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Abstract The volume and complexity of knowledge produced by medi-
cal research calls for the development of technology for automated man-
agement and analysis of such knowledge. In this paper, we identify sce-
narios where a researcher or a clinician may wish to use automated sys-
tems for analysing knowledge from clinical trials. For this, we propose a
language for encoding, capturing and synthesising knowledge from clin-
ical trials and a framework that allows the construction of arguments
from such knowledge. We develop this framework and demonstrate its
use on a case study regarding chemotherapy regimens for ovarian cancer.

1 Introduction

During the last few decades, medical research has grown rapidly, producing
an enormous amount of results. This growth necessitates a change in how this
knowledge is managed, searched and analysed in order to achieve the full poten-
tial offered. Information retrieval techniques are already indispensable for users.
However, they do not address all the needs, as they do not enable one to reason
with the available knowledge. This is where knowledge representation techniques
can make a contribution. In this paper, we propose a framework for expressing
and analysing this knowledge in an effective manner.

One important kind of such knowledge is associated with superiority-testing
clinical trials, a type of clinical study which involves comparing the efficacy of
two or more treatments when given to a particular class of patients. Each such
trial reports the results of comparing two or more treatments. In order to have
a global view of the relative comparisons between treatments for a particular
condition, a potentially large number of publications needs to be reviewed and
this is why syntheses of this kind of knowledge are undertaken. Normally, a
group of scientists would search the literature and perform a study employing
background medical knowledge and statistical techniques for aggregating clinical
trial results (e.g., a systematic review or meta-analysis), requiring significant
time and effort. In addition, such syntheses of the literature can quickly become
out of date if new results are published in the interim.



Therefore, getting a quick, up-to-date review of the state of the art on treat-
ment efficacy for a particular condition is not always feasible. Thus, it would be
helpful to have a method for automatically analysing and presenting the clini-
cal trial results and the possible ways to aggregate those in an intuitive form,
highlighting agreement and conflict present within the literature. Our proposal
aims to suggest such a method. The first part of the proposal is a language
that can be used to encode the published results in a semantically appropriate
way, and methods for constructing a knowledge base from the encoded results.
Using such a knowledge base clinical scientists can access easily the desired set
of evidence. The second part in our framework allows the construction of argu-
ments on the basis of evidence as well as their syntheses, published or generated
on-the-fly. The evidence available are then presented and organised according to
the agreement and conflict inherent. In addition, users can encode preferences
for automatically ruling in favour of the preferred arguments in a conflict.

To demonstrate our proposal, we present worked examples from a case study
on chemotherapy treatments for ovarian cancer. We use an existing paper that
reports the results of synthesising the available evidence in the area [1], and
show how the user would navigate the evidence in the literature, create his/her
own syntheses and produce arguments and counter-arguments for comparisons
of treatment efficacy.

2 A Language for Representing Clinical Trial Results

Our focus will be on 2-arm superiority trials, i.e., clinical trials whose purpose is
to determine whether, given two treatments, one is superior to the other (strictly
speaking, such a trial tries to disprove the hypothesis that the two treatments
are identical). This is an extremely common trial design; other trial design types
do exist, but we will ignore them here for simplicity.

We give below the details of two results used in [1] (which we will call the
Ovarian Cancer Study from now on), encoded in the proposed language, which
will be explained in this section.

Result tr1 tr2 ind hr sig

γMarkman PTCĪ PTCI S 1.23 ⊥
γArmstrong PTCĪ PTCI S 1.33 >

The first row corresponds to a superiority trial performed by Markman et al in
2001, which compared two chemotherapy regimens for ovarian cancer patients:
the combination of agents paclitaxel and cisplatin, administered intravenously
(IV) with the combination of carboplatin (IV), paclitaxel (IV) and carboplatin,
administered intraperitoneally (IP). The study produced a hazard ratio of 1.23
for survival and did not find a statistically significant difference between the two
regimens. We now explain what these data mean and how we encode them.

To represent a trial result we will use γ, possibly with subscripts, e.g.,
γMarkman for the trial result by Markman et al. We also will use Γ to denote



the set of results under consideration. The characteristics of a trial result will
be called attributes. We use a set Attr of partial functions from trial results to
values, to represent the set of available characteristics.

