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1 Introduction

Since their invention, string theory and supersymmetric quantum field theory have been

“unreasonably effective” in predicting new structures in mathematics. In [1], another

relation was proposed, linking the quantization of a large class of hyper-Kähler manifolds

and BPS spectra of superconformal theories,1

Space of Coulomb BPS states of

4d N = 2 SCFT T on L(k, 1)
=

Hilbert space from

quantization of (LMT , kωI)
. (1.1)

Here, the hyper-Kähler space LMT is the mirror of the Coulomb branch MT of T on

R
3 × S1, with ωI being one of the three real symplectic structures, and “Coulomb BPS

states” refer to those which contribute to the superconformal index in the Coulomb branch

limit [2]. Each side of (1.1) admits a natural grading, coming from the U(1)r ⊂ SU(2)R ×
U(1)r R-symmetry of the 4d N = 2 SCFT, and the proposal (1.1) is a highly non-trivial

isomorphism between two graded vector spaces.

This relation was studied in [1] for theories of class S [3, 4]. For a given Riemann surface

Σ, possibly with regular singularities (or “tame ramifications”), and a compact simple Lie

group G, the Coulomb branchMT of the theory T [Σ, G] compactified on S1 is the Hitchin

moduli spacesMH(Σ, G) [5–7], whose mirror LMT is given byMH(Σ,LG) associated with

the Langlands dual group LG via the geometric Langlands correspondence [8–11], and the

U(1)r action on it becomes the so-called Hitchin action [12]. Quantizing the Hitchin moduli

space gives the Hilbert space of complex Chern-Simons theory H(Σ,LGC; k), whose graded

dimension — the Hitchin character2 — is given by the “equivariant Verlinde formula”

proposed in [13] and later proved in [14, 15]. The authors of [1] have verified relation (1.1)

by matching the lens space Coulomb index of class S theories and the Hitchin characters,

ICoulomb(T [Σ, G];L(k, 1)× S1) = dimtH(Σ, LGC; k). (1.2)

In the present paper, we further explore the connection in (1.1) for a wider class of

4d N = 2 theories including the A1 Argyres-Douglas (AD) theories. In the process, we

introduce another player into the story, making (1.1) a triangle,

Coulomb index of T ←→ quantization of LMT

←→ ←→

chiral algebra χT

(1.3)

where the chiral algebra χT is associated with the 4d N = 2 theory T à la [16]. We observe

that fixed points onMT under U(1)r are in bijection with highest-weight representations

1See (2.26) of [1]. We have stated the proposal here at the categorified level.
2The graded dimension (see (2.35)) is the same as the character of the U(1) Hitchin action, lifted from

MH to acting on H, and hence the name “Hitchin character”.
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of χT ,
3 and in addition the t→ exp(2πi) limit of the Hitchin character can be expressed in

terms modular transformation matrix of those representations. The appearance of the chi-

ral algebra is anticipated from the geometric Langlands program, as the triangle above can

be understood as an analogue of the “geometric Langlands triangle” formed by A-model,

B-model and D-modules for generalMT . However, the role of the chiral algebra χT in the

counting of Coulomb branch BPS states is somewhat unexpected, since the chiral algebra

is related to the Schur operators of T [16–19], which contains the Higgs branch operators

but not the Coulomb branch operators at all! The current paper shows that, the Coulomb

branch index is related to χT through modular transformations.

Argyres-Douglas theories form a class of very interesting 4d N = 2 strongly-interacting,

“non-Lagrangian” SCFTs. They were originally discovered by studying singular loci in the

Coulomb branch of N = 2 gauge theories [20–22], where mutually non-local dyons become

simultaneously massless. The hallmarks of this class of theories are the fixed values of

coupling constants and the fractional scaling dimensions of their Coulomb branch operators.

Like the class S theories, Argyres-Douglas theories can also be engineered by compactifying

M5-branes on a Riemann sphere Σ = CP1, but now with irregular singularities — or “wild

ramifications” [23–25]. Their Coulomb branch MH(Σ, G) on R
3 × S1 and their mirrors

MH(Σ,LG) are sometimes called wild Hitchin moduli spaces. The study of these spaces and

their role in the geometric Langlands correspondence (see e.g. [26] and references therein)

is a very interesting subject and under active development. Over the past few years, much

effort has been made to give a precise definition of the moduli space, and analogues for

many well-known theorems in the unramified or tamely ramified cases were only established

recently (see [27–29], as well as the short survey [30] and references therein). In this paper,

relation (1.1) enables us to obtain the wild Hitchin characters for many moduli spaces. Just

like their cousins in the unramified or tamely ramified cases [13], wild Hitchin characters

encode rich algebraic and geometric information about MH , with some of the invariants

MH being able to be directly read off from the formulae. This enables us to make concrete

predictions about the moduli space.

For instance, the L(k, 1) Coulomb index of the original Argyres-Douglas theory [20],

which in the notation of [24] will be called the (A1, A2) theory, is given by

I(A1,A2) =
1− t−

1
5 − t

1
5 + t

k
5

(1− t
6
5 )(1− t−

1
5 )
, (1.4)

and it is easy to verify that it agrees with the wild Hitchin character of the mirror of the

Coulomb branch LM(A1,A2) =
LM2,3 (the precise meaning of this notation will be clarified

shortly),

dimtH(LM2,3) =
1

(1− t
2
5 )(1− t

3
5 )

+
t
k
5

(1− t
6
5 )(1− t−

1
5 )
, (1.5)

3In the physics literature — and also in this paper — “chiral algebra” and “vertex operator algebra”

(VOA) are often used interchangeably, while in the math literature, the two have different emphasis on,

respectively, geometry and representation theory. The “highest-weight representations of χT ” here denotes

a suitable subcategory, closed under modular transform, of the full category of modules of vertex operator

algebra. The precise statement will be clear in section 5.
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with the two terms coming from the two U(1) fixed points. And the two fixed points

correspond to the two highest weight representations of the non-unitary (2, 5) Virasoro

minimal model — famously known as the Lee-Yang model — via a detailed dictionary

which will be provided in later sections.

This paper is organized as follows: in section 2, we first briefly recall how the wild

Hitchin moduli space MH arises from brane geometry and how it is related to general

Argyres-Douglas theories. We then proceed to describe MH , introduce the U(1) Hitchin

action on it and discuss its geometric quantization.

In section 3, we obtain the Coulomb branch indices of Argyres-Douglas theories, ex-

pressed as integral formulae. We follow the prescription in [31–33] by starting with N = 1

Lagrangian theories that flow to Argyres-Douglas theories in the IR. The TQFT structure

for the index is presented in appendix A.1.

In section 4, we present the wild Hitchin characters, decomposed into summations

over the fixed points. Using the character formulae we explore the geometric properties

of the moduli space. Confirmation from direct mathematical computation is given in

appendix C. We then study the large-k limits of the wild Hitchin characters, giving a

physical interpretation of some fixed points inMH as massive vacua on the Higgs branch

of the 3d mirror theory. We also study the symmetry mixing upon dimensional reduction,

following [34]. Further details are given in appendix A.2 and B.

In section 5, we study the relation between Hitchin characters and chiral algebras, and

demonstrate that a limit of wild Hitchin characters can be identified with matrix elements

of the modular transformation ST kS. Further, we check the correspondence between the

fixed points onMH and the highest-weight modules for various examples.

2 Wild Hitchin moduli space and Argyres-Douglas theories

Embedding a given physical or mathematical problem into string theory usually leads to

new insights and generalizations. In [1, 13], the problem of quantizing the Hitchin moduli

space was studied using the following brane set-up

fivebranes: L(k, 1)× S1 × Σ

∩
space-time: L(k, 1)× S1 × T ∗Σ × R

3

� � �

symmetries: SO(4)E U(1)N SU(2)R

(2.1)

We will first review how the Hitchin moduli space arises from this geometry, and how

adding irregular singularities to Σ leads to a relation between the general Argyres-Douglas

theories and wild Hitchin systems.

2.1 Hitchin equations from six dimensions

Hitchin moduli spaces were first introduced to physics in the context of string theory and

its dimensional reduction in the pioneering work of [5–7] in the past century, and were

highlighted in the gauge theory approach to geometric Langlands program [10, 11, 26]. In

– 3 –
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our brane setting (2.1), which is closely related to the system studied in detail in [4], one

can first reduce the M5-branes on the S1 to obtain D4-branes, whose world-volume theory

is given by the 5d N = 2 super-Yang-Mills theory. We consider theories with gauge group

G of type ADE. In addition to the gauge fields, this theory also contains five real scalars

Y I with I = 1, 2, . . . , 5, corresponding to the motion of the branes in the five transverse

directions. Further topological twisting along Σ enables us to identify ϕ(z) = Y 1 + iY 2

as a (1, 0)-form on Σ with respect to the complex structure of Σ. As a consequence,

the BPS equations in the remaining three space-time dimensions are precisely the Hitchin

equations [12],

FA +
[
ϕ,ϕ†

]
= 0,

∂Aϕ = 0.
(2.2)

Here FA is the curvature two-form of A = Azdz + Azdz valued in the adjoint bundle of

the principle G-bundle P , and ∂A is the (0, 1) part of the covariant derivative dA. We will

call ϕ ∈ Γ(Σ, ad(P )⊗CK) the Higgs field following standard mathematical nomenclature.

Regarded as a sigma model, the target space of the three-dimensional theory is identified

with the Hitchin moduli space MH(Σ, G) — solutions to the Hitchin equations modulo

gauge transformations.

One can allow the Riemann surface Σ to have a finite number of marked points

{p1, p2, . . . , ps} for s ≥ 0. In the neighborhood of each marked point pi, the gauge connec-

tion and the Higgs field take the asymptotic form:

A ∼ αdθ,
ϕ ∼

(un
zn

+
un−1

zn−1
+ . . .

u1
z

+ regular
)
dz.

(2.3)

Here α ∈ g and ui ∈ gC are collectively called the ramification data,4 and they are fixed in

definingMH to ensure that the moduli space is symplectic (more precisely, gauge-invariant

combinations of them are fixed). When the order of the pole is n = 1, we call the puncture

tame or regular. From the M-theory geometry, adding a regular puncture corresponds to

the insertion of a set of defect M5-branes placed at the point pi of Σ, occupying the four

spacetime dimensions as well as the cotangent space at pi ∈ Σ. Set-up (2.1) becomes

fivebranes: L(k, 1)b × Σ × S1

∩
space-time: L(k, 1)b × T ∗Σ × S1 × R

3

∪
“defect” fivebranes: L(k, 1)b × T ∗|piΣ × S1 .

(2.4)

The defect fivebranes give rise to a codimension-two singularity in the 6d (2,0) theory and

introduce a flavor symmetry of the effective 4d theory T [Σ, G] [3, 35]. If u1 is nilpotent,

then the flavor symmetry is given by the commutant subgroup of the nilpotent embedding

su(2) → g; if u1 is semi-simple, the flavor symmetry is explicitly broken by mass defor-

mations [3, 36]. The ramification data α and u1 is acted upon by the affine Weyl group

4We use the convention that elements in g = LieG are anti-Hermitian.

– 4 –
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of G, and the conjugacy class of the monodromy in the complexified gauge connection

Az = Az + iϕ is an invariant of the ramification data.

When n > 1 the puncture will be called wild or irregular, which will play a central role

in the present paper. The leading coefficient matrix un is allowed to be either semi-simple

or nilpotent as in the tame case. However, now the monodromy of Az around pi needs to

be supplemented by more sophisticated data — the Stokes matrices — to fully characterize

the irregular puncture [37] (see e.g. [26] for more detail and explicit examples).

The Hitchin moduli spaceMH(Σ, G) with fixed local ramification data is hyper-Kähler,

admitting a family of complex structures parametrized by an entire CP1. There are

three distinguished ones (I, J,K), and the corresponding symplectic forms are denoted

as ωI , ωJ , ωK . The complex structure I is inherited from the complex structure of the

Riemann surface Σ, over which ∂A defines a holomorphic structure on E, and the triple

(E, ∂A, ϕ) parametrizes a Higgs bundle on Σ. This is usually referred to as the holomorphic

or algebraic perspective. Alternatively, one can also employ the differential geometric point

of view, identifying MH as the moduli space of flat GC-connections on Σ with the pre-

scribed singularity near the puncture, and the complex structure J comes from the complex

structure of GC. There is also the topological perspective, viewing MH as the character

variety Hom(π1Σ, GC), with boundary holonomies in given conjugacy classes (and with

inclusion of Stokes matrices in the wildly ramified case). Non-abelian Hodge theory states

that the three constructions give canonically isomorphic moduli spaces [12, 38–40]. In the

wild case, the isomorphism between the Hitchin moduli spaceMH and moduli space of flat

GC-connections was proved in [27, 41], while [27] proved the isomorphism between MH

and moduli space of Higgs bundles, thus establishing the equivalence of first two perspec-

tives. The wild character variety was later constructed and studied in [28, 29, 42, 43]. In

this paper, we will mainly adopt the holomorphic perspective but will occasionally switch

between the three viewpoints as each offers unique insights into MH .5

For later convenience, we shall use below a different but equivalent formulation of

Hitchin equations (2.2). Fix a Riemann surface Σ and a complex vector bundle E. Given a

Higgs bundle (∂E , ϕ), i.e. a holomorphic structure on E and a Higgs field, we additionally

equip E with a Hermitian metric h. Then there exists a unique Chern connection D

compatible with the Hermitian metric whose (0, 1) part coincides with ∂E . The Hitchin

equations are then equations for the Hermitian metric h:

FD +
[
ϕ,ϕ†h

]
= 0,

∂E ϕ = 0
(2.5)

where ϕ†h = h−1ϕ†h is the Hermitian conjugation of the Higgs field. The previous version

of Hitchin equations, (2.2), is in the “unitary gauge” where the Hermitian metric is identity.

5In general, physical quantities know about the full moduli stack, where all Higgs bundles including

the unstable ones are taken into account, as the path integral sums over all configurations. However, for

co-dimension reasons, all wild Hitchin characters we will consider are the same for stacks and for spaces.

In the tame or unramified cases, there can be differences, and working over the stack is usually preferable.

See [14, section 5] for more details.

– 5 –
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The two conventions are related by a gauge transformation g ∈ GC such that

g−1 ◦ ∂E ◦ g = ∂Au , g−1 · ϕ · g = ϕu, g† · h · g = Idu (2.6)

where the subscript u indicates unitary gauge.

The moduli spaceMH admits a natural map known as the Hitchin fibration [44],

MH → B,
(E,ϕ) 7→ det(xdz − ϕ),

(2.7)

where B is commonly referred to as the Hitchin base and generic fibers are abelian varieties.

As explained in [4], B can be identified with the Coulomb branch of the theory T [Σ, G] on

R
4, and the curve det(xdz − ϕ) = 0 with the Seiberg-Witten curve of T [Σ, G].

The Hitchin action. There is a U(1) action on the Hitchin moduli space MH . As

emphasized in [1, 13], the existence of the U(1) Hitchin action gives us control over the

infinite-dimensional Hilbert space arising from quantizing MH in both the unramified or

tamely ramified case,6 and we will also focus in this paper on the wild Hitchin moduli

spacesMH that admit similar U(1) actions.

We first recall that in the unramified case, the Hitchin action on the moduli space is

given by

(A,ϕ) 7→ (A, eiθϕ). (2.8)

On the physics side, it coincides with the U(1)r symmetry of the 4d N = 2 SCFT T [Σ, G].

A similar action also exists for Σ with tame ramifications, provided the singularities are

given by

A ∼ αdθ,
ϕ ∼ nilpotent.

(2.9)

However, near an irregular singularity, ϕ acquires an higher order pole (2.3) and the ac-

tion (2.8) has to rotate the ui’s. As the definition of theMH depends on ramification data,

this U(1) action does not act on the moduli space — it will transform it into different ones.

One can attempt to partially avoid this problem by setting u1, u2, . . . , un−1 to be zero7 —

similar to the case with tame ramifications — but un has to be non-zero in order for the

singularity to be irregular.

The way out is to modify (2.8) such that it also rotates the z coordinate by, e.g.,

z 7→ e
iθ

n−1 z. (2.10)

To have this action well-defined globally on Σ highly constrains the topology of the Rie-

mann surface, only allowing CP1 with one wild singularity, or one wild and one tame

6Occasionally, it is also useful to talk about the complexified C
∗-action, and we will refer to both as the

“Hitchin action.”
7More generally, we should choose their values such that the U(1)-action on them can be cancelled by

gauge tranformations.

– 6 –
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singularities.8 Interestingly, the U(1) Hitchin action on MH exists whenever T [Σ, G] is

superconformal,

MH(Σ, G) admits

U(1) Hitchin action
←→ T [Σ, G] is a

4d N = 2 SCFT
. (2.11)

This is because superconformal invariance for T [Σ, G] implies the existence of U(1)r sym-

metry which define a U(1) action onMH . All possible choices for wild punctures of ADE

type on the Riemann sphere are classified in [24, 25], and the resulting theories T [Σ, G]

are called “general Argyres-Douglas theories”, which we will review in the next subsection.

In section 2.3, we will get back to geometry again to give a definition of the wild Hitchin

moduli space and describe more precisely the U(1) action on it.

2.2 General Argyres-Douglas theories

In this section we take G = SU(2), and moreover assume that the irregular singularity lies

at z = ∞ (the north pole) on the Riemann sphere. Another regular puncture can also be

added at z = 0 (the south pole).

Near z = ∞, there can be two types of singular behaviors for the Higgs field ϕ; the

leading coefficient can be either semisimple or nilpotent.9 A semisimple pole looks like

ϕ(z) ∼ zn−2dz

(
a 0

0 −a

)
+ · · · (2.12)

with n > 1 an integer. For a nilpotent pole, it cannot be cast into this form by usual

gauge transformations. But if we are allowed to use a local gauge transformation that

has a branch cut on Σ, we can still diagonalize it into (2.12), but now with n ∈ Z + 1/2.

