
Arid and Humid Phases in Southern Spain during the Last 4000 Years: The Zoñar 

Lake Record, Córdoba. 

 

Celia Martín-Puertas1, Blas L. Valero-Garcés2, M. Pilar Mata1, Penélope González-

Sampériz2, Roberto Bao3, Ana Moreno2,4 and Vania Stefanova4 

 

1Department of Earth Sciences. University of Cádiz. CASEM, E-11510 Cádiz, Spain. 

2Pyrenean Institute of Ecology-CSIC, Apdo 202, E-50080 Zaragoza, Spain.  

3School of Sciences. University of A Coruña, Campus Zapateira E-15071 A Coruña, 

Spain. 

4Limnological Research Center, University of Minnesota, Minneapolis, MN-55455, 

USA.  

 

e-mail: celia.martin@uca.es 

Telephone: +34 956 016596 

Fax: +34 956 016195 

 

 
 
 
 
 
 
 
 
 
 
 
 

 1

mailto:celia.martin@uca.es


Abstract 

 A multiproxy study of sediments cores from Zoñar Lake (37º29’00’’N, 4º41’22’’ 

W, 300 m a.s.l.) supported by 11 14C AMS dates provides the first high-resolution 

centennial-scale reconstruction of past humidity changes in southern Spain during the last 

4000 years. Arid periods occurred prior to 2.9 cal. kyr BP and during 1.3-0.6 cal. kyr BP 

(Medieval Climate Anomaly). The most humid period occurred during 2.6-1.6 cal. kyr 

BP encompassing the late Iron Age-Iberian and Roman epochs. Two humid periods of 

lower intensity occurred between 0.8 – 0.6 cal kyr BP (1200 – 1400 AD) and about 400 

cal. yr BP (around 1600 AD) coinciding with the onset of the Little Ice Age. Humid 

conditions are synchronous with a decline in solar output and seem to correspond to 

atmospheric patterns similar to negative NAO phases. Arid conditions show better 

correlation with northern Africa climate evolution suggesting a possible link to 

subtropical dynamics. The geographic location of Zoñar Lake and the robust chronology 

provides an opportunity to improve our understanding of the climate evolution in mid 

latitudes during the Late Holocene and to evaluate subtropical and high latitude factors in 

Mediterranean climate evolution.   

 

Keywords: Mediterranean climate, lacustrine sediments, humid periods, NAO, Late 

Holocene. 
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(A) Introduction 

The Mediterranean region is very sensitive to global climatic changes, as has been 

shown for short (decadal) and long (millennial) time scales (Giralt et al., 1999; Rodrigo 

et al., 1999; Larrasoaña, 2003; Gil García et al., 2007). Mediterranean climate is 

controlled by the descending branch of the Hadley circulation in summer, and by the 

dominance of Westerlies in winter (Rodwell and Hoskins, 1996, 2001), and 

consequently it responds to changes in global atmospheric patterns.  

Effective moisture shifts in the Mediterranean region have had a strong impact on 

human societies and the environment during recent millennia (Zorita et al., 1992; Jones 

et al., 1997; Rodrigo et al., 2000). The paleoclimate evolution during the late Holocene 

has been reconstructed in northern Spain on the basis of the mercury content in a peat 

bog (Martínez-Cortizas et al., 1999), multiproxy studies in Sanabria Lake sediment 

cores (Luque and Juliá, 2002), pollen records from the Ría de Vigo (Desprat et al., 

2003), studies on the Galician continental shelf (González-Alvarez et al., 2005), and 

multiproxy studies in Estanya Lake (Riera et al., 2004 and Morellón et al., 2007) and 

Las Tablas de Daimiel (Gil García et al., 2007) among others studies. In southern Spain, 

changes in humidity and regional vegetation during the Holocene have been described 

at millennial scale: Padul, Granada (Pons & Reille, 1996); Salines, Alicante (Giralt et 

al., 1999); Villaverde, Ciudad Real (Carrión et al., 2001); Laguna de Medina, Cádiz 

(Reed et al., 2001); Siles Lake, Jaén (Carrión., 2002); Doñana National Park, Huelva 

(Sousa and García-Murillo, 2003), and Archidona, Málaga (Luque et al., 2004). 

