions of a partial order into downward- and upward-closed subsets
using the lattice structure of regular edge labelings and Birkhoff’s representation
theorem, can be used to impose further restrictions on the layouts. In this section
we show how to deal with constraints on the orientations of the adjacencies of the
regions of a layout. We initially assume that E(G) has only trivial separating four-
cycles. Afterward we show how to deal with nontrivial separating four-cycles of E(G).
Finally we combine orientation constraints with one-sidedness.

7.1. Sublattices from quotient quasi orders. We first consider a more gen-
eral order-theoretic problem. Let P be a partial order and let C be a (disconnected)
undirected constraint graph having the elements of P as its vertices. We say that a
partition of P into a lower set L and an upper set U respects C if there does not exist
an edge of C that has one endpoint in L and the other endpoint in U . As we now
show, the partitions that respect C may be described as a sublattice of the distributive
lattice J(P ) defined via Birkhoff’s representation theorem from P .

We define a quasi order (that is, reflexive and transitive binary relation) Q on the
same elements as P , by adding pairs to the relation that cause certain elements of P
to become equivalent to each other. More precisely, form a directed graph that has
the elements of P as its vertices, and that has a directed edge from x to y whenever
either x ≤ y in P or xy is an edge in C, and define Q to be the transitive closure of
this directed graph: that is, (x, y) is a relation in Q whenever there is a path from x
to y in the directed graph. A subset S of Q is downward-closed (respectively, upward-
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closed) if there is no pair (x, y) related in Q for which S ∩ {x, y} = {y} (respectively,
S ∩ {x, y} = {x}).

Denote by J(Q) the set of partitions of Q into a downward-closed and an upward-
closed set. Each strongly connected component of the directed graph derived from
P and C corresponds to a set of elements of Q that are all related bidirectionally to
each other, and Q induces a partial order on these strongly connected components.
Therefore, by Birkhoff’s representation theorem, J(Q) forms a distributive lattice
under set unions and intersections.

Lemma 20. The family of partitions in J(Q) is the family of partitions of P into
lower and upper sets that respect C.

Proof. We show the lemma by demonstrating that every partition in J(Q) corre-
sponds to a partition of J(P ) that respects C, and the other way around.

In one direction, let (L,U) be a partition in J(Q). Then, since Q ⊃ P , it follows
that (L,U) is also a partition of P into a downward-closed and an upward-closed
subset. Additionally, (L,U) respects C, for if there were an edge xy of C with one
endpoint in L and the other endpoint in U , then one of the two pairs (x, y) or (y, x)
would contradict the definition of being downward-closed for L.

In the other direction, let (L′, U ′) be a partition of P into upper and lower sets
that respect C, let (x, y) be any pair in Q, and suppose for a contradiction that x ∈ U ′

and y ∈ L′. Then there exists a directed path from x to y in which each edge consists
either of an ordered pair in P or an edge in C. Since x ∈ U ′ and y ∈ L′, this path
must have an edge in which the first endpoint is in U ′ and the second endpoint is in
L′. But if this edge comes from an ordered pair in P , then (L′, U ′) is not a partition
of P into upper and lower sets, while if this edge comes from C, then (L′, U ′) does
not respect C. This contradiction establishes that there can be no such pair (x, y), so
(L′, U ′) is a partition of Q into upper and lower sets, as we needed to establish.

If P and C are given as input, we may construct Q in polynomial time: by finding
strongly connected components of Q we may reduce it to a partial order, after which
it is straightforward to list the partitions in J(Q) in polynomial time per partition.

7.2. Edge orientation constraints. Consider a proper graph G with corner
assignment E(G) and assume that each edge e is given with a set of forbidden labels,
where a label is a color-orientation combination for an edge, and let P = P (G) be the
partial order whose associated distributive lattice J(P ) has its elements in one-to-one
correspondence with the layouts of E(G). Let x be the flippable item corresponding to
e—that is, either the edge itself or the degree-four vertex e is adjacent to. Then in any
layout L, corresponding to a partition (L,U) ∈ J(P ), the orientation of e in L may be
determined from i mod 4, where i is the largest value such that (x, i) ∈ L. Thus if we
would like to exclude a certain color-orientation combination for x, we have to find the
corresponding value k ∈ Z4 and exclude the layouts L such that fx(L) = k mod 4 from
consideration. Thus the set of flipping values for x can be partitioned into forbidden
and legal values for x; instead of considering color-orientation combinations of the
flippable items we may consider their flipping values. We formalize this reasoning in
the following lemma.

Lemma 21. Let E(G) be a corner assignment of a proper graph G. Let x be a
flippable item in E(G), let L be an element of the lattice of regular edge labelings of
E(G), and let (L,U) be the corresponding partition of P .

