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Abstract We present a novel multi-robot simulator named ARGoS. ARGoS is designed to

simulate complex experiments involving large swarms of robots of different types. ARGoS

is the first multi-robot simulator that is at the same time both efficient (fast performance

with many robots) and flexible (highly customizable for specific experiments). Novel de-

sign choices in ARGoS have enabled this breakthrough. First, in ARGoS, it is possible to

partition the simulated space into multiple sub-spaces, managed by different physics engines
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running in parallel. Second, ARGoS’ architecture is multi-threaded, thus designed to opti-

mize the usage of modern multi-core CPUs. Finally, the architecture of ARGoS is highly

modular, enabling easy addition of custom features and appropriate allocation of compu-

tational resources. We assess the efficiency of ARGoS and showcase its flexibility with

targeted experiments. Experimental results demonstrate that simulation run-time increases

linearly with the number of robots. A 2D-dynamics simulation of 10,000 e-puck robots can

be performed in 60 % of the time taken by the corresponding real-world experiment. We

show how ARGoS can be extended to suit the needs of an experiment in which custom

functionality is necessary to achieve sufficient simulation accuracy. ARGoS is open source

software licensed under GPL3 and is downloadable free of charge.

Keywords Simulation · Swarm robotics · Multi-robot systems · High-performance ·

ARGoS

1 Introduction

Simulation is an indispensable tool to prototype multi-robot systems solutions. A simulator

makes it possible to test ideas in a safe and controllable environment, preventing damage

to the (often expensive) robot platforms and other objects. There are two key requirements

for a multi-robot simulator: flexibility and efficiency. Flexibility refers to the possibility for

users to add new features targeted at a particular experiment, for example, new robot types

or new sensors. Efficiency, on the other hand, refers to the ability to provide satisfactory

run-time performance.

No existing mainstream simulators achieve both flexibility and efficiency. Simulators

that focus on performance typically achieve efficiency by targeting specific use cases, thus

sacrificing flexibility. Simulators that allow flexibility, in contrast, do so at the expense of

performance and their run-time typically exceeds real-time as soon as more than a few dozen

robots are simulated. In this paper, we argue that the failure of existing simulators to achieve

both flexibility and performance results from fundamental design limitations. In this pa-

per, we present ARGoS (Autonomous Robots Go Swarming), a simulator based around new

design principles, through which we achieve flexibility and efficiency at the same time.

To achieve flexibility, we made ARGoS modular at every level. All the main architectural

components are implemented as software modules selectable at run-time (i.e., plug-ins).

Users can override or extend the existing plug-ins to fully customize the simulator for any

given experiment. Plug-ins include robot control code, sensors and actuators, as well as

physics engines and visualizations. Robots and other simulated objects are also plug-ins,

and can be built from simple, reusable components. Multiple implementations of any plug-

in are possible. Various implementations of a single plug-in typically differ in accuracy

and computational cost. By choosing appropriate plug-ins, the user can allocate accuracy
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and, thus, computational resources for specific aspects of the simulation. In this way, the

simulation remains accurate where necessary, while neglecting superfluous calculations that

would negatively impact speed.

Efficiency is not only achieved through appropriate allocation of computational re-

sources. In addition, the architecture of ARGoS is parallel and designed to maximize the

usage of modern multi-core CPUs.

Finally, the most distinctive feature of ARGoS is the possibility to partition the simu-

lated space into non-overlapping sub-spaces and assign each sub-space to a separate physics

engine. Physics engines can be of different types (e.g., two- or three-dimensional, kinemat-

ics/dynamics, etc.) and are executed in parallel. Robots, as they navigate the environment,

migrate seamlessly from engine to engine.

We designed ARGoS during the EU-funded Swarmanoid project1 (Dorigo et al. 2013).

This project studied coordination strategies for swarms composed of three kinds of robots:

(i) the foot-bot (Bonani et al. 2010), a ground-based robot that moves through a combina-

tion of wheels and tracks, (ii) the hand-bot (Bonani et al. 2009), a robot able to climb walls

and manipulate objects, and (iii) the eye-bot (Roberts et al. 2007), a quad-rotor-equipped

flying robot. Experiments conducted during the Swarmanoid project showcased ARGOS’

flexibility and efficiency, by demonstrating its ability to deal with large scale experiments

involving different robot types. In addition to the Swarmanoid robots, ARGoS currently

supports the e-puck (Mondada et al. 2009). ARGoS is the official simulator of three fur-

ther EU-funded projects, ASCENS,2 H2SWARM,3 and E-SWARM.4 ARGoS is written in

C++ and is GPL3-licensed. It currently runs under Linux and MacOSX. ARGoS can be

downloaded free of charge from http://iridia.ulb.ac.be/argos.

The paper is organized as follows. In Sect. 2, we discuss existing simulator designs focus-

ing on flexibility and efficiency. Then, in Sect. 3, we describe the design features of ARGoS.

In Sect. 4, we report experiments regarding flexibility and efficiency. Finally, in Sect. 5, we

conclude the paper and indicate future research directions.

2 Related work

In this section, we review a number of important multi-robot simulators and discuss their

features with respect to flexibility and efficiency. We restrict our focus to mainstream sim-

ulators, those widely used by the research community, and to less known simulators whose

designs relate to ARGoS’. For a broader (although slightly outdated) discussion of develop-

ment tools for robotics applications, including but not limited to simulators, we suggest the

survey of Kramer and Schultz (2007).

All of the simulators we discuss, ARGoS included, are physics-based and discrete-time.

This means that the robots and their interactions are modeled through physics equations that

are calculated over time in a synchronous, step-wise fashion.

1http://www.swarmanoid.org.

2http://ascens-ist.eu.

3http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/collaborative-research-projects-

crps/h2swarm.html.

4http://www.e-swarm.org/.

http://iridia.ulb.ac.be/argos
http://www.swarmanoid.org
http://ascens-ist.eu
http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/collaborative-research-projects-crps/h2swarm.html
http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/collaborative-research-projects-crps/h2swarm.html
http://www.e-swarm.org/
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2.1 Flexibility

General and flexible simulator designs are a relatively recent achievement. It was only dur-

ing the last decade that CPU speed and RAM size on average personal computers became

sufficient to support complex architectures, while providing acceptable performance. As a

result, researchers have begun to design tools that can simulate different kinds of robots

in relatively general use cases. Flexible tools are desirable because they allow researchers

to concentrate on their work, without the necessity to design ad hoc tools for each new

experiment. Moreover, standardized platforms facilitate code exchange and fair algorithm

comparisons.