The first attribute of interest of a trial is the patient class involved. Medical
ontologies provide languages for capturing patient characteristics (among other
things) as well as logical machinery for answering queries about them. Descrip-
tion logics are usually employed to provide the necessary inference tools (see
[2]). Ontologies, however, fall outside the scope of this paper; for simplicity we
assume that the set of results Γ concerns a particular, sensible patient class.

The next component of our language concerns treatments. Again, medical
ontologies cater for this task by providing categories and relationships on treat-
ments, substances used, and other characteristics. For simplicity, we will elide
such complexity and assume that there is a set algebra of treatments T whose
members, denoted by τ possibly with subscripts, represent specific treatments.
In the example, the phrases “paclitaxel and cisplatin, administered intravenously
(IV)” and “carboplatin (IV), paclitaxel (IV) and carboplatin, administered in-
traperitoneally (IP)” would be denoted by, e.g, τ1 and τ2. We will use tr1(γ) and
tr2(γ) to signify the treatments compared in the trial result γ.

Clinicians and statisticians, however, may want to group treatments together
in order to allow for more inferential power. In such cases, it is customary to con-
flate the details of the treatments down to the level of abstraction required. For
example, the Ovarian Cancer Study is only concerned with four characteristics
of the treatment: whether or not it employs platinum-based agents (P ), taxanes
(T ), whether it combines several agents (C), and whether it employs at least
one agent with intraperitoneal administration (I). We will use four symbols to
denote each class of treatments, with a bar over a symbol to denote its negation.
Therefore, τ1 is a member of the treatment group PTC Ī and τ2 is a member of
PTCI . From now on we use this treatment clustering scheme for defining T and
assume that tr1, tr2 will range over the treatment groups allowed. We also use
the term treatment to refer to any treatment group.

A trial comparing two treatments will do so with respect to particular out-
comes, e.g., in the case of the Ovarian Cancer Study, survival. Moreover, a spe-
cific statistical measure will be used to evaluate outcomes. In our example, the
hazard ratio for survival is used, which we shall explain below. We call the par-
ticular way an outcome is represented in a trial result, the outcome indicator
and use the attribute ind to retrieve it, given a particular trial. Hence, in our
example, ind(γMarkman) = S, denoting hazard ratios for survival. Here, for sim-
plicity, we only consider sets of results that involve the same outcome indicator.

Finally, a trial would report the results of the statistical method comparing
the two treatments. There are many different measures, each appropriate to
specific trial designs and outcomes. The trials examined in the Ovarian Cancer
Study use hazard ratios. For a given trial it is possible, using statistical methods
which are outside the scope of this paper, to estimate the number of expected
events (death in the case of survival) in each group on the basis of the assumption
that the two treatments have identical effects (null hypothesis). Then, the hazard
rate for each group can be computed, which is the ratio of the number of observed



events to the number of expected events. The hazard ratio is the ratio of the
hazard rates for the two groups. In the case of survival, a hazard ratio over
1 indicates that the group treated with τ1 fared worse than the group treated
with τ2. We will use the function hr ∈ Attr applied to the trial result γ ∈ Γ to
retrieve the value of the hazard ratio reported, hr(γ). In addition, a trial will
report an indicator of whether this comparison is statistically significant. This
can be done in various ways, e.g., whether the p-value is greater or lower than
the significance level (commonly 5%), or whether the confidence interval includes
the hazard ratio of 1 (in which case the possibility that the two treatments have
exactly the same effect cannot be ruled out). However this is reported, the aim is
to ascertain whether the result is statistically significant, so we will use a boolean
attribute sig(γ) to denote whether a result γ is statistically significant. Therefore,
for our example we would have hr(γMarkman) = 1.23, and sig(γMarkman) = ⊥.

3 Arguments drawn from Clinical Trial Results

For a superiority clinical trial comparing treatments τ1 and τ2 with respect to
the outcome indicator I, there are four possible interpretations of its results:

1. τ1 >I τ2, meaning that we believe that the result supports the inference that
treatment τ1 is superior to τ2 with respect to I.