We will not allow such gauge transformation globally in the definition of the moduli space

MH since it creates extra poles at z = 0, but (2.12) is still useful conceptually in local

classifications. For example, one can read off the correct U(1) action on z,

z 7→ e−
iθ

n−1 . (2.13)

In [24], a puncture is called type I if n is integral, and type II if n half-odd. We will use

the notation I2,K for the singularity with K = 2(n− 2) and the subscript “2” is referring

to the SL(2,C) gauge group.

The (A1, AK−1) series. If there is only one irregular singularity I2,K at the north

pole, (2.12) will only have non-negative powers of z. This kind of solution describes the

(A1, AK−1) Argyres-Douglas theory in the notation of [24]. Historically, this class of the-

ories was discovered from the maximally singular point on the Coulomb branch of N = 2

8We will focus on such Σ and the moduli spaces MH associated with them. Henceforth, by “wild Hitchin

moduli space”, we will be usually referring to these particular MH , where the U(1) action exists.
9If the leading coefficient is not nilpotent, it can always be made semisimple by a gauge transformation.

Also, notice that an semisimple element of sl(2,C) is automatically regular.
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SU(K) pure Yang-Mills theory [20, 22]. The Seiberg-Witten curve (or the spectral curve

from the Higgs bundle point of view) takes the form

x2 = zK + v2z
K−2 + · · ·+ vK−1z + vK . (2.14)

The Seiberg-Witten differential λ = xdz has scaling dimension 1, from which we can

derive the scaling dimensions for vi,

[vi] =
2i

K + 2
. (2.15)

For i > (K + 2)/2, the scaling dimensions of the vi’s are greater than 1, and they are

the expectation values of Coulomb branch operators. When K is even, there is a mass

parameter at i = (K + 2)/2. The rest with i < (K + 2)/2 are the coupling constants that

give rise to N = 2 preserving deformations

∆W ∼ vi
∫
d4x Q̃4Oi (2.16)

for Coulomb branch operator Oi associated to vK+2−i, where Q̃
4 denotes the product of the

four supercharges that do not annihilate Oi. Such deformation terms are also consistent

with the pairing [vi] + [vK+2−i] = 2. If we promote all the couplings to the background

chiral superfields, one can assign a U(1)r charge to them, which is equal to their scaling

dimensions.10

The coupling constants and mass term parametrize deformations ofMH , thus not all

vi’s are part of the moduli. Moreover, to have a genuine U(1) action onMH itself, the vi’s

with i ≤ (K+2)/2 ought to be set zero in the spectral curve in (2.14). On the other hand,

those vi’s with i > (K + 2)/2 are allowed to be non-zero, and in fact they parametrize

the Hitchin base B. In what follows we denote this wild Hitchin moduli space as M2,K ,

and its Langlands dual as LM2,K . The parameter a in (2.12) can be scaled away but

the parameter α ∈ Lie(T) corresponding to the monodromy of the gauge connection at

the singularity enters as part of the definition of the moduli space M2,K(α). As argued

in [26, section 6], this monodromy has to vanish for odd K, but can be non-zero when K

is even.11 On the physics side, this agrees with the fact that the (A1, AK−1) theory has

no flavor symmetry when K is odd, and generically a U(1) symmetry when K is even [45].

This phenomenon is quite general, and works in the case with tame ramifications as well,

Monodromy parameters

for the moduli spaceMH(Σ)
←→ flavor symmetries

for the theory T [Σ]
. (2.17)

10Our convention here for the U(1)r charge differs from the usual one as rusual = −r. In our convention,

U(1)r charge for chiral BPS operators will be the same as scaling dimensions. Notice that one can formally

assign U(1)r charge to z as well; the value will turn out to be minus the scaling dimension − [z].
11Had the puncture been tame, such monodromy would be required to the zero to have a non-empty

moduli space. However, in the wild case, due to Stokes phenomenon, α can take non-zero values. Now, eα

is a “formal monodromy,” and the real monodromy, which is required to be the identity, is a product of eα

with Stokes matrices.
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AD theory order of pole of ϕ at z =∞, 0 moduli spaceMH dimCMH

(A1, A2N ) (2N + 1)/2, 0 M2,2N+1 2N

(A1, A2N−1) N, 0 M2,2N 2N − 2

(A1, D2N+1) (2N − 1)/2, 1 M̃2,2N−1 2N

(A1, D2N ) N − 1, 1 M̃2,2N−2 2N − 2

Table 1. Summary of A1 Argyres-Douglas theories, the order of singularities of the Higgs fields,

the corresponding wild Hitchin moduli spaces and their dimensions.

The (A1, DK+2) series. If Σ also has a regular puncture on the south pole in addition

to the irregular I2,K at the north pole, we will get the (A1, DK+2) Argyres-Douglas theory

in the notation of [24]. Originally, this class of theories was discovered at the “maximal

singular point” on the Coulomb branch of the SO(2K + 4) super-Yang-Mills theory [22].

To accommodate the regular puncture, the Higgs field should behave as

ϕ(z) ∼ zn−2dz

(
a 0

0 −a

)
+ · · ·+ dz

z

(
m 0

0 −m

)
. (2.18)

Consequently, the Seiberg-Witten curve is

x2 = zK + v1z
K−1 + · · ·+ vK−1z + vK +

vK+1

z
+
m2

z2
(2.19)

with the same expression for the scaling dimensions in (2.15) except that i now takes value

from 1 up to K+1. The parameter m has the scaling dimension of mass, and it is identified

as a mass parameter for the SU(2) flavor symmetry associated with the regular puncture.

Once again, we will turn off all the coupling constants and masses in the spectral curve

since they describe deformations of the Coulomb branch moduli. Around the irregular

puncture, the monodromy parameter α1 ∈ Lie(T) of the gauge connection A can be non-

trivial. Moreover, it may not agree with the monodromy α2 around the regular puncture.

Similar to the (A1, AK−1) case, α1 = 0 when K is odd, and can be turned on when K

is even. The corresponding moduli spaces, denoted as M̃2,K(α1, α2), and their Langlands

dual LM̃2,K(α1, α2) depend on those α’s.

2.3 Geometry of the wild Hitchin moduli space

We have argued that the wild Hitchin moduli space can be realized as the Coulomb branch

vacua of certain Argyres-Douglas theories compactified on a circle. They are summarized

in table 1. In accordance with the physics construction, we will now turn to a pure math-

ematical description of the moduli space.

A mathematical definition of these moduli spaces depends on the singular behavior of

the Higgs field ϕ near irregular singularities, as in [26, 27]. When K is even, the moduli

spaces M2,K and M̃2,K are described in [27]. Consequently, we turn to the case where

K = 2N + 1 is odd. The corresponding Higgs bundle moduli space is described in [46],

and we here describe the corresponding Hitchin moduli space. To motivate the definition
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ofM2,2N+1, note that in this case, the leading coefficient matrix (2.3) is nilpotent, which

slightly differs from that of [27]. However, one can diagonalize the Higgs field near the

irregular singularity by going to the double cover of the disk centered at infinity (a “lift”),

so that locally the Higgs field looks like

ϕ ∼ u′NzN+ 1
2 + . . . (2.20)

with u′N regular semi-simple. This polar part of the Higgs field is not single-valued, so we

futher impose a gauge transformation across the branch cut [26]

ge =

(
0 1

−1 0

)
(2.21)

In our definition ofM2,2N+1, the local picture at the infinity follows from an equivariant

version of the local picture of [27] on the ramified disk with respect to the Z2-change of

coordinate w → −w for w2 = z. The ramification “untwists” the twisted Cartan so the

local model is still diagonal, as in [27].

Two perspectives on solutions of Hitchin’s equations appear in section 2.1, and we use

both in the following definition. A solution of Hitchin equations is a triple of (∂E , ϕ, h)

consisting of a holomorphic structure, Higgs field, and Hermitian metric satisfying (2.5).

Alternatively, a solution of Hitchin equations in unitary gauge (i.e. h = Id) is a pair (A,ϕ)

consisting of a unitary connection dA and Higgs field ϕ satisfying (2.2). We use the notation

ϕ for the Higgs field in both perspectives for simplicity.

Next we describe the relevant data needed to specify the moduli space M2,2N+1.

Fixed data. Take CP1 with a marked point at∞. Fix a complex vector bundle E → CP1

of degree 0 with a trivialization of DetE, the determinant bundle. Let ∂E be a holomorphic

structure on E which induces a fixed holomorphic structure on DetE. Let h be a Hermitian

metric on E which induces a fixed Hermitian structure on DetE.

At ∞, we allow an irregular singularity, and fix the following data:

Dmodel = d+ ϕmodel + ϕ†
model (2.22)

where

ϕmodel =

(
−2 0

0 2

)
du

uK+3
. (2.23)

(To explain the power appearing, note that if u is the holomorphic coordinate on the

ramified double cover of the disk at 0, i.e. u−2 = z, then u−(2N+4)du = zN+ 1
2dz.)

Definition of the moduli space, M2,2N+1. Given a triple (∂E , ϕ, h), denote the lift

of the unitary pair (A,ϕ) by

(Ã, ϕ̃) = l · (A,ϕ). (2.24)

A triple (∂E , ϕ, h) is in M2,2N+1 if it is a solution of Hitchin equations on CP1 and on a

neighborhood of ∞ the associated flat connection D̃ = Ã + ϕ̃ + ϕ̃† differs from the local

model in (2.22) by a deformation allowed by [27]. Moreover, we say that (∂E , ϕ, h) and
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(∂
′
E , ϕ

′, h′) are gauge equivalent if there is some unitary gauge transformation g by which

(A,ϕ) and (A′, ϕ′) are gauge equivalent, and g lifts to an allowed gauge transformation on

the ramified disk around ∞. More precisely, the lift g̃ = l′ ◦ g ◦ l−1 must be an allowed

unitary gauge transformation, in the perspective of [27], from l · (A,ϕ) to l′ · (A′, ϕ′) on the

ramified disk around ∞.

The moduli space M̃2,2N−1 can be defined similarly.

With the above definitions, it is expected that the symplectic form ωI on M2,K and

M̃2,K can be expressed just as that in [12]:

ωI =
i

π

∫
Tr
(
δAz ∧ δAz − δϕ ∧ δϕ†

)
. (2.25)

There is a U(1) action on the moduli space M2,K and M̃2,K , by composing the rotation

of Higgs field with a rotation of the Riemann sphere. It is defined as:

z
ρθ−→ e−i 2

2+K
θz,

ϕ → eiθρ∗θϕ,

A → ρ∗θA.

(2.26)

We say (A,ϕ) is fixed by the U(1) action if for all θ, the rotated solution is gauge equivalent

to the unrotated one. This U(1) action is expected to be Hamiltonian with moment map

µ such that

dµ = ιV ωI (2.27)

where V is the vector field generated by the U(1) action. At the fixed points of the U(1)

action, there is evidence that this moment map agrees with the following quantity [46]:

µ =
i

2π

∫
Tr
(
ϕ ∧ ϕ† − Id · |z|Kdz ∧ dz

)
. (2.28)

In appendix C, we compute the weights of the U(1) action at the fixed points. Prac-

tically, rather than working with the Hitchin moduli space, we may instead work with the

Higgs bundle moduli space diffeomorphic to M2,K or M̃2,K . In the case M2,2N+1, the

corresponding Higgs bundle moduli space MHiggs
2,2N+1 is rigorously described in [46]. For

the other moduli spaces, we provide a general set-up of the definition for the Higgs bundle

moduli space, and leave a rigorous treatment to future work. Unsurprisingly, the fixed data

for the Higgs bundle moduli space is the same as the fixed data for the Hitchin moduli

space. On the ramified double cover of the disk at ∞ with coordinate u = z−1/2, the local

model for the Higgs field is

ϕmodel =

(
−2 0

0 2

)
du

uK+3
=

(
1 0

0 −1

)
zK/2dz, (2.29)

as in (2.22). Additionally, the monodromy at ∞ on the ramified double cover at ∞ is

trivial when K is odd, but otherwise a free parameter. The monodromy is algebraically

encoded in the data of a filtration structure of the holomorphic vector bundle E = (E, ∂E)

at∞. The filtered vector bundle of E and the filtration structure at∞ are denoted as P•E .
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A pair (P•E , ϕ) consisting a filtered bundle P•E and meromorphic Higgs field ϕ with

pole at ∞ (with no additional compatibility conditions) is in the Higgs bundle moduli

space MHiggs
2,K if there is a holomorphic lift to the ramified disk in which ψ∗(P•E , ϕ) is

“unramifiedly good” (in the sense of [47]), i.e.

ψ∗ϕ = ϕmodel + holomorphic terms (2.30)

and ψ∗(P•E) is the trivial filtration. In MHiggs
2,K , (P•E , ϕ) and (P•E ′, ϕ′) are identified if

there is a isomorphism η : P•E → P•E ′ of P•E and P•E ′ as filtered vector bundles such

that ϕ′ = η−1 ◦ ϕ ◦ η.

2.4 Quantization of MH

One of the major goals of this paper is to study the quantization of wild Hitchin moduli

spaces,

(MH(Σ, G), kωI)  H(Σ, G, k). (2.31)

The quantization problem takes as input the symplectic manifold (MH(Σ, G), kωI) — the

“phase space,” and aims to produce a space of quantum states — the “Hilbert space.”

In this particular case, the resulting space H(Σ, G, k) can be interpreted as the Hilbert

space of complex Chern-Simons theory at real level k on Σ, with the complex connection

developing singularities near the punctures.

Using the standard machinery of geometric quantization of Kähler manifolds, one can

identify the Hilbert space with holomorphic sections of a “prequantum line bundle”

H(MH(Σ, G), kωI) = H0(MH ,L⊗k). (2.32)

Here L denotes the determinant line bundle over MH whose curvature is cohomologous

to ωI ,

c1(L) = [ωI ]. (2.33)

For all quantization problems, a very interesting question is to find the dimension of

the resulting Hilbert space. In the present case, the dimension of H can be formally written

as an integral overMH ,12

dim H0(MH ,L⊗k) = χ(MH ,L⊗k) =

∫

MH

ekωI ∧ Td(MH). (2.34)

In the above expression, we used the vanishing of higher cohomology groups13 to rewrite

the dimension as an Euler characteristic, and then used index theorem to express it as an

integral over the moduli space.

12We use integrals for pedagogical reasons. MH generically is not a manifold, and should be viewed as

a stack.
13The vanishing theorem for unramified and tamely ramified cases was proved in [15] and [14], and the

vanishing is expected to hold also in the wild case — morally, because of the Kodaira vanishing along the

fibers of the Hitchin map.
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Just like their unramified or tamely ramified cousins, the wild Hitchin moduli spaces

are also non-compact and would give rise to infinite-dimensional Hilbert spaces after quan-

tization. This is seen quite clearly from the integral in (2.34), which diverges due to the

non-compactness ofMH .

However, as the U(1) Hitchin action is Hamitonian (in particular it preserves ωI), it

also acts on the Hilbert space H. Then the dimension of H can be refined to the graded

dimension, defined as the character of the U(1) action,

dimtH =
∑

n

dimHnt
n. (2.35)

Here t is the fundamental character of U(1), and Hn is the subspace of H where U(1)

acts with eigenvalue n. In [13], this Hitchin character was computed in the unramified

or tamely ramified case, and was found to be given by a Verlinde-like formula, known

as the “equivariant Verlinde formula.” The word “equivariant” comes from the fact that

the Hitchin character can also be written as an integral, similar to (2.34), but now in the

U(1)-equivariant cohomology ofMH ,

dimtH(Σ, G, k) = χU(1)(MH ,L⊗k) =

∫

MH

ec1(L
⊗k, β) ∧ Td(MH , β). (2.36)

Here, the second quantity is the equivariant Euler characteristic of L⊗k which is then

expressed as an integral over MH via the equivariant index theorem. This integral will

actually converge, but we will need to first briefly review the basics of equivariant coho-

mology and introduce necessary notation. We will be very concise and readers unfamiliar

with this subject may refer to [48] for a more pedagogical account.

Let V be the vector field on MH generated by the U(1) action; we pick β to be

the degree-2 generator of the equivariant cohomology of H•
U(1)(pt) and is related to t by

t = e−β . Using the Cartan model for equivariant cohomology, we define the equivariant

exterior derivative as

δ̂ = δ + βιV (2.37)

with δ̂ 2 = 0 over equivariant differential forms. One can then define the equivariant

cohomology as

H•
G(MH) = ker δ̂/im δ̂. (2.38)

For an equivariant vector bundle, one can also define the equivariant characteristic classes.

For example, the equivariant first Chern class of L is now

c1(L, β) = ω̃I := ωI − βµ. (2.39)

And one can verify that it is equivariantly closed

δ̂ ω̃I = 0. (2.40)

Similarly, one can define the equivariant Todd class Td(MH , β) of the tangent bundle

ofMH .
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Now we can see that the integral in (2.36) has a very good chance of being convergent

as ec1(L, β) contains a factor e−βµ which suppresses the contribution from large Higgs fields.

Further, one can use the Atiyah-Bott localization formula to write (2.36) as a summation

over fixed points of the Hitchin action,

∫

MH

ec1(L
⊗k, β) ∧ Td(MH , β) =

∑

Fd

e−βkµ(Fd)

∫

Fd

Td(Fd) ∧ ekωI

∏codimCFd

i (1− e−xi−βni)
(2.41)

where Fd is a component of the fixed points, and xi+βni are the equivariant Chern roots of

the normal bundle of Fd with ni being the eigenvalues under the U(1) action. For a Hitchin

moduli space, there is finitely many Fd’s and each of them is compact, so the localization

formula provides a way to compute the Hitchin character. To use the above expression,

one must understand the fixed points and their ambient geometry — something that is

typically challenging. This makes the relation (1.1) very useful, since it suggests that the

Hitchin character, along with all the non-trivial geometric information about MH that it

encodes, can be obtained in a completely different (and in many senses simpler) way from

the Coulomb index of the 4d SCFT T [Σ, G]! This is precisely the approach taken in [1]

for tamely ramified Σ. We now proceed to study the Coulomb branch index of the general

Argyres-Douglas theories to uncover the wild Hitchin characters.

