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Abstract

Antimicrobial resistance (AMR) is one of the major threats to human and animal health worldwide, yet few high-throughput

tools exist to analyse and predict the resistance of a bacterial isolate from sequencing data. Here we present a new tool,

ARIBA, that identifies AMR-associated genes and single nucleotide polymorphisms directly from short reads, and generates

detailed and customizable output. The accuracy and advantages of ARIBA over other tools are demonstrated on three

datasets from Gram-positive and Gram-negative bacteria, with ARIBA outperforming existing methods.

DATA SUMMARY

1. The ARIBA software is open source and available for
Linux at Github under the GNU GPLv3 licence (url –

https://github.com/sanger-pathogens/ariba).

2. Accession numbers for all sequencing reads used are pro-
vided in the supplementary material.

INTRODUCTION

Antimicrobial-resistant infections have become one of the
leading threats to human health, with a conservative estimate
of 700 000 directly attributed deaths per year worldwide [1]. If
we do not address this threat, this figure is estimated to rise to
10million by 2050 [1]. An important component of any strat-
egy to tackle antimicrobial resistance (AMR) is having rapid
and accurate methods for identifying markers of resistance.
Our understanding of the mechanisms and diversity of AMR
is improving, in part due to the increased availability of
genome sequence data, with the use of genome sequencing in
personalized medicine set to become one key tool in the fight
against AMR. However, there are currently few bioinformatics
tools that can identify AMR determinants directly from the
data produced by widely-used sequencing technologies. The
methods that are available are limited in the types of AMR
mechanisms they can detect and/or are not scalable to high-
throughput environments.

Limitations of existing tools include being available only via
web services that are not high-throughput; being restricted
to a specific set of reference sequences which may not
exhaustively represent current knowledge of AMR for all
microbial species; requiring assembled genome sequences as
input; an inability to identify and interpret single-nucleo-
tide-polymorphism (SNP)-based AMR determinants; and
having high computational resource requirements. Most
tools fall into one of two categories: those that align
sequencing reads to a set of reference genes, and those that
search for reference gene matches in de novo assembled
sequences. The widely-used SRST2 [2] is an example of a
method based on aligning reads to a set of reference sequen-
ces in order to predict the presence of those genes in a sam-
ple. KmerResistance [3] employs a similar approach, but
uses k-mer matching between sequencing reads and refer-
ence genes to identify gene presence. Although SRST2 and
KmerResistance can be used with custom reference gene
sets, they cannot directly identify or interpret variants, such
as SNPs that confer resistance, and so are limited to identi-
fying resistance that is conferred by the presence of a gene,
or a particular pre-defined allele of a gene. Mykrobe predic-
tor [4] is an extremely fast tool that matches k-mers in reads
to a reference graph, and although it can identify variants, it
is currently limited to Staphylococcus aureus and Mycobac-
terium tuberculosis, and it is not possible for users to
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provide their own databases of AMR determinants with
which to interrogate their data.

The majority of other AMR detection tools require assem-
bled sequences as input, which are computationally expen-
sive to generate from reads, and assembly errors or failures
caused by the complexity of assembling complete genomes
de novo can lead to AMR determinants being missed. For
these reasons, alignment-based approaches have previously
been shown to be superior to the use of de novo assembled
sequences [2, 3] for AMR gene detection. Tools that use
assembled sequences as input include ResFinder [5], ARG-
ANNOT [6], SSTAR [7] and RAST [8]. These methods
match assembled sequences to reference genes, usually using
the BLAST [9] algorithm, in order to identify AMR genes.

Here we present a new tool, called ARIBA (Antimicrobial
Resistance Identification By Assembly), that uses a com-
bined mapping/alignment and targeted local assembly
approach to identify AMR genes and variants efficiently and
accurately from paired sequencing reads. Using targeted
local assembly considerably reduces the complexity of the
assembly process, while providing contiguous gene or
nucleotide sequences without the ambiguity of the interpre-
tation of aligned data. ARIBA can easily be provided with
custom reference sequence-sets, and includes support for a
number of public databases: ARG-ANNOT [6], CARD [10],
MEGARes [11] and ResFinder [5]. It distinguishes between
sequences that are coding or non-coding, and provides
details on each sequence present in the sample. It verifies
whether or not identified genes are complete, truncated or
fragmented in the sample, and reports SNPs and indels
within sequences with interpretations of their effect, such as
frameshifts, non-synonymous changes or nonsense muta-
tions. To facilitate easier interpretations of results, ARIBA
includes functions to summarize results for multiple sam-
ples. These summaries are compatible with the Phandango
interactive visualization tool [12]. If minimum inhibitory
concentration (MIC) data are available for samples, ARIBA
allows statistical analysis and plotting of MIC against geno-
type. Beyond AMR, ARIBA can be used more generally to
find any input sequences of interest. It provides inbuilt sup-
port for the PlasmidFinder [13] and VFDB [14] databases,
and functionality for multi-locus sequence typing (MLST)
using data from PubMLST [15].