However, these studies do not attain enough temporal resolution to describe short and 

rapid climate events during the late Holocene. Thus, this study based on 

sedimentological, mineralogical, geochemical and biological proxies from a series of 

sediment cores from Lake Zoñar (Córdoba province, Andalucia) provides the first high-
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resolution palaeohydrological reconstruction for the last 4000 years B.P. in southern 

Spain. 

 

(A) Site Description 

Zoñar Lake (37º29’00’’N, 4º41’22’’ W, 300 m a.s.l.) is the deepest (15 m) and 

largest (37 ha) lake in the Southern Córdoba Natural Reserve (Córdoba province, 

Andalucía).  The area is located in the Guadalquivir River Basin, characterized by a 

semi-humid Mediterranean climate with average annual temperature of 16.1 °C, and 

about 530 mm annual rainfall, although with high interannual variability during the last 

50 years of records (300 – 1100 mm)(Enadinsa, 1989; Valero-Garcés et al., 2006). The 

bedrock consists of Triassic formations (carbonates, mudstones, evaporites and ophites), 

and Miocene marine formations (IGME, 1986). The origin of the lake basin is related to 

karstic and diapiric activity along fault structures (Moya, 1984, 1986; Sánchez et al., 

1992). Three main springs (Escobar, Zoñar and Eucaliptos), connected to Miocene and 

Quaternary alluvial aquifers, feed the lake (Enadimsa, 1989; Valero-Garcés et al., 2006) 

(Fig.1) and the only output is by evapotranspiration (1760 mm/yr) (Enadimsa, 1989). 

Zoñar Lake is monomictic with a thermocline at 4 m depth in summer and a mixed 

period in winter. Waters are saline (2.4 g/l), alkaline (pH 7.1-8.4) and dominated by Cl-, 

SO4
2- and Na+ (Valero-Garcés et al., 2006). Submerged vegetation is dominated by 

Najas marina and Zannichellia palustris, and a wide littoral area is colonized by 

Phragmites australis and Typha domingensis (Enadimsa, 1989). The regional vegetation 

is mainly characterized by sclerophyllous trees and shrubs such as Quercus ilex, Olea 

europaea sylvestris, Pistacia lentiscus, Ceratonia siliqua, Genista sp., Rosmarinus 

officinalis, Myrtus communis, Rhamnus alaternus or Cistaceae (Rivas-Martínez 1982) 

and by herbaceous areas and little patches of mesophytes in riparian formations (Alnus 

 4



glutinosa, Fraxinus angustifolia, Populus alba, Populus nigra, Ulmus minor, Salix sp., 

and Tamarix sp.). The landscape is strongly influenced by anthropogenic activities, and 

is dominated by cultivated olives.   

 

(A) Methods 

Four sediment cores were collected in 2004 with a Kullenberg piston corer in 

collaboration with the Limnological Research Center (University of Minnesota, USA). 

Before splitting the cores, magnetic susceptibility was measured by a Geotek® every 1 

cm. The sediment cores were split, imaged with a DMT Core Scanner and described and 

correlated by sedimentary facies. Two cores were selected and sampled: ZON04-1B 

(600 cm long) and ZON04-2A (170 cm long) (Fig.2). The first one was sampled every 2 

cm for total organic carbon (TOC), total inorganic carbon (TIC), and total sulfur (TS), 

every 4cm for analysis of total nitrogen (TN) and biogenic silica (BGS), every 5 cm for 

mineralogy and every 20 cm for biological proxies (ostracods and diatoms); ZON04-2A 

was sampled every 2 cm for TOC, TIC and TS, and every 5 cm for mineralogy. The 

sample thickness was 1cm except for ostracod sampling (2cm).  

Sedimentary facies were defined by visual description and microscopic observations 

following LRC procedures (Schnurrenberger et al., 2003) and by mineralogical and 

chemical compositions. The TC, TOC and TS contents were determined by a LECO 

elemental analyser and TN by a VARIO MAX CN elemental analyzer. Mineralogy was 

characterized by X ray-powder diffraction (XRD) with a Bruker D8 advance and 

scanning electron microscopy and EDS analyses with a FEI-Quanta ESEM. Semi 

quantitative mineral composition of samples was determined by the normalized 

reference intensity ratio (RIR) method of Chung (1974 a, b).  
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Light elements were measured in cores 1B, 1A and 1C with 5 mm resolution (for 

massive units) and 2 mm resolution (for laminated units) by an XRF core scanner at the 

University of Bremen, using 30 seconds count time, 10 kV X-ray voltage and an X-ray 

current of 1000 µA (massive units) and 500 µA (laminated units). The iron and sulphur 

contents are expressed as total counts.  