Currently, the most successful flexible simulators are Webots (Michel 2004), USAR-

Sim (Carpin et al. 2007) and Gazebo (Koenig and Howard 2004). The engines of Webots

and Gazebo are implemented using the well known open source 3D-dynamics physics li-

brary ODE.5 USARSim is based on Unreal Engine, a commercial 3D game engine released

by Epic Games.6 Although Gazebo and USARSim can support different kinds of robots,

their architecture was not designed to allow the user to easily change the underlying mod-

els, thus limiting flexibility. Webots’ architecture, on the other hand, explicitly provides an

interface to the underlying ODE engine which allows the user to override the way forces are

calculated. For example, Webots offers a fast 2D-kinematics motion model for differential

drive robots. However, flexibility is limited by the fact that it is not possible to change the

implementation of sensors and actuators.

The recent MuRoSimF simulator (Friedman 2010) is designed around the concept of

tunable accuracy. In MuRoSimF, robots are modeled as a tree in which each aspect of the

robot is a node. Nodes can be added to increase the accuracy of the robot model for specific

aspects. By specifying the nodes wisely, the user can assign more computational resources

to the necessary aspects of the simulation, while limiting resources on unnecessary aspects.

This approach is very flexible and is specifically designed to support mechanically complex

robots such as humanoid robots.

2.2 Efficiency

A simulator designed for swarm robotics systems must provide acceptable performance for

large numbers of robots. In this paper, we target simulations involving thousands of robots.

The simulators described in Sect. 2.1 were not designed for such large numbers. Simulations

conducted with Webots, USARSim and Gazebo become slower than real time when more

than a few dozen robots are simulated. A complete efficiency study for MuRoSimF has not

been released.

To the best of our knowledge, the only widespread simulator in the robotics community

that tackles the issue of simulating thousands of robots is Stage (Vaughan 2008). However,

this is achieved by imposing significant design and feature limitations. Stage is designed

to simulate only differential-drive robots modeled by 2D-kinematics equations. Its sensor

and actuator models neglect noise. Stage excels at simulating navigation- and sensing-based

experiments. However, due to the nature of the models employed, realistic experiments in-

volving robots gripping/pushing objects or self-assembling are not possible.

5http://www.ode.org/.

6http://www.epicgames.com/.

http://www.ode.org/
http://www.epicgames.com/
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The DPRSim and DPRSim2 simulators (Ashley-Rollman et al. 2011) developed within

the Claytronics project7 employ interesting techniques that provide remarkable perfor-

mance, although for a very specific use case. The DPRSim simulator is based on a cus-

tom version of the ODE physics engine that was modified to be multi-threaded. DPRSim

can simulate the physics of up to hundreds of thousands of simplistic agents called catoms

that connect and communicate to form large ensembles that, in turn, behave as a form of

programmable matter. DPRSim2 is a complete redesign of DPRSim that allows simulations

involving millions of catoms. In DPRSim2, the computation is distributed across the proces-

sors of a computing cluster. However, the physical fidelity in the simulation of the catoms

was sacrificed in favor of a more abstract model.

3 Design features of ARGoS

In this section, we present the main design features of ARGoS, relating them to the identified

requirements: flexibility and efficiency.

In Sect. 3.1, we describe the modular structure of the ARGoS architecture. This structure

is designed to enhance code reuse and to ease customization. In addition, users can choose

which modules to employ for their experiments. This results in the possibility to allocate ac-

curacy and computational resources only to the necessary aspects. In this way, experiments

are both accurate and fast.

In Sect. 3.2, we illustrate the most distinctive feature of ARGoS: the possibility to par-

tition the simulated space, and assign a dedicated physics engine to each partition. This

feature has a positive impact both on efficiency and on flexibility.

Finally, in Sect. 3.3, we explain how the main simulation loop is parallelized into multiple

threads, and discuss the positive effects this design choice has on efficiency.

3.1 Modularity

In software design, it is common practice to decouple a complex architecture into several

interacting modules. As discussed in Sect. 2.1, flexible simulators typically allow the user

to modify modules or add new implementations of modules to customize and enhance the

functionality of the program. The advantage of modularizing the robot model lies in the pos-

sibility to choose which modules to employ for an experiment. Different modules are char-

acterized by different accuracy and computational costs. Thus, the choice of which modules

to employ corresponds to the allocation of accuracy where the user deems it necessary. We

refer to the possibility to allocate accuracy as tunable accuracy.

Tunable accuracy is one of the cornerstones of ARGoS design, as it enhances both flexi-

bility and efficiency. Regarding flexibility, similarly to MuRoSimF, the user can define which

modules to use for each aspect of the simulation. Efficiency is boosted by the fact that com-

putational resources are allocated only where necessary.

In Fig. 1, we report a diagram of the ARGoS architecture. The white boxes in the figure

correspond to user-definable plug-ins. As illustrated, not only controllers, robot and device

models can be selected, but also physics engines and visualizations. In the rest of this section,

we describe the features of each plug-in type in depth.

7http://www.cs.cmu.edu/~claytronics/.

http://www.cs.cmu.edu/~claytronics/
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Fig. 1 The architecture of ARGoS. The white boxes correspond to user-definable plug-ins

3.1.1 The simulated 3D space

The simulated 3D space, depicted at the center of Fig. 1, is a collection of data structures that

contains the complete state of the simulation. This state information includes the position

and the orientation of each object such as obstacles or robots. The state of objects composed

of different parts or equipped with special devices, such as sets of colored LEDs, is also

stored in this space.

The data is organized into basic items referred to as entities. ARGoS natively offers

several entity types, and the user can customize them or add new ones if necessary. Each

type of entity stores information about a specific aspect of the simulation.

For instance, to store the complete state of a wheeled robot, a composable entity is used.

Composable entities are logical containers that are used to group other entities. Compos-

able entities can be nested to form trees of arbitrary complexity. The controllable entity is

a component that stores a reference to the user-defined control code and to the robot’s sen-

sors and actuators. The embodied entity component stores the position, orientation and 3D

bounding box of the robot. The current wheel speed is stored into the wheeled entity compo-

nent. If the robot is equipped with colored LEDs, their state is stored in a component called

LED-equipped entity.