Then L satisfies the constraints described by the forbidden labels if and only if for
every flippable item x one of the following is true:
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• the highest pair involving x in L is (x, i), where i+1 is not a forbidden value
for x, or

• (x, 0) is in the upper set and 0 is not a forbidden value for x.
Lemma 20 may be used to show that the set of all constrained layouts is a dis-

tributive lattice, and that all constrained layouts may be listed in polynomial time
per layout. For technical reasons we augment P to a new partial order A(P ) =
P ∪ {−∞,+∞}, where the new element −∞ lies below all other elements and the
new element +∞ lies above all other elements. Each layout of E(G) corresponds to
a partition of P into lower and upper sets, which can be mapped into a partition of
A(P ) by adding −∞ to the lower set and +∞ to the upper set. The distributive
lattice J(A(P )) thus has two additional elements that do not correspond to layouts
of E(G): one in which the lower set is empty and one in which the upper set is empty.
We define a constraint graph C having as its vertices the elements of A(P ), with edges
defined as follows:

• If (x, i) and (x, i+1) are both elements of A(P ) and i+1 is a forbidden value
for x, then we add an edge from (x, i) to (x, i + 1) in C.

• If (x, i) is an element of A(P ) but (x, i + 1) is not, and i + 1 is a forbidden
value for x, then we add an edge from (x, i) to +∞ in C.

• If 0 is a forbidden value for x, then we add an edge from −∞ to (x, 0) in C.
All together, this brings us to the following result.

Lemma 22. Let E(G) be an extended graph without nontrivial separating four-
cycles and with a given set of forbidden orientations, and let Q be the quasi order
formed from the transitive closure of A(P ) ∪ C as described in Lemma 20. Then
the elements of J(Q) corresponding to partitions of Q into two nonempty subsets
correspond exactly to the layouts that satisfy the forbidden orientation constraints.

Proof. By Lemma 21 and the definition of C, a partition in J(P ) corresponds to a
constrained layout if and only if it respects each of the edges in C. By Lemma 20, the
elements of J(Q) correspond to partitions of A(P ) that respect C. And a partition of
A(P ) corresponds to an element of J(P ) if and only if its lower set does not contain
+∞ and its upper set does not contain −∞.

Corollary 3. Let E(G) be an extended graph without nontrivial separating four-
cycles and with a given set of forbidden orientations. There exists a constrained layout
for E(G) if and only if there exist more than one strongly connected component in Q.

Corollary 4. The existence of a constrained layout for a given extended graph
E(G) without nontrivial separating four-cycles can be proved or disproved in polyno-
mial time.

Corollary 5. All constrained layouts for a given extended graph E(G) without
nontrivial separating four-cycles can be listed in polynomial time per layout.

Figure 17 depicts the sublattice resulting from these constructions for the example
from Figure 13, with constraints on the orientations of two of the layout edges.

7.3. Junction orientation constraints. So far we have considered forbidding
only certain edge labels. However the method above can easily be extended to different
types of constraints. For example, consider two elements of P (x, i) and (y, j) that
are a covering pair in P ; this implies that x and y are two of the three flippable items
surrounding a unique T-junction of the layouts dual to E(G). Forcing (x, i) and (y, j)
to be equivalent by adding an edge from (x, i) to (y, j) in the constraint graph C
can be used for more general constraints: rather than disallowing one or more of the
four orientations for any single flippable item, we can disallow one or more of the
twelve orientations of any T-junction. For instance, by adding equivalences of this
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Fig. 17. The family of rectangular layouts dual to a given extended graph E(G) satisfying the
constraints that the edge between rectangles a and b must be vertical (cannot be colored red) and
that the edge between rectangles b and c must be horizontal (cannot be colored blue). The green
regions depict strongly connected components of the associated quasi order Q. The four central
shaded elements of the lattice correspond to layouts satisfying the constraints. Color is available
only in the online version.

type we could force one of the three rectangles at the T-junction to be the one with
the 180-degree angle.

Any internal T-junction of a layout for E(G) (dual to a triangle of G) has 12
potential orientations: each of its three rectangles can be the one with the 180-degree
angle, and with that choice fixed there remain four choices for the orientation of the
junction. In terms of the regular edge labeling, any triangle of G may be colored and
oriented in any of 12 different ways. For a given covering pair (x, i) and (y, j), let
Ci,j

x,y denote the set of edges between pairs (x, i + 4k) and (y, j + 4k) for all possible
integer values of k, together with an edge from −∞ to (y, 0) if j mod 4 = 0, and an
edge from (x, i+4k) to +∞ if i+4k is the largest value of i′ such that (x, i′) belongs
to P . Any T-junction is associated with 12 of these edge sets, as there are three ways
of choosing a pair of adjacent flippable items and four ways of choosing values of i
and j (mod 4) that lead to covering pairs. Including any one of these edge sets in the



560 EPPSTEIN, MUMFORD, SPECKMANN, AND VERBEEK

constraint graph C corresponds to forbidding one of the 12 potential orientations of
the T-junction.

