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Abstract—Extreme transistor technology scaling is causing
increasing concerns in device reliability: the expected lifetime of
individual transistors in complex chips is quickly decreasing, and
the problem is expected to worsen at future technology nodes.
With complex designs increasingly relying on Networks-on-Chip
(NoCs) for on-chip data transfers, a NoC must continue to
operate even in the face of many transistor failures. Specifically,
it must be able to reconfigure and reroute packets around faults
to enable continued operation, i.e., generate new routing paths
to replace the old ones upon a failure. In addition to these
reliability requirements, NoCs must maintain low latency and
high throughput at very low area budget.

In this work, we propose a distributed reconfiguration
solution named Ariadne, targeting large, aggressively scaled,
unreliable NoCs. Ariadne utilizes up*/down* for fast routing at
high bandwidth, and upon any number of concurrent network
failures in any location, it reconfigures to discover new resilient
paths to connect the surviving nodes. Experimental results
show that Ariadne provides a 40%-140% latency improvement
(when subject to 50 faults in a 64-node NoC) over other on-chip
state-of-the-art fault tolerant solutions, while meeting the low
area budget of on-chip routers with an overhead of just 1.97%.
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I. INTRODUCTION

Aggressive transistor scaling continues to increase integra-

tion capacity with each new technology node. With more

transistors comes the need for modular communication ar-

chitectures. Networks-on-Chip (NoCs), which offer distributed

communication via a set of connected routers, are becoming

more popular, as indicated by some recent designs, such as

the Tile64 [4] and TERAFlops [30]. The NoCs of such many-

core chips have to meet tough latency and throughput targets,

in the face of stringent area and power budgets. Unfortunately,

as critical dimensions shrink, reliability degrades as well. This

highly scaled, unstable silicon demands new solutions that

can gracefully handle permanent failures, occurring due to

transistor wear-out, at any time during the life of the chip

[8]. As the sole medium of communication, it is critical that

a failure in the network does not cause an entire chip to fail.

Most current approaches for NoC reliability are only effec-

tive in overcoming a limited number of failures and specific

fault patterns. Yet, a large number of transistors can fail in a

many-core chip at advanced technology nodes [7, 8], resulting

in many faults in the NoC. In addition, the locations of

these faults are unpredictable and irregular in nature [11] and

can thus lead to deadlock-prone irregular network topologies.

Thus, any viable solution for failure-prone networks requires

that the surviving nodes coordinate to reconfigure and replace

the routing algorithm with a new one upon each new fail-

ure, by discovering the underlying topology and establishing

deadlock-free routes.
Contributions. A fault-tolerant interconnect should address

three critical metrics: reliability, performance, and area. In this

work we propose Ariadne1, a novel network reconfiguration

algorithm, providing unlimited system robustness and high

performance, within a very low area budget. Ariadne is agnos-

tic to the underlying topology: it can operate on any irregular

topology resulting from an initial regular topology where any

number of links have failed. Ariadne discovers paths among

all connected nodes, and then utilizes up*/down* to provide

highly adaptive and deadlock-free routing. It achieves this

through a novel distributed algorithm implemented in hard-

ware. This algorithm is designed to minimize communication

among nodes, thus lowering its silicon area footprint. Ariadne

addresses the above critical metrics as follows:

• Reliability: Ariadne guarantees connectivity among all

surviving nodes in the network, in the face of unlimited

faults at any location. That is, if a path between two nodes

exists, the algorithm will enable at least one deadlock-free

route between them.

• Performance: During normal operation (after recovering

from faults), Ariadne achieves low latency and high

throughput routing without Virtual Channels (VCs). This

implies that no VC needs to be reserved for deadlock

avoidance; all VCs can be used by all available routing

paths, resulting in a 40%-140% latency improvement over

state-of-the-art fault tolerant solutions [14, 25] (latency

improvement measured at 50 faults in a 64-node NoC).

• Area: Our distributed design requires only a small

amount of hardware modifications and additional wiring

to realize reconfiguration. This results in a low 1.97%

area overhead over a baseline, non-reliable NoC.

This paper is organized as follows: Section II motivates

the need for resilient NoCs that can handle many wear-out

faults, and Section III presents the related work. Section IV

details Ariadne, while Section V discusses the architectural

modifications required to implement it. Then, Section VI offers

our experimental results. Section VII discusses how deadlock-

free execution is guaranteed in the face of runtime faults,

as well as off-chip implementations of up*/down*. Finally,

Section VIII concludes the paper.

1The name originates from Princess Ariadne from Greek mythology, who
gave Theseus a ball of thread to help him find his way in the Minotaur’s
labyrinth. Similarly, our algorithm helps packets find their way in the
labyrinth-like topology of a faulty network.



II. MOTIVATION

Recent studies project that there will be many transistor

failures during the lifetime of many-core chips fabricated at

advanced technology nodes. Researchers have characterized

the impact of technology scaling on device reliability in pro-

cessors [28] and Networks-on-Chips (NoCs) [3], and indicate

that the number of permanent failures is expected to increase.

Borkar of Intel expects that at future technology nodes 20%

of transistors in chip multiprocessors will be unusable due to

variations of the manufacturing process, while an additional

10% of transistors will eventually fail over the lifetime of the

chip due to wear-out [7, 8].

To demonstrate the architectural impact of such high number

of transistor failures in the NoC, we developed an architecture-

level fault model, similar to the fault model used in Vicis

[15], that maps gate-level injected faults to link-level faults.

Initially, we synthesize and place-and-route a router design

similar to that of [15], consisting of 20,413 gates. Then, we

inject faults to its netlist using a random distribution, weighted

by the area of each gate, in order to model the increased

vulnerability of complex gates comprising more transistors,

consistently with the breakdown patterns found experimentally

by Keane, et al. [19]. For statistical confidence, we inject a

total of 1,000 different fault configurations over a wide range

of simultaneous gate faults. Then, we test each faulty netlist

obtained to determine which links remained functional. This

way, our fault model does not only model wiring failures,

but also any failure within the router that results in non-

functional communication links. For instance, if a gate failure

disables a flit buffer of an output port, the corresponding

output link will also be marked as faulty. Figure 1 shows the

average number of link faults as a function of gate faults (error

Fig. 1: Link vs. gate faults.

bars showing min

and max) when

applying our fault

model to an 8x8

mesh of routers.