Entity types are organized in hierarchies. For instance, the embodied entity is an extension

of the simpler positional entity, which contains just the position and orientation of an object,

but not its bounding box. These design choices (entity composition and extension) ensure

flexibility, enhance code reuse and diminish information redundancy.

Entity types are indexed in efficient data structures optimized for access speed. In this

way, the performance of the plug-ins that access the simulated 3D space is enhanced. For

example, positional entities and their extensions are indexed in several type-specific space

hashes (Teschner et al. 2003).

3.1.2 Sensors and actuators

Sensors and actuators are plug-ins that access the state of the simulated 3D space. Sensors

are granted read-only access to the simulated 3D space, while actuators are allowed to mod-

ify it. As explained in Sect. 3.1.1, information about the simulation state is stored in a num-

ber of specialized entities. Sensors and actuators are designed to only access the necessary
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entities. For instance, the calculations of a distance sensor only need to access information

about the embodied entities around a robot, and can ignore other entities. In the same way,

a robot’s LED actuator needs only to update the state of that robot’s LED-equipped entity.

Tightly linking sensors and actuators to entity components has three benefits: (i) these

plug-ins can be implemented targeting specific components instead of the complete robot,

often resulting in general (rather than robot-specific) models; (ii) the robot components as-

sociated with sensors and actuators that are not used in an experiment do not need to be up-

dated, avoiding waste of computational resources; (iii) new robots can be created faster and

more reliably by incorporating existing components, ensuring that all the sensors/actuators

depending on them will work without modification. Effects (i) and (iii) improve flexibility,

while effect (ii) enhances efficiency.

3.1.3 Physics engines

As illustrated in Sect. 3.1.1, an embodied entity is a component that stores the position and

orientation of a physical object in the 3D space. The state of the embodied entities is updated

by the physics engines.

As it is explained in Sect. 3.2, physics engines are assigned non-overlapping portions of

the 3D space. At each time step, each physics engine is responsible for the update of the

embodied entities that occupy its assigned portion of space. This design choice makes it

possible to run multiple engines of different types in parallel during an experiment.

Physics engines operate on a custom representation of their assigned portion of the 3D

space. For instance, the position (x, y, z) of an object in the 3D space could be stored as

(x ′, y ′) in a 2D engine. At each time step, the 2D physics engine performs calculations to

update its internal representation (x ′, y ′) and then transforms it into the common 3D space

representation. This design choice enables one to optimize each physics engine’s internal

representation of space for speed, memory usage and/or accuracy. Currently, ARGoS is

equipped with four kinds of physics engines, designed to accommodate the most general

use cases: (i) a 3D-dynamics engine based on ODE, (ii) a 3D particle engine, (iii) a 2D-

dynamics engine based on the open source physics engine library Chipmunk,8 and (iv) a 2D-

kinematics engine.

3.1.4 Visualizations

Visualizations are plug-ins that read the state of the simulated 3D space and output a repre-

sentation of it. Three types of visualization are currently available in ARGoS: (i) an inter-

active graphical user interface based on Qt49 and OpenGL,10 (ii) a high-quality rendering

engine based on the ray-tracing software POV-Ray,11 and (iii) a text-based visualization

designed for interaction with data analysis programs such as Matlab.12

8http://code.google.com/p/chipmunk-physics/.

9http://qt.nokia.com/.

10http://www.opengl.org/.

11http://www.povray.org/.

12http://www.mathworks.com/products/matlab/.

http://code.google.com/p/chipmunk-physics/
http://qt.nokia.com/
http://www.opengl.org/
http://www.povray.org/
http://www.mathworks.com/products/matlab/


278 Swarm Intell (2012) 6:271–295

3.1.5 Controllers

Robot controllers are plug-ins that contain the control logic of the robot behavior for an

experiment. An important requirement in the design of a simulator is the possibility to de-

velop code in simulation and then transfer it to the real robots without modification. To

meet this requirement, ARGoS provides an abstract control interface that controllers must

use to access sensors and actuators. The same control interface is also implemented on the

real robots. In this way, the user code developed in simulation can be transferred to the real

robots without modifications.

Currently, robot controllers are written in C++. In swarm robotics, robots are typically

systems with low-end processors such as ARM.13 Thus, transferring code from a personal

computer to a real robot requires recompilation. Aside from the recompilation step, however,

simulated code is directly usable on real robots.

We intend to integrate other programming languages that would not require recompi-

lation to transfer code from simulation to real platforms. At the moment of writing, the

ASEBA scripting language (Magnenat et al. 2010) has already been integrated in ARGoS,

and further language bindings (e.g., Lua,14 PROTO (Bachrach et al.) 2010) are under study.

3.1.6 Beyond modularity: loop functions

It is very difficult to identify a set of features that can cover all the possible use cases of

multi-robot systems. Even though some features, such as robot motion, are almost always

necessary, many other features depend on the type of experiment considered. For instance,

the metrics against which statistics must be calculated depend on the experiment. Also, if the

environment presents custom dynamics, such as objects being added or removed as a result

of the actions of the robots, these mechanisms need to be implemented in the simulator.

The need for specific and often divergent features renders the design of a generic simulator

extremely complex. Furthermore, the approach of trying to add a myriad of features in the

attempt to cover every possible use case usually renders the learning curve of a tool much

steeper, hindering usability and maintainability.

To cope with these issues, we followed the common approach of providing user-defined

function hooks in strategic points of the simulation loop. In ARGoS, these hooks are called

loop functions. The user can customize the initialization and the end of an experiment, and

add custom functionality executed before and/or after each simulation step. It is also possible

to define custom end conditions for an experiment.

Loop functions allow one to access and modify the entire simulation. In this way, the user

can collect figures and statistics, and store complex data for later analysis. It is also possible

to interact with the simulation by moving, adding or removing entities in the environment,

or by changing their internal state.

Finally, loop functions can be used to prototype new features before they are promoted

to the core ARGoS code.

3.2 Space partitioning

The most distinctive feature of ARGoS is the possibility to partition the simulated 3D space

into non-overlapping portions of arbitrary size, and assign each portion to a different physics

13http://www.arm.com/.

14http://www.lua.org/.

http://www.arm.com/
http://www.lua.org/
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engine. For instance, in an environment formed by several rooms connected by corridors,

the different rooms and the corridor could each be assigned a dedicated physics engine. The

volumes assigned to 3D engines are specified as right prisms whose size is user-defined,

while the areas assigned to 2D engines are specified as polygons in the 3D space. The user

must define the effect of a robot crossing the face of a prism (or the side of a polygon).