Thus, Lemma 22 and its corollaries may be applied without change to dual graphs
E(G) with junction orientation constraints as well as edge orientation constraints, as
long as E(G) has no nontrivial separating four-cycles.

7.4. Constrained layouts for unconstrained dual graphs. Proper graphs
with nontrivial separating four-cycles still have finite distributive lattices of layouts,
but it is no longer possible to translate orientation constraints into equivalences be-
tween members of an underlying partial order. The reason is that, for a graph without
trivial separating four-cycles, the orientation of a feature of the layout changes only
for a flip involving that feature, so that the orientation may be determined from the
flip count mod 4. For more general graphs the orientation of a feature is changed not
only for flips directly associated with that feature, but also for flips associated with
larger four-cycles that contain the feature, so the flip count of the feature no longer
determines its orientation. For this reason we again treat general proper graphs by
decomposing them into minimal separation components with respect to separating
four-cycles and piecing together solutions found separately within each of these com-
ponents.

We use the representation of a graph as a tree of minimal separation components
in our search for constrained layouts for G. We first consider each such minimal
component separately for every possible mapping of vertices of C to {l, t, r, b} (we
call these mappings the orientation of E(G)). Different orientations imply different
flipping values of forbidden labels for the given constraint function, since the flipping
numbers are defined with respect to the orientation of E(G). Bearing that in mind we
are going to test the graph E(G) for existence of a constrained layout in the following
way.

For each piece in a bottom-up traversal of the decomposition tree and for each
orientation of the corners of the piece:

1. Find the partial order P describing the layouts of the piece.
2. Translate the orientation constraints within the piece into a constraint graph

on the augmented partial order A(P ).
3. Compute the strongly connected components of the union of A(P ) with the

constraint graph, and form a binary relation that is a subset of Q and that
includes all covering relations in Q by finding the components containing each
pair of elements in each covering relation in P .

4. Translate the existence or nonexistence of a layout into a constraint on the
label of the corresponding degree-four vertex in the parent piece of the decom-
position. That is, if the constrained layout for a given orientation of E(G′)
does not exist, forbid (in the parent piece of the decomposition) the label of
the degree-four vertex corresponding to that orientation.

If the algorithm above confirms the existence of a constrained layout, we may list all
layouts satisfying the constraints as follows. For each piece in the decomposition tree,
in top-down order:

1. List all lower sets of the corresponding quasi order Q.
2. Translate each lower set into a layout for that piece.
3. For each layout and each child of the piece in the decomposition tree, re-

cursively list the layouts in which the child’s corner orientation matches the
labeling of the corresponding degree-four vertex of the outer layout.

4. Glue the inner and outer layouts together.
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Theorem 6. The existence of a constrained layout for a proper graph G can be
found in polynomial time in |G|. The set of all constrained layouts for the graph can
be found in polynomial time per layout.

Proof. By Lemma 7, the partial order P describing the layouts of each piece has
a number of elements and covering pairs that is quadratic in the number of vertices
in the dual graph of the piece, and a description of this partial order in terms of its
covering pairs may be found in quadratic time. The strongly connected component
calculation within the algorithm takes time linear in the size of P , and therefore the
overall algorithm for testing the existence of a constrained layout takes time O(n2),
where n is the number of vertices in the given dual graph.

7.5. Finding area-universal constrained layouts. In section 6 we presented
a fixed-parameter tractable algorithm for the problem of searching for an area-universal
layout. We can use a similar approach to search for an area-universal layout with con-
strained orientations. Within each piece of the separation decomposition, we consider
2O(k2) sets of stretched pairs in P , as before. However, to test one of these sets, we
perform a monotonic sequence of flips in J(Q), at each point either flipping an element
of Q that contains the upper element of a pair that should be stretched, or performing
a flip that is a necessary prerequisite to flipping such an upper element. Eventually,
this process will reach either an area-universal layout for the piece or the top ele-
ment of the lattice; in the latter case, no area-universal layout having that pattern of
stretched pairs exists. By testing all sets of stretched pairs, we may find whether an
area-universal layout matching the constraints exists for any corner coloring of any
piece in the separation decomposition. These constrained layouts for individual pieces
can then be combined by the same tree traversal of the separation decomposition tree
as discussed earlier, due to Corollary 1. This fixed-parameter tractable algorithm also
runs in 2O(K2)nO(1) time.