METHODS

ARIBA

We developed ARIBA to identify AMR determinants from
public or custom databases using paired read data as input.
Fig. 1 provides an overview of the approach. Briefly, reference
sequences in the AMR database are clustered by similarity
using CD-HIT [16]. Reads are mapped to the reference
sequences using minimap [17] to produce a set of reads for
each cluster. These reads map to at least one of the sequences
in that cluster. The reads for each cluster and their sequence
pairs are assembled independently using fermi-lite (https://
github.com/lh3/fermi-lite) under a variety of parameter

combinations, and the closest reference sequence to the result-
ing contigs is identified with the program nucmer from the
MUMmer package [18]. The assembly is compared to the ref-
erence sequence to identify completeness and any variants
between the sequences using the nucmer and show-snps pro-
grams from MUMmer. The reads for the cluster are mapped
to the assembly with Bowtie2 [19] and variants are called with
SAMtools [20]. Finally, a detailed report is made of all the
sequences identified in the sample, including, but not limited
to, the presence or absence of variants pre-defined to be of
importance to AMR.

Obtaining input data

ARIBA requires reference sequences and, optionally, infor-
mation about SNPs known to confer resistance. ARIBA sup-
ports several public resources, allowing the user to
download the data easily and convert it into a form for use
with the pipeline. ARG-ANNOT, CARD, PlasmidFinder,
ResFinder, VFDB, and the SRST2 version of ARG-ANNOT
are currently available. These can be obtained by running
the command

ariba getref name_of_resource

output_directory

Alternatively, reference data can be provided by the user. Ref-
erence sequences can be coding or non-coding. Coding
sequences are subjected to extra checks for consistency, as
described below, and extra analysis is performed on them,
such as determining if SNPs are synonymous or nonsynony-
mous. Further, each reference sequence is classified as
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‘presence/absence’ where the existence of a sequence within a
sample confers antimicrobial resistance, or ‘variant only’
where a known variant is required for antimicrobial
resistance.

Preparing input data

All reference data are checked for consistency, and any
sequences or variants that do not pass all checks are
completely removed. It is important that the user provides
valid input data and checks ARIBA log files for removed data.
Any coding sequences are required to begin with a start
codon, be a complete open reading frame, and end with a stop
codon. All reading frames are checked on both strands and
any sequence that fails any of the requirements is removed.
Any ‘known variant’ defined in the input file is required to
match the reference sequence. For example, if a known variant
for a reference is I42L, then the translated reference sequence
must have an ‘I’ or ‘L’ at amino acid 42 or the variant will be

removed. The remaining sequences are clustered using the

cd-hit-est program from CD-HIT, using the options –c

0.9 (minimum 90% sequence identity) –s 0 (no length dif-

ference cutoff). These defaults can be changed by the user.

Since any sequence can be coding or non-coding, and pres-

ence/absence or variant only, four disjoint sets of sequences

are created. These sets of sequences are kept separate, with

each one clustered individually. The input data are prepared

by running the command

ariba prepareref -f sequences.fasta -m

metadata.tsv prepareref.out

where the reference sequences are in the FASTA file
sequences.fasta and extra information, such as var-
iants, is in the tab-delimited file metadata.tsv. These
input files are generated automatically when running
ariba getref.