There are two kinds of faces (sides): walls and gates. Walls cannot be traversed—when a

robot tries to cross a wall, the physics engine does not allow the action. Conversely, when a

robot traverses a gate, the robot is transferred to another physics engine defined by the user

in the experiment configuration file. This migration is performed automatically by ARGoS

as robots navigate in the environment.

In practice, this partition is obtained by dividing the set of embodied entities in multi-

ple subsets, and assigning each subset to a different physics engine. To avoid conflicts of

responsibility among the physics engines, we distinguish between mobile and non-mobile

embodied entities. Mobile embodied entities are such that their state (position, orientation,

3D bounding box) changes over time. Robots, as well as passive objects that can be pulled

or pushed, fall into this category. Non-mobile embodied entities, on the other hand, never

change state. Typical examples of this category are the structural elements of the experimen-

tal arena, such as walls and columns. To ensure the correctness of the state of the simulated

space, we impose the condition that mobile embodied entities can be managed by only one

physics engine at a time. Non-mobile entities, instead, can be associated to as many en-

gines as necessary. In this way, the structural elements of the arena are shared among all the

engines, resulting in a consistent representation of the simulated 3D space.

When two robots are managed by different physics engines, they cannot interact phys-

ically (i.e., collide or grip each other). However, communication and sensing work across

the physics engines. For example, ray casting is a typical method to simulate point-to-point

communication, occlusion checking and sensing. To check for ray intersections, a sensor

queries the simulated 3D space. The simulated 3D space constructs a list of candidate em-

bodied entities whose 3D bounding boxes intersect the ray. This step is very efficient because

embodied entities are indexed in a space hash (Teschner et al. 2003). Next, each candidate

embodied entity queries the physics engine in charge of its update to perform the actual

ray–body intersection. The result is then returned to the sensor that issued the check. Thus,

even if the check is performed by a physics engine, the sensor does not need to interact

directly with the physics engine. This renders sensor development easy, because there is no

dependency between sensors and physics engines.

Because robots updated by different physics engines do not interact physically, compen-

etrations are possible at the border between two engines. It is the user’s task to partition the

space in such a way as to avoid this phenomenon or to limit its impact on accuracy. A typ-

ical method, used, for example, in the experiments of Sect. 4.1, is to exploit the fact that

robots can sense each other across physics engines and implement efficient obstacle avoid-

ance strategies. Another solution is partitioning the space appropriately. For example, in an

experiment with flying and wheeled robots, flying robots could be assigned to one physics

engine and wheeled robots to another. As long as the flying robots stay sufficiently high,

collisions with wheeled robots are not possible.

In Sect. 4.1, we empirically demonstrate that the use of multiple physics engines results

in a significant decrease in simulation time.

3.3 Multiple threads

To maximize simulation speed, the ARGoS architecture is designed to exploit modern CPU

architectures. In practice, this is obtained by parallelizing the main simulation loop reported
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Fig. 2 Simplified pseudo-code

of the main simulation loop of

ARGoS. Each ‘for all’ loop

corresponds to a phase of the

main simulation loop. Each phase

is parallelized as shown in Fig. 3

in Fig. 2. During the execution of the loop, sensors and visualizations read simulated 3D

space, while actuators and physics engines modify it. Thus, simulated 3D space is a shared

resource. In multi-threaded applications, simultaneous read/write access on shared resources

requires careful design, as access conflicts (race conditions) could potentially occur. A typi-

cal solution to prevent race conditions is to employ mutexes or semaphores. However, these

solutions typically entail significant performance costs (Tanenbaum 2001). Therefore, to im-

prove performance, we designed the main loop and the simulated 3D space in such a way

as to avoid race conditions altogether. Our design choices benefit not only performance: the

lack of race conditions means that plug-ins do not need to synchronize or manage resource

access explicitly, thus simplifying their development.

The main simulation loop is composed of three phases executed in sequence: sense +

control, act and physics. In the first phase (sense + control, lines 4–7 of the algorithm in

Fig. 2), the robot sensors read the state of the simulated 3D space. The robot controllers use

such information to execute the control step. At the end of this phase, the actions chosen by

the robot controllers are stored into the actuators, but the actions have not yet been executed.

Therefore, this phase is read-only, and race conditions are not possible. In the second phase,

act (lines 8–10 of the algorithm in Fig. 2), the actions stored in the actuators are executed.

All the component entities of each robot in the simulated 3D space are updated, with the

exception of the embodied entities. Race conditions cannot occur because, as explained in

Sect. 3.1, each actuator is linked to a single robot component, and two actuators cannot be

linked to the same component of a specific robot. In the third and final phase, physics (lines

11–13 of the algorithm in Fig. 2), the physics engines update the state of the embodied enti-

ties. Race conditions are not possible because, as explained in Sect. 3.2, in each simulation

step, mobile embodied entities are associated to one and only one physics engine, and em-

bodied entities in different physics engines do not interact. Furthermore, physics engines do

not need synchronization, because the duration of the simulation step is set as a parameter

in the experiment configuration file and is common to all the physics engines.

Each phase is executed by a set of P slave threads. This parameter is chosen by the

user in the experiment configuration file. Experimental evaluation demonstrates that maxi-

mum performance is reached when P matches the number of available processor cores (see

Sect. 4.1). A master thread coordinates the beginning and the end of each phase. In Fig. 3,

the master thread is indicated by ‘m’ and the slave threads are indicated by ‘s’. Execution

proceeds in a scatter-gather fashion. At the beginning of each phase, the slave threads are

idle. When the master thread sends the ‘start’ signal, the slave threads execute their work.



Swarm Intell (2012) 6:271–295 281

Fig. 3 The multi-threading

schema of ARGoS is

scatter-gather. The master thread

(denoted by ‘m’) coordinates the

activity of the slave threads

(denoted by ‘s’). The

sense + control, act and physics

phases are performed by P

parallel threads. P is defined by

the user

Upon completion, the slave threads send the ‘finish’ signal to the master thread and switch

back to idle state. When all the slave threads are done, the master thread sends the ‘start’

signal for the next phase.