Note that even for

just 30 gate faults,

5 to 50 network

links are expected to

fail, resulting in a highly impaired network. These wear-out

link failures have no predictable pattern and can occur

anywhere on-chip [11], thus leading to highly irregular

network topologies.

In short, there is a strong need for low-overhead reliable

solutions for NoCs that are capable to deliver low latency
and high throughput in the presence of many irregular link

failures and potentially complete node failures, since routers

will become disconnected once all adjacent links have failed.

However, we note that the duration of the reconfiguration

process does not need to be optimal. A reconfiguration latency

even in the order of milliseconds will not affect overall

performance, since it only occurs upon a permanent link

failure.

III. RELATED WORK

There has been substantial research on resilient NoCs [11,

15]. Here, we focus on prior works that tackle routing in the

face of link failures. First, we classify them based on the type

of fault targeted and whether a bounded or unbounded number

of faults can be sustained. Then, we focus on solutions that

can tolerate unbounded faults without pattern constraints and

discuss current off-chip and on-chip approaches, indicating

how they differ in their design constraints. Our focus in this

paper is to achieve resilient routing on-chip in the face of many
permanent faults, by providing a solution that reconfigures the

network and updates the routing algorithm upon each failure.

Bounded number of faults. Early work on reliable routing

targeted few link failures, such as 1-fault tolerance in Dally’s

reliable router [12], (n-1) fault tolerant n-dimensional meshes

[16]. Works as in [17, 18, 29] leverage additional virtual

channels to work around a few link failures. There has also

been prior art that tackles the problem by flooding packets

to random neighbors, hoping that they will eventually reach

their destination [6, 24]. Such approaches result in very low

throughput during normal operation.

Unbounded number of faults with pattern constraints.

Other approaches place requirements on the configuration

of faults, requiring them to be contained in convex regions

[9, 31], L or T shape regions [9], or faulty polygons [20].

Oftentimes the faulty region must be expanded to include

non-faulty routers; as a result, non-faulty routers and links

are disabled only to satisfy the algorithm’s constraints.

Unbounded number of faults, no pattern constraints.

Table I qualitatively compares resilient routing algorithms

that can tolerate unbounded faults without pattern constraints,

based on critical evaluation metrics, which heavily depend on

the reconfiguration algorithm. Reconfiguration is the process

of generating a new routing algorithm (whenever a new link

fault is detected) to replace the current one. Given a faulty

topology, the reliability and performance of a routing algo-

rithm can be optimized with a sophisticated reconfiguration

algorithm, but complexity translates to high area overhead.

Off-chip reconfiguration algorithms run in software and can

perform powerful optimizations, but communicating the global

view of the surviving topology to a central node to run the re-

configuration software requires expensive dedicated hardware.

By contrast, on-chip solutions must be designed to meet tight

on-chip area budgets, thus achieving high performance or high

reliability is a challenge.

a) Off-chip solutions. Off chip networks, such as clusters

and Networks-Of-Workstations, first tackled the reliability

challenge of unconstrained faults. A number of resilient rout-

ing algorithms that can be applied to any irregular topology

(i.e., a topology that survived after a number of random

faults in network links) has been proposed in this domain,

including up*/down* (introduced in Autonet) [27], segment-

based routing [23], FX routing [26], L-turn [21], and smart-

routing [10]. During reconfiguration, the surviving topology

is communicated to a central node, which runs the recon-



reliability performance area
bounded faults early work[12, 16], VCs[17, 18, 29] flooding [6, 24] limited n/a n/a

pattern constraints convex [9, 31], L or T [9], polygons [20] limited n/a n/a
unbounded faults off-chip routing [10, 21, 23, 26, 27] high good excessive

without on-chip Immunet [25] high bad high
pattern constraints routing Vicis [14] limited bad low

Ariadne (proposed) high good low

TABLE I: Resilient routing landscape. Qualitative comparison of resilient solutions.

figuration algorithm in software. Using global knowledge of

the functional links, the software computes new routing tables

and communicates them back to each node. As we discuss in

Section VII-C, centralized approaches lead to excessive area

overhead for on-chip routers (estimated at 23.2%).

b) On-chip solutions. On chip networks have a tight

area and power budget, necessitating simple router structures.

Reconfiguration is implemented completely in hardware and

thus must be achievable with a simple Finite State Machine

(FSM). There are two recent on-chip proposals that tackle the

problem of unconstrained faults: Immunet [25] and Vicis [15]:

Immunet [25] routes packets fully adaptively towards their

destinations, based on buffer availability. If necessary, packets

switch to a reserved escape VC that guarantees that they

will reach their destination and avoid faulty links. This VC

is aware of the fault locations and routes deterministically

in a ring through every node. Upon reconfiguration, a new

ring that connects all surviving nodes is formed with a single

broadcast, and all in-transit packets drain out via this ring,

before updating the routing tables. While the ring guarantees

delivery, it dramatically increases latency, since it must remain

active during normal operation to ensure deadlock freedom.

In addition, the design requires three routing tables per router,

resulting in high area (storage) overhead.

Vicis [15] proposes a low overhead routing algorithm [14] to

cope with an unbounded number of faults, by using a heuristic

solution that makes exceptions to the odd-even turn model to

maximize connectivity in meshes and tori. It utilizes the turn

model during fault-free operation, but upon the occurrence of

a fault, reconfiguration re-enables turns that were previously

disabled by the routing algorithm to re-connect nodes that have

been disconnected by the fault. As we show in Section VI,

these exceptions sometimes result in deadlocked routing paths,

especially in situations with large numbers of faults. Moreover,

its deterministic nature does not exploit all possible routes,

thus limiting performance during normal operation.