We end this section with two remarks. The first is about the large-k limit of the

Hitchin character. In this limit, it is related to another interesting invariant of MH called

the “equivariant volume” studied in [49]

Volβ(MH) =

∫

MH

exp(kω̃I) =
∑

Fd

e−βµ(Fd)

∫

Fd

eωI

euβ(Fd)
(2.42)

where euβ(Fd) is the equivariant Euler class of the normal bundle of Fd,

euβ(Fd) =

codimCFd∏

i=1

(xi + βni). (2.43)

The second remark is about the quantization of the monodromy parameter α (and

also the α1 and α2). In the definition of the moduli space MH , this parameter can take

arbitrary values inside the Weyl alcove Lie(T)/Waff subject to no restrictions. However,

only for discrete values of the monodromy parameter, MH is quantizable. The allowed

values are given by the characters of G modulo Waff action (or equivalently integrable

representations of G at level k.)

kα ∈ Λchar(G)/Waff = Hom(G,U(1))/Waff, (2.44)

which ensures the prequantum line bundle L⊗k has integral periods over MH (see [1] for

completely parallel discussion of this phenomenon in the tame case.) For G = SU(2), we

often use the integral parameter

λ = 2kα ∈ {0, 1, . . . , k}. (2.45)
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The discretization of α can also be understood from the SCFT side. For a quantum

field theory with flavor symmetry LG on M3 × R, one can deform the system — and also

its Coulomb branch — by turning on a flavor holonomy in Hom(π1M3,
LG)/LG. When

M3 = L(k, 1), the homomorphism π1 = Zk →LG up to conjugation is precisely classified

by elements in

Λcochar(
LG) = Λchar(G) (2.46)

modulo affine Weyl symmetry.14

3 The Coulomb branch index of AD theories from N = 1 Lagrangian

Now our task is to compute the Coulomb branch index of Argyres-Douglas theories on

the lens space L(k, 1). This is, however, a rather nontrivial problem, since these theories

are generically strongly-interacting, non-Lagrangian SCFTs. Their original construction

using singular loci of the Coulomb branch of N = 2 super Yang-Mills theory is not of

much use: the IR R-symmetries are emergent, the Seiberg-Witten curves are derived from

a subtle scaling limits (see e.g. [50] for discussion of this issue), and the Higgs branches

are intrinsic to the superconformal point itself [45]. Also, no known dualities can relate

them to Lagrangian theories. For example, in [1] the generalized Argyres-Seiberg duality is

very powerful for study of Coulomb index of class S theories, but its analogue for Argyres-

Douglas theories is not good enough to enable the computation of superconformal indices,

since the two S-duality frames in general both consist of non-Lagrangian theories [51–54].

Recently, the author of [31–33] discovered that a certain class of four-dimensional

N = 1 Lagrangian theories exhibit supersymmetry enhancement under RG flow. In par-

ticular, some of them flow to N = 2 Argyres-Douglas theories. The N = 1 description

allows one to track down the flow of R-charges and identify the flavor symmetry from the

UV, making the computation of the full superconformal index possible.

In this section we will use their prescription to calculate the Coulomb branch index

of Argyres-Douglas theories on S1 × L(k, 1). Investigation of their properties, which is

somewhat independent of the main subject of the paper, is presented in appendix A, which

consists of two subsections. The TQFT properties of the Coulomb branch indices make

up appendix A.1. When there is only tame ramifications, the lens space Coulomb branch

index of T [Σ] gives rise to a very interesting 2D TQFT on Σ [1]. In the presence of irregular

singularities, the geometry of Σ is highly constrained, and only a remnant of the TQFT

cutting-and-gluing rules is present, which tells us how to close the regular puncture on the

south pole to go from the (A1, DK+1) theory to (A1, AK−2).

In appendix A.2, we consider the dimensional reduction of Argyres-Douglas theories,

which will be relevant later when we discuss the large-k behavior of the Hitchin character.

14In [1], the importance of distinguishing between G and LG was emphasized. However, for the wild

Hitchin moduli space that we study, the difference is not as prominent, because Σ is now restricted to

be CP
1, making the Hitchin character insensitive to global structure of the gauge group. In fact, the

wild Hitchin characters we will consider are complete determined by the Lie algebra g, provided that we

analytically continuate kα to be a weight of g. Because of this, we will use the simply-connected group —

SU(2) in the rank-2 case — for both the gauge group of the SCFT and the moduli space.
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The main motivation is to resolve an apparent puzzle: any fractional U(1)r charges in four

dimensions should disappear upon dimensional reduction, since it is impossible to have

fractional R-charges in the resulting three-dimensional N = 4 theory, whose R-symmetry

is enhanced to SU(2)C × SU(2)H . The solution lies in the mixing between the topological

symmetry and the R-symmetry, similar to what was first discussed in [34] using Schur

index. Here we shall confirm the statement from Coulomb branch point of view directly.

In the following we begin with a brief review of the construction [31–33] and present

an integral formula for the Coulomb branch index on lens spaces.

3.1 The construction

In the flavor-current multiplet of a 4d N = 2 SCFT, the lowest component is known as

the “moment map operator”, which we will denote as µ̂. It is valued in f∗, the dual of

the Lie algebra of the flavor symmetry F , and transforms in the 30 of the SU(2)R ×U(1)r
R-symmetry. In other words, if the Cartan generators of SU(2)R and U(1)r is I3 and r, then

I3(µ̂) = 1, and r(µ̂) = 0. (3.1)

The idea of [31–33] is to couple the moment map operator µ̂ with an additional N = 1

“meson” chiral multiplet M in the adjoint representation f of F via the superpotential

W = 〈µ̂,M〉 (3.2)

and give M a nilpotent vev 〈M〉. If the N = 2 theory we start with has a Lagrangian

description (the case that we will be mainly interested in below), such deformation will give

mass to some components of quarks, which would be integrated out during the RG flow.

The Jacobson-Morozov theorem states that a nilpotent vev 〈M〉 ∈ f+ specifies a Lie

algebra homomorphism ρ : su(2)→ f. The commutant of the image of ρ is a Lie subalgebra

h ⊂ f. This subalgebra h is the Lie algebra of the residual flavor symmetry H. In the

presence of the nilpotent vev, f (and similarly f∗) can be decomposed into representations

of su(2)× h as

f =
∑

j

Vj ⊗Rj , (3.3)

where the summation runs over all possible spin-j representations Vj of su(2), and Rj

carries a representation of h. Both M and µ̂ can be similarly decomposed

M =
∑

j,j3

M̃j,j3 , µ̂ =
∑

j,j3

µ̂j,j3 (3.4)

whereMj,j3 also carries the Rj representation of h that we omitted. Here (j, j3) is the quan-

tum number for the su(2) representation Vj . Among them, M1,1 will acquire a vev v, and

we re-define M to the fluctuation M −〈M〉. Then, the superpotential (3.2) decomposes as

W = vµ1,−1 +
∑

j

〈Mj,−j , µ̂j,j〉. (3.5)

Note that only the −j component of the spin-j representation of su(2) for the M ’s remains

coupled in the theory, as the other components giving rise to irrelevant deformations [32].
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matter Sp(N) (J+, J−)

q � (1, 0)

q′ � (1,−4N − 2)

φ adj (0, 2)

Mj , j = 1, 3, . . . 4N + 1 1 (0, 2j + 2)

M ′
2N+1 1 (0, 4N + 4)

Table 2. The N = 1 matter content for the Sp(N) gauge theory that flows to (A1, A2N ) Argyres-

Douglas theory. ρ is given by the principal embedding, and j takes values in the exponents of f.

For f = so(4N + 4), the exponents are {2N + 1; 1, 3, . . . , 4N + 1}.

Next, we examine the R-charge of the deformed theory. In the original theory, we

denote (J+, J−) = (2I3, 2r) and a combination of them will be the genuine U(1)R charge

of the N = 1 theory, leaving the other as the flavor symmetry F = (J+ − J−)/2. Upon

RG flow to the infrared SCFT, the flavor symmetry would generally mix with the naive

assignment of U(1)R charge:

R =
1

2
(J+ + J−) +

ǫ

2
(J+ − J−). (3.6)

The exact value of the mixing parameter ǫ can be determined via a-maximization [55] and

its modification to accommodate decoupled free fields along the RG flow [56]. In the fol-

lowing, we summarize the N = 1 Lagrangian theory and the embedding ρ found in [32, 33]

that are conjectured to give rise to Argyres-Douglas theories relevant for this paper.

Lagrangian for (A1, A2N) theory. The N = 1 Lagrangian is obtained by starting with

N = 2 SQCD with Sp(N) gauge group15 plus 2N+2 flavors of hypermultiplets. The initial

flavor symmetry is F = SO(4N + 4) and we pick the principal embedding, given by the

partition [4N +3, 1]. The resulting N = 1 matter contents are listed in table 2. Under the

RG flow the Casimir operators Trφ2i with i = 1, 2, . . . , N andMj with j = 1, 3, . . . , 2N +1

and M ′
2N+1 decouple. The mixing parameter in (3.6) is

ǫ =
7 + 6N

9 + 6N
. (3.7)

Lagrangian for (A1, A2N−1) theory. Similarly one starts with N = 2 SQCD with

SU(N) gauge group and 2N fundamental hypermultiplets with SU(2N) × U(1)B flavor

symmetry. We again take the principal embedding. The matter content is summarized in

table 3. Using a-maximization we see that Mj with j = 1, 2, . . . , N , along with all Casimir

operators, become free and decoupled. The mixing parameter in (3.6) is

ǫ =
3N + 1

3N + 3
. (3.8)

15We adopt the convention that Sp(1) ≃ SU(2).
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matter SU(N) U(1)B (J+, J−)

q � 1 (1,−2N+1)

q̃ � −1 (1,−2N+1)

φ adj 0 (0, 2)

Mj , j = 1, 2, . . . 2N − 1 1 0 (0, 2j + 2)

Table 3. The N = 1 matter content for the SU(N) gauge theory that flows to (A1, A2N−1)

Argyres-Douglas theory. ρ is again the principal embedding, and j ranges over the exponents of

su(2N).

matter Sp(N) SO(3) (J+, J−)

q � 3 (1, 0)

q′ � 1 (1,−4N)

φ adj 1 (0, 2)

Mj , j = 1, 3, . . . 4N − 1 1 1 (0, 2j + 2)

M ′
2N 1 3 (0, 4N + 2)

M ′
0 1 3 (0, 2)

Table 4. The N = 1 matter content for the Sp(N) gauge theory that flows to (A1, D2N+1)

Argyres-Douglas theory.

It is worthwhile to emphasize that the extra U(1)B symmetry would become the flavor sym-

metry of the Argyres-Douglas theory. In particular, when N = 2, it is enhanced to SU(2)B.

This U(1)B symmetry is the physical origin of the gauge monodromy α in section 2.2.

Lagrangian for (A1, D2N+1) theory. Just as the (A1, A2N ) theories, the starting point

is the N = 2 SCFT with Sp(N) gauge group and 2N + 2 fundamental hypermultiplets.

However, the nilpotent embedding ρ is no longer the principal one; rather it is now given

by the partition [4N + 1, 13], whose commutant subgroup is SO(3) [33]. The Lagrangian

of the theory is given in table 4. Among mesons and Casimir operators Tr φi, only Mj

for j = 2N + 1, 2N + 3, . . . , 4N − 1 remain interacting. The mixing parameter in (3.6) is

found to be

ǫ =
6N + 1

6N + 3
. (3.9)

In this case, the UV SO(3) residual flavor symmetry group is identified as the IR SU(2)

flavor symmetry coming from the simple puncture.

Lagrangian for (A1, D2N) theory. Similar to the (A1, A2N−1) case, we start with

the SU(N) gauge theory with 2N fundamental hypermultiplets, but choose ρ to be the

embedding given by the partition [2N − 1, 1]. This leaves a U(1)a × U(1)b residual fla-

vor symmetry, the first of which is the baryonic symmetry that we started with. The

Lagrangian is summarized in table 5. Under RG flow, the decoupled gauge invariant oper-

ators are Casimir operators Trφi, i = 2, 3, . . . , N , Mj with j = 0, 1, . . . , N − 1 and (M, M̃).
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matter SU(N) U(1)a U(1)b (J+, J−)

q � 1 2N − 1 (1, 0)

q̃ � −1 −2N + 1 (1, 0)

q′ � 1 −1 (1, 2− 2N)

q̃′ � −1 +1 (1, 2− 2N)

φ adj 0 0 (0, 2)

Mj , j = 0, 1, . . . 2N − 2 1 0 0 (0, 2j + 2)

M 1 0 2N (0, 2N)

M̃ 1 0 −2N (0, 2N)

Table 5. The N = 1 matter content for the SU(N) gauge theory that flows to (A1, D2N ) Argyres-

Douglas theory.

The a-maximization gives the mixing parameter

ǫ = 1− 2

3N
. (3.10)

In the IR, one combination of U(1)a and U(1)b would become the Cartan of the en-

hanced SU(2) flavor symmetry.

3.2 Coulomb branch index on lens spaces

The N = 1 constructions of the generalized Argyres-Douglas theories enable one to com-

pute their N = 2 superconformal index by identifying the additional R-symmetry with a

flavor symmetry of the N = 1 theory. As the ordinary superconformal index on S1 × S3,

the N = 1 lens space index can be defined in terms of the trace over Hilbert space on

L(k, 1) [57, 58]

IN=1(p, q) = Tr (−1)F pj1+j2+R/2qj2−j1+R/2ξF
∏

i

afii exp(−β′δ′) (3.11)

where j1,2 are the Cartans of the SO(4)E ≃ SU(2)1 × SU(2)2 rotation group, R counts

the superconformal U(1)R charge of the states. We also introduce the flavor fugacity ξ for

the symmetry F = (J+ − J−)/2 inherited from the N = 2 R-symmetry. Finally, δ′ is the

commutator of a particular supercharge Q chosen in defining the index. It is given by

δ′ = {Q,Q†} = E − 2j1 +
3R

2
(3.12)

where E the conformal dimension. Supersymmetry ensures that only states annihilated

by Q contribute in (3.11); hence the results are independent of β′ and one can restrict the

trace to be taken over the space of BPS states.

One advantage of the lens space index comes from the non-trivial fundamental group

of L(k, 1), making it sensitive to the global structure of the gauge group [57]. Also, the

gauge theory living on L(k, 1) has degenerate vacua labelled by holonomies around the
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Hopf fiber, so the Hilbert space will be decomposed into different holonomy sectors. All of

these make the lens index a richer invariant than the ordinary superconformal index.

For a theory with a Lagrangian, the lens space index can be computed by first multi-

plying contributions from free matter multiplets after Zk-projection, then integrating over

the (unbroken) gauge group determined by a given holonomy sector, and finally summing

over all inequivalent sectors. We introduce the elliptic Gamma function

Γ(z; p, q) =

+∞∏

j,k=0

1− z−1pj+1qk+1

1− zpjqk . (3.13)

Then, for a chiral superfield with gauge or flavor fugacity/holonomy (b,m) we have

Iχ(m, b) = Iχ0 (m, b) · Γ
(
(pq)

R
2 qk−mb; qk, pq

)
Γ
(
(pq)

R
2 pmb; pk, pq

)
(3.14)

with the prefactor related to the Casimir energy

Iχ0 (m, b) =
(
(pq)

1−R
2 b−1

)m(k−m)
2k

(
p

q

)m(k−m)(k−2m)
12k

. (3.15)

For a vector multiplet the contribution is

IV (m, b) =
IV0 (m, b)

Γ (qmb−1; qk, pq) Γ (pk−mb−1; pk, pq)
(3.16)

with

IV0 (m, b) =
(
(pq)

1
2 b−1

)−m(k−m)
2k

(
q

p

)m(k−m)(k−2m)
12k

. (3.17)

Notice that we will not turn on flavor holonomy for the U(1) flavor symmetry F along the

Hopf fiber. This is because it is part of the N = 2 R-symmetry; turning on background

holonomy for it will break the N = 2 supersymmetry.

To connect (3.11) with N = 2 lens space index, recall the definition of the latter

is [59, 60]

IN=2(p, q, t) = Tr (−1)F pj1+j2+rqj2−j1+rtR−r
∏

i

afii exp(−β′′δ′′) (3.18)

where the index counts states with SU(2)R×U(1)r charge (R, r) that are BPS with respect

to δ′′ = E − 2j2 − 2R − r. To recover the above N = 2 index from (3.11), we make the

substitution

ξ →
(
t(pq)−

2
3

)γ
(3.19)

for some constant γ depending on how U(1)F is embedded inside SU(2)R ×U(1)r.

Finally, we take the “Coulomb branch limit” of the N = 2 lens space index,

p, q, t→ 0,
pq

t
= t fixed. (3.20)

The trace formula (3.18) then reduces to

ICN=2 = TrC(−1)F tr−R
∏

i

afii , (3.21)
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where the trace is taken over BPS states annihilated by both Q̃1−̇ and Q̃2+̇ (i.e. satisfying

E − 2j2 − 2R + r = E + 2j2 + 2R + r = 0.) Notice that, in our convention, L(k, 1) is a

quotient of S3 by Zk ⊂ U(1)Hopf ⊂ SU(2)1. Since both Q̃1−̇ and Q̃2+̇ transform trivially

under SU(2)1, they are preserved after the Zk quotient. Hence the trace formula (3.21) is

well-defined.

For all known examples the Coulomb branch operators have R = 0, so the above limit

effectively counts U(1)r charge. For a Lagrangian theory, when k = 1 this limit counts

the short multiplet Er,(0,0) [2], whose lowest component parametrizes the Coulomb branch

vacua of the SCFT.

Below we will list the integral formulae for the Coulomb branch indices of Argyres-

Douglas theories that we are interested in throughout this paper. In computing the lens

space index we have removed contributions from the decoupled fields.