Assemble mapped
reads and mates
(fermi-lite)

For each cluster that has reads mapped:

Cluster 1

Cluster reference sequences (cd-hit-est)
and map all read pairs (minimap):

Cluster 2 Cluster N

Find closest
reference
(nucmer)

Map reads to assembly (Bowtie2),
and identify variants (SAMtools)

Compare assembly and closest reference,
and identify variants (MUMmer)

Fig. 1. Overview of the ARIBA mapping and targeted assembly pipeline.
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Cluster analysis

Once the reference data are prepared, the main ARIBA
pipeline can be run using paired reads and the reference
data as input. The command is

ariba run prepareref.out reads_1.fq

reads_2.fq run.out

where the directory prepareref.out was created with
ariba prepareref. First, the reads are mapped to all of
the input sequences (that passed quality filters), using mini-
map with a k-mer length, k, of 15 and minimizer window
size of 10. A read is considered to be mapped by minimap
if: 1) the match length is at least 50 or half of the read
length, whichever is smaller; 2) the start position of the
match is within 1.1 k of the start of the read or the reference
sequence; 3) the same as for 2), but for the end position of
the match. The result is that reads that match completely to
the centre of the reference sequence, and reads that over-
hang the ends of the reference sequence are counted as
mapped. The situation is illustrated in Fig. S1 (available in
the online Supplementary Material) and explained in detail
in the Supplementary Material.

Any read that maps, or whose mate maps, to a reference
sequence is allocated to the cluster to which the reference
sequence belongs. Note that the same read can be allocated
to more than one cluster, for example if two reference
sequences lie next to each other in the genome. Each result-
ing cluster has a set of reference sequences, as determined
by CD-HIT, and a set of paired reads.

Each cluster is processed independently as follows (see Fig.
S2). To reduce assembly running time, the reads input to
the assembler are randomly downsampled to a maximum of
50� coverage by default. Since the true reference sequence
for this cluster is not yet known, the coverage is (over)esti-
mated using the length of the longest reference sequence for
the cluster. The reads are assembled using fermi-lite, which
is run using the options -l x -c y,10000 where x takes
the values 6, 15 and y takes the values 4, 17, 30, resulting in
six distinct assemblies. These parameters were chosen
because they were found to have the greatest effect on
assembly quality, with no benefits outside those ranges.

The assemblies are compared against all reference sequences
from the cluster using nucmer. The best within-cluster
nucmer match is identified by maximizing for the percent of
the reference sequence that is assembled. Ties are broken by
taking the highest percent identity, the largest value of -lfrom
minimap, and finally the largest value of -c from minimap.
Next, the contig subsequence from the best nucmer match is
compared against all reference sequences (across all clusters).
The best match is chosen using the same criteria as for the
within-cluster best match, and the corresponding reference
sequence is chosen to be the closest reference sequence for this
cluster. If the closest reference sequence does not belong to the
cluster, then no further analysis is performed and the cluster is
not counted as present.

Next, the assembly is compared to the closest reference
sequence using the MUMmer suite of programs. The contigs
are aligned to the reference sequence using nucmer, then
SNPS and indels are identified between the sequences using
show-snps. This information is used to determine the over-
all success of the assembly, encoded into a bitwise flag (i.e. a
single integer). For example, the reference sequence could
have a complete match to a single contig. In the case where
the reference sequence is a gene, the matching position in the
contig is checked for any nonsense mutations. A complete
explanation of the flag and the various scenarios it encodes is
given in the Supplementary Material. The meaning of a flag N
can be determined using the command

ariba flag N

which will report a breakdown of the flag N.

All reads from the cluster are mapped to the contigs using
Bowtie2 and the read depth at each contig position and
SNPs are identified using SAMtools mpileup. Finally, the
alignment and variant information is used to generate a
summary for this sample, which includes the success of the
assembly, whether or not the sample has SNPs of interest
and the read depth at those SNPs.

The output of ariba run includes a report file containing
the summary information of each cluster, plus FASTA files
of the assemblies and detailed logging information.

Summarizing results

The results of multiple runs of ARIBA across different sam-
ples can be summarized by running

ariba summary out report.*.tsv

where report.*.tsv is a list of reports, each made with
a call to ariba run (Fig. S3). This command generates
input files to Phandango, and a CSV file that can be easily
viewed in spreadsheet applications. A key output for each
sample and cluster is an interpretation of the flag, which
summarises the matches to the reference sequence as one
of: no, partial, fragmented, interrupted, yes_nonunique, or
yes (Fig. S4).

Since Phandango requires a tree, ARIBA determines a cluster-
ing tree using the contents of its CSV file, which means that it
is generated from the calls involving the reference genes and
SNPs of interest. The distance between two samples is defined
as the number of columns in the CSV file that agree, and an
UPGMA tree is generated from the distance matrix using
DendroPy [21]. Users may wish to provide their own tree, cal-
culated using sequence-based methods.