2. τ1 <I τ2, as above.
3. τ1 ∼I τ2, meaning that we interpret the result as supporting the inference

that neither τ1 nor τ2 is superior to each other with respect to I.
4. Finally, it may be the case that we believe that the result does not support

any of the above possibilities.

We will call the formulae employed in statements 1–3 claims. Formally, any
formula of the form τ1 >I τ2, τ1 ∼I τ2 and τ1 <I τ2 will be called a claim,
denoted by ε, possibly subscripted. We will sometimes use ◦, � as meta-variables
for the symbols >, < and ∼. So, for example, τ1 ◦I τ2 will stand for either of:
τ1 >I τ2, τ1 <I τ2 or τ1 ∼I τ2.

Note that the interpretation of the results of a trial is a very complex and,
in some cases open, question and that conflicting answers exist. For example, a
strict statistical interpretation would be that a superiority trial can never provide
evidence supporting the equivalence of two treatments, by design. However, some
clinicians would argue that a sufficiently large superiority trial that fails to show
superiority is, in fact, in itself evidence of (rough) equivalence. We will refrain
from debating these issues, as they are well outside the scope of this work.
However, we will allow for different users to express their own semantics.

Given a set of results Γ one can informally think of an argument comprising
of a set of evidence, an inferential rule and a conclusion or claim. For example, a
plausible interpretation of γArmstrong is that since hr(γArmstrong) > 1, it indicates
that the first treatment is worse than the second with respect to S, i.e., that
PTC Ī <S PTCI . We define this process of inference as an inference rule.



Definition 1. An inference rule is a set of conditions (employing set-theoretic
expressions and equations utilising attributes over the reals) on a set of results
X ⊆ Γ and a claim ε.

From now on we will use λ, possibly subscripted, to denote an inference rule,
and Λ for the set of all inference rules chosen by the user.

Example 1. One of the simplest inference rules interprets a statistically signifi-
cant trial result as evidence of actual treatment superiority.
λs: Let X = {γ}. If sig(γ) = > then:

• if hr(γ) < 1 then tr1(γ) >ind(γ) tr2(γ),
• if hr(γ) > 1 then tr1(γ) <ind(γ) tr2(γ).

Example 2. Conversely, a non-significant result can be viewed as saying that
neither treatment is better than the other one in terms of the outcome indicator
considered. This can be captured by the following inference rule:
λn: Let X = {γ}. If sig(γ) = ⊥ then tr1(γ) ∼ind(γ) tr2(γ).

An inference rule can be thought of as an argument generator in that, on
the basis of a set of results that stands as evidence, it supports a certain claim.
Therefore, we will define an argument as an application of an inference rule.
Definition 2. An argument is a triple 〈X,λ, ε〉 where X ⊆ Γ is a set of results,
λ is an inference rule, X satisfies the conditions of λ and ε is the claim of λ
applied to X.

Example 3. Given γArmstrong, the following tuple is an argument:

A1 =
〈
{γArmstrong} , λs,PTC Ī <S PTCI

〉
.

By using λn on γMarkman we obtain the following argument.

A2 =
〈
{γMarkman} , λn,PTC Ī ∼S PTCI

〉
Clearly, A1 and A2 are conflicting. We focus on conflict in the next section.

Definition 3. Given a claim ε, we define the set of arguments relevant to
ε as

args(ε) = {A |A = 〈X,λ, ε〉 is an argument with X ⊆ Γ, λ ∈ Λ } .
Given a pair of treatments τ1, τ2 and an outcome indicator I we define the set
of arguments relevant to τ1, τ2 with respect to I as

args(τ1, τ2, I) = args(τ1 >I τ2) ∪ args(τ1 ∼I τ2) ∪ args(τ1 <I τ2)

Example 4. Let Γ = {γMarkman, γArmstrong}. Then,

args(PTC Ī <S PTCI ) =
{〈
{γArmstrong} , λs,PTC Ī <S PTCI

〉}
args(PTC Ī ∼S PTCI ) =

{〈
{γMarkman} , λn,PTC Ī ∼S PTCI

〉}
args(PTC Ī >S PTCI ) = ∅

args(PTC Ī ,PTCI , S) =
{〈
{γArmstrong} , λs,PTC Ī <S PTCI

〉
,〈

{γMarkman} , λn,PTC Ī ∼S PTCI
〉 }

The intention behind these definitions is that users should be able to define or
select their own inference rules for argument construction.