(A1, A2N) theories. We have

I(A1,A2N ) =
N∏

i=1

1

1− t
2(N+i+1)

2N+3

N∏

i=1

1− t
2i

2N+3

1− t
1

2N+3

×
∑

mi

∏

α>0

(
t

2
2N+3

)− 1
2
([[α(m)]]− 1

k
[[α(m)]]2)

N∏

i=1

(
t
4(N+1)
2N+3

) 1
2
([[mi]]−

1
k
[[mi]]

2)

× 1

|Wm|

∮
[dz]

∏

[[α(m)]]=0

1− zα

1− t
1

2N+3 zα

(3.22)

where the integral is taken over the unbroken subgroup of Sp(N) with respect to a given

set of holonomies {mi}. Here, |Wm| is the order of Weyl group for the residual gauge

symmetry. The constant γ (3.19) is γ = 1/(2N + 3). We use the notation [[x]] to denote

the remainder of x modulo k.

(A1, A2N−1) theories. After taking γ=1/(N+1) and the Coulomb branch limit, we have

I(A1,A2N−1) =
N−1∏

i=1

1

1− t
2N+1−i

N+1

N−1∏

i=1

1− t
i+1
N+1

1− t
1

N+1

×
∑

mi

∏

α>0

(
t

2
N+1

)− 1
2
([[α(m)]]− 1

k
[[α(m)]]2)

N∏

i=1

(
t

2N
N+1

) 1
2
([[mi+n]]− 1

k
[[mi+n]]2)

× 1

|Wm|

∮
[dz]

∏

[[α(m)]]=0

1− zi/zj
1− t

1
N+1 zi/zj

(3.23)

where we have introduced U(1) flavor holonomy n and the integral is taken over the (un-

broken subgroup of) SU(N). Specifically, suppose the gauge holonomy breaks the gauge

group SU(N) as

SU(N)→ SU(N1)× SU(N2)× . . . SU(Nl)×U(1)r (3.24)
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where N − 1 = (N1 − 1) + (N2 − 1) + · · ·+ (Nl − 1) + r then we have

1

|Wm|

∮
[dz]

∏

[[α(m)]]=0

1− zi/zj
1− t

1
N+1 zi/zj

=

l∏

i=1

Nl−1∏

j=1

1− t
1

N+1

1− t
j+1
N+1

. (3.25)

To derive the general formula, we assume the U(1) flavor holonomy n is an integer. In fact,

we will see in section 4 that n is allowed to take value in Z/N . In fact, n is the quantization

of the monodromy around irregular puncture. Its allowed values differ from λ in (2.45)

since they are identified respectively in the UV and IR. Their relation is λ = [[Nn]] = 2kα.

The index takes the following form

t
1

N+1([[Nn]]− 1
k
[[Nn]]2)(1 + . . .), (3.26)

where the ellipsis stands for terms with only positive powers of t.

(A1, D2N+1) theories. We have

I(A1,D2N+1) =
N∏

j=1

1

1− t
4N+2−2j

2N+1

N∏

j=1

1− t
2j

2N+1

1− t
1

2N+1

×
∑

mi

∏

α>0

(
t

2
2N+1

)− [[α(m)]](k−[[α(m)]])
2k

∏

i

(
t2
) [[mi]](k−[[mi]])

2k

(
t

1
2N+1

) [[mi±2n]](k−[[mi±2n]])

2k

× 1

|Wm|

∮
[dz]

∏

[[α(m)]]=0

1− zα

1− t
1

2N+1 zα
(3.27)

where n is regarded as the holonomy for SU(2) symmetry in the IR,16 which is related to the

quantized monodromy around the regular puncture at the south pole by λ = [[2n]] = 2kα.

The constant γ here is 1/(2N + 1). As in (A1, A2N ) case, the integral is taken over the

unbroken subgroup of Sp(N). Note that here we allow n to a half-integer. This fact also

plays an important role when we discuss TQFT structure in appendix A.1. As before, the

closed expression of the index contains a normalization factor

t
N

2N+1([[2n]]−
1
k
[[2n]]2). (3.28)

(A1, D2N) theories. Similarly, the index formula is

I(A1,D2N ) =
2N−1∏

j=N+1

1

1− t
j
N

N−1∏

j=1

1− t
j+1
N

1− t
1
N

×
∑

mi

∏

α>0

(
t

2
N

)− [[α(m)]](k−[[α(m)]])
2k

∏

i

(
t

1
N

) [[mi+n1+(2N−1)n2]](k−[[mi+n1+(2N−1)n2]])

2k

×
∏

i

(
t
2N−1

N

) [[mi+n1−n2]](k−[[mi+n1−n2]])

2k

× 1

|Wm|

∮
[dz]

∏

[[α(m)]]=0

1− zi/zj
1− t

1
N zi/zj

(3.29)

16The factor of 2 in front of n is due to the fact that the quarks q in the UV transform in the triplet 3

of SU(2).
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where we have introduced (n1, n2) to represent the (U(1)a,U(1)b) flavor holonomy rep-

sectively. The constant γ = 1/N , and the integral is over the (unbroken subgroup of)

SU(N). Its precise value is given in (3.25) by substituting t1/(N+1) with t1/N . In (3.29)

the computation was done assuming n1,2 ∈ Z so that the gauge holonomies mi are all

integers. However, the allowed set of values are in fact larger. We will return to this issue

in section 4. The relations to monodromies around wild and simple punctures are given

by, respectively,

λ1 = [[Nn1]] = 2kα1, λ2 = [[2Nn2]] = 2kα2. (3.30)

Again, the evaluation of (3.29) gives a normalization factor

(u)
N−1
2N ([[2Nn2]]−

1
k
[[2Nn2]]2)+ 1

2N ([[Nn1+Nn2]]−
1
k
[[Nn1+Nn2]]2)+ 1

2N ([[Nn1−Nn2]]−
1
k
[[Nn1−Nn2]]2).

(3.31)

4 Wild Hitchin characters

Now that we have the integral expressions for the Coulomb branch indices of Argyres-

Douglas theories (3.22), (3.23), (3.27) and (3.29), we will evaluate them explicitly in

this section.

Before presenting the results, we remark that the Coulomb indices have several highly

non-trivial properties. Anticipating the equality between the index and wild Hitchin char-

acters, we can often understand these properties from geometry.

1. Positivity. The Coulomb branch index as a series in t always has positive coefficients.

This phenomenon is not obvious from the integral expression. From the geomet-

ric side, this is a simple corollary of the “vanishing theorem” for the wild Hitchin

moduli space

H i(MH ,L⊗k) = 0 for i > 0. (4.1)

This further implies that, on the physics side, all Coulomb BPS states on L(k, 1)

are bosonic. This positivity phenomenon is the analogue of those observed in [61]

and [62] with wild ramifications.

2. Splitting. The indices always turn out to be rational functions. Further, they split as

a sum over fixed points — a form predicted by the Atiyah-Bott localization formula

from the geometry side (2.36). This will allow us to extract geometric data for moduli

spaces directly. However, the interpretation of this decomposition is not clear at the

level of the BPS Hilbert spaces HCoulomb. It is not even clear that the HCoulomb

can be decomposed in similar ways, as the individual contributions from some fixed

points do not have positivity.

3. Fractional dimensions. One notable feature of Argyres-Douglas theories is the frac-

tional scaling dimensions of their Coulomb branch operators. From the point of view

of the Hitchin action, this comes from the fractional action on the z coordinate. For

– 23 –



J
H
E
P
0
1
(
2
0
1
8
)
1
5
0

example, the U(1) action onM2,2N+1 involves a rotation of the base curve CP1 with

coordinate z by

ρθ : z 7→ e−i 2
2N+3

θz. (4.2)

Therefore only the (2N +3)-fold cover of the U(1) defines a (genuine non-projective)

group action, and the Hitchin character will be a power series in t
1

2N+3 . In all four

families of moduli spaces (M2,K versus M̃2,K ; K either even or odd) K+2 is always

the number of Stokes rays centered at the irregular singularity, and the Hitchin

character will be a power series in t
1

K+2 . When K is even, one can check that the

(K + 2)/2-fold cover of the U(1) given by ρθ defines a group action, and the Hitchin

character will contain integral powers of t
2

K+2 as a consequence.

We will start this section by giving formulae for the wild Hitchin characters in

section 4.1. In section 4.2, the large-k limit of the wild Hitchin character is discussed.

This limit effectively reduces the theory to three dimensions; by taking the mirror sym-

metryMH is realized as the Higgs branch of a 3d N = 4 quiver gauge theory. This is in

accordance with the mathematical work [63]. By comparing 3d index and 4d index, we

will see how good this approximation is on the nilpotent cone. As a byproduct, we give a

physical interpretation of the fixed points from the 3d mirror point of view.

In appendix C, we will present mathematical calculations that directly confirm the

physical prediction: the Coulomb branch index of Argyres-Douglas theory indeed computes

the wild Hitchin character forMH(Σ,PSL(2,C)) := LMH .

As we have explained — and we will soon offer another explanation from the

physics perspective — the Hitchin character is not sensitive to the difference between

MH(Σ, SL(2,C)) andMH(Σ,PSL(2,C)) when Σ is a sphere with at most two punctures.

In fact, one can directly check that the fixed points are exactly the same with identical

ambient geometry. As a consequence, the Hitchin character forMH(Σ, SL(2,C)) can be ob-

tained via “analytic continuation” of λ, λ1 and λ2 by allowing them to take odd values. So

we will not emphasize the difference betweenMH and LMH in this section, unless specified.

4.1 The wild Hitchin character as a fixed-point sum

4.1.1 The moduli space M2,2N+1

A nice illustrative example to start is the (A1, A2) theory with no flavor symmetry at all.

The Coulomb branch index is

I(A1,A2) =
1

(1− t
2
5 )(1− t

3
5 )

+
t
k
5

(1− t
6
5 )(1− t−

1
5 )
. (4.3)

On the other hand, the moduli spaceM2,3 has two complex dimensions, and we have the

fixed points and the associated eigenvalues of the circle action on normal bundles obtained

in appendix C:

ϕ∗
0 =

(
0 z

z2 0

)
dz, ϕ∗

1 =

(
0 1

z3 0

)
dz, (4.4)
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with moment maps µ = 1/40 and 9/40 respectively. After shifting the two moment maps

simultaneously by 1/40,17 we get µ1 = 0 and µ2 = 1/5. These are precisely the power

entering the numerator of each term in (4.3)! Furthermore, from the denominator of

each term, we are able to read off the weights of the circle action on the two-dimensional

normal bundle of each fixed points — they are respectively (2/5, 3/5) and (6/5,−1/5).
This is directly checked in appendix C from geometry, providing strong evidence for our

proposal (1.1). Also, notice the ubiquity of number “5” — the number of Stokes rays

associated with the irregular singularity.

The formula (4.3) encodes various interesting information about the geometry and

topology of the moduli space. As in the tame case, the moment map (which agrees

with (2.28) at fixed points) is expected to be a perfect Morse function on MH . The

fixed points are critical points of µ, and the positive- (negative-)eigenvalue subspaces of

the normal bundle correspond to the upward (downward) Morse flows. In particular, we

know that the top fixed point in M2,3 has Morse index 2 and the downward flow from it

coincides with the nilpotent cone — the singular fiber of the Hitchin fibration with Kodaira

type II [64]. Then the Poincaré polynomial ofM2,3 is

P(M2,3) = 1 + r2. (4.5)

Another important quantity is the equivariant volume ofM2,3 as given in (2.42)

Volβ(M2,3) =
25

6β2
(1− e− 1

5
β). (4.6)

Note that as β → +∞, the volume scale as β−2, with the negative power of β being the

complex dimension ofM2,3. This is unlike the tame situation, where β scales according to

half the dimension ofMH . Intuitively, this is because, while Higgs field is responsible for

half of the dimensions ofMH in tame case, they are responsible for all dimensions in the

wild Hitchin moduli space, as a G-bundle has no moduli over Σ in the cases that we consider.

We now give a general formula of the wild Hitchin character forM2,2N+1, predicted by

the Coulomb index and proved in appendix C. There are N + 1 fixed points in the moduli

space P0, P1, . . . , PN . They have moment maps given by

µi =
i(i+ 1)

2(2N + 3)
, i = 0, 1, 2, . . . , N (4.7)

where we have already shifted a universal constant so that P0 as moment map 0. The

weights are given in (C.22), and the wild Hitchin character reads

I(M2,2N+1)=
N∑

i=0

t
i(i+1)

2(2N+3)
k

∏i
l=1

(
1−t

2(N+l+1)
2N+3

)(
1−t−

2l−1
2N+3

)∏N
l=i+1

(
1−t

2l+1
2N+3

)(
1−t

2(N−l+1)
2N+3

) .

(4.8)

17We normalize the Hitchin character such that the t = 0 limit gives 1. The ambiguity of multiplying a

monomial t∆µ to the Hitchin character corresponds to redefining the U(1) action such that it rotates the

fiber of the line bundle L as well.
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The Morse index of Pi is 2i, so the Poincaré polynomial ofM2,2N+1 is

P(M2,2N+1) = 1 + r2 + r4 + · · ·+ r2N =
1− r2N+2

1− r2
. (4.9)

4.1.2 The moduli space M̃2,2N−1

A closely related moduli space is M̃2,2N−1, which has regular puncture at the south pole of

Σ in addition to the irregular puncture I2,2N−1 at the north pole. Then the gauge connec-

tion has monodromy A ∼ αdθ around the regular puncture, and λ = 2kα = {0, 1, . . . , k} is
quantized and are integrable weights of ŝu(2)k.

18 Again we will absorb the normalization

constant (3.28) appearing in the superconformal index so that the index as a series in t

will start with 1.

Next we present the wild Hitchin character for the moduli space M̃2,2N−1. We begin

with the example M̃2,1, or Argyres-Douglas theory of type (A1, D3). Denote λ := 2kα = 2n

valued in {0, 1, . . . , k}. Then, we have

I(A1,D3) =
1

(1− t
1
3 )(1− t

2
3 )

+
t
λ
3 + t

k−λ
3

(1− t−
1
3 )(1− t

4
3 )
. (4.10)

This formula tells us that M̃2,1 has three fixed points under the Hitchin action. One of

them has the lowest moment map 0 with weights on the normal bundle (1/2, 2/3), while

the other two have moment maps µ
(1)
1 = 2α/3 and µ

(2)
1 = (1 − 2α)/3. These results are

also confirmed by mathematical calculations in appendix C. Using Morse theory, we get

the Poincaré polynomial of M̃2,1

P(M̃2,1) = 1 + 2r2. (4.11)

And the equivariant volume is given by

Volβ(M̃2,1) =
9

4β2
(2− e− 2α

3
β − e− 1−2α

3
β). (4.12)

As M̃2,1 has hyper-Kähler dimension one, it is an elliptic surface in complex structure

I. The only singular fiber is the nilpotent cone with Kodaira type III [64] (i.e. labeled by

18λ starts life as a weight of SO(3), since the physical set-up computes the Hitchin character of
LM̃SU(2) = M̃SO(3) according to (1.1). As we have explained, from the geometric side, the difference

between M̃SU(2) and M̃SO(3) is almost negligible for the purpose of studying wild Hitchin characters — one

only needs to analytically continuate λ to go from one moduli space to another. This phenomenon has a

counterpart in the index computation as well. Being an SU(2) flavor holonomy, a natural set of values for

λ without violating charge quantization condition is 0, 2, . . . , 2⌊k/2⌋ [1]. However, in the expression (3.27),

there is no problem with simply allowing λ = 2n to take odd values. This can be understood from the

perspective of the N = 1 Lagrangian theories listed in table 4. There all the matter contents are assembled

either in the trivial or the vector representation of the global SO(3) symmetry, and these two representa-

tions cannot distinguish SU(2) from SO(3); as a consequence if we expand the full superconformal index

and look at the BPS spectrum of Argyres-Douglas theory, only representations for SO(3) will appear. This

means odd λ does not violate the charge quantization condition, and can be allowed. Furthermore, since

the superconformal index of (A1, A2N ) can be obtained from (A1, D2N+3) by closing the regular puncture

through (A.8), one immediately concludes that the Hitchin characters for M2,2N+1 and for the Langlands

dual LM2,2N+1 are exactly the same.
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Figure 1. Left: the affine A1 Dynkin diagram. Right: the nilpotent cone of Hitchin fibration for

M̃2,1, consisting of two CP1 intersecting at O with intersection number 2. Together with P1, P2,

they comprise the three fixed points of the Hitchin moduli space M̃2,1.

the affine A1 Dynkin diagram, see figure 1). It consists of two CP1 with the intersection

matrix given by (
−2 2

2 −2

)
. (4.13)

The null vector of the intersection matrix should be identified with the homology class of

the Hitchin fiber,

[F] = 2 [D1] + 2 [D2] . (4.14)

This relation translates into (see [65] and [1] for review of this relation as well as examples

with tame ramifications)

Vol(F) = 2Vol(D1) + 2Vol(D2) (4.15)

which is indeed visible from the Hitchin character. It is not hard to see that for each

CP1, the volumes are Vol(D1) = 3µ
(1)
1 = 2α and Vol(D2) = 3µ

(2)
1 = 1 − 2α respectively.

(The factor “3” is due to the weights −1/3 that corresponds to the downward Morse flow.)

Consequently, we see (4.15) is exactly true, with Vol(F) = 2 in our normalization.

We now give a general statement for the wild moduli space M̃2,2N−1. There are 2N+1

fixed points, divided into N + 1 groups. We label them as P
(1,2)
i , i = 0, 1, . . . , N . The i-th

group contains two fixed points for i > 0 and one fixed points for i = 0. The U(1) weights

on the 2N -dimensional normal bundle to Pi is given by

ǫl = −
2l − 1

2N + 1
, ǫ̃l =

2N + 2l

2N + 1
, l = 1, 2, . . . , i

ǫl =
2l − 1

2N + 1
, ǫ̃l =

2N + 2− 2l

2N + 1
, l = i+ 1, i+ 2, . . . N.

(4.16)

The normal bundle can be decomposed into the tangent space to the nilpotent cone plus its

orthogonal complement, and ǫl and ǫ̃l correspond respectively to the former and the latter.

