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Abstract

Background: Predicting protein function has become increasingly demanding in the era of next generation

sequencing technology. The task to assign a curator-reviewed function to every single sequence is impracticable.

Bioinformatics tools, easy to use and able to provide automatic and reliable annotations at a genomic scale, are

necessary and urgent. In this scenario, the Gene Ontology has provided the means to standardize the annotation

classification with a structured vocabulary which can be easily exploited by computational methods.

Results: Argot2 is a web-based function prediction tool able to annotate nucleic or protein sequences from small

datasets up to entire genomes. It accepts as input a list of sequences in FASTA format, which are processed using

BLAST and HMMER searches vs UniProKB and Pfam databases respectively; these sequences are then annotated

with GO terms retrieved from the UniProtKB-GOA database and the terms are weighted using the e-values from

BLAST and HMMER. The weighted GO terms are processed according to both their semantic similarity relations

described by the Gene Ontology and their associated score. The algorithm is based on the original idea developed

in a previous tool called Argot. The entire engine has been completely rewritten to improve both accuracy and

computational efficiency, thus allowing for the annotation of complete genomes.

Conclusions: The revised algorithm has been already employed and successfully tested during in-house genome

projects of grape and apple, and has proven to have a high precision and recall in all our benchmark conditions. It

has also been successfully compared with Blast2GO, one of the methods most commonly employed for sequence

annotation. The server is freely accessible at http://www.medcomp.medicina.unipd.it/Argot2.

Background

Thanks to the advent of the Next Generation Sequen-

cing technologies, we have assisted to an exponential

increase in sequence data generation [1]. The task to

assign a curator-reviewed function to every single

sequence is unworkable, calling for efficient/effective

methods to assign automatic annotation are necessary

as a first analysis step to support working hypotheses

and drive experimental validations of biological

functions.

Computational approaches can be rather imprecise

because functional inference is not as straightforward as

one would expect, due to the unevenness of the classical

paradigm “sequence-structure-function”. Some authors

suggest that for sequences sharing less than 30% of iden-

tity, the functional transfer may be highly inaccurate or

completely wrong [2,3]: in particular Enzyme Classifica-

tion (EC) numbers tend to be conserved only for proteins

with sequence identity above 80%. Other authors report

different figures [4,5] confirming the difficulty to agree
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on a unique view due to a certain unpredictability of bio-

logical systems.

In the category of sequence-based methods, the simple

search for homologous sequences is considered a com-

mon practice for function prediction based on annota-

tion transfer, and BLAST [6] can be considered a gold

standard. If its classical pairwise alignment engine fails,

the profile based PSI-BLAST [6] is able to identify rela-

tionship among distantly related proteins.

Another widely accepted approach relies on functional

domains assignments. HMMER [7], which is based on

Hidden Markov Models (HMM), is among the most

known tools falling in this category. HMMER is mainly

used to query the Pfam HMM models [8] and search for

functional patterns and domains in the target sequences.

Recently, the Gene Ontology (GO) consortium [9] has

revolutionized the way to access knowledge data and

has rapidly become a standard de facto. The GO is orga-

nized in a hierarchical directed acyclic graph that greatly

facilitates the mining of biological information by com-

putational algorithms.

With the advent of GO and UniProtKB-GOA database

(GOA) [10] of functionally annotated proteins, several

algorithms have been developed to improve functional

inference based on the plain use of BLAST [11]. Among

these solutions, Blast2GO [12-14] can be considered one

of the best platforms to assist the user in annotating

sequences.

In this paper, we present Argot2 (Annotation Retrieval

of Gene Ontology Terms), a tool designed for high-

throughput annotation of large sequence data sets with

high efficiency and precision. Argot2 is born for in-house

needs to annotate predicted genes from large-scale

sequencing projects; now it has a free and fully functional

web interface and its engine has been completely revis-

ited. It has been extensively tested during highly challen-

ging endeavours as grape [15] and apple [16] genome

annotations and it has been continuously refined from its

early version, Argot [17], to reach a high flexibility and

confidence in extracting fruitful knowledge from different

sources of information. The web server version is compu-

tationally efficient, highly scalable, and it is able to

address the different needs of basic and advanced users

in annotating small sets of proteins up to entire genomes.

Here we also report the assessment of Argot2 tested in

four different configurations and in comparison with

Blast2GO.

Methods

Algorithm description

Argot2 processes the GO annotations of the hits retrieved

by BLAST and HMMER searches. A weighting scheme

and a clustering approach are applied to select the most

accurate GO terms for annotating the target proteins.