The computation to be executed in each phase is decoupled in tasks assigned to the P

slave threads. In the sense + control phase, a task is to update a robot’s sensors and then

execute its controller. In the act phase, a task is to update a robot’s actuators. In the physics

phase, a task is to update one physics engine. Two methods are available in ARGoS to

assign tasks to threads. The first method is to pre-compute task assignment at the beginning

of the experiment, distributing the tasks evenly among the threads. The assignment is kept

constant unless robots are added or removed during the experiment. This method gives the

best performance when the tasks performed by each thread have similar computational costs.

This occurs, for instance, when all of the robots execute the same controller and the robots

are evenly distributed across the physics engines. Otherwise, the duration of each phase of

the loop corresponds to the time spent by the slowest thread to perform its part of the work.

To solve this problem, a second method, called h-dispatch (Holmes et al. 2010), is available

in ARGoS to assign tasks to threads. In this method, an additional thread called dispatcher

is used. The dispatcher manages the list of tasks to perform at each phase. To perform a task,

a thread receives it from the dispatcher. When the task is completed, the thread requests a

new task until all the tasks have been performed. Then, the master thread sends a signal to

the dispatcher to manage the tasks of the next phase, and the slave threads are awaken and

resume fetching tasks. This method gives best performance when the tasks are very diverse.

For example, if a slave thread happens to receive a long task from the dispatcher, the other

slave threads can perform multiple shorter tasks in the meantime. However, if the tasks are

very similar to each other, this method proves to be slower than pre-assignment, as the slave

threads tend to finish at the same time and spend most of the time waiting for the dispatcher

thread to assign new tasks to them. The choice of the thread assignment method is left to the

user as a parameter in the experiment configuration file.

4 Assessment of efficiency and flexibility

In this section, we analyze ARGoS with respect to efficiency and flexibility.

In Sect. 4.1, we report the results of experiments we ran to study efficiency under sev-

eral conditions. Preliminary data on ARGoS’ efficiency are also reported in Pinciroli et al.

(2011). To ease the analysis of the results, the experiments do not involve multiple types of

robots, but rather employ a single type. We point the reader interested in experiments with

ARGoS that employ different types of robots to the following papers: Ducatelle et al. (2010,

2011), Mathews et al. (2010), Montes de Oca et al. (2010), Pinciroli et al. (2009).
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Fig. 4 A screen-shot from

ARGoS showing the simulated

arena created for experimental

evaluation

In Sect. 4.2, we focus on flexibility. Through targeted case studies, we illustrate (i) how

robots with completely different features can be composed from simple, reusable compo-

nents, and (ii) how ARGoS’ models can be enhanced for specific experiments to provide the

necessary level of accuracy on critical aspects of the simulation.

4.1 Efficiency

As explained in Sect. 2, efficient, general-purpose simulators for multiple robots are rare. So

far, little work has been devoted to characterize the efficiency of simulators for more than

a few dozen robots. The only remarkable exception is offered by Stage. Vaughan (2008)

proposes a benchmark experiment in which thousands of wheeled robots diffuse in a large

environment while avoiding obstacles. Despite its simplicity, this benchmark is appropriate

because it tests the core functionality of a simulator (mostly occlusion checks by ray casting

and collision-related calculations). In addition, the robots perform a task that is meaningful

for the swarm robotics community.

To test ARGoS against this benchmark, we set up an arena that mimics an indoor envi-

ronment (see Fig. 4). The arena is a square whose sides are 40 m long. Similarly to Stage’s

benchmark, we employed the simplest wheeled robot available in ARGoS, the e-puck (Mon-

dada et al. 2009). Each robot executes a simplified version of the diffusion algorithm pro-

posed by Howard et al. (2002).

There are many possible ways to assess the efficiency of a simulator. In this paper, we

use two metrics: (i) the time necessary to complete a simulation, and (ii) the degree of ex-

ploitation of computational resources in multi-core systems. To this end, we employ two

standard measures: wall clock time and speedup. Wall clock time, in the following denoted

by w, is a measure of the time elapsed between the start and end of an experiment. Wall

clock time is typically affected by the quantity and type of other applications running simul-

taneously on the same machine. For the purposes of our analysis, we ran our experiments

on dedicated machines, in which we limited the running processes to those necessary for

the normal execution of the operating system and ARGoS. The second efficiency measure

that we employ is the speedup, denoted by u. To obtain this measure, we first consider the

total CPU time (denoted by c) of the process running ARGoS. Such time differs from the

wall clock time in that the CPU time increases only when the process is actively using the

CPU. On multi-core CPUs, we obtain a measure ci for each core. Thus, in this case, the
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Fig. 5 The different space partitions (A1 to A16) of the environment used to evaluate ARGoS’ efficiency

(a screenshot is reported in Fig. 4). The thin lines denote the walls. The bold dashed lines indicate the borders

of each region. Each region is updated by a dedicated instance of a physics engine

total CPU time c is given by the sum of all ci : c =
∑

i ci . The speedup is then calculated

as the ratio between the total CPU time and the wall clock time: u = c/w. Intuitively, the

speedup measures the extent to which parallelism was exploited by the process during its

execution. Therefore, in single-core CPUs or in single-threaded applications, u ≤ 1. In con-

trast, in multi-threaded applications running on multi-core CPUs, the objective is to obtain

speedup measures significantly greater than 1.

In our analysis, we focus on three factors that strongly influence efficiency: (i) the number

of robots N , (ii) the number of parallel slave threads P , and (iii) the way the environment is

partitioned into regions, each assigned to a different physics engine. Concerning the number

of robots, we conducted experiments with N = 10i , where i ∈ {0,1,2,3,4,5}. To test the

effect of the number of threads P , we run our experiments on four machines with 16 cores

each,15 and let P ∈ {0,2,4,8,16}. When P = 0, the master thread executes all tasks without

spawning the slave threads. Finally, we define five ways to partition the environment among

multiple physics engines, differing from each other in how many engines are used and how

they are distributed. We refer to a partition with the symbol AE , where E ∈ {1,2,4,8,16}

is the number of physics engines employed. E also corresponds to the number of regions in

which the space is partitioned. The partitions are depicted in Fig. 5. For each experimental

setting 〈N,P,AE〉, we run 40 experiments. The simulation time step is 100 ms long. Each

experiment simulates T = 60 s of virtual time, for a total of 600 time steps. In order to avoid

artifacts in the measures of w and u due to initialization and cleanup of the experiments,

15Each machine has two AMD Opteron Magny-Cours processors type 6128, each processor with 8 cores.