For the 0-th fixed point the moment map is 0, while for the i-th group with i > 0, the

two moment map values are

µ
(1)
i =

i(i+ 1)

2(2N + 1)
− i

2N + 1
(2α), µ

(2)
i =

(i− 1)i

2(2N + 1)
+

i

2N + 1
(2α) (4.17)
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where α is again the monodromy around the simple puncture. Then the wild Hitchin

character is

I
(
M̃2,2N−1

)
=

1
∏N

l=1

(
1−t

2l−1
2N+1

)(
1−t

2N+2−2l
2N+1

) (4.18)

+

N∑

i=1

tkµ
(1)
i +tkµ

(2)
i

∏i
l=1

(
1−t

2N+2l
2N+1

)(
1−t−

2l−1
2N+1

)∏N
l=i+1

(
1−t

2l−1
2N+1

)(
1−t

2N+2−2l
2N+1

)

which precisely agrees with the mathematical calculation in appendix C. The Morse index

of Pi is again 2i, giving the Poincaré polynomial of the moduli space

P(M̃2,2N−1) = 1 + 2r2 + 2r4 + . . . 2r2N . (4.19)

4.1.3 The moduli space M2,2N

Compared to its cousin M2,2N+1, the moduli space M2,2N depends on an additional pa-

rameter α giving the formal monodromy of the gauge field around the irregular singularity,

again subject to the quantization condition 2kα = 0, 1, . . . , k. On the physics side, it is

identified with the holonomy of the U(1)B flavor symmetry of the (A1, A2N−1) theory.

From this point forward, the level of difficulty in finding fixed points via geometry

increases significantly; on the contrary, the physical computation is still tractable, yielding

many predictions for the moduli space.

When N = 1 the physical theory is a single hypermultiplet, and the index is just

a multiplicative factor (3.26). When N = 2 the moduli space is isomorphic to M̃2,1;

and two Argyes-Douglas theories (A1, A3) and (A1, D3) are identical [24]. Hence in this

section we begin with the next simplest exampleM2,6. After absorbing the normalization

constant (3.26) similar to previous examples, we arrive at the expression

I(A1,A5)=
t
k−λ
2 +t

λ
2 +t

k
2

(1−t 64 )(1−t 54 )(1−t− 2
4 )(1−t− 1

4 )
+

t
k−λ
4 +t

λ
4

(1−t 34 )(1−t 54 )(1−t 14 )(1−t− 1
4 )

+
1

(1−t 34 )(1−t 24 )(1−t 24 )(1−t 14 )
.

(4.20)

The index formula predicts that there are six fixed points under the Hitchin action,

with their weights on the normal bundle manifest in the denominators. The Poincaré

polynomial is then

P(M2,6) = 1 + 2r2 + 3r4. (4.21)

And the equivariant volume is

Volβ(M2,6) =
64

15β4

(
e−

1−2α
2

β + e−
2α
2
β + e−

1
2
β − 4e−

1−2α
4

β − 4e−
2α
4
β + 5

)
. (4.22)

We now write down the general formula for the Hitchin character of M2,2N . The

moduli space has N groups of fixed points. We label the group by i = 0, 1, . . . , N − 1
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with increasing Morse indices. The i-th group contains i+1 isolated fixed points P
(j)
i with

j = 0, 1, . . . , i. The weights on the normal bundle for each group are as follows:

ǫl =
N + 1 + l

N + 1
, ǫ̃l = −

l

N + 1
, l = 1, 2, . . . , i

ǫl =
N − l
N + 1

, ǫ̃l =
l + 1

N + 1
, l = i+ 1, i+ 2, . . . , N − 1.

(4.23)

Within the group the moment maps are organized in a specific pattern:

j odd: µ
(j)
i =

(2i− j + 1)(j + 1)

4(N + 1)
− i− j + 1

N + 1
(2α)

j even: µ
(j)
i =

(2i− j + 2)j

4(N + 1)
+

i− j
N + 1

(2α). (4.24)

Then the wild Hitchin character is

I(M2,2N )=
N−1∑

i=0

∑i
j=0 t

kµ
(j)
i

∏i
l=1

(
1−t

N+1+l
N+1

)(
1−t− l

N+1

)∏N−1
l=i+1

(
1−t

N−l
N+1

)(
1−t

l+1
N+1

) (4.25)

and from it we can write down immediately the Poincaré polynomial

P(M2,2N ) = 1 + 2r2 + 3r4 + 4r6 + · · ·+Nr2(N−1). (4.26)

In the large-k limit, some of the moment maps µ
(j)
i in the numerator of (4.25) will

stay at O(1) and become large after multiplied by k, even when λ = 2kα is fixed, and the

contribution from the corresponding fixed points will be exponentially suppressed. We see

that for each group in (4.24) only one fixed point survives, namely the one with j = 0.

These fixed points are the only ones visible in the three-dimensional reduction of Argyres-

Douglas theories. We will revisit this problem in section 4.2.

4.1.4 The moduli space M̃2,2N−2

We now turn to the last of the four families of wild Hitchin moduli spaces, M̃2,2N−2, which

is arguably also the most complicated. It is the moduli space associated with Riemann

sphere with one irregular singularity I2,2N−2 and one regular singularity, with monodromy

parameters α1 and α2. The corresponding Argyres-Douglas theory (A1, D2N ) generically

has U(1) × SU(2) flavor symmetry, and λ1 = 2kα1 and λ2 = 2kα2 in (3.30) label their

holonomies along the Hopf fiber of L(k, 1).

Let us again start from the simplest example: M̃2,2 or (A1, D4) Argyres-Douglas the-

ory. The hyper-Kähler dimension of this moduli space is again one; we thus expect to un-

derstand the geometric picture more concretely. Modulo the normalization constant, (3.31),

we have

I(A1,D4) =
tkµ

(0)
1 + tkµ

(1)
1 + tkµ

(2)
1

(1− t
3
2 )(1− t−

1
2 )

+
1

(1− t
1
2 )(1− t

1
2 )
. (4.27)
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Figure 2. Left: the affine A2 Dynkin diagram, with Dynkin label indicated at each node. Right:

the nilpotent cone of singular fibration, consisting of three CP1 intersecting at O. The spheres are

distorted a little to accommodate the common intersection. Together with P1, P2 and P3, they

comprise the four fixed points of the Hitchin moduli space M̃2,2.

The moment map values are

µ
(0)
1 =

1

2
− 1

2k
max

(
[[λ1 +

λ2
2
]], λ2

)

µ
(1)
1 =

1

2k
min

(
[[λ1 +

λ2
2
]], λ2

)

µ
(2)
1 =

1

2k
max

(
[[λ1 +

λ2
2
]], λ2

)
− 1

2k
min

(
[[λ1 +

λ2
2
]], λ2

)
.

(4.28)

Here, when (λ1 + λ2/2) /∈ Z, the character formula (4.27) shall be set to zero.

From the wild Hitchin character (4.27), we know the Poincaré polynomial is

P(M̃2,2) = 1 + 3r2. (4.29)

M̃2,2 is another elliptic surface, and the nilpotent cone is of Kodaira type IV [64], labeled

by the affine A2 Dynkin diagram. It contains three CP1’s, which we denote as D1,2,3, and

the intersection matrix is given by



−2 1 1

1 −2 1

1 1 −2


 . (4.30)

D1,2,3 each contains one of the three fixed points with Morse index 2, see figure 2 for

illustration. The null vector of the intersection matrix gives the homology class of the

Hitchin fiber,

[F] = 2 [D1] + 2 [D2] + 2 [D3] (4.31)

which can be translated into a relation about the volumes

Vol(F) = 2Vol(D1) + 2Vol(D2) + 2Vol(D3). (4.32)
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Indeed, the three moment map values (4.28) satisfy

4µ
(0)
1 + 4µ

(1)
1 + 4µ

(2)
1 = 2 = Vol(F). (4.33)

We now write down the general wild Hitchin character for the moduli space M̃2,2N−2.

There are N groups of fixed points, we label them as i = 0, 1, . . . , N − 1. The i-th group

contains 2i+ 1 fixed points with Morse index i. The expression looks like

I(M̃2,2N−2) =

N−1∑

i=0

∑2i
j=0 t

kµ
(j)
i

∏i
l=1

(
1− t

l+N
N

)(
1− t−

l
N

)∏N−1
l=i+1

(
1− t

l
N

)(
1− t

N−l
N

) (4.34)

Explicit formulae for the moment map µ
(j)
i when λ1 and λ2 are zero are given after (5.30).

In general, they are functions of [[λ1 + λ2/2]] and λ2, with the quantization condition of

(λ1 + λ2/2) being an integer. Moreover, for the i-th group of fixed points, the sum of the

moment map values,
2i∑

j=0

µ
(j)
i =

1

6N
i(i+ 1)(2i+ 1), (4.35)

is independent of the monodromy parameters.

We can similarly obtain the Poincaré polynomial for this moduli space,

P(M̃2,2N−2) = 1 + 3r2 + 5r4 + · · ·+ (2N − 1)r2N−2. (4.36)

4.2 Fixed points from the three-dimensional mirror theory

One interesting limit of the superconformal index on S1×L(k, 1) is the large-k limit, where

the Hopf fiber shrinks and the spacetime geometry effectively becomes S1 × S2. In this

limit, the 4d N = 2 theory becomes a three-dimensional N = 4 theory T3d[Σ, G]. Its

3d mirror Tmir.
3d [Σ, G] sometimes admits a Lagrangian description [66, 67]. The original

Coulomb branch vacua of T3d[Σ, G] becomes the Higgs branch vacua in the mirror frame.

What is the relation between the Hitchin moduli spaceMH and the Coulomb branchM∗

of T3d[Σ, G]? Intuitively, we expect that the latter is an “approximation” of the former

because some degrees of freedom become massive and integrated out. More precisely, under

the RG flow to the IR, we zoom in onto a small neighborhood of the origin of the Coulomb

branch. As a consequence, the Coulomb branchM∗ of T3d[Σ] is a linearized version ofMH ,

given by a finite-dimensional hyper-Kähler quotient of vector spaces — in other word,M∗

is a quiver variety consisting of holomorphically trivial GC-bundle over Σ.

This precisely agrees with the discovery of [63]: there it was proved mathematically

that the wild Hitchin moduli spaceMH contains the quiver varietyM∗ as an open dense

subset, parametrizing irregular connections on a trivial bundle on CP1. Furthermore,M∗

contains a subset of the U(1) fixed points in MH . These fixed points can be identified

with massive vacua of Tmir.
3d [Σ, G] on the Higgs branch, giving much easier access to them
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compared with the rest.19 To recap, we have the following relations:

Hitchin moduli spaceMH  quiver varietyM∗

Coulomb branch of T [Σ] on S1
 Higgs branch of Tmir.

3d [Σ]

“lowest” fixed points onMH  massive Higgs branch vacua

. (4.37)

These relations also suggest that there is a relation between the Hitchin character and

the Higgs branch index of Tmir.
3d [Σ], as we will show below. Recall that the 3d N = 4 index

is given by [68]

I3dN=4 = TrH(−1)F qj2+
1
2
(RH+RC)vRH−RCe−2β(Ẽ−RH−RC−j2), (4.38)

where j2 is the angular momentum with respect to the Cartan of the SO(3) Lorentz group

and RC,H are respectively the Cartans of SU(2)C × SU(2)H R-symmetry. There are two

interesting limits:

Coulomb limit : q, v→ 0,
q

1
2

v
= t fixed,

Higgs limit : q, v−1 → 0, q
1
2 v = t′ fixed.

(4.39)

As we will work with Tmir.
3d [Σ] in the mirror frame, the Higgs branch limit is that one that

interests us.

3d mirror of (A1, A2N−1) theory. To begin with, let us first turn to (A1, A2N−1)

theory whose three-dimensional mirror is N = 4 SQED with N fundamental hypermuti-

plets. The Higgs branch has an SU(N) flavor symmetry while the Coulomb branch has

U(1)J topological symmetry that can be identified with the flavor symmetry of the initial

(A1, A2N−1) theory. Let (zi,mi) be the fugacities and monopole numbers for the SU(N)

flavor symmetry and let (b, n) be the fugacity and monopole number for the U(1)J topo-

logical symmetry. The fugacities zi are subject to the constraint
∏

i zi = 1, while mi will

all be zero. The Higgs branch index is given by

I3dH = (1− t′)
N∏

i=1

δmi,0

∮
dw

2πiw
wNn

N∏

i=1

1

(1− t′
1
2wzi)(1− t′

1
2w−1z−1

i )

=

(
N∏

i=1

δmi,0

)
N∑

i=1

t′
|Nn|
2 z

−|Nn|
i

∏

j 6=i

1

1− t′zj/zi

1

1− zi/zj
.

(4.40)

To recover the k → +∞ limit of the (A1, A2N−1) Coulomb branch index (4.25), we make

the following substitution:

zi → t′
(N+1−2i)/(2N+2)

, i = 1, 2, . . . , N. (4.41)

19Note that no analogue exists in four dimensions, simply because Coulomb branch cannot be lifted

without breaking supersymmetry.
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This substitution (4.41) can be interpreted as the mixing between topological symmetry

and SU(2)C symmetry on the Coulomb branch of T3d[Σ], which is further examined in

appendix A.2. After the substitution, the index can be written as

I3dH = t
′ 1
N+1

|Nn|
N∑

i=1

t
′ i−1
N+1

|Nn|

∏
j 6=i

(
1− t

′N+1+i−j
N+1

)(
1− t

′ j−i
N+1

) , (4.42)

where each term in the summation is the residue at a massive vacuum. Comparing to the

Hitchin character (4.25), one finds that only a subset of fixed points inMH contribute to

I3dH . Namely, these are fixed points that live inM∗ ⊂MH .

For pedagogy, we describe these massive supersymmetric vacua explicitly. Our descrip-

tion is again in the mirror frame and one can easily interpret them in the original frame.

First we turn on the real FI parameter tR, and the Higgs branch (which is a hyper-Kähler

cone) gets resolved to be T ∗
CPN−1. The SU(N) flavor symmetry and SU(2)H acts on

T ∗
CPN−1, and the U(1) Hitchin action is embedded into the Cartan of SU(N)× SU(2)H ,

with the embedding given by (4.41). Then, one can study the fixed points under this U(1)

subgroup. It turns out that there are N of them, computed in appendix B. As the equiv-

ariant parameters of the SU(N) flavor symmetry are the masses of hypermultiplets, these

fixed points can be interpreted as massive vacua of the theory when mass parameters are

turned on according to the mixing (4.41).

On the other hand, from the perspective of MH , the contributing fixed points are

also straightforward to identify: they are precisely the ones whose moment map values

multiplied by k remain finite in the large-k limit, and there are precisely N of them.

Summing up their contributions gives back (4.42).

3d mirror of (A1, D2N) theory. Now we turn to Argyres-Douglas theories of type

(A1, D2N ), which are also known to have three-dimensional mirrors with Lagrangian de-

scriptions [24]. The mirror theory of (A1, D2N ) is given by a quiver U(1) × U(1) gauge

theory, with N − 1 charged hypermultiplets between two gauge nodes. These hypermul-

tiplets enjoy an SU(N − 1) flavor symmetry. Moreover, there is one hypermultiplet only

charged under the first U(1) gauge group while another hypermultiplet is charged only

under the second U(1) gauge group. There is also an additional U(1) flavor symmetry that

rotates N+1 hypermultiplets together with charge 1/2. See the quiver diagram in figure 3.

The index computation is similar. We will use N(n2 − n1) and N(n1 + n2) to denote

monopole numbers for the U(1)×U(1) topological symmetry on the Coulomb branch. They

come from the combination of flavor holonomies of the parent Argyres-Douglas theory.

Besides the fugacity z for U(1) flavor symmetry, we also include ai, i = 1, . . . , N − 1 as the

fugacities for the extra SU(N−1) flavor symmetry, subject to the constraint
∏
ai = 1. The

associated background flavor monopole numbers all vanish, similar to the previous case.

Then we have the index formula:

I3d,D2N
H = (1− t′)2

∮
dw1

2πiw1

dw2

2πiw2
w

N(n2−n1)
1 w

N(n1+n2)
2

× 1

1− t′
1
2 (w1z

1
2 )±

1

1− t′
1
2 (w2z

1
2 )±

N−1∏

i=1

1

1− t′
1
2 (w1w

−1
2 aiz

1
2 )±

.

(4.43)
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Figure 3. The 3d mirror of (A1, D2N ) theories. There are N −1 hypermultiplet between two U(1)

gauge nodes, and there are additional one hypermultiplet charged under each node.

In the computation we have set z = 1 as it will not mix with the R-symmetry (see

appendix A.2 for more details). To evaluate the integral, we can assume without loss

of generality that n2 > n1 > 0. Then summing over residues gives

I3d,D2N
H = t′

Nn2

N−1∏

i=1

1

(1− t′
1
2ai)(1− t′

1
2a−1

i )

+

N−1∑

j=1

(t′aj)
N(n1+n2)t′

N
2
(n2−n1)

(1− t′
3
2aj)(1− t′−

1
2a−1

j )

∏

i 6=j

1

(1− t′aj/ai)(1− ai/aj)

+

N−1∑

j=1

t′
Nn2

(
t′

1
2a−1

j

)N(n2−n1)

(1− t′
3
2a−1

j )(1− t′−
1
2aj)

∏

i 6=j

1

(1− t′ai/aj)(1− aj/ai)
.

(4.44)

It is not hard to see the following substitution would recover the parent Hitchin charac-

ter (4.34) at k → +∞:

aj → t′
j
N
− 1

2 . (4.45)

Similarly, the residue sums in (4.44) are in one to one correspondence with massive

vacua of the 3d mirror theory, which are also identified with the fixed points under the

U(1) ⊂ SU(N − 1) × SU(2)H action on the Higgs branch. Explicit calculations done in

appendix B show that there are precisely 2N +1 fixed points, which, from Hitchin moduli

space point of view, are exactly those with vanishing moment map in the large-k limit.