Argot2 takes a list of GO terms belonging to the GO

graph G(V,E) as input and weights them according to

the e-value score of the hits. Assuming that the set V is

ordered, it is possible to establish a one-to-one corre-

spondence between the ith GO term gi Î V used for the

annotation, its weight wi and the e-value scores Si and

Si’ given by BLAST and HMMER. The weights are com-

puted as follows:

wi = − log(Si) for BLAST (1)

wi = − log(S′
i) · f

(

1

P
ngi

)

for HMMER (2)

As pfam2go [18] provides a minimal coverage of GO

terms for each Pfam model, we extract from GOA the

GO annotations of all proteins belonging to each Pfam

entry to enrich these assignments. In Eq. 2
1

P
ngi

is the

frequency of the GO term gi calculated over the total

number P of proteins in the model and f(x) is a logistic

curve introduced to reward highly frequent terms and

to penalize those that are sparse and likely false

positives.

All the possible paths starting from the input GO

terms and leading to the root node are reconstructed

and the GO nodes not included in any of these paths

are discarded from the analysis, obtaining the so-called

“GO-slim” (Figure 1-i).

The remaining GO terms are grouped together in sets

Grk Î ℘;(V) according to their semantic similarity [19]:

the nodes that share a strong biological relationship

form a unique informative group, and only the most

specific and high scoring annotations are considered.

Given two generic GO terms gi, gj Î V, we use the

Lin’s formula [20] (Eq. 3) as a semantic similarity mea-

sure. This metric has been chosen since it gave the best

results in clustering annotations with respect to other

existing methods [17].

The Lin’s formula is defined as:

sim(gi, gj) =
2 · simres(gi, gj)

IC(gi) + IC(gj)
(3)

In this formula, the function simres : V × V ® ℜ

defined as: simres(gi, gj) = maxg∈S(gi,gj){IC(g)} represents

the highest Information Content IC among the subsu-

mers of the terms gi and gj. Using the notation gi ↦ gj
to mean that a path from the term gi to the term gj
exists, the set of the subsumers can be defined through

the function S: V × V ® ℘(V) as S(gi,gj) = {g Î V:g ↦

gi ^ g ↦ gj}.

The function IC : V ® ℜ is the Information Content

of the ith GO term calculated according to the Resnik

formula [21] as:
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IC(gi) = − log

(
∣

∣{g : gi �→ g}
∣

∣

∣

∣{g : g ∈ GOA}
∣

∣

)

where |{g:gi ↦ g}| indicates the total number of occur-

rences of GO terms descending from GO term i and |{g:

g Î GOA}| is the total number of GO terms in the GOA

database.

Three scores are then introduced to filter isolated GO

terms and to rank the remaining ones. The first one, the

Group Score GrS : N ® ℜ, is the sum of the cumulative

Internal Confidence InC of the nodes gj belonging to the

kth group Grk, being N the set of the natural numbers:

GrS(k) =
∑

{j: gj∈Grk}

InC(gj)

The Internal Confidence InC : V ® ℜ is a cumulative

measure that takes into account the global cumulative

weight distributions W: V ® ℜ defined as

W(g) =
∑

{j: g �→gj}

wj , that is the sum of the weight w of a

GO term g (Eq. 1 and Eq. 2) plus the weights of its chil-

dren, and the sum of the cumulative weight of the root

node (see Figure 1-iii):

InC(gi) =

∑

{j: gi �→gj}

wj

∑

{j: groot �→gj}

wj
=

W(gi)

W(groot)
(4)

The second score Z: V ® ℜ, called Z-score, is calcu-

lated for each extracted GO term gi as follows:

Z(gi) =
W(gi) − W

σ

where W is the weight of the root node divided by

the total number of the retrieved GO nodes, while s is

the standard deviation of all the weights.

Figure 1 Argot2 algorithm. i) Position of the retrieved nodes in the GO graph (black circles) with their weights (W). White circles connected by

dashed lines are pruned GO terms that are not present in the final GO-slim. ii) Filtering steps based on Z-score and G-score (see the main text).

The yellow big circles are the representatives of the corresponding groups having the highest Total Score (TS) and are used for the annotation.

iii) The hexagons report the cumulative weights of the GO nodes i.e. W2 is obtained by the sum of its child nodes marked as black circles (WB

and WC). Node 4 does not contribute to the cumulative score, as it is a reconstructed parent from node C. It inherits the weight of node C only

(WC,4).
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If the Z-score and the Group Score are below a cer-

tain threshold, the corresponding GO terms are dis-

carded. These filtering steps reward those paths, up to

the root, that are statistically significant discarding the

branches of the GO graph containing nodes with low

weights (see in Figure 1-ii the discarded path and

group).