The total size of the RAM is 16 GB.
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Fig. 6 Average wall clock time

and speedup for a single physics

engine (A1). Each point

corresponds to a set of 40

experiments with a specific

configuration 〈N,P,A1〉. Each

experiment simulates T = 60 s.

In the upper plot, points under

the dashed line denote that the

simulations were faster than the

corresponding real-world

experiment time; above it, they

were slower. Standard deviation

is omitted because its value is so

small that it would not be visible

on the graph

the measures of wall clock time and speedup include only the main simulation loop. For the

same reason, we conducted our experiments without graphical visualizations.

Below, we discuss the results we obtained using different types of physics engines.

In Sect. 4.1.1, we focus on the results obtained with ARGoS’ 2D-dynamics engine. In

Sect. 4.1.2, we discuss the result obtained with other two engines: 2D-kinematics and 3D-

dynamics.

4.1.1 2D-Dynamics physics engine

In the first set of experiments, we employ ARGoS’ 2D-dynamics engine. This engine is

based on the efficient, state-of-the-art library Chipmunk, which is widely used in both sci-

entific applications and games.

Single engine In the following, we report the results of experiments in which one physics

engine updates all the embodied entities in the arena (partition A1).

The results are reported in Fig. 6. We plot the average over 40 experiments of the wall

clock time and the speedup for different values of N and P . The graphs show that multi-

threading has beneficial effects on efficiency when the number of robots is greater than 102.

Efficiency, in terms of wall clock time, improves as the number of threads is increased. The

lowest wall clock times are observed when P = 16. Note, for example, that when N = 105,

ARGoS is twice as fast with 16 threads as it is when no threads are used.

Moreover, when threads are used, speedup is always greater than 1. The maximum

speedup we observed, of approximately 3.04, corresponds to P = 16 and N = 103. The

observation that speedup decreases in these experiments with the addition of more robots

after N = 103 can be explained by the fact that only one physics engine is responsible for all

the embodied entities. Thus, in the physics phase, only one thread runs the physics engine,
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while the others are idle, not contributing to the measure of the CPU time c.16 The more

robots are employed in the simulation, the longer the thread updating the physics engine

must work, while the others remain idle. Thus, the one thread in charge of physics increas-

ingly dominates the measure of the speedup, causing speedup to decrease as the number of

robots gets very large.

As the plot illustrates, the threads negatively impact wall clock time when N < 102.

Profiling data revealed that, with few robots, the time spent on updating the robots and

physics engine is comparable to the time taken by the master thread to manage the slave

threads. Therefore, with few robots, it is better to avoid such overhead and let the master

thread perform all the work. Supporting evidence for this explanation is offered by the very

low values measured for speedup. With N = 1 and P = 2, the speedup is approximately 1

and with P = 16 it is 1.39.

Multiple engines Here, we discuss the results of experiments in which the arena is parti-

tioned into multiple regions managed by different physics engines. The results are showed

in Fig. 7.

A first important result is that the use of two physics engines, corresponding to space

partition A2, is already sufficient to perform a simulation of 104 robots that runs at the

same rate as the corresponding real-world swarm. This result is reached when the maximum

number of threads is utilized, P = 16. The trends of w and u with respect to the number of

threads are qualitatively identical to those of partition A1. Employing more threads results

in increasingly better wall clock times when N > 102 and the speedup is best for P = 16.

Comparing wall clock times with N = 104 and P = 16 for partition A2 and A1, we obtain

w(A2)/w(A1) ≈ 0.6.

Efficiency constantly improves with the number of engines and of threads. The most

remarkable result in Fig. 7 is obtained for A16, N = 104 and P = 16. In this configuration,

the measured wall clock time is about 0.6T , which means that ARGoS can simulate 104

robots in 60 % of the corresponding real-world experiment time. For numbers of robots

from N = 103 to N = 105 wall clock time grows roughly linearly. Moreover, for N = 105,

wall clock time is about 10T . Regarding speedup, the more robots are employed, the more

thread-based parallelism increases efficiency. In our experiments, the largest speedup was

observed with P = 16, A16 and N = 105.

Comparison with stage Vaughan (2008) ran Stage’s efficiency evaluation on an Apple

MacBook Pro, with a 2.33 GHz Intel Core 2 Duo processor and 2 GB RAM. For our evalu-

ation, each core in the machines we utilized offers comparable features: 2 GHz speed, 1 GB

RAM per thread when P = 16.17

Stage can simulate approximately 103 robots in real-time, according to the results of

experiments run without graphics, in a large environment with obstacles and with simple

wheeled robots (Vaughan 2008). These results were obtained with Stage version 3, whose

architecture is single-threaded and whose physics is limited to 2D-kinematics equations.

Under similar circumstances, when ARGoS is executed without threads and with a single

2D-dynamics physics engine, 103 robots are simulated in 24 % of the corresponding real-

world experiment time.

16However, the sense + control and act phases are still executed in parallel.

17With N = 105 robots, ARGoS used about 800 MB of RAM.
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Fig. 7 Average wall clock time and speedup for partitions A2 to A16 . Each point corresponds to a set of

40 experiments with a specific configuration 〈N,P,AE〉. Each experiment simulates T = 60 s. In the upper

plots, points under the dashed line denote that the simulations were faster than the corresponding real-world

experiment time; above it, they were slower. Standard deviation is omitted because its value is so small that

it would not be visible on the graph
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Fig. 8 Average wall clock time and speedup for experiments with 2D-kinematics engines (left) and

3D-dynamics engines (right). Each point corresponds to a set of 40 experiments with a specific configu-

ration 〈N,16,AE〉. Each experiment simulates T = 60 s. In the upper plots, points under the dashed line

denote that the simulations were faster than the corresponding real-world experiment time; above it, they

were slower. Standard deviation is omitted because its value is so small that it would not be visible on the

graph

4.1.2 Results with other physics engines

2D-Kinematics engine One of the engines available in ARGoS is a custom-made 2D-

kinematics engine. This engine is designed to support simple navigation-based experiments

involving a low number of robots (up to a few hundred). No effort was made to optimize the

code for efficiency. For instance, in this engine the computational complexity of collision

checking is O(N2). Due to its extreme simplicity, the 2D-kinematics engine is a good test

to prove the advantages of running multiple engines in parallel.

The left side of Fig. 8 shows the average wall clock time and speedup of the benchmark

experiment when the custom 2D-kinematics engine is employed. All the experiments sum-

marized in the plot were performed with P = 16 threads, and with space partition A1 to A16.