In this work, we propose the Ariadne reconfiguration algo-

rithm to realize up*/down* on-chip in a fully-distributed man-

ner. Up*/down* offers the unlimited robustness of Immunet,

and higher performance (low latency and high throughput)

than both Immunet and Vicis during normal operation, since

no virtual channels are restricted to deterministic routing.

Using a synchronization mechanism that leverages the global

clock to guarantee atomicity and minimize communication

among nodes, Ariadne reconfigures up*/down* (upon a fault)

in an area budget three times lower than Immunet and com-

parable to Vicis (Section VI-D). Its implementation requires

only a few gates and a single wire per port.

IV. ARIADNE ALGORITHM

Permanent transistor faults may cause link failures that

modify the topology of a NoC. Though the initial topology

of a NoC is usually regular, after a number of link failures,

nodes will be connected through a random irregular topology.

Ariadne is a reconfiguration algorithm that is invoked upon a

permanent link failure (e.g., due to transistor wear-out), and

it is agnostic to the topology, since it includes a discovery

phase of the underlying network to update the routing tables

with new deadlock-free paths. In a network of N nodes, the

reconfiguration procedure consists of N broadcasts, taking up

to N2 cycles. The procedure may run in a partially or fully

connected network, and guarantees that after N2 cycles every

node will know the output port(s) to route to any connected

destination2. Thereafter, network operation resumes normally.

Ariadne leverages up*/down* routing3, a deadlock-free

algorithm that can operate on any irregular topology [27].

Up*/down* requires each link to be assigned a direction: up
or down. It then disallows those paths that include traversing

a down link followed by an up link. This way, all cyclic

dependencies are broken. In Section IV-A, we describe our

distributed reconfiguration algorithm that assigns a direction to

each link, thus allowing up*/down* routing to be applied after

reconfiguration. The algorithm then explores the new topology

and fills the routing tables with resilient paths connecting all

surviving nodes. A key cornerstone of our reconfiguration

algorithm is that it is fully distributed, relying on a single

atomic broadcast by each node to assign all link directions

and to explore the underlying topology, as we describe in

Section IV-B. This simple broadcast scheme makes for a very

lightweight hardware implementation (detailed in Section V).

A. Reconfiguration Algorithm

The reconfiguration algorithm works as follows: each node,

in turn, broadcasts a 1-bit reconfiguration flag to all nodes. The

first node to broadcast is the node that detected the fault in

the network, and it becomes the initiator (root node) of the

reconfiguration process. Upon receiving the reconfiguration

flag broadcasted from the root node, each node performs the

following actions (Figure 2):

2Reconfiguration delay is not a concern, since the performance overhead
induced by reconfiguration can only occur as many times as the link count,
throughout the lifetime of the chip.

3Up*/down* is a routing algorithm designed for irregular networks, thus
not optimal for regular networks (i.e., a mesh). A potential optimization is
to leverage DOR routing while the NoC is fault-free (regular), and switch to
up*/down* once the first fault occurs. Note that transitioning from a routing
algorithm to another may introduce deadlocks, which can be prevented as
discussed in Section VII-B.



Fig. 2: Ariadne reconfiguration algorithm: Actions per-

formed upon reception of the reconfiguration flag.

• Action1. Entering Recovery: enters recovery mode,

invalidates the old routing paths, and freezes head flits.

• Action2. Tagging Link Directions: marks all links ad-

jacent to the node either as up or down.

• Action3. Routing Table Update: informs routing table of

which port(s) can be used to reach the node that initiated

the broadcast.

• Action4. Flag Forwarding: forwards the reconfiguration

flag to its neighboring nodes.

After the root node has completed its first broadcast,

the remaining N-1 nodes in the N-node network broadcast

one-by-one. However, during these N-1 broadcasts, the flag

recipients will only perform the last two actions (Action3 and

Action4). Each action is described in detail below.

Action1: Entering Recovery. Upon receiving the flag for

the first time (initial broadcast from the root node), each

node invalidates its routing table, freezes the pipeline progress

of head flits, and sets its state as “recovering”. The state

will automatically switch back to “normal” in exactly N2

cycles, since the reconfiguration process is guaranteed to have

completed by then. Once the node gets into recovery mode,

each subsequent incoming flag will only invoke Actions 3, 4.
Action2: Tagging Link Directions. Once a node gets into

recovery mode, up*/down* routing restrictions have to be

applied. In up*/down*, links towards the root node (connecting

to a node which is closer to the root) are up links, while links

away from the root are down links. Links to a node of equal

distance to the root (as the current node) can be either. During

the initial broadcast by the root, a port that receives a flag

connects to a node that is closer to the root (since the flag

arrived there first), thus it is marked as up. Similarly, a port

that forwards/sends a flag on is marked as down. The only

conflict occurs when neighboring nodes with equal distance

to the root node attempt to send the flag to each other in

the same cycle. In this case, each node will receive the flag

from a port while trying to send it to the same port. When

this happens, up*/down* suggests that the direction of the

corresponding link can be either up or down, so we set it based

on the statically assigned nodeIDs: the node with the higher

nodeID will mark the link as up; the other node will mark the

link as down (shown in the Action2 diagram of Figure 2).
After this assignment, all the down→up turns are disabled.

This restriction inherits the deadlock freedom of up*/down*,

as explained in Section VII-A. Though a number of paths

are disabled, there is always at least one deadlock-free path

that connects all nodes reachable from the root node. That is

because the minimal route from any node to the root (up) and

from there to any destination node (down) is always available.
Action3: Routing Table Update. During each broadcast,

the broadcasting node communicates to other nodes how it can

be reached. When nodes receive the broadcasted flag, they

record the ports where the flag was received from in their

own routing table, to learn how the broadcasting node can be

reached. This requires the broadcasts to spread via enabled

turns only, so that the recipient of the flag can follow the

opposite path to reach the broadcasting node. The third Action

of Figure 2 shows that the flag from node D’s broadcast arrives

to the current node via its North and East ports, thus these

ports are marked in the routing table to lead to D.
Action4: Flag Forwarding. In the next cycle, the node

broadcasts the flag only to those port(s) from which it did not

receive a flag earlier and that correspond to enabled turns (a

flag received from up link(s) is never broadcasted to up links,

because this will enable a routing path with a down→up turn,

as shown in the last diagram of Figure 2). Since forwarding a

flag takes a single cycle, each broadcast will deterministically

complete in at most N cycles4.