Pollen grains were extracted by the classic chemical method (Moore et al., 1991) 

and using Thoulet formula heavy liquid, modified according to Dupré (1992), for pollen 

concentration. The pollen sum is normally 300 but exceptionally as low as 275 

terrestrial grains per sample. Ostracods were separated with the procedure described by 

Forester (1988), and diatoms prepared following Renberg (1990). 

Fourteen samples (terrestrial and aquatic plant macrorests, charcoal, and bulk 

organic matter) from cores ZON04-1B and ZON04-2A were analyzed by AMS for 14C 

dating (Table I). Varves were counted in selected intervals based on the procedure 

described by Brauer and Casanova (2001).  

 

(A) Results 

(B) Chronology 

The age-depth model for the Zoñar record provides a robust chronology for the last 

4000 years based on nine AMS 14C dates from ZON04-1B core and one from ZON04-

2A core, and additional dates previously published (two AMS 14C dates from ZON01-

1A and 137Cs and 210Pb chronologies from ZON01-1B core; Valero-Garcés et al., 2006). 

(Table I; Fig. 3). AMS 14C-dates were calibrated with CALIB 5.1 software and the 

INTCAL04 curve (Reimer et al., 2004). The top of Unit 1 in core ZON04-1B does not 

correspond with the sediment-water interface because the upper sediments were 

disturbed during coring. However, sedimentary facies and TOC values allow a perfect 
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match between the upper part of ZON04-1B and the ZON01-1B and ZON04-1A cores, 

previously dated with 137Cs and 14C AMS chronologies (Valero-Garcés et al., 2006). 

The top unit 1 was deposited during the second part of the 20th century, as indicated by 

the AD 1963 137Cs peak (70-71 cm depth in ZON01-1B, and 60 cm depth in ZON04-

1B), and the “modern” age (104.49% modern carbon) of the sample at 60cm depth in 

core ZON04-1B. This modern age also indicates that there is no significant reservoir 

effect in Zoñar Lake. The 663 ± 23 cal. yr BP date (bulk organic matter sample) at 96 

cm is not consistent with the 137Cs chronology and it is rejected. Five bulk organic 

matter and charcoal dates show reversals not consistent with the chronological model 

and have also been rejected. Likely they represent reworked material transported from 

older lacustrine sediments during periods of increased floods in the basin, lower lake 

levels that exposed older lacustrine sediment or inwash of old soil carbon during periods 

of increased catchment erosion. Some transitions between sedimentary units are abrupt, 

but few erosive surfaces have been identified. Only at 170 cm core depth (transition 

between subunits 3B and 3A), the presence of an erosive surface suggests a hiatus at 

AD 1350, although it is likely of a short time span. The chronological model is based on 

linear interpolation between the dates. Varve counting in unit 6 also supports the AMS 

chronology. About 400 varves were counted between 392 cm (AMS date: 2153 ±57 cal 

yr BP) and 450 cm (onset of varves). Although we do not have an AMS date for the unit 

6 at 450 cm, the age of 2566 ±77 cal. yr BP at 472 cm (22 cm lower) is consistent with 

the inferred varved age (> 2567 cal yr BP). 

Sedimentation rate in the upper unit 1 is the highest (1.76 cm/yr) (Valero-Garcés et 

al., 2006). The rates are about 1-2 mm/yr for the laminated intervals and 2-3 mm/yr for 

the massive facies characterized by higher detrital composition.  

 

 7



(B) Sedimentology 

The 600 cm long core from the deepest area of Zoñar Lake (14.5 m water depth) is 

composed of four main sediment types: i) massive, brownish and grey carbonate mud 

and silt layers; ii) finely laminated layers composed of mm to cm thick laminae of four 

types: authigenic calcite, organics (mostly diatoms and algal remains), detrital 

(carbonates, quartz and clay minerals) and gypsum; not all the laminae occur in one 

particular facies; iii) cm-thick layers of gypsum; iv) massive facies with pedogenic 

textures at the base of the sequence. 

Nine sedimentary facies were identified after visual description, microscopic 

observations and sediment composition analyses (Fig.4, Table II). Facies 1-5 are similar 

to those described by Valero-Garcés et al., 2006 in a 170 cm long core (ZON01-1A) and 

have been identified and correlated in the new cores.  