Results indicate that, when the space is partitioned among 16 kinematics engines, ARGoS

is able to simulate N = 104 robots in approximately real-world time. Thus, even though the

kinematics engine was not designed to scale, by using multiple instances of this engine it is

possible to enhance efficiency to simulate thousands of robots.

3D-Dynamics engine The most detailed physics engine in ARGoS is a 3D-dynamics en-

gine based on the ODE library. As explained in Sect. 2, this engine is used by Webots and

Gazebo, two very successful robot simulators.

On the right-hand side of Fig. 8, we report the results of the benchmark experiments

conducted with this engine. Analogously to the experiments with the 2D-kinematics engine,
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these experiments were run with P = 16 threads and with space partitions A1 to A16. In

the wall clock time graph, the measured timings are very close to each other, although the

best result is obtained when E = 16 engines are used. The lowest wall clock time obtained

for N = 104 is approximately T , so, once more, ARGoS can simulate N = 104 robots in

real-experiment time even with an accurate 3D-dynamics engine.

4.2 Flexibility

We illustrate ARGoS’ flexibility through two case studies.

In Sect. 4.2.1, we focus on modularity. We explain how two completely different robots,

the foot-bot and the eye-bot, are modeled into ARGoS from simple, reusable component

entities.

In Sect. 4.2.2, we concentrate on extensibility. More specifically, we describe an experi-

ment in which the standard models provided by ARGoS do not ensure an adequate level of

simulation accuracy. Thus, we show how ARGoS can be extended with new models to fit

the needs of the experimenter.

4.2.1 Modularity: the foot-bot and the eye-bot

To discuss ARGoS modularity, we describe how two extremely different robots are modeled

in ARGoS. The two robots we chose for this case study are the foot-bot (Bonani et al. 2010)

and the eye-bot (Roberts et al. 2007). The foot-bot is a ground-based robot that moves with

a combination of wheels and tracks (called treels). The eye-bot is a quad-rotor aerial robot.

Both robots are equipped with various sensors and actuators that allow them to interact with

the surrounding environment. The robots and their devices are depicted in Fig. 9.

Sensors and actuators Both robots are equipped with numerous sensors and actuators,

some of which have similar features. In the following discussion, we focus on the sensors

and the actuators that share common features. It is important to note that some robot devices

may function both as a sensor and an actuator. In these cases, in ARGoS two plug-ins are

necessary—one for the sensor and one for the actuator.

One of the simplest devices present on both robots is the on-board clock. The state of

the clock is read by the clock sensor. Given its simplicity, ARGoS natively offers a single

implementation of the clock sensor suitable for all robots.

Both the foot-bot and the eye-bot are equipped with LEDs. However, the specifics of the

control interface of the LEDs are different because the LEDs are distributed differently on

the two robots. On the foot-bot, there are two kinds of LEDs: a ring that surrounds the body,

composed of 12 RGB LEDs, and a beacon positioned at the center of the robot body. The

eye-bot is equipped with two rings of 16 LEDs each: an upper ring and a lower ring. The

upper ring is primarily visible from the side, while the lower ring is visible from beneath

the robot. As a result of their different configurations, the two robots have different control

interfaces for their LEDs. However, thanks to the LED-equipped entity, the plugins for both

robots can re-use the same code.

Both the foot-bot and the eye-bot are equipped with cameras. The foot-bot has two: an

omnidirectional camera, and a camera that can be mounted looking upwards or frontally.

The eye-bot has a pan-and-tilt camera, that is, a camera mounted on a rotating device. The

implementation of the cameras is specific to each robot. The cameras of the foot-bots are

pure sensors, while the eye-bot’s pan-and-tilt camera has an associated actuator that controls

the attitude of the camera. Notwithstanding these differences, the implementations of the
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Fig. 9 The main devices composing two of the robots supported by ARGoS. (a) The foot-bot; (b) The

eye-bot
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camera sensors are based on a common definition that is extended to suit the specific needs

of each camera type, thus ensuring code reuse.

The foot-bot and the eye-bot can communicate with each other through a range-and-

bearing communication device (Roberts et al. 2009), which allows robots in line-of-sight to

exchange messages within a limited range. The particularity of this communication device

is that a robot, upon receipt of a message, can calculate the relative position (distance and

angle) of the sender. The implementation of this device is divided into two parts: the range-

and-bearing sensor and the range-and-bearing actuator. The role of the former is to manage

the receipt of messages from other robots. The role of the latter is to set the message to send.

The implementation of this device is shared between the foot-bot and the eye-bot.

Composing entities Both the foot-bot and the eye-bot are implemented as composable enti-

ties. They share most components. Both are composed by an embodied entity, a controllable

entity, and an LED-equipped entity. In addition, the state of the distance scanner is stored in

a distance-scanner-equipped entity, while the state of the range-and-bearing communication

device is stored into a range-and-bearing equipped entity.

4.2.2 Extensibility: task partitioning in cooperative foraging

In this section, we describe an experiment for which the standard foot-bot model provided

by ARGoS proves to be not sufficiently accurate. We discuss how ARGoS can be extended

to include a better robot model, thus providing the necessary accuracy.

The experiment involves cooperative foraging by a swarm of foot-bots. The robots’ be-

havior is designed to face non-trivial, real-world issues that significantly impact both the

exploration of the environment and the transportation of target objects.

Experimental setup A swarm of six foot-bots is deployed in an area of the environment,

called the nest. The robots must bring some objects to the nest. These objects are placed 4 m

from the nest, in a location, the source, which is unknown to the robots. Thus, the robots

must first explore the environment to discover the source, and then proceed with object

transportation. In this scenario, each robot can transport one object per trip at maximum. The

robots continue the exploration/transportation routine until a certain time limit is reached.

The primary issue in this scenario is navigation from the nest to the source and vice-

versa. The literature abounds with methods to navigate between two locations. To maintain

minimal requirements on the robots, in this scenario, we assume that a robot can only use

dead-reckoning, that is, it can estimate its position with respect to a certain location from

the integration of odometry information. This method, however, is very sensitive to sensory

noise. In fact, as a robot navigates, the integration of noisy odometry information causes an

accumulation of the estimation error on the position of the target location. On the real foot-

bot, over time the amount of error becomes so high that the robot must discard odometry

information and return to exploration. In addition, the robots suffer from a systematic error

caused by an asymmetry in the construction of the treel motors. As shown in Fig. 10, if both

treels of a foot-bot are set at the same forward speed, the robot’s trajectory slants to the left.