8. Layouts with given dual spanning trees. Rinsma [23] considered the
question of finding a cartogram for a given weight vector, such that the dual graph
G has a given tree T as its spanning tree. She showed that, by a simple layout
process in which the root of T is placed at the bottom of a layout and recursively
constructed layouts for its children are placed above it, such a cartogram can always
be found. However, her layouts are not, in general, area-universal. For instance, in the
layout shown in the center of Figure 18, produced by her algorithm, the line segment
with rectangles D and F to its left and with rectangles G and H to the right is not
one-sided, showing that the tree in this example leads to a nonarea-universal layout
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Fig. 18. A dual spanning tree T , Rinsma’s nonarea-universal layout, and our area-universal
layout for T .
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according to her algorithm.

However, a simple modification of Rinsma’s layout process can be used to generate
area-universal layouts that have the given tree as a spanning tree of the dual. The
method produces layouts in which the root of a tree either covers the entire bottom
edge of the layout or the entire left edge of the layout. For a given tree, to find a
layout with the root at the bottom, use the same algorithm recursively to generate
layouts for each subtree rooted at a child of the root with the child at the left, and
place these subtree layouts in left-to-right order above the bottom root rectangle.
Symmetrically, to find a layout with the root on the left, use the same algorithm
recursively to generate layouts for each subtree rooted at a child with the child on
the bottom, and place these subtree layouts in bottom-to-top order to the right of
the root rectangle. Thus, for a given tree, the layouts with the root at the bottom
and with the root at the left are mirror images of each other, as reflected across a line
with slope one. The area-universal layout resulting from this algorithm for the same
example tree is shown on the right of Figure 18.

Theorem 7. For any tree T the algorithm described above finds an area-universal
layout, having T as a spanning tree of the dual, in time linear in the size of T .

Proof. At each level of the recursion, each child is placed adjacently to the root
of its subtree, so T is a spanning tree of the dual, and the algorithm clearly runs in
linear time. Each maximal segment of the layout, other than the outer boundaries of
the root rectangle, either separates the root of a subtree from its children or one child
subtree from the next child subtree. If the segment separates the root of a subtree
from its children, it forms a side of the root rectangle, and if it separates one child
subtree from the next, it forms a side of the root of the second subtree. Thus, each
maximal segment is the side of a rectangle and hence the layout is one-sided. The
result follows by Theorem 2.

9. Conclusions and open problems. We presented a simple necessary and
sufficient condition for a rectangular layout to be area-universal. We also described
how to find a layout that is equivalent or order-equivalent to a given layout and that
realizes a given weight function as a cartogram. For a given graph G, we presented
an algorithm to find a one-sided and hence area-universal layout dual to G. Addi-
tionally we give algorithms to find layouts (one-sided or not) with certain orientation
constraints. Unlike much past work on rectangular layouts, we did not restrict our
attention to sliceable layouts, dual graphs without separating four-cycles, or other
such special cases.

There remain several questions for further investigation. An important problem
in the generation of rectangular layouts with special properties, one that has resisted
our lattice-theoretic approach, is the generation of sliceable layouts. If we are given a
graph G, can we determine whether it is the graph of a sliceable layout in polynomial
time? Also, even though we have an algorithm for finding area-universal rectangular
cartograms, it is not fully polynomial, and it would be of interest to find faster al-
gorithms or determine whether it is NP-complete to test whether an area-universal
cartogram exists for a given dual graph. And although our algorithms for finding
orientation-constrained layouts (excluding one-sidedness) are polynomial time, there
seems no reason intrinsic to the problem for them to take as much time as they do:
can we achieve subquadratic time bounds for finding orientation-constrained layouts,
perhaps by using an algorithm based more on the special features of the problem and
less on general ideas from lattice theory? Finally, if an area-universal cartogram does
not exist, but we are given an area assignment or a range of area assignments, can
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we efficiently find a layout realizing this assignment or assignments? Past work on
related problems suggests that such problems might be difficult [1].

Moving beyond layouts, there are several other important combinatorial con-
structions that may be represented using finite distributive lattices, notably the set
of matchings and the set of spanning trees of a planar graph, and certain sets of
orientations of arbitrary graphs [19]. It would be of interest to investigate whether
our approach of combining the underlying partial order of a lattice with a constraint
graph produces useful versions of constrained matching and constrained spanning tree
problems, and whether other algorithms that have been developed in the more gen-
eral context of distributive finite lattices [20] might fruitfully be applied to lattices of
rectangular layouts. Recently, the same framework of reducing to a partial order has
successfully been used to construct adjacency-preserving spatial treemaps [5].
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