Massive facies (facies 1 and 2) represent deposition during periods of higher 

detrital input into the lake and more littoral deposition, with oxic conditions at the water 

sediment interface and frequent bioturbation. Brown layers, with higher organic matter, 

diatom and ostracod content are indicative of relatively higher organic productivity in 

littoral environments.  

Laminated facies indicate depositional conditions with limited bottom 

bioturbation, usually caused by low oxygen content, and lower clastic input. 

Depositional conditions for laminated facies can occur in quite different lake settings: i) 

high lake level conducive to water stratification and dominance of an anoxic 

hypolimnion, as those described by Brauer (2004) in central European lakes; ii) low 

lake levels and saline conditions leading to development of algal/bacterial mats (Valero-

Garcés et al., 2001), iii) high organic productivity leading to eutrophication and 

consumption of oxygen (Kalff, 2002). To ascribe some paleodepth and paleosalinity 
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conditions to the laminated facies in the Zoñar record, we have used the following 

criteria: i) the presence of incipient algal/bacterial mat, dominance of benthic diatoms, 

and the occurrence of aragonite and gypsum laminae point to shallow depths and 

chemically concentrated waters; ii) the occurrence of finely laminated facies with a 

regular pattern of laminae, dominance of plancktonic diatoms, and absence of aragonite 

or gypsum suggest deeper depositional setting in less concentrated waters.  Facies 3 is 

interpreted as incipient benthic bacterial-algal mat (Valero-Garcés et al., 2006). The 

occurrence of the highest abundance of benthic diatoms and the absence of ostracods 

(see below) suggest high salinity and anoxic bottom sediments. Facies 4 shows five 

different types of laminae (Table  II) but the dominance of intercalated algal mat 

laminae and the high content in benthic diatoms also support deposition in a brackish 

setting. Facies 5 and 7 are interpreted as annually laminated sediments (varves) 

deposited in the anoxic hypolimnion during periods of higher lake level. These varves 

are similar to those described by Brauer (2004) in meromictic, relatively deep lakes. 

They contain three layers: i) calcite layer precipitated in spring, ii) organic matter 

deposited in summer and iii) detrital layer in winter. The AMS 14C chronology (436 

years) and the varve counting (433 varves) support the annual nature of this lamination. 

Laminated gypsum facies (facies 6) indicate higher salinity, likely a result of chemically 

concentrated waters and decreasing lake levels (Arenas et al., 1999; Anselmetti et al., 

2006; Möller et al., 2007).  

Massive facies with edaphic textures (facies 8 and 9) at the base of both littoral 

(ZON04-2A) and off-shore cores represent lacustrine deposition and subsequent 

subaerial exposure, colonization by terrestrial vegetation, and development of incipient 

soils. Aragonite would precipitate during periods of an ephemeral brackish lake (facies 

8).  
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Figure 4 shows sedimentary facies and the chemical and mineralogical 

composition of core ZON04-1B. Higher magnetic susceptibility values and quartz and 

iron values occur in the more massive, clastic facies (Units 8 and 1 and several 

intercalated thin layers). The sulphur curve parallels that for gypsum, since sulphides 

are relatively low (only traces at some levels), and mark two intervals of increased 

water salinity. The occurrence of Artemia salina faecal pellets and the association of 

gypsum and aragonite in unit 4, underlines the saline nature of the depositional setting. 

Eight stratigraphic units, described in detail in core ZON04-1B (Fig.4), are 

correlated across the Zoñar Lake basin (Fig.2 and 4). Sedimentary units from cores 

located in the deeper areas (SW) show similar thickness for the laminated units and 

more variability for the massive to faintly laminated ones (Fig.2). The littoral core 

shows evidences of subaerial exposure and soil development below unit 2 (100 cm; 

about 390 cal. yr BP), suggesting that the lake did not flood the NE area of the basin 

until 400 yr ago.  

(B) Biological proxies 

(C) Ostracods 

Most of the samples are sterile, and those with ostracods have a low number of 

valves (< 10 valves per sample). The ostracod assemblage from the Zoñar record is 

characterized by six species: Eucypris mareotica (E. inflata), Plesiocypridopsis 

newtoni, Sarcypridopsis aculeata, Heterocypris salina, Ilyocypris cf. gibba and 

Candona cf. neglecta. These species suggest shallow, temporary lake environment, 

except Candona cf. neglecta which could live in deeper areas (Meisch, 2000), although 

there is evidence of this species in temporary water bodies (Roca et al., 2000). 