4Each broadcast is bounded to N cycles. The worst case scenario occurs
when all nodes are connected in an open ring, and the longest broadcast from
one end to the other requires N-1 cycles.



Fig. 3: Example of Ariadne reconfiguration. Initial broadcast by root node and 5th broadcast by Node5.

Completion of Reconfiguration. Reconfiguration is de-

terministically completed within N2 cycles since each node

broadcasts once, and each broadcast takes at most N cycles.

During this time, all routing tables are updated with resilient

paths to any connected node, thus communication may be

resumed and all nodes set their state back to “normal”. After

this point, any node can initiate a new broadcast upon detection

of a link failure and invoke the reconfiguration process again.

The head flits can now proceed in the pipeline, but since routes

have changed (routing tables have been updated), they must

restart from the route compute stage to find an alternative port

that leads to the desired destination.

Walkthrough Example. An example of the reconfiguration

process is shown in Figure 3. In this figure, we show a 7-node

network connected in an irregular topology. Node1 detected

a link failure, and initiates a broadcast. Figure 3a shows

how each node receives the flag during the initial broadcast,

marks the link(s) the flag was received from as up (Action2),

fills the entry corresponding to the broadcasting node in its

routing table (Action3), and then forwards it to its neighbors

(Action4), while marking those link(s) as down (Action2).

Node2 and Node6 receive the flag during the 1st cycle and

forward it to each other during the 2nd cycle. To resolve this

conflict, the node with the higher NodeID (i.e., Node6) marks

the link as up and the other node (i.e., Node2) as down. We

note that there is an implicit unique node ordering, shown in

the table, which will be leveraged in our deadlock freedom

discussion in Section VII-A.

Each subsequent broadcast can only follow paths that are

consistent with the up*/down* restriction. As shown in Figure

3b, when Node5 is broadcasting, Node4 does not forward the

flag to its North port (1st cycle, Action4), because this would

result in Node0 following an illegal path to reach Node5 (the

Node0→Node4→Node5 turn is down→up). During Node5’s

broadcast, all nodes only perform Actions 3 and 4: they mark

which port they should follow to route to Node5 in their

own routing table, and then they forward the flag to all legal

directions. Note that all nodes can reach Node5 via the root

(up to the root Node1, then down to Node5). Also note that

some nodes may use multiple output ports to reach Node5

(e.g., Node3 can either use its West or South port, since

it received the flag from both ports during the 3rd cycle),

enabling adaptive routing. In this work, we only considered

minimal paths for simplicity in adaptive routing. Thus, nodes

that have already filled a routing table entry, ignore future

flags for the same broadcasting node (for example, Node4 and

Node6 do not record their North port as a potential path to

Node5 during the 3rd cycle, since this would lead to a non-

minimal route). At runtime, the port with the highest number

of available virtual channels among all valid (recorded) ports

is selected to balance traffic density.

B. Timing and Synchronization

Section IV-A presented the reconfiguration algorithm. What

has not been detailed so far is the timing of the reconfiguration:

How does each node know when to broadcast so that there

is no overlap between broadcasts? How does the recipient

of a broadcast know the broadcasting node, since the only

data broadcasted is a 1-bit flag? How do nodes know when

the reconfiguration is completed? If two nodes concurrently

detect a new fault, can they both become roots and initiate

a broadcast? This section deals with these timing issues by

introducing the notion of atomic broadcasts, where the cycle

number5 indicates the ID of the broadcasting node.

Atomic Broadcasts. The idea of atomic broadcasts is to

correlate the cycle number at which a broadcast is initiated to

the broadcasting node’s nodeID. Using the cycle number as

a common reference point, all nodes are assigned different

cycles for broadcasting, during which the remaining nodes

are prevented from broadcasting for a window of N cycles

(every broadcast is guaranteed to complete in N cycles, where

N is the number of nodes). Each node will have to wait

5We assume a single synchronized global clock across the entire system. By
the term “cycle”, we refer to the count of the positive clock edges in a node
(i.e., router and computation unit). It is not necessary that the communication
system is controlled by the same clock as the computation units, but it has to
be driven by a single clock.



Fig. 4: Router Architecture. Ariadne’s components shown shaded and expanded on the right part of the figure.

Fig. 5: Logic schematic for the building blocks of Ariadne’s reconfiguration algorithm.

for its slot to broadcast, but during that slot no other node

would be broadcasting, causing a collision. N slots need to

be provided for all N nodes to broadcast, with slots looping

around throughout execution. In other words, node(X)’s N-

cycle slot is always followed by node((X+1)modN)’s N-cycle

slot. The idea is similar to time-division multiplexing, where a

number of signals physically take turns to transfer data on the

same communication channel. Once the root node broadcasts,

every node will deterministically broadcast during its first

available slot; assuming that R is the root, nodes will broadcast

in the order: R, R+1, ..., N-1, 0, 1, ..., R-1. Since N slots

of N-cycles are required for the reconfiguration to complete,

reconfiguration requires precisely N2 cycles. Thus, all nodes

can resume operation N2 cycles after receiving the initial

broadcast, since by that time the process has been completed.

We note that if more than one node concurrently detects

a fault, only the one who first receives a broadcast slot

will become the root. The others will resign from becoming

the root once they receive the root’s broadcast. Our atomic

synchronization ensures that no two nodes will ever simultane-

ously become the root. Once reconfiguration has been initiated,

Ariadne will consider all detected faults in the network,

independently of the node that managed to become root.

Also, if a node is disconnected, it will not receive the root’s

broadcast, and will thus remain silent during its broadcast slot.

Other nodes will thus not fill the corresponding entry in their

routing tables (marking this node as unreachable).