Benchmarking

The performance of ARIBA was evaluated on three datasets,
to illustrate all aspects of its functionality and to benchmark
against other available methods. For these comparisons, we
focussed on command line tools that can use custom refer-
ence data, specifically SRST2 and KmerResistance.
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ARIBA version 2.8.1 was used, together with dependencies
Bowtie2 2.2.29, CD-HIT 4.6, MUMmer 3.1 and Python
packages dendropy 4.2.0, pyfastaq 3.15.0 (https://github.
com/sanger-pathogens/Fastaq), pymummer 0.10.2 (https://
github.com/sanger-pathogens/pymummer) and pysam
0.10.0 (https://github.com/pysam-developers/pysam). We
used KmerResistance checkout
041bc89b832cf6a3b7629d76b4dffb4c7428caab, and SRST2
0.2.0 with the recommended versions Bowtie2 2.1.0 and
SAMtools 0.1.18. All software was run with the default set-
tings on the Cloud Infrastructure for Microbial Bioinfor-
matics [22]. The complete terminal commands used are in
the Supplementary Material.

Enterococcus faecium

The first dataset comprises 41 isolates of the Gram-positive
bacterium Enterococcus faecium, for which the phenotypic
resistance to vancomycin is known for each sample [23]
(Table S1). This dataset, which was used to evaluate SRST2
in its initial publication [2], allowed validation of the accu-
racy of ARIBA when identifying the presence or absence of
genes of interest in each sample, testing the sensitivity of the
methods at varying depths of read coverage, and verifying
MLST calling by ARIBA and SRST2.

The ARG-ANNOT sequences included with SRST2 were
used as reference sequences for the benchmarking on this
dataset. However, the VanS-B gene, called ‘47__VanS-
B_Gly__VanS-B__1672 no;yes;VanS-B;Gly;AY655721;731–
2073;1343’ by SRST2, originally from ARG-ANNOT, was
missing its final nucleotide A. This was confirmed by com-
paring with the GenBank record AY655721. It would cause
ARIBA to exclude this sequence because the translation into
amino acids results in a sequence that does not end with a
stop codon. Therefore an ‘A’ was manually added to the end
of the sequence before running ARIBA.

In order to sample the E. faecium reads at a range of depths,
the reads were mapped to the reference genome CP006620
using Bowtie2 version 2.2.29 with the option -fast-

local. The depth for each sample was estimated across the
vanB gene CP006620.1476 by running SAMtools depth
with the options -a -r CP006620:774918–775946

and calculating the resulting mean depth. This was used as
an estimate for read depth and the reads were randomly
sampled accordingly (this is implemented in the supple-
mentary script make_read_subsets.pl) using fas-

taq to_random_subset with a different random seed
for each run, producing independent read subsets.

Shigella sonnei

The second dataset, published by Holt et al. [24], consists of
130 globally distributed genomes of Shigella sonnei
(Table S2), a Gram-negative bacterium that is a causative
agent of dysentery. It enabled a comparison of ARIBA,
SRST2, and KmerResistance with the manual method
employed in the study of Holt et al. [24], confirming the
accuracy of ARIBA for identifying known resistance SNPs
as well as the presence or absence of genes of interest.

The phenotypic resistance profile for a number of antimi-
crobials is known for each isolate, and is attributable to both
acquired resistance genes and SNPs. The three tools were
run on all 130 samples using the reference database from
CARD, version 1.1.2. To ensure our results were compara-
ble with those originally reported in Table S1 of Holt et al.
[24], we manually added those AMR genes listed on page 4
of their supplementary text not already included in the data-
base (Table S3). The AMR determinants originally reported
in the study of Holt et al. [24] were identified from mapping
data, and reported as the proportion of bases in the gene
sequence that were covered by reads from each isolate.
From these originally reported data, we used a cut-off of
>90% to indicate that a gene was present by their method.

In order to interpret the output of each tool as an AMR call,
the following rules were used, where all relevant genes are
listed in Table S4. A gene was counted as present by ARIBA
if ariba summary reported yes or yes_nonunique; present by
KmerResistance if it appeared in its output file; and present
by SRST2 if it was reported without a ‘?’.