Ostracods are absent in unit 8. The presence of P. newtoni, Eucypris mareotica and 

Sarcypridopsis aculeata in unit 7 indicates an ephemeral lake, consistent with the 
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sedimentological evidence for periods of subaerial exposure and soil formation. 

Plesiocyprydopsis newtoni is the dominant species in the varved unit 6, suggesting that 

the lake was not very deep even during this period. Relatively high abundance of 

Eucypris mareotic and low abundance of Heterocypris salina in unit 4 indicates higher 

salinity and lower lake level conditions (Reed et al., 2001) corresponding to the 

occurrence of gypsum layers. Better ostracod preservation indicates deeper and fresher 

waters after the gypsum episode in unit 3. Shallow water species (Ilyocypris cf. gibba, 

Candona cf. neglecta and Plesiocypridopsis newtoni) and the ephemeral indicator 

P.newtoni (Meisch, 2000; Reed et al., 2001) occur at the top and bottom of unit 2. 

However, unit 2 is devoid of ostracods similarly to core ZON01-1A (Valero-Garcés et 

al., 2006). Anoxic bottom and higher chemical concentrations would be more 

favourable for bacterial mats could have impeded survival of benthic ostracoda. An 

oligosaline-mesosaline assemblage composed of Ilyocypris sp. and Plesiocypridopsis 

newtoni is dominant in unit 1.  

In summary, ostracod assemblages suggest relatively lower lake levels and higher 

chemical water concentrations in sedimentary units 7, 4 and 2, and relatively higher lake 

levels and less concentrated waters in units 1, 3 and 6 (Fig. 5). 

(C) Diatoms 

Diatom assemblages from the upper three units are described in detail in Valero- 

Garcés et al. (2006). Semiquantitative inspection of the diatom assemblages preserved 

in core ZON04-1B (Fig.5) shows that benthic diatoms constitute the dominant 

ecological group. Reworked marine taxa (mainly Thalassionema spp., among others) 

are also abundant in some levels, particularly in units 1 and 3 (core ZON01-1A, Valero-

Garcés et al., 2006) and at the base of units 4 and 6 (core ZON04-1B, Fig. 5) marking 

periods of increased erosion of the Miocene marine rocks in the watershed. Diatom 
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preservation in units 8 and 7 is poor. In Unit 6, although the majority of the diatoms are 

benthic, some layers are exclusively made up of planktonic taxa. This unit also shows 

the highest content of euplanktonic (Cyclotella spp.) and tychoplanktonic diatoms 

(Fragilaria spp.), with a net increase from the bottom of the unit (480 cm) to the 

gypsum layer (400 cm), a sharp decrease in the gypsum-rich interval, and a recovery 

afterwards up to Unit 5 (340 cm). The planktonic / periphytic ratio is higher at the 

bottom and top of unit 6 and the trend continues in Unit 5 (Fig. 5) suggesting that this 

interval represents the highest lake levels in Zoñar.  

The transition from Unit 5 to Unit 4 shows the dominance of benthic taxa (mainly 

Cocconeis spp., Navicula spp., Amphora spp. and Nitzschia spp.), underlining a 

shallowing trend that continues in Unit 4. Although benthic taxa with subdominant 

tychoplanktonic diatoms (Fragilaria spp.) dominate in Unit 3B, a progressive increase 

in the planktonic component occurs after the gypsum layers in unit 4 and continues in 

unit 3B. However, Subunit 3B correlates with diatom assemblage zone V (170-200cm 

core ZON01-1B) defined in Valero-Garcés et al. (2006) with more abundant 

euplanktonic Cyclotella meneghiniana and Fragilaria brevistriata. Subunit 3A groups 

diatom assemblage zones IV(150-170cm core ZON01-1B), III (150-110cm core 

ZON01-1B) and II (110-90 cm core ZON01-1B) (Valero-Garcés et al., 2006) showing: 

i) a slight increase in freshwater benthic diatoms (mainly Cocconeis neodiminuta, but 

also Amphora pediculus) (zone IV) interpreted as a decrease in lake level compared to 

unit 3B, ii) a dominance of oligosaline benthic Cocconeis neothumensis indicative of 