4 Preferences over Arguments

In Example 4 we saw two arguments that were clearly in conflict:〈
{γArmstrong} , λs,PTC Ī <S PTCI

〉
,
〈
{γMarkman} , λn,PTC Ī ∼S PTCI

〉
Obviously it cannot be the case that both of the arguments’ claims are true. In
this sense these arguments attack, or rebut, each other. We capture this kind of
conflict with the following definition.

Definition 4. If A = 〈XA, λA, εA〉 and B = 〈XB , λB , εB〉 are two arguments
where εA = τ1 ◦I τ2, then we say that A and B attack, conflict with or rebut
each other whenever:

1. εA = τ1 >I τ2, and εB ∈ {τ1 ∼I τ2, τ2 ∼I τ1, τ1 <I τ2, τ2 >I τ1}.
2. εA = τ1 ∼I τ2, and εB ∈ {τ1 >I τ2, τ2 <I τ1, τ1 <I τ2, τ2 >I τ1}.
3. εA = τ1 <I τ2, and εB ∈ {τ1 ∼I τ2, τ2 ∼I τ1, τ1 >I τ2, τ2 <I τ1}.

Note that this definition is symmetric, i.e., if A attacks B then B attacks A.
We will organise the arguments into a graph that we will use as an argumen-

tation framework in the sense of [3]. To do this, we first define an attack relation
on arguments in the obvious way: R(A,B) is true iff A attacks B, for arguments
A,B ∈ args(τ1, τ2, I). It is easy to see that the graph induced is tripartite, and
its independent sets are args(τ1 >I τ2), args(τ1 ∼I τ2), args(τ1 <I τ2). In our
example, this graph would be as follows.〈

{γArmstrong} , λs,PTC Ī <S PTCI
〉

〈
{γMarkman} , λn,PTC Ī ∼S PTCI

〉
Since the argument graph is by definition symmetric, it would be beneficial

to allow breaking the symmetry with user-defined preferences. We do this by
defining preference rules.

Definition 5. A preference rule π is a set of conditions on an ordered pair
of conflicting arguments A,B. When the conditions are satisfied, A is said to
be preferred to B according to π, and we write π(A,B) = >. Otherwise, we say
that A is not preferred to B and we write π(A,B) = ⊥.

We will use π, possibly with subscripts, to denote a preference rule, and Π for
the set of preference rules chosen by the user.

Example 5. A preference rule that considers statistically significant results as
more authoritative than non significant ones can be seen below.

πs(〈{γa} , λa, τ1 ◦I τ2〉 , 〈{γb} , λb, τ1 �I τ2〉) = > iff
{

sig(γa) = >
and sig(γb) = ⊥



As mentioned previously, ◦ and � are meta-variables for the symbols <,>,∼.
Here, since by definition the arguments are conflicting, we do not need to refer
to the values of these meta-variables.

Preference rules are not required to be infallible in any sense. Indeed πs
embodies one of the aspects of publication bias, where by preferring significant
results to non-significant ones, one may miss evidence that support the claim
that the significant results are a chance occurrence.

We use the preference rules chosen by the user in breaking the symmetry
present in R, and capture the new subrelation RΠ of R as follows.

Definition 6. For any pair of arguments A,B ∈ A, RΠ(A,B) is true whenever

– R(A,B) is true and,
– if there is a preference rule π ∈ Π such that π(B,A) = > then there is also

a preference rule π′ ∈ Π such that π′(A,B) = >.

The motivation here is that if A and B attack each other and A is preferred to B
then B’s attack on A is cancelled. However, this wording leads to problems when
A is preferred to B according to a rule π1 and B is preferred to A according
to π2. In this case, cancelling both attacks will give the misleading impression
that A and B are consistent together. For this reason we give the above, more
complicated definition, which only cancels an attack if exactly one argument is
preferred to the other.