After the filtering phases, the algorithm assigns the

third score, the Total Score TS : V ® ℜ, to each culled

GO term gi, according to the following formula:

TS(gi) = IC(gi) · InCnc(gi) ·
InCnc(gi)

GrSnc(gi)
· wi (5)

where Incnc: V ® ℜ is the non-cumulative internal

confidence, calculated as

InCnc(gi) =
wi

∑

{j: groot �→gj}

wj
=

wi

W(groot) (6)

Differently from the cumulative Internal Confidence

InC defined by (Eq. 4), it estimates the local non-cumu-

lative weight distribution, which considers only the

weight of the term under analysis.

The function GrSnc : N ® ℜ is the non-cumulative

Group Score associated to the kth group Grk. It is calcu-

lated as the sum of the non cumulative Internal Confi-

dence InCnc (Eq. 6) of the nodes belonging to that

group:

GrSnc(k) =
∑

{gj∈Grk}

InCnc(gj)

The GO terms with TS above a chosen threshold are

extracted and reported.

The score rewards those hits that are particularly sig-

nificant and specific, thanks to the contribution of the

Information Content (see yellow circles in Figure 1-ii).

The non cumulative measures InCnc and GrSnc have

been introduced to guarantee that no biases are intro-

duced due to the scores of child nodes.

Web server functionalities and features

Argot2 has been completely reengineered to speed up

and improve the annotation process. The algorithm has

undergone several adjustments to easily merge the GO

annotations retrieved from different databases. UniProt

[22] and Pfam are presently used as reference databases

and queried using BLAST and HMMER respectively.

The server can be accessed in three ways addressing

different needs from small to large scale function pre-

dictions (see Figure 2).

a) In the “interactive analysis” the user simply inputs

up to 100 DNA/protein sequences in FASTA format.

For every sequence, a table is shown containing: pre-

dicted annotations with scores, hyperlinks to external

sources, lists of proteins contributing to the final anno-

tation, and a graphical position map of the retrieved hits

into the GO graph.

b) The “batch analysis” is addressed to researchers

interested in the annotation of entire genomes. Since

this process is highly demanding, due to the long com-

putational time required by BLAST and HMMER, we

ask users to perform BLAST and HMMER searches

locally and then upload search results into Argot2.

c) The last access option is called “consensus analysis”

as users may provide their own weighted GO terms for

each protein; these annotations can be obtained by any

other method or database, in addition or in alternative

to the “default” BLAST and HMMER searches used by

the web server. The outputs of the analyses of type b

and c are Excel or Tab Separated Values (TSV) files list-

ing the retrieved annotations along with specific metrics:

Total Score, Information Content and Internal Confi-

dence. Finally, predictions can be automatically clustered

in functional classes by using the GOClass tool (Addi-

tional file 1) and viewed as pie-charts. The Argot2 algo-

rithm steps are mainly based on the original idea

published in [17]. Important changes have been applied

to the procedure to filter potential false positive hits out

during the evaluation of the predicted terms. The raw

measure Total Score (TS) has also been redefined. The

server is freely accessible at the URL in [23].

Argot2 assessment

Argot2 has been benchmarked in four different condi-

tions to test how proteins (either kept or removed from

the databank) influence the results, and which is the

impact of domain based HMM searches. The four dif-

ferent configurations are indicated in the following as: a)

BH_with, b) B_with, c) BH_without, d) B_without. The

prefix “BH” means that Argot2 has been tested on

BLAST and HMMER searches, whereas “B” only on

BLAST searches. The suffix “with” means that the pro-

teins of the test set are present in the databank and

“without” means they have been eliminated. Argot2 has

been also compared with Blast2GO.

The assessment of Argot2 was based on the guidelines

of the “Critical Assessment of Function Annotations”

(CAFA) experiment [24] (see Additional file 7). We

tested over 4000 proteins with already available GO

annotations in GOA, both from Eukaryota (Euk) and

Prokaryota (Pro), randomly extracted from about 50000

sequences released for the CAFA challenge. In addition,

the well annotated yeast genome, comprising 6187

annotated proteins, has also been used as a test set. The

details and statistics of the test sets are available in

Additional files 2, 3, 4, 5 and on our web site [25].
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The evaluation has been carried out at a protein-cen-

tric level using the following criteria. Let N be a pool of

unknown target proteins. For each given protein p, the

GO terms predicted by each method are retrieved and

ranked accordingly to the corresponding Total Score

TSp (Eq. 5).