The focus for the genes of interest for each AMR call were
those originally identified and reported in Holt et al. [24].
Given that the discovery and classification of AMR gene
variants is an ongoing process, an AMR gene was called as
present if it was either the originally identified gene in Holt
et al. [24], or in the same CD-HIT cluster. Genes conferring
resistance to antimicrobials not examined in the original
paper were excluded, as were genes conferring resistance to
the antimicrobials examined in the paper but falling in dif-
ferent CD-HIT clusters from the originally identified genes.
For each antimicrobial examined, an AMR call for a resis-
tant genotype was identified using the following rules.
Ampicillin (Amp): the presence of any gene from a set of
blaTEM, blaCTX-M and blaOXA genes. Chloramphenicol
(Cmp): the presence of any gene from a set of cat genes.
Nalidixic acid (Nal): the gyrA gene present, together with
one of the SNPs S83L, D87G, or D87Y. Streptomycin (Str):
both of the strA and strB genes, or one of the aadA genes.
Sulfonamides (Sul): any gene from the set of sul1 and sul2
genes. Tetracycline (Tet): both of tetA +tetR, or all of tetA,
C, D, R, where each of the two sets of tetA and tetR genes
are disjoint. Trimethoprim (Tmp): any one of a set of dfrA
or dhfr genes.

Neisseria gonorrhoeae

The third dataset comprises data from the sexually-trans-
mitted pathogen Neisseria gonorrhoeae, and was used to
showcase functionality of ARIBA that is not available in
other tools. The data are from five recent studies [25–29]
(Table S5), totalling 1517 samples, which include pheno-
typic data on resistance to four antimicrobials.

First, we created a custom database of gonococcal AMR
determinants (Table S6). Unique alleles for each gene from
the 2016 World Health Organization gonococcus reference
collection [30] and five available Neisseria meningitidis
complete genomes (H44 - GCA_000191445.1; MC58 -
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GCA_000008805.1; M01-240149 - GCA_000191465.1;
FAM18 - GCA_000009465.1; Z2491 - GCA_000009105.1)
were included in the database to allow identification of
recombinant genes.

The input files and commands run to create the N. gonor-
rhoeae ARIBA resistance database can be found in the sup-
plementary material. Briefly, for each gene all unique alleles
from the reference set were saved in multifasta files. For var-
iant-based resistances, alignments were created in Seaview
[31, 32] by translating to amino acid sequences, aligning
with Clustal [31] using default parameters and back trans-
lating to nucleotides. For each alignment, the aln2meta

function of ARIBA was used to produce the files required as
input to prepareref. These were combined, along with
the sequence files for presence/absence resistance gene files
and prepareref run to create the ARIBA database.

To create a phylogenetic tree of all isolates, sequencing reads
were aligned to the chromosome of N. gonorrhoeae FA1090
(GenBank accession number NC_002946) using BWA
MEM (version 0.7.12-r1039) [33] with the options to output
alignments for unpaired reads and to mark shorter split hits
as secondary. Optical duplicates were removed and indels
realigned using GATK [34] MarkDuplicates (version 1.127)
and indelRealigner (version 3.4–46), respectively, under
their default settings. Variant sites were identified from each
isolate using SAMtools (version 1.2) [20] mpileup with
options to report DP and DP4 statistics, count orphans,
adjust the mapping quality to 50 and increase the maximum
depth to 1000, including for indel calling, followed by
bcftools (version 1.2) call using a prior of 0.001, a ploidy of
1 and with the option to keep all alternate alleles at variant
sites. All sites were further filtered as described previously
[35] to produce a multiple sequence alignment. Repeats and
prophages in the FA1090 genome were masked from the
alignment before variable sites were identified with
snp_sites [36] and a neighbour-joining phylogenetic tree
created with RapidNJ [37]. Interactive visualization of the
phylogenetic tree and ARIBA summary data was carried out
in Phandango v0.8.5.

RESULTS

Enterococcus faecium

First, we used ARIBA and SRST2 to identify the sequence
type of each sample, using the E. faecium MLST scheme
[38] downloaded from PubMLST. Given that MLST loci are
chosen to be conserved, single-copy housekeeping genes,
identification of MLST should be a simple test for any gene-
detection method. As expected, we found that the results
generated by both tools were in complete agreement with
the known sequence types provided in Howden et al. [23]
(Table S1). However, the running time of ARIBA was
approximately one-fifth that of SRST2 (Table S7). See Page
et al. [39] for an in-depth comparison of current MLST
tools, including SRST2 and ARIBA.