V. ROUTER ARCHITECTURE

To evaluate our solution, we considered a baseline router

with a 5-stage pipeline6, as illustrated in the left part of Figure

4, with the following units: a route-compute unit to determine

the output port for a packet based on the final destination, a

virtual channel allocator to reserve a virtual channel in the

selected output port, a switch allocator to reserve the switch

bandwidth, and the switch itself.

To implement Ariadne, we added a few gates, registers,

and wires to the baseline router, as highlighted in the shaded

portion of Figure 4. Assuming four bi-directional ports (four

routing directions), Ariadne requires eight 1-bit wires (one for

each port’s direction) to transmit and receive the reconfigura-

tion flag from all directions. Ariadne logic consists of a 1-bit

status register to record the state (“recovering” or “normal”),

and one 1-bit register per port to remember the port’s direction

(up or down). The logic to update the status register (Action1),

to implement up*/down* (Action2), to fill the routing tables

(Action3), and to forward the reconfiguration flag (Action4)

are shown in the right part of Figure 4.

Figure 5 shows how these logic blocks are implemented.

The up*/down* logic (5a) updates the port direction registers:

receiving the flag from that port implies up, receiving it from

another port implies down, and sending and receiving at the

6Ariadne is orthogonal to the router pipeline. During normal operation,
Ariadne is not active. During reconfiguration, the router pipeline is frozen,
while Ariadne utilizes separate hardware to receive/broadcast flags.



Network Architecture (GARNET)
network topology 8x8 2D mesh
memory controllers 4 (chip corners)
channel width 64 bits
router architecture 5-stage pipeline
router ports, VCs 5, 2 (private)
router buffers/port 5-flit/VC

System Configuration (GEMS)
processors in-order SPARC cores
coherence MOESI protocol

L1 caching private unified 32KB/node
ways:2 latency:3 cycles

L2 caching shared distributed 1MB/node
ways:16 latency:15 cycles

Simulation Input

synthetic traffic Uniform Random
TRranspose

benchmark suite PARSEC
packet length 5
simulation time 100K cycles
simulation warmup 10K cycles

TABLE II: Simulated system configured in GEMS/GARNET.

same time implies that the direction should be determined

by the routers’ NodeIDs. The logic that compiles the routing

tables (5b) sends to the routing unit the ID of the broadcasting

node together with the input port(s) from which the flag

was received, which indicate(s) the routing direction to the

broadcasting node. The broadcasting node is extracted from

logN bits of the cycle counter, as will be detailed below.

The routing tables consist of N Boolean entries (one for each

destination) of four bits (indicating the four output ports). We

note that during reconfiguration, all flags corresponding to

minimal paths to a specific destination node will concurrently

arrive at the same cycle; consequently, once a routing table

record is set, it cannot be overwritten in later cycles (i.e., if

the bit for at least one port is set to true in the routing table,

all future records for that same entry are ignored). Finally, the

logic responsible for forwarding the flag (5c) always forwards

the flag if received from an input port marked as down; if

the input port was marked as up, then it only forwards if the

corresponding output port is marked as down (Section IV-A).
Extracting the broadcaster ID from the cycle number.

The hardware to implement this functionality is fairly simple.

The logN least significant bits of the cycle counter indicate

the cycle number of the current broadcast slot (1 to N).

The next logN most significant bits indicate which node is

authorized to broadcast during the current slot (1 to N). We

note that a cycle counter does not cost additional overhead,

since it is already available in the performance counters of

each processor core [1]. An example for N=4 is shown in

Figure 6, where the node that broadcasted the flag is indicated

by bit3bit2. A node can only initiate a broadcast at the first

cycle (bit1bit0=00) of its turn (bit3bit2=NodeID) and it is

guaranteed to complete this broadcast within 4 cycles (by

bit3bit2=NodeID and bit1bit0=11).

Fig. 6: Implementation of atomic broadcasts. Hardware that

leverages the global clock to guarantee atomicity in broadcasts

for an example 4-node (N=4) network.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate Ariadne to determine its effec-

tiveness in faulty networks. We model faults with an accurate

gate-level fault model described in Section II, where we

map gate-level faults to link-level faults. Each simulation is

performed 1,000 times, each time using a different injected

fault configuration generated by our fault model (for 0 to 100

gate faults). We assume an ideal fault-detection mechanism,

since fault-detection is orthogonal to reconfiguration. In our

experimental setup, we evaluate the runtime performance

(Subsection VI-A), reliability (Subsection VI-B), reconfigu-

ration duration (Subsection VI-C), and hardware overhead

(Subsection VI-D) of our solution. Ariadne is implemented

in the Wisconsin Multifacet GEMS simulator [22] as part of

the GARNET network model [2]. Additionally, two state-of-

the-art routing algorithms are implemented for comparison:

the routing algorithm [14] of Vicis [15] and Immunet [25].

We configure GARNET to use an 8x8 mesh network (our

simulation infrastructure is shown in Table II) and simulate

synthetic traffic (Uniform Random and Transpose traffic), as

well as the PARSEC benchmark suite [5].

A. Performance Evaluation

We consider two metrics to measure the performance of

Ariadne on a faulty network: average latency and throughput.

Latency is defined as the delay experienced by a packet

from source to destination, while throughput demonstrates the

rate of packets delivered (per cycle) in the entire network.

First, we look at the zero-load latency for each of the three

routing algorithms (Vicis, Immunet, and Ariadne), reflecting

the steady-state latency of a lightly loaded network (0.01 flits

injected per cycle per node, well below saturation). Each data

point in Figure 7a is the average zero-load latency of 100

different topologies with the same number of faults.

We note that Ariadne’s latency is consistently the lowest, at

43 cycles on average, compared to 58 cycles for Immunet and

97 cycles for Vicis. At 50 faults, the difference increases, with

Ariadne showing a 43% latency improvement over Immunet

and a 142% improvement over Vicis. Moreover, we note that

the latency trend is strongly dependent on the algorithm,

but not greatly affected by the traffic type, as shown by

the closeness of the lines for each given algorithm. Vicis

shows some interesting behavior here, increasing in latency

as the number of faults increases. Upon further investigation,

we found that this was caused by the occasional deadlocks

encountered by the Vicis algorithm, which in turn trigger a
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(b) Saturation Throughput (flits/node/cycle) reaches a minimum at
50 faults for all three algorithms. Then, it increases since packets route
within small partitioned subnetworks.