For a given threshold t applied to the Total Score TSp
the four different configurations are assessed based on

precision and recall, calculated for each protein p as:

PRt
p =

TPt
p

TPt
p + FPt

p

; RCt
p =

TPt
p

TPt
p + FNt

p

(7)

The number of True Positives (TPt
p ) is the size of the

intersection between the sets of benchmark (true) and

predicted GO terms with score TSp > t. The number of

False Positives (FPt
p ) is the size of the difference

between the sets of predicted and true GO terms. The

number of False Negatives (FNt
p ) is the size of the dif-

ference between the sets of true and predicted GO

terms. The denominators of (Eq. 7) and (Eq. 8) repre-

sent the total number of predicted terms and the num-

ber of true terms, respectively. If, for a given threshold

t, a protein has not any annotated term, its precision is

not calculated.

Assessment Method 1 (m1) with sliding threshold

We consider a set of threshold scores t ranging from 0

to the maximum observed score tmax. For each t, preci-

sion and recall are averaged across the N proteins of the

pool, obtaining:

Figure 2 Activity diagram of the Argot2 web server. Activity diagram of the Argot2 web server showing the three types of access:

“Interactive analysis” for up to 100 sequences, “Batch analysis” for more than 100 sequences and “Consensus analysis” based on provided

weighted GO annotations (see the main text).
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PRt =
1

N

∑N

p=1
PRt

p ; RCt =
1

N

∑N

p=1
RCt

p

Each pair of values (1-PRt, RCt) represents a point of

the precision/recall curve.

Assessment Method 2 (m2) with sliding threshold

We calculate precision and recall as in the case of m1

method, but all the GO terms retrieved by the different

tools (predicted terms) and those originally annotated

on the benchmark proteins (true terms) are first propa-

gated to the root. Thus, all GO terms standing in the

paths of the predicted/true terms up to the root are

considered in the assessment. The idea is that a pre-

dicted GO term, though not exact, may share some of

its parent nodes with some parent nodes of one true

GO term. This term cannot be considered completely

wrong but rather closely related and, consequently, its

shared parent nodes are included in the evaluation. See

Additional file 7 for details and extensive explanation of

assessment m1 and m2.

Results and discussion

Precision/recall curves for Molecular Function (MF) and

Biological Process (BP) have been calculated with

method m1 and m2 for yeast (Figure 3), Eukaryota, and

Prokaryota test sets (Additional file 3 and 4). The first

outcome of our benchmarking provides evidence of the

effectiveness of the combination of BLAST and

HMMER weighted hits (BH vs. B curves shown in

Figure 3) in recovering a large number of GO terms

(high recall), without significantly affecting precision,

and outperforming the use of BLAST alone.

One potential bias in the assessment of all methods is

that 84% and 99% of the proteins, in Euk and Pro test

sets respectively (Additional file 2), are annotated with-

out manual validation (Inferred from Electronic Annota-

tion, IEA) and an over-estimation of tool performance

may occur due to the use of predicted terms for func-

tional inference [26]. To investigate the influence of this

potential bias, the yeast proteome was used as bench-

mark, since a wealth of experimental data is available

for this organism (over 84% of the proteins contain at

least one non-IEA annotation. See Additional file 2).

Though this is a challenging task involving 6187

sequences, the assessment gives an idea of what Argot2

is expected to do on a genome scale, namely to obtain a

precise and thorough picture of molecular functions and

biological processes of an entire organism. The general

trends and the robustness shown in Pro and Euk test

sets are confirmed (see Additional file 3, 4, and 6 from

“a” to “h”). Nonetheless, a minor decrease in perfor-

mance can be observed in yeast. This is due to the fact

that yeast is mainly annotated with highly informative

non-IEA GO terms, whose frequency in GOA databank

is very low and consequently their retrieval may be a

hard task. In particular it is possible to observe that the

recall worsen, whereas the precision is only marginally

affected proving that Argot2 is able to retrieve reliable

and even low-frequent GO terms (compare for example

the third column of Additional file 6 with the first two

columns of the same figure, row by row).

This trend is confirmed when target proteins are

removed from the databanks used to train Argot2 (see

curves suffixed by “with” vs. those suffixed by “without”

in Figure 3). This issue is not present in Pro and Euk

test sets, which mainly include highly frequent IEA GO

terms. As expected, results of Pro and Euk test sets get

slightly worse (see Additional file 3 and 4), but yeast is

more affected and Argot2 finds more difficulties in

extracting the right GO terms (see Figure 3, column

“m1”). Nevertheless, method m2 reveals that, in these

critical situations, Argot2 tends to be conservative rather

than inaccurate, i.e. to show a lower recall but still a

good precision (see Figure 3: “a” vs. “c”, “b” vs. “d”,

“BH_without” and “B_without”). In conclusion, the

lower performance is due to shallowness rather than

inaccuracy. This means that most of the predicted

nodes, though approximate, fall into the path of the cor-

rect annotations.