Seventeen of the samples are known to have VanB-mediated
resistance to vancomycin (i.e. are vancomycin-resistant
enterococci, VRE) and the remaining 24 samples are known
to be susceptible (i.e. are vancomycin-susceptible entero-
cocci, VSE). The phenotypic resistance is due to the presence
of an operon comprising up to seven genes: vanB, vanH,
vanR, vanS, vanW, vanX and vanY [40]. However, vanW
and vanY are not required for resistance [40, 41]. ARIBA,
KmerResistance and SRST2 were evaluated using the antimi-
crobial resistance reference set of genes from SRST2, which
is based on ARG-ANNOT and includes all seven genes of
interest. All three tools made identical calls on the 17 VRE
samples in the vanB, vanH, vanR, vanS and vanX genes,
except for the choice of closest reference sequence in sample
SRR980582, which differed for the vanB gene (Table S1).
Several of the VSE samples contain low-level contamination
with VanA-B sequences [2]; here, in most cases only ARIBA
flagged the genes as partially present at a low read depth, and
SRST2 and KmerResistance did not make any prediction
about the presence of these genes (Table S1).

The remaining differences between the tools were in the iden-
tification of vanW and vanY in the VRE samples. The discrep-
ancies demonstrate the benefits of the detailed output of
ARIBA, when compared to the other tools. A complete
description of the differences between the output of the three
tools is given in the Supplementary Material (Section 3.2 and
Fig. S7). For example, in sample SRR980557, SRST2 reported
that the vanW gene was present but with one SNP (‘1snp’ in
the output), and KmerResistance also reported the gene as
present. ARIBA reported a SNP, but provided the further
information that it was a nonsense mutation and therefore the
gene is likely to be non-functional in that sample.

The effect of read depth was assessed on the 17 VRE samples
by uniformly sampling from the reads at depths ranging from
1 to 100� coverage of the vancomycin resistance operon. The
total number of calls for the five required resistance genes
made by each tool across all 17 samples is shown in Fig. 2, and
a per-gene breakdown is given in Fig. S5. KmerResistance
appears to be optimized for coverage below 5�, and its ability
to call the presence of genes decreases in the range 2�–18�
before recovering in the range 50–75�. The ability of ARIBA
and SRST2 to identify genes improves with read depth, with
ARIBA marginally outperforming SRST2. When partial
matches to genes are included, ARIBA and SRST2 become
more sensitive at lower coverages and ARIBA becomes more
sensitive than KmerResistance (Fig. S6).

Shigella sonnei

With seven antimicrobials and 130 isolates, there was a
potential for 910 AMR calls (identification of a gene, set of
genes, or SNP). In 546 cases, no calls were made by any
method (Table S2). 364 AMR calls were made by at least
one of the four methods; 60% (218/364) were found by all
four methods (Fig. 3 and Table S2). Overall, this results in
an agreement between the four methods of 84%: (218 calls
in agreement +546 non-calls in agreement)/(910 potential
AMR calls).
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For the 146 calls where there were discrepancies between
the methods, we observed some general trends explaining
most of the discordance. First, neither KmerResistance nor
SRST2 identify specific SNPs conferring resistance, whereas
this is possible with ARIBA and the method of Holt et al.
[24]. SNPs in the gyrA gene, which cause resistance to quin-
olone antimicrobials, were found by both ARIBA and the
manual method of Holt et al. in 22 isolates. Second, there
were 20 cases where a resistance gene was called by Kmer-
Resistance, but not by any other method. Upon further
investigation, KmerResistance reported these genes at a low

coverage (1.4–4.9�). Third, although KmerResistance
appears to be the best at detecting genes present at very low
coverage, it made fewer calls of genes at higher coverage
than ARIBA and SRST2 (Fig. S8). For example, in isolate
ERR028689 dfrA1 is found at 31� coverage by ARIBA and
at 37� by SRST2, but is not reported by KmerResistance.
When partial matches are allowed by SRST2 and ARIBA,
there are no calls made only by KmerResistance (Fig. S9).
However, less stringency could result in false-positive calls.
A full report of the calls made by each method for each anti-
microbial and isolate examined is in Table S8.

There were only two cases where ARIBA did not match any

other method. These involved either differences in identify-

ing SNPs, or a large insertion into an AMR gene. In the first,

ARIBA differed from the results reported in Holt et al. [24]

for samples ERR028676 and ERR028677 when identifying

SNPs in the gyrA gene that confer resistance to quinolone

drugs. ARIBA was confirmed to be correctly reporting the

SNPs in each sample by analysing the mapped reads, as

described in Supplementary Material.