In summary, considering the three-dimensional mirror theory gives physical interpre-

tation to the fixed points in M∗ as discrete vacua of the mass-deformed theory. The

fixed-point sum can be thought of as a sum of residues in the Higgs branch localization [69].

5 Chiral algebras

In previous sections, we have given a very strong test of the proposed isomorphism (1.1)

for Argyres-Douglas theories. In this section, we enrich this correspondence to the trian-

gle (1.3) by introducing another player into the story — chiral algebras.
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5.1 Chiral algebra from geometric Langlands correspondence

One motivation for incorporating chiral algebras is the celebrated geometric Langlands

correspondence (see [70] and [71] for pedagogical reviews on this subject), which conjectures

the equivalence of two derived categories,

D-modules on BunGC
= coherent sheaves on LocLGC

. (5.1)

The gauge theory approach to the geometric Langlands program, started by [10], suggests

that the above relation naturally fits inside a triangle,

A-branes in (MH , ωK)
1©←→ B-branes in (LMH , J)

2©←→ ←→ 3©

D-modules on BunGC
.

(5.2)

The geometric Langlands correspondence (5.1) now becomes the arrow 3© on the bottom-

right of (5.2), as the B-brane category of LMH is closely related to the derived category of

coherent sheaves on LocLGC
. The arrow 1© on the top is the homological mirror symmetry

(or S-duality from the 4d guage theory viewpoint). The arrow 2©, a new relation, was

proposed in section 11 of [10] and is related to the “brane quantization” of BunGC
[72] (see

also [73] for more examples and [74, 75] for an alternative way to establish the equivalence).

Now let us return to the diagram

Coulomb index of T ←→ quantization of LMT

←→ ←→

chiral algebra χT

. (5.3)

The top arrow for class S theories explained in [1] is in fact the result of 1© in (5.2) as we

review below. Then one expects there is a chiral algebra that fits into the diagram, giving

rise to D-modules via the conformal block construction (see e.g. part III of [70]).

To understand the top arrow from homological mirror symmetry, one first rewrites the

Coulomb BPS states on L(k, 1), view as T 2 fibered over an interval,20 in the categorical

language

HCoulomb = HomCA(A0, ST
kS ·A0). (5.4)

Here CA is the category of boundary conditions on T 2 (or “A-branes” in MH) of the

Argyres-Douglas theory, and A0 ∈ CA is the boundary condition given by the solid torus

D2×S1, and ST kS is an element of SL(2,Z) that acts on CA via the modular group action

on T 2. Suppressing one S1 circle and the time direction, the geometry near the endpoint of

the interval is given by the tip of a cigar, and the brane A0 associated with this geometry

20As observed in [1] and [13], the Coulomb index is the same as a topologically twisted partition function.

This enables us to treat the physical theory as if it is a TQFT and freely deform the metric on L(k, 1).
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is conjectured to be the “oper brane.” The generator S ∈ SL(2,Z) acts as homological

mirror symmetry, transforming CA into CB — the category of B-branes in LMH , and the

mirror of A0 is expected to be S ·A0 = B0 = O, the structure sheaf of LMH . Then acting

on (5.4) by S gives

HomCA(A0, ST
kS ·A0) = HomCB (B0, T

k ·B0). (5.5)

As T ∈ SL(2,Z) acts on objects in CB by tensoring with the determinant line bundle L,
the right-hand side is precisely the geometric quantization of LMH ,

H(Σ,LG, k) = H•
(
LMH ,L⊗k

)
= HomCB (B0, T

k ·B0). (5.6)

If a chiral algebra fits into the triangle (5.3) via the correspondence between A-branes and

D-modules, there should be a modular tensor category Cχ of representations of the chiral

algebra, and there is a similar vector space

HomCχ(χ0, ST
kS · χ0). (5.7)

The module χ0 corresponding to the oper brane A0 is expected to be the vacuum module,

and ST kS acts by modular transform. The “geometric Langlands triangle” (5.2) states that

all the above three vector spaces are isomorphic, which implies, at the level of dimensions,

dimH(MH) = ICoulomb = (ST kS)0,0. (5.8)

As the first two quantities can be refined by t, one expects the S- and T -matrices for the

chiral algebra should also be refined. However, for the chiral algebras that will appear

(such as Virasoro minimal models), the refinement is not known, and we will only check

the relation (5.8) at a root of unity t = e2πi.21

With flavor holonomy. Moreover, with flavor symmetry G from the singularities of the

Riemann surface, we also consider the Coulomb index on L(k, 1) in the presence of a flavor

holonomy along the Hopf fiber labeled by λ ∈ Λcochar(G)/kΛcochar(G). This is equivalent

to inserting a surface defect at the core of a solid torus in the decomposition of L(k, 1),

carrying a monodromy determined by λ. It will change (5.4) into

HCoulomb(λ) = HomCA(A0, ST
kS ·Aλ), (5.9)

where

Aλ = LλA0 (5.10)

with Lλ representing the action of the surface defect on boundary conditions. These defects

are analogous to the ’t Hooft line operators — in fact, they are constantly referred to as

“’t Hooft-like operators” in [11] — and change the parabolic weights at the singularities

on Σ. Then, the relation between A-branes and D-modules predicts that there exists a

21As the wild Hitchin character involves fractional powers of t, such limit is different from t → 1 and is

in fact associated with a non-trivial root of unity. Also, the ambiguity of normalizing the Hitchin character

by a monomial in t now becomes the ambiguity of a phase factor in matching (5.8).
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corresponding operator (which we again denote as Lλ) in the category Cχ. Now, the chiral

algebra has ĝ affine Kac-Moody symmetry, whose modules are labeled by the weights λ of

ĝ, and one expects the action of Lλ on the vacuum module is given by

Lλ · χ0 = χ−λ. (5.11)

Then, in the presence of flavor holonomies, one expects the following relation

dimH(MH , λ) = ICoulomb,λ = (ST kS)0,−λ. (5.12)

At this stage we do not know a priori what is the right chiral algebra whenMH is a

wild Hitchin moduli space, but we conjecture that it is given by the chiral algebra under the

“SCFT/chiral algebra correspondence” discovered in [16–19, 76, 77]. Indeed, for theories of

class S, this correspondence gives, for each maximal tame puncture, an affine Kac-Moody

symmetry at the critical level — the one that gives rise to a specific type of D-modules

central to the geometric Langlands program known as Hecke eigensheaves. In the rest of

this section, we will review this correspondence and check that the above relations (5.8)

and (5.12) hold for wild Hitchin moduli spaces. It will be an interesting problem to explain

why this construction gives the correct D-modules relevant for this particular problem.

Moreover, as shown in [78], general characters of certain 2d chiral algebras can be

expressed by the Schur indices with line operator insertion of corresponding 4d theory.

Our results can be interpreted as a relation between the Coulomb branch indices and the

modular transformation of Schur indices with line operator insertion of AD theories. The

modular properties of indices without any operator insertion of 4d theories are studied

in [79, 80] and their modular properties are related to the ’t Hooft anomalies of the theory.

It is interesting to further study the 4d interpretation of modular S transformations on

indices with line operator insertion and their relation with Coulomb branch indices.

5.2 2d chiral algebras from 4d SCFTs

As was first discovered in [16], every four-dimensional N = 2 superconformal theory con-

tains a protected subsector of BPS operators, given by the cohomology of certain nilpotent

supercharge ◗, when these operators lie on a complex plane inside R
4. These BPS opera-

tors are precisely the ones that enter into the Schur limit of the 4d N = 2 superconformal

index [2]. Moreover, the operator product expansion (OPE) of these operators are mero-

morphic, and they can be assembled into a two-dimensional chiral algebra. The central

charges of the 4d SCFT and the 2d chiral algebra are related by

c2d = −12c4d (5.13)

which implies that all chiral algebras obtained in this way are necessarily non-unitary. If

the parent four-dimensional theory enjoys a global symmetry given by a Lie group, then it

will be enhanced to an affine Lie symmetry on the chiral algebra side. The relation between

the flavor central charge and the level for the affine symmetry is given by

k2d = −1

2
k4d. (5.14)
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AD theory chiral algebra

(A1, A2N ) (2, 2N + 3) minimal model

(A1, A2N−1) BN+1 algebra

(A1, D2N+1) ŝl(2)k at level k = − 4N
2N+1

(A1, D2N ) WN algebra

Table 6. Examples of Argyres-Douglas theories and corresponding chiral algebras. To be more

precise, in the (A1, A2N−1) case, it is the subregular quantum Hamiltonian reduction of ŝl(N)k at

level k = −N2/(N + 1) [81, 82]. In the (A1, D2N ) case, it is the non-regular quantum Hamiltonian

reduction of ŝl(N + 1)k with k = −(N − 1)2/N [81]. For details about quantum Hamiltonian

reduction, see [83].

Examples of these chiral algebras are identified on a case-by-case basis [17–19, 76, 77].

We listed some examples of Argyres-Douglas theories in table 6. For the case of (A1, A2N−1)

and (A1, D2N ), the chiral algebras are identified very recently in [81].

As was mentioned, the chiral algebra has a very close relationship with the Schur

operators. In particular, the Schur limit of the superconformal index is equal to the vacuum

character of the chiral algebra.22 In contrast, Coulomb branch operators do not enter into

the ◗-cohomology and are not counted by the Schur index. However, it turns out that the

Coulomb branch index is related to the chiral algebra in a quite surprising manner — the

modular transformation property of the latter is captured by the Coulomb branch index,

as we have motivated using the geometric Langlands correspondence in (5.8) and (5.12).

To check these relations explicitly, we need to identify the relevant representation cat-

egories Cχ of the chiral algebras listed in table 6 that are closed under modular transforms.

For the (A1, A2N ) series, the answer is clear — the (2, 2N + 3) minimal model specifies a

category of highest-weight modules of the Virasoro algebra. For the rest, we will also give

the relevant category later in this section. But what about a more general theory T ? Once

we obtain the chiral algebra χT , how is the category CχT that is relevant for the Coulomb

index of T constructed?

An obvious candidate would be the category of all representations of χT , but it can-

not be the right answer as it is too large and there are many non-highest-weight modules

whose conformal dimensions are not bounded from below nor above. Nonetheless, there is

a natural procedure, called “semi-simplification” [84], that gives precisely the category we

are interested in. Specifically, one forms a new quotient category, denoted as Os
χT

, by mod-

ding out the negligible morphisms [85, 86] and keeping only simple objects with non-zero

categorical dimensions. This category is believed to be a modular tensor category [84], and

in each class of modules there is at least one module with bounded conformal dimensions

(the “highest-weight” module). And we conjecture

Os
χT

= CχT
(5.15)

is the category fitting in the triangle (1.3).

22On the other hand, the Schur index that incorporates line defects maybe used to probe non-vacuum

modules, see [78].
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This conjecture will be verified in the four series of Argyres-Douglas theories that

we study in this paper. In the following we show that the wild Hitchin character (or

Coulomb branch index) at t → e2πi is indeed given by a matrix element of the modular

transformation ST kS in Cχ. In fact, in order for the relation (5.8) to be correct for all k, it

is necessary to have a one-to-one correspondence between fixed points inMH and modules

in the category Cχ.

5.3 Chiral algebras of Argyres-Douglas theories

5.3.1 (A1, A2N) theories and Virasoro minimal models

The observation of [19], by comparing the central charge (5.13), indicates that the as-

sociated chiral algebra for (A1, A2N ) Argyres-Douglas theory is the (2, 2N + 3) Virasoro

minimal model. (Recall that 2N + 3 is also the number of Stokes rays centered at the

irregular singularity.) The minimal model contains a finite number of highest-weight rep-

resentations labeled by the conformal dimension hr,s, where s = 0 and 1 ≤ r+1 ≤ 2N+2.23

Among these representations, there are N+1 independent ones given by r = 0, 1, . . . , N —

exactly the same as the number of fixed points in the wild Hitchin moduli spaceM2,2N+1!

In [46], the one-to-one correspondence between the fixed points inM2,2N+1 and repre-

sentations in the Virasoro minimal model is spelled out. Namely, if one defines the effective

central charge

ceff = c− 24hr,s, (5.16)

then there is a simple relation between ceff and the moment map µ

µ =
1

24
(1− ceff) . (5.17)

Here the moment map values are calculated around (C.5), without the further shift we made

in the last section. Later, we extend this observation to all the other types of wild rank-

two Hitchin moduli spaces, with emphasis on the perspective of modular transformations,

where this correspondence finds its natural home.

To see the relation between the wild Hitchin character (4.8) of M2,2N+1 and the

modular transformation of (2, 2N +3) minimal model, recall that characters of these N +1

modules form an N+1-dimensional representation of SL(2,Z), with the S- and T -matrices

given by

Sr,ρ =
2√

2N + 3
(−1)N+r+ρ sin

(
2π(r + 1)(ρ+ 1)

2N + 3

)
,

Tr,ρ = δrρe
2πi(hr,ρ−c/24),

(5.18)

where r and ρ run from 0 to N . With the help of (5.18) one can show that24

I(M2,2N+1) = t
k

8(2N+3)I(A1,A2N )|t→e2πi = e
πik
12

(
ST kS

)
0,0
. (5.19)

23Unlike the usual convention in the literature here we shift r and s by 1 so that the vacuum corresponds

to (r, s) = (0, 0).
24We thank T. Creutzig and D. Gaiotto for discussion.
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5.3.2 (A1, D2N+1) theories and Kac-Moody algebras

It was conjectured in [19, 77] that the corresponding chiral algebra is the affine Kac-Moody

algebra ŝu(2)kF with

kF = −2 + 2

2N + 1
, (5.20)

which is a boundary admissible level [87]. Notice that −2 is the critical level for ŝu(2),

while 2N + 1 is again the number of Stokes rays on Σ. There is a notion of “admissible

representations” for the Kac-Moody algebra, which is the analogue of integrable represen-

tations for Kac-Moody algebra at positive integer level (see e.g. [88, section 18]). These

representations are highest-weight modules, and are objects in the quotient category Os
χ.

Their fusion rules and representation theory remained controversial for years, and were

completely solved and understood (in the case of N = 1 for instance) recently in [89, 90]

(see also the reference therein).

Let ω̂0 and ω̂1 be the fundamental weights of ŝu(2). A highest-weight representation

for ŝu(2)κ is called admissible, if the highest weight λ̂ = [λ0, λ1] := λ0ω̂0 + λ1ω̂1, can be

decomposed as

λ̂ = λ̂I − (κ+ 2)λ̂F . (5.21)

Here, if we write κ = t/u with t ∈ Z\{0}, then u ∈ Z
+ and (t, u) = 1. In our case t = −4N

and u = 2N+1. λ̂I and λ̂F are integrable representations for ŝu(2) at level kI = u(κ+2)−2
and kF = u− 1 respectively. Specializing to our case, we see that λ̂I = 0 and λ̂F = 2N , so

the admissible representations are in one-to-one correspondence with the 2N+1 integrable

representations of ŝu(2)2N . This is again the same number as the fixed points of the moduli

space M̃2,2N−1! Let us see if there is a similar relation for the moment maps.

For each admissible module, the conformal dimension is given by

h
λ̂
=
λ1(λ1 + 2)

4(κ+ 2)
. (5.22)

If we denote the highest weight of the i-th integrable representation of ŝu(2)2N as [2N − i, i]
for i = 0, 1, . . . , 2N , then we have

λi1 = −
2i

2N + 1
, hi

λ̂
= − i(2N + 1− i)

2(2N + 1)
. (5.23)

In order to see the relation between (5.23) with the values of the moment map in (4.17),

we relabel the indices. Additionally, to get rid of overall phase factors, we shift the mo-

ment map

µ→ µ+
1

8(2N + 1)
+

2N

2N + 1
α. (5.24)

Such shift is not as ad hoc as it appears — the second term is the minimal moment map

value computed in (C.28) for α = 0, while the third term comes from the linear piece of

the normalization factor (3.28). Then, we have the following correspondence

µ =

(
h
λ̂
− c

24
+

1

8

)
− λ1α . (5.25)
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Hence the moment maps in (4.18) are in one-to-one correspondence with admissible rep-

resentations of the Kac-Moody algebra ŝu(2)kF . This also explains why the fixed points

are assembled into groups — the two fixed points in each group are precisely the ones

that are related by an outer-automorphism of the Kac-Moody algebra (recall that the

outer-automorphism group is Z2, the same as the center of SU(2)).

The characters of admissible modules of ŝu(2)κ also form a representation of the mod-

ular group and the S- and T -matrices are

S
λ̂,µ̂

=

√
2

u2(κ+ 2)
(−1)µF

1 (λI
1+1)+λF

1 (µI
1+1)

× e−iπµF
1 λF

1 (κ+2) sin

[
π(λI1 + 1)(µI1 + 1)

κ+ 2

]
,

T
λ̂,µ̂

= δ
λ̂µ̂
e2πi(hλ̂

−c/24),

(5.26)

with κ = t/u being the level of the affine ŝu(2). Using (5.26) we have

I(M̃2,2N−1)(t→ e2πi, λ = 0) = e
kπi
4

(
ST kS

)
0,0
. (5.27)

When the monodromy is non-zero, the moment map changes accordingly. In fact we have

I(M̃2,2N−1)(t→ e2πi, λ) = e
kπi
4

(
ST kS

)
0,(2N+1−λ)

. (5.28)

5.3.3 (A1, D2N) theories and WN algebra

As we have seen in table 6, the chiral algebra in this case is given by theWN algebra, which

is a non-regular quantum Hamiltonian reduction of affine Kac-Moody algebra ŝl(N + 1)k
at level k = −(N − 1)2/N . The set of modules generated by spectral flow are considered

in [81]. For a given chiral algebra χ, in general there are two types of modules: the “local”

modules and the “twisted” modules. A local module [91] in the braided category Os
χ

(cf. section 5.2) is a module M of χ with no non-trivial monodromy. A twisted module is

attached to the automorphism of χ [92], similar to the twisted sectors in string theory on

orbifolds. For our WN algebra, the precise details of the modules depend on whether N is

even or odd. For simplicity, we will focus in this section on the even case where all local

modules are closed under modular transformations [81]. They are parametrized by the set

(s, s′) ∈ {−N ≤ s ≤ N − 1, 0 ≤ s′ ≤ N − 1, s+ s′ ∈ 2Z}. (5.29)

It is not hard to see that the number of local modules is N2 — exactly the same as the

number of fixed points on Hitchin moduli space M̃2,2N−2.