Fig. 7: Performance on synthetic traffic

5,000-cycle timeout before dropping the deadlocked packets7.

We note that Ariadne and Immunet never drop a packet. Ari-

adne maintains a reasonable constant latency, outperforming

Immunet, since all of its virtual channels can route adaptively.

In contrast, Immunet has one escape virtual channel restricted

to route deterministically in a high-latency ring that goes

through all surviving nodes two times (both directions) on

average, independently of a packet’s destination.

Figure 7b plots the saturation throughput as a function of

faults. We used numerical analysis to find the throughput value

within a precision of 0.01. For each number of faults, we

performed this calculation for 100 different configurations.

Notice that for fault rates up to about 50, saturation throughput

decreases as the number of faults increases, as it can be

expected, since the number of available paths decreases. This

effect changes as the number of faults increases past 50,

when throughput begins to increase. That happens because

the network becomes partitioned, thus packets are routed a few

hops within small subnetwork partitions, so overall throughput

actually improves. For the same reason, the type of traffic does

not critically affect the saturation throughput at high number

of faults, since packets are restricted to route only within

7We did not implement a re-transmission mechanism for packets dropped
by Vicis, but to keep the simulation going we instantly deliver the dropped
packets to their destination.
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increases due to deadlocks.

Fig. 8: Performance for PARSEC benchmarks

these subnetworks. Note that the impact of traffic type on

saturation throughput is not strong for Ariadne and Immunet.

However, since Vicis is based on the turn model, which has

naturally a higher saturation point, it more evenly spreads

random traffic, particularly in few-faults situations, where the

routing algorithm is closer to the turn model. We note that

although based on the turn model, Vicis is deterministic, and

uses a heuristic that chooses a minimal subset of available

turns to reduce the probability of deadlock occurrence.

In addition to synthetic traffic, we also investigate the

performance of our reconfigured network when running the

suite of PARSEC [5] benchmarks. First, we ran each PARSEC

benchmark on networks injected with 50 faults, the mid-

point of our fault injection range. Measuring the average

latency for packet delivery, we show the results for each

algorithm in Figure 8a. Exhibiting trends similar to the random

workload results, Ariadne outperforms Immunet and Vicis.

We also observe that benchmarks that scale poorly beyond

16 cores (we simulated a 64-core system), such as bodytrack
and streamcluster [5], entail more frequent messages between

nearby nodes, resulting in lower average latency for Ariadne.

This occurs because fewer threads, mapped to near-by cores,

coordinate to complete the workload. In those cases, the

latency difference between Ariadne and Immunet is highest

(45%), since Immunet leverages a fixed virtual ring that snakes

through all nodes, so nodes that are physically close may have
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Fig. 9: Packet delivery rate. The percent of packets delivered
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Fig. 10: Probability of deadlock over different fault configu-

rations. Ariadne, Immunet are deadlock free (lines overlap at

the 0% value), while Vicis is not.

to route through many hops via the ring. On the other hand,

Vicis has its highest latency for benchmarks that scale well,

such as dedup and vips, since long communication patterns

are prone to creating cyclic routes and causing deadlocks.

In deepening our analysis while running PARSEC bench-

marks, we also evaluate performance as the number of faults

increases. Figure 8b shows the average latency over all PAR-

SEC benchmarks, as the number of injected faults ranges

from 0 to 100. Ariadne consistently provides the lowest

average latency. The performance difference is most significant

between Ariadne and Vicis under a large number of faults. We

note that this figure is very similar to the zero load latency of

synthetic traffic: that is because PARSEC benchmarks inject

very low network traffic leading to low network stress.

B. Reliability Evaluation

Faulty networks are frequently not fully connected. The

ability of an algorithm to maximize the connectivity of a faulty

network is critical, since if there is no viable route between

two locations, or if the routing algorithm has eliminated

the only possible route to avoid deadlock, the packet can

Fig. 11: Reconfiguration dynamics. Average packet latency

over time, assuming uniform random traffic, 0.1 injection rate.

Fig. 12: Reconfiguration duration. Time required for packet

latencies to stabilize after reconfiguration, for a variable num-

ber of faults/injection rates.

not be injected in the network. In Figures 9a and 9b we

show the packet delivery rate for both synthetic and PARSEC

workloads. Packet delivery rate captures the number of packets

delivered over the number of packets generated, and reflects

the reliability of the network.

First, we observe that for all workloads, Ariadne and

Immunet demonstrate identical delivery rates, delivering all

packets injected in the network. Undelivered packets are solely

due to the network being partitioned (see Section VII-E).

Vicis, on the other hand, begins with performance similar to

the other algorithms but, as faults increase, its delivery rate

decreases. This occurs because packets are occasionally routed

in circular routes, causing deadlocks and being dropped after

a timeout. Figure 10 shows the probability of deadlock for

an increasing number of faults (the lines for Immunet and

Ariadne are constant on the 0% trend line).

C. Reconfiguration Evaluation

During reconfiguration, all packets in the network expe-

rience an additional delay of 4,096 cycles (N2 cycles, for

N=64). That is because the route computation stage is stalled,

so all head flits are frozen in the pipeline. Figure 11 shows

the average latency (intervals of 1,000 cycles) over time for

three reconfiguration procedures initiated in cycle 20,000:

starting from a fault-free network, the curves correspond to

the reconfiguration procedure for 1, 20, 100 concurrent faults.

As shown in the figure, the average latency initially drops

to 0, since no packets are received for 4,096 cycles. After that,

around cycle 25,000, the routing tables have been updated and

all packets in the network can resume routing towards their

destination. Since the Network Interface Controllers (NICs)



were not stalled during reconfiguration, all injection queues

will probably be full, resulting in increased contention right

after normal operation is resumed. This explains the peaks in

all three curves. The more the faults, the fewer the available

paths to connect nodes, thus the higher the latency that these

additional packets will experience (due to contention). Thus,

we note that curves corresponding to topologies with more

faults show longer times to drain packets generated during

reconfiguration, and also stabilize at a higher average latency,

since the new topology has lower capacity.