Now we can put together these components by defining an abstract argu-
mentation framework in the sense of Dung’s work [3].

Definition 7. Given a pair of treatments τ1, τ2 and an outcome indicator I,
we define the argumentation framework AFτ1,τ2,I as a pair 〈A,RΠ〉 where A =
args(τ1, τ2, I).

Dung [3] defines a notion of admissibility: an admissible set of a arguments S
is one which contains no argument that attacks another argument in S and for
any argument A1 ∈ S that is attacked by argument A2 /∈ S, there is another ar-
gument A3 ∈ S that attacks A2. Admissible sets of arguments that are maximal
with respect to set inclusion are called preferred.

5 Case Study

In this section, we expand our running example and look at how a user might
navigate the information contained in the Ovarian Cancer Study. We will see
how statistical methods for aggregating results (meta-analysis) can be seen as
types of arguments that may conflict or agree with other arguments.

In general, a meta-analysis consists of taking a weighted average of a set
of results, e.g., a weighted average of hazard ratios. The way the weights are
computed depends on statistical assumptions relating to the clinical trials in-
volved. The two main methods, corresponding to different kinds of assumptions,



for meta-analyses are the fixed effects model and the random effects model. Here,
we will not look at the details of how each method is defined, but assume that
one has been chosen, based on the trial results available. We will use it as a
function MA that takes a set of results as argument and returns a result that is
to be thought of as a virtual trial result. For instance, hr(MA(X)) represents the
hazard ratio of the result produced by a random-effects meta-analysis on the set
of results X. The inference rule λMA will then be defined as follows.

λMA: Let X be a set of results such that for all γ ∈ X, tr1(γ) = τ1, tr2(γ) = τ2
and ind(γ) = I for given treatments τ1, τ2 and outcome indicator I.
If sig(MA(X)) = > then:
• if hr(MA(X)) < 1 then τ1 >I τ2,
• if hr(MA(X)) > 1 then τ1 <I τ2.

Else, if sig(MA(X)) = ⊥ then τ1 ∼I τ2.

To avoid bias, a meta-analysis should be performed on all eligible results, and
that is why the definition of λMA puts such conditions on X.

Returning to the example, below are listed all the trial results reported in
the Ovarian Cancer Study that compare the treatments T1 = P̄T̄ C Ī with T2 =
P̄T̄ C̄ Ī . We will denote this set of results as Γ ′.

Result hr ? 1 sig
γTrope < >
γBarlow < ⊥
γBruckner < ⊥
γAabo < ⊥
γDelgado < ⊥
γGronroos < ⊥

Result hr ? 1 sig
γAdams < ⊥

γCarmo-Pereira > ⊥
γScott < ⊥
γPark < ⊥
γOmura < ⊥
γYoung < ⊥

Kyrgiou et al compute the result of the meta-analysis on these trials, and it
turns out that hr(MA(Γ ′)) = 0.83 < 1 and sig(MA(Γ ′)) = >.

Using the inference rules λs, λn, λMA on these results we get:

A1 = args(T1 >S T2) =
{
〈{γTrope} , λs, T1 >S T2〉 ,
〈Γ ′, λMA, T1 >S T2〉

}

A2 = args(T1 ∼S T2) =


〈{γBarlow} , λn, T1 ∼S T2〉 ,
...
〈{γYoung} , λn, T1 ∼S T2〉


It should be clear that for every A1 ∈ A1 and A2 ∈ A2, A1 attacks A2 and vice
versa. We now look at using preference rules with these sets.

Observe that args(T1, T2, S) = A1∪A2 and that in the argumentation frame-
work 〈A1 ∪ A2,R〉 there are exactly two preferred sets, namely A1 and A2. This
indicates that we do not have enough information and/or expressed preferences
to distinguish between the two possibilities, i.e., T1 >S T2 or T1 ∼S T2.

Suppose the user applies preference rule πs, meaning that statistically signif-
icant results are preferred to non-significant ones. Then, using Π = {πs}, in the



framework AFT1,T2,S there remains only one maximal admissible set, A1, since
it contains an argument based on a statistically significant result, γTrope.