The second case relates to streptomycin resistance, one
mechanism for which requires the presence of both the strA
and strB genes. Sample ERR024606 has an insertion into the
AMR gene strA, which renders it non-functional. The strA

0

20

40

60

80

0 25 50 75 100

Mean read depth

N
u
m

b
e
r 

o
f 
c
al

ls Tool

ARIBA

KmerResistance

SRST2

Fig. 2. Effect of read depth on the number of gene calls for all five

van genes in the 17 vancomycin-resistant E. faecium samples.

ARIBA

0

100

200

300

S
iz

e
 o

f 
in

te
rs

e
c
tio

n

400

500

546

218

56

26 20 15 14 5 4 2 1 1 1 1

KmerResistence

SRST2

Holt 2012

Fig. 3. Concordance between AMR calling methods on the S. sonnei data. A coloured dot indicates which methods were in agreement.

For example, column 3 shows that there were 56 samples where ARIBA, SRST2 and Holt et al. [24] (Holt 2012) were in agreement in

predicting the presence or absence of AMR. The first column illustrates where no resistance mechanisms were predicted.

Hunt et al., Microbial Genomics 2017;3

7



gene was called as present by SRST2 with high confidence
and a depth of 150�, and at 179� by KmerResistance, and
at 100% coverage by the method of Holt et al. [24]. How-
ever, ARIBA correctly characterized strA as not functionally
present as it did not assemble into a single contig; this was
manually confirmed to be due to the insertion of dfrA14
into the middle of strA (Fig. S10), similar to that described
previously [42]. We found a second instance of an insertion
disrupting an AMR gene, in this case strB (Fig. S11) in iso-
late ERR028673, and again ARIBA made the correct call.
We note that KmerResistance also made the correct AMR
call for streptomycin for this isolate, but only because
although it called strB, it did not call strA (called at 80� and
101� by ARIBA and SRST2, respectively).

Neisseria gonorrhoeae

The sexually-transmitted pathogen N. gonorrhoeae is under
strict public health surveillance because isolates resistant to
the first-line antimicrobials, azithromycin (AZM) and the
extended spectrum cephalosporins (ESCs; i.e. cefixime and

ceftriaxone) have been reported worldwide. Here, we illus-
trate some of the extended features of ARIBA, including the
creation and use of customized AMR databases, identifica-
tion of resistance mutations (SNPs and deletions) in coding
and non-coding regions and identification of heterozygous
resistance mutations in multicopy rRNAs. We note that this
example is intended to be for illustrative purposes only, not
an in-depth analysis of gonococcal AMR determinants.

For the purposes of this example, we concentrate on AZM

resistance and associated mutations in the 23S rRNA and
the mtrR gene, which encodes a repressor to the mtr (multi-
ple transferable resistance) efflux system. Our database
includes two 23S mutations, A2045G (A2059G Escherichia

coli numbering) and C2597T (C2611T Escherichia coli num-
bering), which are linked to high-level [43] and low-level
[44] AZM resistance, respectively. For mtrR, both a G45D

substitution and interruption of the gene have been linked
to increased efflux leading to reduced susceptibility to mul-
tiple antimicrobials.
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Visualization of the ARIBA results in Phandango allows
patterns of the presence and absence of variants to be
viewed against a tree of isolates. ARIBA can create a den-
drogram of isolates based on the identified resistance var-
iants, so that when visualized in Phandango, isolates are
clustered by shared resistance-determinant profiles. Alter-
natively, a phylogenetic tree based on SNPs in the core
genome of the isolates can be provided to Phandango, as in
Fig. S12, making it possible to visualize interactively the dis-
tribution of resistance mechanisms across the pathogen
population. Based on the occurrences of 23S and mtrR var-
iants on independent branches within the phylogenetic tree,
it is clear that the variants in our database have emerged
multiple times in the gonococcal population. 23S-mediated
resistance, in particular, has often emerged but failed to
spread, suggesting it may be associated with a fitness cost.