Figure 12 shows how the reconfiguration duration (time to

drain packets generated during reconfiguration and stabilize

to a new operating point) is affected by a variable number

of faults and different injection rates. A low injection rate

(zero load) will not generate a large number of packets during

reconfiguration, so even with more faults (fewer available

paths), there will be no congestion and the reconfiguration

duration will only slightly increase (less than 1,000 cycles).

For higher injection rates (comparable to the network capac-

ity), the number of faults causes contention that lasts from

4,000 cycles (few faults) to 40,000 cycles (many faults, highly

impaired network). Each point of the graph is an average over

ten faulty (but fully connected) topologies.

Note that we do not anticipate link faults to be sufficiently

frequent for reconfiguration duration to affect overall perfor-

mance. The purpose of this graph is to provide quantitative

insights on the reconfiguration process. Also, 50 concurrent

transistor failures are more realistic in future 1000-core de-

signs. The takeaway message of the figures is that Ariadne

is viable under many concurrent faults, with reconfiguration

duration scaling linearly.

D. Hardware Overhead

To determine the area impact of Ariadne in a router, we im-

plemented its hardware structures in Verilog HDL. Beginning

with a baseline 5-stage router design (Table II), we added the

Ariadne logic illustrated in Figure 4. We also implemented the

Vicis routing algorithm [14] and Immunet [25], whose major

hardware additions are summarized in Table III. The Vicis

routing algorithm requires the addition of a 64-entry static

routing table, as well as modified routing logic to perform the

routing heuristic. Immunet requires 3 additional routing tables

(an adaptive, a deterministic, and a small safe table) and 4

wires per link. Each design was synthesized using Synopsys

Design Compiler with an IBM 130nm target library. The

total area for the router equipped with Ariadne was measured

at 2.761mm2, which corresponds to an overhead of 1.97%

(baseline router’s area is 2.708mm2); this overhead is slightly

more than Vicis and three times less than Immunet.

wires routing tables overhead %overhead

Ariadne 1 adaptive 0.053mm2 1.97%

Vicis 1 deterministic 0.040mm2 1.48%

Immunet 4 adapt., determ, small 0.162mm2 5.98%

TABLE III: Additional hardware summary.

VII. DISCUSSION

In this section, we discuss how deadlock is avoided during

normal operation (when using up*/down* routing, subsec-

tion VII-A) and during reconfiguration (Ariadne algorithm,

subsection VII-B). Then, we elaborate on why existing off-

chip implementations of up*/down* would lead to excessive

overhead if adapted on-chip (subsection VII-C). Finally, we

explore whether Ariadne itself can fail (subsection VII-D) and

what happens when nodes disconnect (subsection VII-E).

A. Deadlock Avoidance (Normal Operation)

Up*/down* has been proven in the literature to be deadlock

free [27]. This is achieved by assigning a unique number

(node order) to each node and disabling all increasing-order

turns (down links), followed by decreasing order turns (up
links). Note that the meaning of the terms “up” and “down”

is reversed. Since the orders are unique, there can be no cycle

without an increasing order followed by a decreasing order,

thus the paths are deadlock free. Here, we prove that the

way we assign link directions implies such a unique order.

Assuming N nodes, each with a pre-assigned nodeID [0,N),

and a root node with order 0, we define the order of each

NodeX that is connected to the root as:

order(X) = distance(root, X) * N + nodeID(X)
The distance is measured in hops, and corresponds to the

minimal path that connects NodeX to the root. The table in

Figure 3 shows an example of this order assignment, where

Node1 is the root. This definition forces nodes that are closer

to the root node to always have a lower order than nodes that

are more distant (due to the multiplying factor N). For nodes

that are equally close to the root, their relative order is decided

based on their statically assigned nodeID (since the first term

of the equation above is the same): the node with the higher

nodeID is considered to have higher order. These are the only

two assumptions we used to assign a direction to each port,

thus our direction assignment complies with the unique node

ordering defined in the equation. Consequently, our nodes have

a unique order and our routing paths are deadlock free.

B. Deadlock Avoidance (Reconfiguration)

The reconfiguration process replaces one routing function

with another, by updating the routing tables in each node. As

described in Section IV-A, all head flits freeze during this

transition, thus the routing tables are not accessed and no

packet may compute its route using the new routing algorithm

until reconfiguration is completed. However, the body and tail

flits may follow the route that the head flit has already reserved

with the pre-fault routing paths. This section explores the

dependencies between the old and the new routing function,

which may create deadlocks once normal operation is resumed.

The necessary condition for deadlock is a cyclic dependency

of buffers, which is the result of routing in a cycle. During

normal operation, cyclic routing is prevented by up*/down* as

explained in VII-A, since a packet cached in an input buffer



of an up link can never route to another up link (this would

correspond to a down→up turn, see Action4 in Figure 2).

However, once the routing function is replaced, the direc-

tions of links may change. Thus, an input buffer of a down
link, caching a packet that could be sent to any output (based

on the old routing algorithm), may become an input buffer

of an up link. If the only available route to destination is

via an up link, this creates the condition for a deadlock. The

deadlock occurs because of the post-fault routing algorithm

inheriting a down→up dependency from a pre-fault routing

path. We resolve such cases by ejecting the packet requesting

the illegal turn to the NIC of the local router and re-injecting it

to the network upon buffer availability. An additional dedicated

flitbuffer per NIC is necessary to achieve this. This problem

is present in all reconfiguration solutions: Immunet uses the

same technique to prevent deadlock, while Vicis drops any

packets requesting illegal turns. Using this technique, we save

in-transit data and demonstrate a viable full-system reconfigu-

ration solution incorporating Ariadne. In our simulations, we

have verified that no packets are lost during reconfiguration

and deadlock free operation is indeed preserved.