By picking suitable representatives of local modules, their conformal dimensions are

bounded from below and given by

h(s,s′) =
s2 − s′2
4N

− |s|
2

+





0, for |s+ s′| ≤ N and |s− s′| ≤ N,
(s+ s′)/2−N/2, for s+ s′ > N,

(s′ − s)/2−N/2, for s− s′ < −N.
(5.30)
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Then, we find that for vanishing flavor holonomies, there is the relation

µ(λ1 = λ2 = 0) = h− c

24
+

1

6
(5.31)

where the central charge of WN algebra is given by c = 4− 6N . We also have the modular

transformation data among those N2 modules [81],

T(ℓ,ℓ′),(s,s′) = δℓ,sδℓ′,s′ exp
[
2πi

(
h(s,s′) −

c

24

)]
,

S(ℓ,ℓ′),(s,s′) =
1

N
exp

[
−πi
N

(sℓ− s′ℓ′)
]
.

(5.32)

It can be verified that

I(M̃2,2N−2)(t→ e2πi, λ1 = λ2 = 0) = e
kπi
3

(
ST kS

)
00
. (5.33)

We note that the above matching becomes subtle when N is odd, where modular trans-

formation turns local modules into twisted modules. Moreover, the vacuum module (which

is local), is half-integer graded and thus have “wrong statistics” [93]. On the contrary, our

index formula for the Hitchin moduli space M̃2,2N−2 does not exhibit drastic difference

between odd and even N . It will be interesting to understand the precise relation here.

5.3.4 (A1, A2N−3) theories and BN algebra

Finally, we remark on the last type of Argyres-Douglas theory. We will be very brief

here. As the (A1, A2N−3) theory is related to the (A1, D2N ) theory via Higgsing, the chiral

algebra BN in table 6 can be similarly constructed via quantum Hamiltonian reduction of

the WN algebra introduced above. As in previous case, the representation theory of the

chiral algebra again depends on the parity of N . For N odd, local modules are preserved

under modular transformation [81, 94]. By carefully picking a set of basis, it is clear

that the modules are in one-to-one correspondence with fixed points (the total number is

N(N − 1)/2), and the moment map values match with effective central charges. When N

is even, much less is known about the relevant categorical property. It will be interesting

to understand this situation further.

5.4 Other examples

In fact, the correspondence between fixed manifolds on the Hitchin moduli space under the

circle action and modules in Os
χ of chiral algebras is much more general. To supplement our

previous discussion focused on Argyres-Douglas theories, here we list such correspondence

for other T [Σ]’s where the chiral algebras are known. For a tame puncture decorated by a

parabolic subgroup of GC (usually in the AN−1 series), we will use [s1, s2, . . . , sl] to denote

the associated Young tableau with each column of heights s1, . . . , sl. If for a given Young

tableau there is ns columns with height s, then the flavor symmetry associated with the

puncture is S(
∏

sU(ns)). In this notation the maximal puncture is [1, 1, . . . , 1].

• (A1, D4) Argyres-Douglas theory. The chiral algebra is ŝu(3)− 3
2
. The Hitchin moduli

space M̃2,2 has four fixed points, corresponding to the four admissible modules of the
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affine Kac-Moody algebra. The relation between effective central charge and moment

maps are checked in section 5.3.3, but one can also check directly using results from

the Kac-Moody algebra. One again sees that µ(λ1 = λ2 = 0) = −ceff/24 + 1/6.

• SU(2) gauge theory with four hypermultiplets. The Hitchin moduli space has SU(2)

gauge group, defined on S2 with four tame punctures. There are five fixed man-

ifolds — one CP1 plus four points, and they all lie on the nilpotent cone of Ko-

daira type I∗0. When the holonomies are set to zero, the moment map values are

{0, 0, 0, 0, 1}. The chiral algebra is ŝo(8)−2. There are five highest-weight modules

belonging to the category Os
χ, which for Kac-Moody algebras always coincide with

Bernstein-Gelfand-Gelfand’s category O [95]. The corresponding highest weights

are {−2ω1,−2ω3,−2ω4,−ω2, 0} with conformal dimensions {−1,−1,−1,−1, 0} [96].
Then we see that µ(λ1,2,3,4 = 0) = −ceff/24 + 5/12.

• T3 theory [97]. The Hitchin moduli space is associated with S2 with three maximal

tame punctures, with gauge group SU(3). The moduli space has seven fixed man-

ifolds: one CP1 plus six fixed points lying on the nilpotent cone of Kodaira type

IV∗ [1]. The associated chiral algebra is the affine Kac-Moody algebra ê6 at level

−3 [17, 18]. There are exactly seven highest-weight modules in the category O [95].

The highest weights are, respectively, {0,−ω4,−2ω2+ω3−ω4, ω2− 2ω3,−2ω1+ω2−
2ω3+ω4,−2ω5+ω6,−3ω6} with conformal dimension {0,−2,−2,−2,−2,−2,−2}. It
is not hard to check from the results of [1] that the relation between moment maps

and effective central charges with zero holonomy is given by µ = −ceff/24 + 11/12.

• E7 SCFT [98]. The associated Hitchin system has G = SU(4), and Σ is a sphere

with three tame punctures. Two of them are maximal punctures, while the third

one is a next-to-minimal puncture [2, 2] [99]. By comparing the central charges, it

is not hard to see that the chiral algebra should be the affine Kac-Moody algebra ê7

at level −4. Although [1] did not present the calculation of Hitchin character in this

case, the steps of calculation were outlined using generalized Argyres-Seiberg duality.

The fixed manifolds consist of one CP1 plus seven points, all of which stay on the

nilpotent cone of Kodaira type III∗. Again there are in total eight highest-weight

modules of the chiral algebra [95].

• E8 SCFT [98]. Now G = SU(6) and Σ is a three-punctured sphere, with one maximal

puncture, one [2, 2, 2] puncture and one [3, 3] puncture. The moduli space contains

nine fixed manifolds — one CP1 and eight fixed points all lying on the nilpotent cone

of Kodaira type II∗. One finds the chiral algebra is the affine Kac-Moody algebra ê8

at level −6, which has exactly nine highest-weight modules in the category O [95].

It is also quite curious to note that in all cases, the vacuum module corresponds to

the top fixed point with largest moment map. This is in line with the relation between the

vacuum module and the oper brane — the support of the latter is on the Hitchin section,

which intersects the nilpotent cone at the top.
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Based on the above observations, we formulate the general conjecture that relates the

Coulomb branch vacua and the representation of chiral algebra as follows.

Conjecture. Given a four-dimensional N = 2 SCFT T , the fixed points on the Coulomb

branchMT on S1 ×R
3 under the U(1)r action are in one-to-one correspondence with the

highest-weight modules of the chiral algebra χT associated with T , in the modular tensor

category Os
χT

obtained from semi-simplification,

U(1)r fixed points inMT ←→ objects in Os
χT

. (5.34)

One may also wish to formulate the correspondence on the categorical level, not just

on the level of objects. For this one needs to find the replacement on the left-hand side,

and a natural candidate is the following. Consider the theory T on Rtime ×D2 × S1, then

weakly gauging U(1)r−R (a subgroup of the R-symmetry group SU(2)R ×U(1)r generated

by jr−j3,R) will break half of the supersymmetries. The resulting theory T ′ will have vacua

given by connected components of U(1) fixed points inMT . Then we have the category of

boundary conditions at the spacial infinity ∂(D2 × S1) = T 2, which we denote as T ′(T 2).

This is a modular tensor category, on which the modular group acts via the mapping class

group action of the spacial boundary T 2. Then the above conjecture may be formulated

as the equivalence between two modular tensor categories — the “categorical SCFT/chiral

algebra correspondence” — as

T ′
(
T 2
)
= Os

χT
. (5.35)
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A Properties of the Coulomb branch index

A.1 TQFT structure

As the N = 2 superconformal index of the class S theories T [Σg,s;G] does not depend on

complex moduli of Σ, it has a TQFT structure [2]. This further implies that the index can

be computed by cutting and gluing the Riemann surface. As all Riemann surfaces can be

reduced to cylinders and pairs of pants, one should be able to recast the superconformal

index into the form

I(T [Σg,s;G]; a1, . . . , as) =
∑

α

(Cααα)
2g−2+s

s∏

i=1

ψα(ai) (A.1)

by choosing a basis in the TQFT Hilbert space to make the “fusion coefficients” Cαβγ

associated with a pair of pants diagonal, and the “metric” ηαβ associated with a cylin-

der proportional to the identity matrix δαβ . Here Cααα is also known as the “structure

constant,” ψα(ai) is called the “wave function” with flavor fugacity ai at the puncture.25

Now let us specialize to the Coulomb branch index for class S theories on S1×L(k, 1)
and recall the TQFT structure studied in [1]. Unlike the usual lens space index where the

holonomies take integral values, in [1] the authors defined the “full index” by summing over

’t Hooft fluxes, allowing fractional holonomies as long as charge quantization condition is

satisfied. In the case of theories of type g = su(2), this means that the holonomy mi at

each puncture takes value in {0, 1/2, 1, . . . , k/2}. These holonomies form the Hilbert space

of the TQFT, and are essentially the set of integrable representations of ŝu(2)k. After

appropriate normalization of the states, (A.1) has the following form [1, 13]:

I(T [Σg,s; ŝu(2)];m1, . . . ,ms) =

k∑

l=0

C2g−2+s
l

s∏

i=1

ψl(mi) (A.2)

where

Cl =
L−1
l√

1− t sin θl|1− t e2iθl |2
(A.3)

and

ψl(m) =
√
1− t Ll ×





(1 + t) sin θl, m = 0,

sin 2θl, m = 1/2,

sin 3θl − t sin θl, m = 1,

sin 4θl − t sin 2θl, m = 3/2,
...

sin kθl − t sin(k − 2)θl, m = (k − 1)/2,

sin(k + 1)θl − t sin(k − 1)θl, m = k/2.

(A.4)

25The diagonalizability of the TQFT structure constant is not a guaranteed property when the TQFT

Hilbert space is infinite-dimensional (e.g., for Schur limit of lens space index, it seems that one could not

simultaneously diagonalize flavor fugacity variable and flavor holonomy variable [100]). But the cutting and

gluing rules still apply.

– 45 –



J
H
E
P
0
1
(
2
0
1
8
)
1
5
0

Here the normalization constant is

L−2
l =

k + 2

2
|1− t e2iθl |2 + 2t cos 2θl − 2t2 (A.5)

and those θl’s are the k + 1 solutions in (0, π) to the Bethe ansatz equation,

e2ikθ
(
eiθ − t e−iθ

t eiθ − e−iθ

)2

= 1. (A.6)

Moreover the metric in this basis is given by ηλλ = (1− t2, 1− t, . . . , 1− t, 1− t2).

What happens when irregular punctures are present? It may not even make sense

to talk about TQFT structure, because for a Riemann surface Σg,ℓ,{nα} with arbitrary

genus g plus ℓ regular punctures and an arbitrary number of irregular ones labeled by

{nα}, the U(1)r symmetry is broken and the resulting theory is generically asymptotically

free [23, 101] instead of superconformal. For instance, consider gauging the diagonal SU(2)

group of (A1, DK) and (A1, DM ) theory by an SU(2) vector multiplet. Each side has a

flavor central charge kSU(2) = 4(K − 1)/K and k′SU(2) = 4(M − 1)/M ; the gauging would

contribute to the one-loop running of gauge coupling as

b0 = 2

(
1

K
+

1

M

)
> 0. (A.7)

If one tries to extend the superconformal index of Argyres-Douglas theory to an arbitrary

Riemann surface Σg,ℓ,{nα} by cutting and gluing, the interpretation of the “index” obtained

at the end it is not obvious. In the case of the Schur index and the Macdonald index, it

turns out that the cutting-and-gluing procedure computes the index of the UV fixed point,

consisting of free multiplets with canonical choice of scaling dimensions [102].

Let us now examine the Coulomb branch limit. In order to define a viable TQFT

structure as (A.1), a necessary condition is that one has to be able to consistently close the

regular puncture. This means we should be able to reduce (A1, DK+1) to (A1, AK−2) theory

since the Riemann sphere associated with the two theories differ only by an extra regular

puncture. On the field theory side, one observes the Coulomb branch scaling dimensions

of (A1, DK+1) and (A1, AK−2) theories are very similar, giving further evidence that these

two theories are related.

In the language of TQFT, there is a natural “cap state” that tells us how to close

a regular puncture. Let us begin with (A1, D2N+1) and (A1, A2N−2) theories. Recall the

lens space index (3.27) of (A1, D2N+1) contains a normalization factor (3.28) which can

be absorbed in the redefinition of the states (labeled by the holonomy n) inserted in the

regular puncture. Then it is not hard to check that if we define

〈φ′| = 〈0′| − t
2N

2N+1 〈1′| (A.8)

then this is precisely the cap that reduces the index of (A1,D2N+1) theories into (A1,A2N−2)

theories. Recall that in the equivariant Verlinde TQFT, the cap state is decomposed as

〈φ| = 〈0| − t〈1|. (A.9)
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The only difference is the t here is replaced with t
2N

2N+1 in (A.8). This is due to the fact

that, in the presence of an irregular singularity, the U(1) Hitchin action will also rotate the

Σ, and the neighborhood of south pole (at z = 0) is also rotated,

ρθ : z 7→ e−i 2
2N+1

θz. (A.10)

So the state 〈φ′| is no longer associated with the ordinary cap, but with the “rotating cap”,

and similarly for 〈0′| and 〈1′|.
From the cap states (A.8), it is not hard to argue that the structure constants and

wavefunctions associated with regular puncture cannot remain simultaneously the same as

those in (A.3) and (A.4). This is simply because the cap state is given by
∑

l C
−1
l ηnnψ

l(n)

which should depend on N .

Let us now turn to the (A1, D2N+2) and (A1, A2N−1) case. Unlike the previous situa-

tion, the latter theory contains an additional U(1) flavor symmetry so that the existence of

the cap state 〈φ′| is more non-trivial. Similarly, there is a normalization constant for each

theory that needs to be absorbed. For the (A1, A2N−1) theory, the normalization constant

is (3.26) which shall be absorbed in the definition of irregular puncture wavefunction ψ̂l
2N ;

while for (A1, D2N ) theory, the quantity is (3.31). Note that there is “entanglement” be-

tween the two factors of the U(1) × SU(2) flavor symmetry, and one cannot split it into a

product of two functions that depend on n1 and n2 separately.

In order to go from (A1, D2N+2) to (A1, A2N−1), we should properly identify the resid-

ual U(1) symmetry and which combination of n1 and n2 is enhanced to SU(2) in the IR.

In fact, [33] shows that the mixing to SU(2) is given by (1/2N + 2)U(1)b. Therefore, we

identify (N + 1)n2 as the SU(2) holonomy, while the residual symmetry is identified as

n ∼ N + 1

N
n1. (A.11)

Then it is a straightforward computation to see that the cap state for the regular puncture

of (A1, D2N+2) can be defined as:

〈φ′| = 〈0′| −
〈(

1

N + 1

)′∣∣∣∣×
{
t, for n1 = 0

t
N

N+1 , for n1 > 0
(A.12)

Here, the value inside the bra is for n2. Note the following peculiar behavior: when n1
(the holonomy for U(1) symmetry carried by the irregular puncture) is zero, then the

cap state becomes the ordinary one in the tame case [1, 13], while for non-zero n1 the

irregular puncture starts to affect in a non-local way the regular puncture on the other

side. Similar to the previous case, one can argue that the structure constants and the

wave function for the regular puncture cannot be made identical to the tame case (A.3)

and (A.4) simultaneously.

We do not yet know what this quantity computes for arbitrary Σg,ℓ,{nα} wild quiver

gauge theories via cutting and gluing. What we have found above is a consistent way to

define the TQFT structure (A.1) solely for Argyres-Douglas theories. A clear picture may

be achieved once the irregular states in TQFT are better understood, as was studied in

CFT [103–105].
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A.2 Symmetry mixing on the Coulomb branch

In section 4.2, we mentioned that (4.41) and (4.45) can be interpreted as the mixing between

U(1)r symmetry and topological symmetry on the Coulomb branch. We now explain why

this is so. We focus on the T3d[Σ] side instead of its mirror Tmir.
3d [Σ], and the fugacities

assigned on the Higgs branch of Tmir.
3d [Σ] become those for the topological symmetry on

the Coulomb branch of T3d[Σ]. The trace formula (4.38) in the Coulomb limit becomes

I3dC = TrHC
tRC−RHzfJ (A.13)

with the BPS Hilbert space HC containing those states satisfying Ẽ = RC and RH = −j2.
Here fJ is the charge under topological symmetry. To further simplify (A.13), we claim

RH = 0. To see this, let us go back to 4d N = 2 index and ask what type of short multiplets

are counted by Coulomb branch limit. In general, two types will enter [2]: they are of type

Er,(j1,0) and D0,(j1,0). It was shown in [106] that for Argyres-Douglas theories considered

in this paper, no short multiplet of above two types with j1 > 0 occur. Since D0,(0,0) is a

subclass of Er,(0,0) it suffices to say that the Coulomb branch index only counts the Er,(0,0)
multiplet for Argyres-Douglas theories. After dimensional reduction, it becomes clear that

RH = 0 in (A.13) since Er,(0,0) carries the trivial representation of SU(2)R.

Therefore, the substitution we have made in (4.41) and (4.45) only mixes topological

symmetry with SU(2)C symmetry. Under mirror symmetry, SU(2)C and SU(2)H are ex-

changed, and the topological symmetry becomes the flavor symmetry in the mirror frame.