Finally, some interesting conclusions can be drawn in

the “one-to-one” comparison with Blast2GO using the

B_with Argot2 version that exploits the same BLAST

data of Blast2GO. According to benchmark “m2”, the

recall is generally higher for Argot2 whereas the precision

is comparable, to some extent, between the two tools.

However, Argot2 is more effective in retrieving the exact

original annotations, as evidenced by the use of assess-

ment method m1 (see “m1” column in Figure 3 and “m1”

rows in Additional file 6). The irregular contour trend of

Blast2GO may be due to the sliding “Annotation Cut-off”

parameter, which does not seem to be a well discriminat-

ing score. Fine tuning may be required, even though the

default value suggested for the parameter “Annotation

Cut-off”, i.e. 55, gives the best trade-off between precision

and recall. Moreover, Argot2 is fairly more computation-

ally efficient compared to Blast2GO. Starting from

BLAST and HMMER results, which remain the limiting

steps of the process, Argot2 takes only few hours to

annotate an entire genome.

Conclusions

Argot has been revisited to increase both accuracy and

precision, thanks to an improved weighting scheme

and the introduction of Pfam models. The server auto-

matically downloads new releases of the used data-

banks UniProtKB-GOA, UniProt, Gene Ontology, and

Pfam on a monthly basis to give end users an updated
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access to the tool. Presently, in our testing conditions

Argot2 performs reasonably well in terms of both pre-

cision and recall, showing that TS score can effectively

discriminate among false and true positives. The main

rationale has been to create a tool able to favour the

precision with respect to the recall. This is critical

when annotating very large genome data sets, since

reducing the false positives rate is definitely desirable.

This can prevent biased information from impacting

negatively on post-genome studies and statistics. In

addition, we plan to associate a p-value to the raw

score TS and to add new sources of information, try-

ing to give an answer to non-trivial cases that lie in

the twilight zone beyond similarity based evidences. In

future releases we could explore other metrics, for

example to assess different semantic similarity mea-

sures and to compare their performances with Lin’s

formula currently used by Argot2 (see [27]).

Figure 3 Precision/recall curves of the yeast benchmark test. Precision/recall curves for Molecular Function (MF) and Biological Process (BP)

calculated with method m1 and m2 (see the main text) for yeast test set. Recall and 1-precision of the tested algorithms are reported in y-axis

and x-axis, respectively, for the two configurations “with” (keeping the benchmarked proteins in the databank) and “without” (removing them

from the databank). See the main text for the abbreviations BH_with, B_with, BH_without, and B_without.
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Additional material

Additional file 1: GOClass algorithm details. Details of the GOClass

algorithm used to cluster the GO terms, and more general views of the

results obtained by Argot2.

Additional file 2: Datasets statistics. Parameters used in the

benchmarks and some statistics about the datasets.

Additional file 3: Precision/Recall curves for the Eukaryota dataset.

Precision/recall curves for Molecular Function (MF), Biological Process (BP)

and Cellular Component (CC) calculated with methods m1 and m2 for

Eukaryota test set.

Additional file 4: Precision/Recall curves for the Prokaryota dataset.

Precision/recall curves for Molecular Function (MF), Biological Process (BP)

and Cellular Component (CC) calculated with methods m1 and m2 for

Prokaryota test set.

Additional file 5: Precision/Recall curves for the Yeast dataset.

Precision/recall curves for Molecular Function (MF), Biological Process (BP)

and Cellular Component (CC) calculated with methods m1 and m2 for

Yeast test set.

Additional file 6: Precision/Recall curves for the Euk, Pro and Yeast

datasets. Precision/recall curves for Molecular Function (MF) and

Biological Process (BP) calculated with methods m1 and m2 for Euk, Pro

and Yeast test sets.

Additional file 7: CAFA guidelines explanation. Document that

explains m1 and m2 methods using a simple example.

List of abbreviations used

All abbreviations in the text excluded from the following list are specific of this

paper and have been defined in the main text.

BLAST: Basic Local Alignment Search Tool; GO: Gene Ontology; GOA: Gene

Ontology Annotation; EC: Enzyme Classification; PSI-BLAST: Position-Specific

Iterative Basic Local Alignment Search Tool; HMM: Hidden Markov Model;

TSV: Tab Separated Values; URL: Uniform Resource Locator; CAFA: Critical

Assessment of Function Annotations; TP: True Positive; FP: False Positive; FN:

False Negative; MF: Molecular Function; BP: Biological Process; IEA: Inferred

by Electronic Annotation.
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