Next, we explored the distribution of the minimum inhibi-
tory concentration (MIC) for AZM in isolates with all
AZM-related genetic resistance determinants as identified
from our database (Fig. S13) using the ‘micplot’ function of
ARIBA. This function outputs publication-quality images
along with pairwise Mann-Whitney U Test P-values and
effect sizes. Although, as expected, the 23S mutations in our
database show clear evidence of association with resistance,
the results for the mtrR variants are less clear-cut, being
found in both resistant and sensitive isolates. Visualizing
MICs of combinations of resistance determinants allows
improved understanding of causal versus linked AMR
determinants, and of combinations of determinants which
may produce a cumulative effect. By default, ARIBA micplot
draws all observed combinations of variants found by
ARIBA against user-provided MIC data, so that linked and
combinatorial determinants are easier to identify. Fig. 4

shows that when separated from linked 23S mutations, the
45D substitution or interruption of mtrR alone showed no
increase in MIC relative to isolates without a proposed resis-
tance determinant, consistent with other studies [25].

Although most of the isolates with the 23S mutations exhib-
ited MICs above the 2 µgml�1 breakpoint, some would be
identified as susceptible if this breakpoint was strictly
applied. N. gonorrhoeae usually carries four copies of the
ribosomal operon. The C2597T mutation can occur in any
number of the 23S copies, with increasing number of copies
of the mutated allele having been previously associated with
increasing MIC [28, 45]. ARIBA allows the detection of
such heterozygous mutations, which can be important for
understanding genotype–phenotype relationships. Fig. S14
shows how excluding isolates for which the 23S mutations
are heterozygous alters the plots in Fig. 4, reducing the
number of isolates falling below the 2 µgml�1 breakpoint.
Fig. 5 shows the percentage of reads (used here as a proxy
for the number of gene copies) carrying the mutation, as
reported by ARIBA, and its correlation with AZM MIC,
confirming that increasing copies of the mutation are corre-
lated with increased phenotypic resistance in this dataset.
We should note that other AZM resistance mechanisms
were not taken into account in this analysis, which is
intended for illustrating the features of ARIBA rather than
as a detailed analysis of 23S mutations.

DISCUSSION

Increasing antimicrobial resistance threatens to produce
untreatable infections, with catastrophic consequences for
public health. While new antimicrobials must be developed,
we also need to use our current antimicrobials effectively,
using those that are appropriate for the resistances and
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sensitivities of the infection to be treated. One approach to
this will be to use rapid genomics-based approaches to pre-
dict resistance, and this in turn will rely on fast, accurate
and automatable software tools. Here we have developed
and implemented a new tool, ARIBA, that not only outper-
forms existing tools at identifying AMR genes, but also
identifies and classifies variants involved in AMR. In addi-
tion to supporting common AMR databases, ARIBA was
developed to be easily applied with any input reference data.
This means that it could be used to identify any sequences
of interest, not just those involved in AMR. The use of local
assemblies means that ARIBA can determine effectively
whether or not an isolate possesses a copy of a gene that is
functional or non-functional, unlike other tools, which do
not perform this depth of analysis. Further, as showcased on
the N. gonorrhoeae data, ARIBA reports the presence of var-
iants, interprets their consequences, and identifies the pres-
ence of a variant that is known to cause AMR.

ARIBA is only as good as the quality of the input reference
database, and these databases will need to be independently
validated, especially if they are intended for clinical use. We
note the method assumes that a sample has one gene per
reference cluster produced by CD-HIT, which can in rare
cases cause undesired results. For example, only one match
within a cluster can be chosen, even if there is really more
than one sequence from that cluster in a sample. For this
reason, we do not recommend using ARIBA with metage-
nomic data. The method is applicable to paired sequencing
reads of high enough quality to produce accurate local
assemblies, including, but not limited to Illumina. Future
work would be required to adapt the method to use new
long-read technologies such as Oxford Nanopore or Pacific
Biosciences, however this would require the use of different
assembly methods.

In conclusion, we have developed a new tool, ARIBA, that
identifies AMR determinants directly from paired sequenc-
ing reads, and have demonstrated a number of ways in
which it improves upon existing tools: 1) verifies complete-
ness of acquired resistance genes; 2) identifies known causa-
tive resistance SNPs; 3) allows exploration of the association
of AMR determinants with user-provided MIC data; 4)
identifies SNP frequency in multicopy genes, which has
been traditionally difficult to resolve due to the complexities
of de novo assembly; and 5) generally requires less time and
computational resources. Thus, the novel approach of map-
ping followed by targeted assembly of each reference
sequence is fast, efficient and accurate when compared to
current methods. Moreover, ARIBA reports significantly
more details than existing tools, particularly variant calls,
enabling a deeper understanding of the resistance associated
with each isolate.
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