C. Are Off-Chip Up*/Down* Schemes Applicable On-Chip?

Section III mentions several off-chip resilient routing algo-

rithms, most of which use up*/down* [27] as a baseline and

modify the structure of its directed graph to balance traffic and

enhance performance [10, 21, 26]. The simplest approach, the

baseline up*/down* introduced by Autonet [27] in 1991, has

been implemented in many high performance interconnects,

such as Myrinet, InfiniBand, and Advanced Switching. How-

ever, these off-chip approaches cannot be adapted for on-chip

implementation, due the high area overhead of its centralized

reconfiguration algorithm.

In all prior implementations of up*/down*, the reconfigu-

ration algorithm computes the routing tables in software with

global knowledge of the surviving network. This software runs

in a centralized management entity which is called mapper (in

Myrinet), subnet manager (in InfiniBand), or fabric manager

(in Advanced Switching). The underlying topology and span-

ning tree are communicated to this management entity, which

performs the task of computing the new routing function in

software. This procedure requires disabling a number of turns

consistently with the spanning tree, and then iterating on the

topology to find all the paths that each node can follow to route

to every potential destination. Once a group of routing paths

that guarantees deadlock-freedom and connectivity is found,

the management entity sends a message to each node including

its updated routing table.

We note that in earlier implementations of up*/down*,

such as Autonet, the surviving topology is aggregated to a

central node (root switch) and, from there, the topology and

spanning tree are sent to every node to compute its routing

table locally. This approach is still not distributed (we note that

its authors name it “distributed”). We define as “distributed”

a reconfiguration solution where: (1) all nodes are peers

executing the same function, (2) there is only local knowledge

of the surviving links. In contrast, in Autonet’s reconfiguration

(1) there is a single node (root-switch) assigned with the task

of aggregating the surviving topology and delivering it to all

nodes, while (2) each node requires global knowledge of all

surviving links to compute its routing table.

Since these solutions require communicating the entire

topology (in a reconfiguration packet) to a centralized location,

each router has to maintain a reserved buffer and a reserved

VC per input port to receive and forward this packet (the

regular input buffers might be full holding in-transit packets

during reconfiguration). This buffer should also incorporate

additional logic to append to the reconfiguration packet the

local router’s functional links, their direction, and the router’s

ID. We note that any node might serve as the “management

entity” (we cannot predict which nodes may become discon-

nected), thus every node should have reserved buffering for

the entire reconfiguration packet, which accounts for 4 flits in

a 64-node mesh, before interrupting the operating system to

run up*/down*. We implemented this logic in Verilog HDL,

synthesized it, and measured a 23.2% area overhead for our

baseline router (Table II).

To avoid this overhead, we propose to reconfigure in a fully-

distributed mode, where each node observes only a signal

bit flag from its neighbors to fill its routing table, without

any knowledge of the paths that the flags followed to arrive

there, the topology, or spanning tree. Such a lightweight

distributed implementation is not possible off-chip, since we

require a global clock to provide specialized synchronization

mechanisms for atomicity (detailed in Section IV-B).

D. Can Ariadne Itself Fail?

There is no resilient hardware that can guarantee 100%

resilience. All resilient solutions we have described in this

paper can fail if the resilient/recovery logic itself fails. Ari-

adne’s Finite State Machine (FSM) uses a few gates to

generate flags and update the routing tables. This FSM itself

is susceptible to gate faults, while the 1-bit wires used to

communicate the flags to neighbors can be corrupted by

transient or permanent faults, resulting in the generation of

a deadlock-prone routing algorithm. The most effective way

to further protect small hardware structures, such as Ariadne,

from failures is triple modular redundancy (TMR). In TMR,

multiple identical structures perform the same operation and

a voting system is used to feed the output with the result

that the majority of the structures generated. That requires

multiple copies of Ariadne’s FSM in every router. Similarly,

multiple identical flags (or ECC codes) must be transmitted

to each neighboring router, which can utilize voting logic to

recover the correct value of the flag in the case of faulty

wires. We note that Ariadne’s low overhead implementation

makes TMR a very viable solution, since protecting all its

hardware components with triple-redundancy would lead to

an overall area overhead of less than 6%. On the other

hand, centralized software reconfiguration approaches would

require the replication of the entire dedicated network for



communicating the reconfiguration information and of the

processor core executing it, which is not viable.

E. What Happens When Nodes Become Disconnected?

After a certain number of faults, there is a high probability

that the network will become partitioned (split into disjoint

clusters). Our reconfiguration solution will ensure that packet

delivery is guaranteed within each partition, but cannot transfer

packets among partitions. A network-only solution can identify

this problem, but cannot recover the system. In such cases, the

operating system will typically choose the largest partition of

nodes and migrate all active threads there, marking all nodes

that belong to other partitions as disconnected. To realize this

without interruption of execution, the state and data of each

active thread needs to be transferred from disconnected nodes

to nodes of the active partition, while no available paths to

connect these nodes exist in the underlying network. This

is a complementary problem, recently tackled by DRAIN

[13]. DRAIN is a recovery algorithm that uses dedicated

emergency links to save the architectural state and cached data

of disconnected nodes via cache-to-cache transfers.

VIII. CONCLUSIONS

We have presented Ariadne, an agnostic reconfiguration

algorithm for NoCs, capable of circumventing large numbers

of simultaneous faults, and able to handle unreliable future

silicon technologies. Ariadne utilizes up*/down* for high

performance and deadlock-free routing in irregular network

topologies that result from large numbers of faults, and offers

performance gains ranging from 40% to 140% (for 50 faults)

during normal operation, compared to state-of-the-art fault

tolerant solutions. It guarantees that if a path between two

nodes exists, the reconfiguration algorithm will enable at least

one deadlock-free path between them. Ariadne is implemented

in a fully distributed mode, since nodes coordinate to explore

the surviving topology, resulting in very simple hardware

and low complexity. At 1.97% area overhead, Ariadne is a

parsimonious solution for many-core processor designs of the

future, enabling a trade-off between performance and reliable

functionality on unreliable silicon.
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