To see explicitly the operator mapping, consider (A1, A2N−1) theories with a rank-(N − 1)

Coulomb branch, for which the mixing is given by (4.41) and (4.42). After comparing

with (4.25), we see that the 4d N = 2 Coulomb branch operators come from the t′zj/zi
term with i = N and j = 1, 2, . . . , N − 1. They are precisely the Higgs branch operators

XjY1, where (Xi, Yi) are two N = 2 chiral fields in the i-th hypermultiplet.26

We now turn to the (A1, D2N ) Argyres-Douglas theory, whose three-dimensional mirror

is given in figure 3 [24]. The Higgs branch index is given by (4.44) and the substitution made

there is (4.45). Note that we set the U(1) fugacity to be 1, implying that this symmetry

does not mix with the R-symmetry. In particular, when N = 2, the non-abelian part of

the topological symmetry is trivial, so we have no mixing at all! This is actually quite

reasonable, because the U(1)r charge (1/2) of the Coulomb branch operator of (A1, D4)

theory automatically satisfies the SU(2)C quantization condition.

For general (A1, D2N ) theories with N > 2 the Coulomb branch operators no longer

have half-integral scaling dimensions, so the symmetry mixing (4.45) should be non-trivial.

It is not hard to single out the term in the denominator of (4.44) that gives rise to those

Coulomb branch operators.

Unfortunately, it is not known in the current literature what is the three-dimensional

mirror of (A1, A2N ) and (A1, D2N+1) Argyres-Douglas theories. The absence of Higgs

branch in the (A1, A2N ) theories indicates that their 3d mirror cannot be given by quiver

theory. The computation of Coulomb branch index and k → +∞ limit shows that the

T3d[Σ] must have topological symmetry.

26The results here differ slightly from that of [34] due to a different choice of matrix representations

of Cartan element. The two conventions can be mapped to each other. We thank Matthew Buican for

discussion and clarification.
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B Massive vacua of three-dimensional quiver theory

In this appendix we give explicit steps in solving the massive vacua for certain three-

dimensional N = 4 quiver gauge theories. These are the mirrors of three-dimensional

reduction of Argyres-Douglas theories. As mentioned in section 4.2, the problem of finding

the U(1) fixed points is equivalent to the problem of finding the massive vacua with masses

turned on according to the embedding U(1) ⊂ GR-sym × Gflavor. More precisely, this

embedding will specify a one-dimensional subspace of the Lie algebra of gR-sym⊕gflavor and

its dual, where mass parameters lives.27 However, as the number of massive vacua are the

same for a generic embedding and U(1)Hitchin is generic (in the sense that fixed points are

isolated), we will work with a generic choice of mass parameters to simplify the notation,

which will still lead to the right number of vacua.

B.1 (A1, A2N−1) Argyres-Douglas theory

The three dimensional mirror is N = 4 SQED with N flavors of hypermultiplets. Let us

denote (Xi, Yi) where i = 1, 2, . . . , N as the chiral component for the N hypermultiplets,

and Φ (σ) as the complex (real) scalar in the U(1) vector multiplet. We turn on complex

masses mi
C
and real FI parameter tR < 0, and denote the induced action (C∗)m. The BPS

equations are:

X · Y = 0, |X|2 − |Y |2 + tR = 0,

(Φ +mC) ·X = 0, σ ·X = 0,

(Φ +mC) · Y = 0, σ · Y = 0.

(B.1)

The solution is easy to describe, given by

σ = 0, Φ = −mi
C, Y = 0, X = (0, . . . , 0,

√
−tR, 0, . . . , 0), (B.2)

for i = 1, 2, . . . , N . So there are N fixed points under (C∗)m action.

B.2 (A1, D2N) Argyres-Douglas theory

The three dimensional mirror is a U(1)×U(1) quiver gauge theory with N −1 hypermulti-

plets (Xi, Yi) stretching between two gauge nodes, one single hypermultiplet (A1, B1) only

charged under the first U(1), and another single hypermultiplet only charged under the

second U(1). The superpotential of the theory is

W =

N−1∑

i=1

(Φ1 − Φ2 +mi
C)XiYi + (Φ1 +M1)A1B1 + (Φ2 +M2)A2B2 (B.3)

27Turning on mass parameters associated with R-symmetry will in general break supersymmetry. For us,

it will break 3d N = 4 to 3d N = 2.
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where mi
C
,M1,2 are the complex masses. We have the following constraints on the space

of allowed vacua:

(Φ1 − Φ2 +mi
C)Xi = 0, (Φ1 − Φ2 +mi

C)Yi = 0,

(Φ1 +M1)A1 = 0, (Φ1 +M1)B1 = 0,

(Φ2 +M2)A2 = 0, (Φ2 +M2)B2 = 0,

N−1∑

i=1

XiYi +A1B1 = 0, −
N−1∑

i=1

XiYi +A2B2 = 0,

(B.4)

where Φ1,2 are the complex scalar in the gauge group. Since we have set the real mass to

be zero, the vevs of real scalars σ1,2 in the vector multiplet will automatically be zero. We

also must impose the D-term equation,

N−1∑

i=1

(|Xi|2 − |Yi|2) + |A1|2 − |B1|2 = t1R,

N−1∑

i=1

(|Xi|2 − |Yi|2) + |A2|2 − |B2|2 = t2R.

(B.5)

For simplicity and without loss of generality, we will assume that the real FI parameters

t1,2
R

> 0. Let us try to solve the above equations.

(a) Suppose Φ1 − Φ2 +mi
C
6= 0 for all i.

This means that Xi = Yi = 0 for all i. Then we get A1B1 = A2B2 = 0. But they

cannot be simultaneously zero, otherwise the D-term condition would be violated.

Therefore we see that only B1 = B2 = 0, and |A1| =
√
t1
R
, |A2| =

√
t2
R
. This fixes

Φ1 = −M1 and Φ2 = −M2. This gives one solution.

(b) There exists one i such that Φ1 − Φ2 +mi
C
= 0.

This implies that Xj = Yj = 0 whenever j 6= i since the mi
C
’s are kept generic. Now

if we assume neither Φ1 +M1 and Φ2 +M2 is zero, then we should have A1 = A2 =

B1 = B2 = 0. Then we see that |Xi|2 − |Yi|2 equals both to t1
R

and t2
R
, which is

impossible since the real FI parameters are also generic.

We conclude that Φ1 = −M1 or Φ2 = −M2 (they cannot simultaneously hold). If

the former is true, then A2 = B2 = 0, and XiYi = A1B1 = 0. We then see that

Yi = 0 and |Xi| =
√
t2
R
, and |A1|2 − |B1|2 = t1

R
− t2

R
. Depending on whether t1

R
> t2

R

or t1
R
< t2

R
we can solve for A1 and B1. In this way we get N − 1 solutions.

Similarly, if the latter is true, we also get N−1 solutions. So in total, we have 2N−1

solutions, which is exactly what we want.
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C Fixed points under U(1) Hitchin action

In this appendix we give the explicit form of fixed points by solving the Hitchin equations.

We only consider moduli spaces M2,2N+1 and M̃2,2N−1. In the case M2,2N+1, the fixed

points and corresponding values of µ are described in [46]. We check in detail the weights

on the normal bundle for each fixed point and argue that they agree precisely with physical

interpretations. In the case M̃2,2N−1, we generalize the methods in [46] to describe the

fixed points, and then check the weights. Throughout this section, we adopt the convention

specified around (2.5).

C.1 Fixed points on M2,2N+1

For given N , the U(1) fixed points are labeled by an integer ℓ = 0, 1, . . . , N up to gauge

equivalence. In terms of the triple (∂E , h, ϕ), they are given by

∂E = ∂,

ϕ∗
ℓ =

(
0 zN−ℓ

zN+1+ℓ 0

)
dz,

h =

(
|z| 1+2ℓ

2 eU

|z|− 1+2ℓ
2 e−U

)
,

(C.1)

where U = U(|z|) is the unique solution of the ordinary differential equation [107]

(
d2

d|z|2 +
1

|z|
d

d|z|

)
U = 8|z|2N+1 sinh(2U) (C.2)

satisfying the following boundary conditions:

U(|z|) ∼ −1 + 2ℓ

2
ln |z|+ . . . |z| → 0,

U(|z|) ∼ 0, |z| → ∞.
(C.3)

The boundary condition at |z| = 0 guarantees that the Hermitian metric h is smooth there;

therefore the Chern connection D = ∂ + ∂ + h−1∂h has trivial monodromy. The gauge

transformation gθ which undoes the U(1) action (2.26) on (C.1) is

gθ =

(
e

1+2ℓ
2(2N+3)

iθ

e
− 1+2ℓ

2(2N+3)
iθ

)
. (C.4)

The moment map (2.28) can be interpreted as a regularized L2-norm of the Higgs field.

Consequently, at the U(1) fixed point labeled by the integer ℓ, we have from (2.28):

µℓ =
i

π

∫
|z|2N+1 (cosh 2U − 1) dz ∧ dz

=
(1 + 2ℓ)2

8(2N + 3)
.

(C.5)
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The U(1) action also acts on the tangent space T(∂,ϕ,h)M2,2N+1 to each fixed point.

Let ϕ̇ ∈ Ω(1,0)(CP1; EndE) be the variation of the Higgs field. We say that the U(1) action

acts on ϕ̇ with weight ̟ if

eiθρ∗θϕ̇ = ei̟θg−1
θ ϕ̇ gθ (C.6)

where gθ is given in (C.4).

As in [12, 108], one can define the complex symplectic form on the tangent space

(Ȧ, ϕ̇) as

ω′((Ȧ1, ϕ̇1), (Ȧ2, ϕ̇2)) =

∫
Tr (ϕ̇2 ∧Ψ1 − ϕ̇1 ∧Ψ2) (C.7)

where Ψ is the image of the identification from Ω1(CP1, ad(P )) to Ω(0,1)(CP1, ad(P )⊗C).

Then it is immediate that the complex symplectic form ω′ has charge 1 under the circle

action. The existence of such form implies that the weights are paired on the tangent space:

if there is a weight ̟ on the tangent space, there is also a weight 1 −̟. This statement

will be confirmed in examples shortly.

Our strategy in determining these weights relies heavily on permissible deformations

of Higgs field and (C.6). By the word “permissible” we mean that, (i) its spectral curve

must be that of (2.14) with K = 2N +1 with vanishing coupling constants; (ii) it does not

originate from infinitesimal meromorphic gauge transformation ϕ̇ = [ϕ,κ] for κ ∈ sl(2,C),

and (iii) it does not introduce extra singularities; (iv) it does not alter leading nilpotent

coefficient matrix. The goal is then to enumerate these inequivalent permissible deforma-

tions. Moreover, it suffices to consider the deformation to the linear order and ignore all

higher order terms.

Let us begin with the case M2,3, pick a small parameter υ and focus on the first

fixed points

ϕ∗
1 =

(
0 1

z3 0

)
dz. (C.8)

To preserve the spectral curve (2.14), there are two simple linear deformations one could

write down:

ϕ̇1 =

(
0 0

υ 0

)
dz,

(
υ 0

0 −υ

)
dz. (C.9)

However, the second deformation is a gauge artifact, while the first one is legitimate with

the weight being 6/5. We then conclude that the other paired weight must be −1/5. Indeed
one could find the corresponding deformation as

ϕ̇1 =

(
υz2 0

0 −υz2

)
dz + o(υ). (C.10)

The determinant of ϕ∗
1+ϕ̇1 equals to−z3dz2 up to quadratic terms in υ, so such deformation

stays on the nilpotent cone.

On the other hand, we have another fixed point

ϕ∗
0 =

(
0 z

z2 0

)
dz. (C.11)
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We see that the diagonal deformation is allowed at this time, since gauge transformation

with essential singularity is forbidden. This deformation has weight 3/5, whose paired

weight is 2/5. The associated deformation for the latter weight is then

ϕ̇0 =

(
0 −υ
υz 0

)
dz + o(υ). (C.12)

Now we generalize the above procedure to wild Hitchin moduli space M2,2N+1 with

N > 1. Let us consider the ℓ-th fixed point in (C.1). For j = 0, · · · , ℓ − 1, the following

family of deformations come from infinitesimal deformations ϕ̇ of the lower-left entry of

the Higgs field:

ϕ̇
(j)
ℓ =

(
0 0

υzj 0

)
dz. (C.13)

The associated determinant that enters spectral curve is

− det(ϕ
(j)
ℓ ) = (z2N+1 + υzN−ℓ+j)dz2. (C.14)

So (C.13) is a permissible deformation. The associated series of weights are

̟j =
2(N + ℓ+ 1− j)

2N + 3
> 1, j = 0, . . . , ℓ− 1. (C.15)

The moment map is largest at the fixed point ℓ = N . There are N such deformations,

and this family of deformations at ℓ = N should be thought of as (the analogue of) the

Hitchin section.

Because of the complex symplectic form ω′ in (C.7), there are weights that are paired

with those in (C.15):

̟j =
−1− 2j

2N + 3
< 0, j = 0, . . . , ℓ− 1 (C.16)

where we have relabeled the indices. They are downward Morse flows, so must stay on the

nilpotent cone. In other words, the corresponding family of deformations ϕ
(j)
ℓ preserves

the spectral curve − det(ϕ
(j)
ℓ ) = z2N+1dz2:

ϕ̇
(j)
ℓ =

(
υzN+j+1 0

0 −υzN+j+1

)
dz + o(υ). (C.17)

This particular type of deformation, (C.17) also appears in [109].

The remaining 2(N − ℓ) weights are between 0 and 1. Let us consider one family of

deformations labeled by j = 0, . . . , N − ℓ− 1, which is the diagonal deformation:

ϕ̇
(j)
ℓ =

(
υzj 0

0 −υzj

)
dz, (C.18)

and the determinant is − det(ϕ
(j)
ℓ ) = z2N+1dz2, meaning such deformation stays on the

nilpotent cone. The associated series of weights are

̟j =
2N + 1− 2j

2N + 3
, j = 0, . . . , N − ℓ− 1. (C.19)
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The rest weights correspond to deformations ϕ̇ which involve both the upper-right and

lower-left entries. They can be written as:

ϕ̇
(j)
ℓ =

(
0 −υzj

υz1+2ℓ+j 0

)
dz + o(υ), (C.20)

whose determinant can be verified to lie in the Hitchin base B. The associated weights are

̟j =
2(N − ℓ− j)

2N + 3
, j = 0, . . . , N − ℓ− 1. (C.21)

These weights, after a reordering of indices, pair with the weights in (C.19). In summary,

we have the following weights for the ℓ-th fixed points on the tangent space:

̟j =
2(N + 1 + j)

2N + 3
, j = 1, 2, . . . , ℓ, (C.22a)

̟j = −
2j − 1

2N + 3
, j = 1, 2, . . . , ℓ, (C.22b)

̟j =
2j + 1

2N + 3
, j = ℓ+ 1, ℓ+ 2, . . . , N, (C.22c)

̟j =
2(N − j + 1)

2N + 3
, j = ℓ+ 1, ℓ+ 2, . . . , N. (C.22d)

These weights are precisely matched with the wild Hitchin character for M2,2N+1

in section 4.

C.2 Fixed points on M̃2,2N−1

The fixed points on M̃2,2N−1 are quite straightforward to obtain: one merely allows a

regular singularity at z = 0, whose monodromy for gauge connection is denoted as α.

Expressed in terms of a triple (∂E , h, ϕ) these fixed points are

∂E = ∂,

ϕ =

(
0 zℓ

z2N−1−ℓ 0

)
dz,

h =

(
|z| 2N−1−2ℓ

2 eU 0

0 |z|− 2N−1−2ℓ
2 e−U

)
.

(C.23)

where the index ℓ is an integer such that −1 < ℓ+ 2α < 2N [107]. The function U(|z|) is
the unique solution of

(
d2

d|z|2 +
1

|z|
d

d|z|

)
U = 8|z|2N−1 sinh(2U) (C.24)

satisfying the following boundary conditions

U(|z|) ∼
(
−2N − 1− 2ℓ

2
+ 2α

)
ln |z|+ . . . |z| → 0,

U(|z|) ∼ 0, |z| → ∞.
(C.25)
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The asymptotics of U(|z|) guarantees that near z ∼ 0, the harmonic metrics all satisfy

h ∼
(
|z|2α 0

0 |z|−2α

)
(C.26)

so that the gauge connection indeed has monodromy A ∼ αdθ. Computing the regularized

value of the moment map (2.28) at each of these U(1) fixed points, we get

µ′(ℓ) =
1

2(2N + 1)

(
−2N − 1− 2ℓ

2
+ 2α

)2

. (C.27)

In our case, 2α ∈ (0, 1), these 2N+1 fixed points are unique up to gauge transformation

and are labeled by ℓ = −1, · · · , 2N − 1. As in previous case, to match the physical

predication we usually need to subtract the lowest moment map value. The minimal value,

µ′min occurs at ℓ = N − 1:

µ′min =
1

2(2N + 1)

(
−1

2
+ 2α

)2

. (C.28)

Letting

µ = µ′ − µ′min, (C.29)

the values of µ are

µ =
i(i+ 1)

2(2N + 1)
− i

2N + 1
(2α), i = N,N − 1, . . . ,−N + 1,−N, (C.30)

where we have relabeled the indices by setting i = N − ℓ− 1. Note that these are precisely

the values of the moment map appearing in (4.17).

Now we turn to the weights on the normal bundle of these fixed points. Notice that we

do not have to compute everything from scratch, because the fixed points in (C.23), except

ℓ = −1, are automatically fixed points for the moduli space M2,2N−1, cf. (C.1). However,

we are missing two weights since

dimC M̃2,2N−1 = dimCM2,2N−1 + 2. (C.31)

These two additional weights are very easy to obtain, since the associated deformations of

the Higgs fields involve z−1. We then have:

ǫN =
2N − 1

2N + 1
, ǫ̃N =

2

2N + 1
. (C.32)

The weights for ℓ = −1 are new, but they are computed in a similar way and we omit

the details.
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