Alternatively, suppose a new preference rule is used that prefers the result of
a meta-analysis to a result that is included in the meta-analysis. In other words:

πMA(〈X,λMA, τ1 ◦I τ2〉 , 〈{γ} , λx, τ1 �I τ2〉) = > iff λx ∈ {λs, λn}

Here, λx is allowed to be any rule that interprets a single result used in the
meta-analysis. Using Π = {πMA}, we obtain exactly one preferred set, A1.

Another emerging method for aggregating trial results is network meta-
analysis, which is a kind of meta-analysis that uses indirect treatment com-
parisons as well as direct ones. This means that when there is a trial result γa,b
comparing τa and τb, and another result γb,c comparing τb to τc, an estimate of
the comparison of τa and τc can be computed, and γa,b, γb,c can be thought of as
a path from τa to τc. Network meta-analyses use such estimates together with
direct comparisons (e.g., of τa and τc) to provide a weighted average of higher
inferential power. Without going into details, we use a function NMA(τa, τb, X),
where τa and τb are the treatments to compare, and X is the set of all results
that belong in paths between τa and τb. Then, we will use an inference rule λNMA

that resembles λMA in all aspects apart from using a network meta-analysis.
The addition of λNMA to the set of rules Λ = {λs, λn, λMA} allows for another

argument to be generated in our example. The result of the network meta-
analysis for T1 and T2 was computed in the Ovarian Cancer Study, and it agrees
with the standard meta-analysis: hr(NMA(Γ ′′)) = 0.87 < 1 and sig(NMA(Γ ′′)) =
>. Note that here we use Γ ′′ to denote all the results that lie on paths between
T1 and T2; clearly Γ ′ ⊆ Γ ′′. Now, the set A1 is as follows.

A1 = args(T1 >S T2) =

 〈{γTrope} , λs, T1 >S T2〉 ,
〈Γ ′, λMA, T1 >S T2〉 ,
〈Γ ′′, λNMA, T1 >S T2〉


Similarly to the case of the meta-analysis preference rule, one is needed for
network meta-analyses too.

πNMA(〈X,λNMA, τ1 ◦I τ2〉 , 〈{γ} , λx, τ1 �I τ2〉) = > iff λx ∈ {λs, λn}

Using Π = {πMA, πNMA} yields as preferred the set A1 once again.

6 Discussion and Conclusions

We have presented a framework for argumentation on treatment efficacy. Its
major components are: (1) A language for encoding results from clinical trials,
which we believe has many other potential uses such as intelligent querying. (2)
A definition delineating the ways arguments on treatment efficacy comparisons
can be produced from trial results, along with a definition of a notion of con-
flict. (3) A definition of a preference rule that allows the potential resolution



of conflict depending on the characteristics of the conflicting arguments. Using
these components along with standard argumentation tools, users can describe
their preferences and analyse the available evidence in terms of agreement and
conflict. Finally we have presented the potential use of this framework in a case
study on ovarian cancer.

Little work exists that aims to address the problem in focus here. Medical
informatics and bioinformatics research does not address the reasoning aspects
inherent in the analysis of evidence of primary nature, especially from clinical
trials. Previous interesting work ([4,5] and others) exists that uses argumentation
as a tool in medical decision support, but as such, assumes the existence of a
hand-crafted set of facts around treatment efficacy. Work that is concerned with
the capture of a wide spectrum of data about clinical trials exists, [6], and would
potentially provide a useful basis for the continuation of our work.

The avenues for further work are several. While not discussed in this paper,
the systematic selection and filtering of the trial data used is very important, and
requires the formalisation and encoding of many more kinds of meta-data about
trials, which we hope to investigate in the future. A deeper case study involving
clinicians as users would be beneficial in making more concrete the requirements
and preferences of such users. Also, liaising with researchers on automated infor-
mation extraction would provide means to constructing the repositories of trial
results that would add significant value to this research. Finally, the construction
of a user-friendly system will be beneficial to the evalution and adoption of the
framework presented here.
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