Analogously, when moving backwards, the trajectory is slanted to the right. Thus, a robot

that moves back and forth between two points draws an S-shaped trajectory instead of a

straight one. The magnitude of the slant is different across each trip and it is undetectable

by the on-board motor sensors.
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Fig. 10 When the same speed is applied to the foot-bot treels, the robot does not cover a straight line, due

to an asymmetry in the construction of the treel motors

Fig. 11 Correspondence of the throughput of object transportation in simulation (with and without noise),

and on real robots. The image reports the difference between simulation without noise and real robots, and

simulation with noise and real robots. The shaded areas represent the 95 % confidence interval of the mean

rank difference obtained through a Wilcoxon signed-rank test

The robot behavior The behavior of the robots is based on the idea that the estimation

error increases with the distance covered by a robot. Thus, to limit the error, it is enough to

limit the range of motion of the robots. In practice, the task of moving an object from the

source to the nest is partitioned into several sub-tasks consisting of moving the object for a

short distance. Each step of this process is performed by a different robot. For more details

about this behavior, see Pini et al. (2012).

Dead-reckoning model The standard implementation of the treel motors in ARGoS does

not include noise. This is a common choice in many simulators (e.g., Stage, Gazebo, Webots)

because, in the vast majority of experiments, the impact of this kind of noise is negligible

(see, for instance, Ferrante et al. 2010).

However, in the experiment under study, such noise plays a fundamental role on the

system’s performance. One of the main metrics to measure performance is the throughput

of objects brought to the nest. The throughput is calculated as the number of objects that

reached the nest in the previous fifteen minutes. Throughput samples are collected every

two minutes. We consider the throughput data in three cases: simulation without noise, sim-

ulation with noise and real robots. Figure 11 shows the 95 % confidence interval on the
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Fig. 12 Positioning error of the

foot-bots with respect to their

target location. We report both

the data sampled from real robot

experiments and from the

dead-reckoning model described

in Sect. 4.2.2

difference between the data sets computed through a Wilcoxon signed-rank test. The result

of this test on the difference between the data in simulation without noise and on real robot

demonstrates that, for this experiment, the predictions of the standard ARGoS model is too

optimistic. The upper bound of the confidence interval (the black shaded area in the plot) is

5.83 cm. Thus, we constructed a noise model and added a new actuator with this model into

ARGoS.

To construct the noise model, we analyzed a set of videos of the motion of real foot-bots

during navigation to the source. We collected a set of 61 positions, derived the noise model,

and implemented a new actuator. To reproduce the slanted motion, the actuated treel speed

is obtained by summing a random term to the desired treel speed set by the robot. If the

motion is forwards, positive speed value, the random term is summed to the desired right

treel speed; if the motion is backward, negative speed value, the random term is subtracted

from the desired left treel speed. The random term is obtained by multiplying the desired

speed by a term µ, taken at random from a Rayleigh distribution (σ = 0.0134). The value of

µ is chosen at random at the beginning of the experiment, and subsequently changed every

time a robot grips an object. Figure 12 reports the samples from real robot experiments and

the data obtained with the described model.

This model is very simple and does not include a model of the treel motors. Despite its

simplicity, the results illustrated in Fig. 11 show that the throughput of the robots in simu-

lation matches the throughput in real robot experiments. The lower bound of the confidence

interval on the difference between the two data sets (noisy simulation and real robot) is

−1 cm (see the light gray shaded area in the plot).

Implementation in ARGoS As discussed in Sect. 3.1, ARGoS offers two approaches to

include new features or better models.

The first approach involves creating a new module implementation. For instance, in the

experiment under consideration, the improved dead-reckoning model can be included in a

new implementation of the wheel encoder sensor of the foot-bot. Alternatively, the experi-

menter can code a suitable loop function hook (see Sect. 3.1.6).

For sensors and actuators, the first approach is usually preferable when the added features

cover relatively general use cases. In contrast, if the added feature is considered experiment-

specific or of little general interest, a loop function hook is a wiser choice.

For the implementation of the noise model above discussed, we selected the first ap-

proach. On the other hand, the loop functions proved to be necessary to implement two
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aspects of the experiment: (i) the logic whereby a target object dropped in the nest is moved

back to the source area, and (ii) the collection of data reported in Figs. 11 and 12.

5 Conclusions and future work

We have presented ARGoS, a multi-robot simulator capable of simulating large, heteroge-

neous swarms of robots.

ARGoS is the first multi-robot simulator that is both flexible and efficient. Flexibility

refers to the ability to simulate diverse experiments and add new features. Efficiency refers to

the ability to run experiments involving thousands of robots in the shortest time possible. In

state-of-the-art physics-based simulators for robotics, flexibility and efficiency are at odds.

To solve this trade-off, in ARGoS we employed a set of novel design choices. ARGoS

achieves both flexibility and efficiency by employing a set of novel design choices.

ARGoS’ modular architecture allows the user to modify every aspect of a simulation.

The user is thus able to select the most suitable modules for the experiment under study,

allocating higher computational resources only to specific elements of a given experiment.

Modularity enables the addition of new features, such as new robot models, sensors, or

actuators, promoting exchange and cooperation among researchers.

The most unique feature of ARGoS is the possibility to divide the simulated space into

non-overlapping sub-spaces, each governed by a separate physics engine. The rules imple-

mented in each physics engine can be customized to optimize the run-time of an experiment.

Finally, the multi-threaded architecture of ARGoS exploits the resources of modern

multi-core processors efficiently. Results show that ARGoS can perform accurate 2D-

dynamics simulations of 10,000 robots in 60 % of real time, and accurate 3D-dynamics

simulations with the same number of robots in about real time.

Future work will be devoted to improving the design of ARGoS to provide real-time per-

formance for hundreds of thousands of robots. Possible approaches may be: (i) employing a

heterogeneous threading model performing the computation both on CPU and GPU (Holmes

et al. 2010) and (ii) modifying the multi-threaded architecture of ARGoS into a mixed multi-

thread/multi-process architecture, in which physics engines and the simulated space are dis-

tributed across different machines in a network.

ARGoS is GPL3-licensed and can be downloaded free of charge from http://iridia.ulb.ac.

be/argos.
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