more saline conditions (zone III) and iii) an increase in the planktonic Cyclotella 

meneghiniana, suggesting an increase in lake level (zone II). After this period of 

relatively higher lake levels at the top of Unit 3, the transition to Unit 2 represents a 

substantial change in diatom assemblages, dominated by benthic forms, both freshwater 
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and saline (zone I-70-90cm core ZON01-1B). The mixture of freshwater and saline taxa 

points to short term large changes in salinity during deposition of Unit 2 (Valero-Garcés 

et al., 2006). Unit 1 shows low preservation and a high number of fragmented 

Thalassionemma spp., indicating an increase in erosion and the input of allochthonous 

diatoms from the Miocene marine rocks. 

Downcore variations in biogenic silica (BGS) record diatom content and past 

primary productivity of diatoms (Colman, 1995; Johnson, 2001). BGS content is low 

(between 2% and 4%) through the sediment sequence with only 2 major peaks (up to 12 

%) in the laminated facies of Units 6 and 2 (ca. 400 cm and 70 cm). Lake productivity is 

expected to be higher at those intervals, which are also characterized by higher TOC 

and lower C/N ratios (Meyers, 1999 and 2003). Due to the presence of reworked, 

marine diatoms, BGS curve cannot be used as an accurate estimate of biogenic diatom 

productivity. However, some increasing (decreasing) trends are coherent with the 

increase (decrease) in planktonic diatoms. For example, the top of unit 4, 3B and 3A 

show increasing BGS and more planktonic diatoms, and the transition from Unit 5 to 

Unit 4 shows decreasing BGS and more benthic diatoms.  

(C) Pollen 

Pollen assemblages are typical of Mediterranean landscapes dominated by Olea 

europaea, evergreen Quercus, Pistacia lentiscus and small patches of conifers, 

mesophytes and shrubs, with variable contribution of herbaceous taxa and aquatic plants 

associated with the lake basin. In this paper we only present the major pollen taxa to 

correlate the past hydrological changes in the lake inferred from other proxies (Fig. 5). 

The frequent subaerial exposure conditions inferred for unit 8 corresponds with the 

minimum arboreal pollen (AP) percentages, high values of steppe herbs as 

Cichorioideae and Chenopodiaceae, and minimum presence of aquatic taxa. The 
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significant increase in the AP components (Olea europaea, evegreen Quercus and the 

Mediterranean group) and the decrease in non-arboreal pollen (NAP), Cichorioideae 

and Chenopodiaceae, parallel the onset of more humid conditions in the transition from 

units 7 to 6. Arid conditions are suggested for deposition of unit 4 by an increase in 

NAP and Chenopodiaceae, and the presence of Ruppia as a dominant aquatic taxon, 

indicating brackish and shallower conditions. The increase in Myriophyllum up to 20% 

in unit 3B (230-170cm) marks the end of the arid conditions. The Olea curve reflects 

Olea europaea sylvestris pollen as natural component of the Mediterranean landscape 

and Olea cultivation. Several distinctive peaks are located in units 6 (up to 50 %), and 5 

(around 30%) and an increasing trend since unit 3 reflecting the historical expansion of 

olive tree cultivation. A decrease in Olea representation occurs in unit 4 and during the 

gypsum-rich interval of unit 6, both interpreted as arid periods. The large percentage of 

Olea during pre-Roman times is unexpected and may reflect two different formations: i) 

the regional Mediterranean vegetation composed of evergreen Quercus, Olea europaea 

sylvestris and Pistacia lentiscus as the main arboreal taxa, and ii) an early local use of 

the watershed by the Iberians (deliberate planting) due to the water availability in the 

springs surrounding the lake. 

 

(A) Discussion 

(B) Paleohydrological reconstruction 

A direct relationship between rainfall and lake level has been documented during 

the last decades in Zoñar Lake (Unpublished Andalusian Government data). Although 

lake level has been strongly affected by human use during the 19th and 20th centuries, 

short cores and monitoring data suggest that climate variability was a fundamental 

control of lake level in the past (Valero-Garcés et al., 2006). Integration of 
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sedimentological, geochemical and biological indicators allows a paleohydrological and 

paleoenvironmental reconstruction of Zoñar Lake during the last 4000 years.  

Dry period prior to 2900 cal. yr BP. From ~ 4000 to 2900 cal. yr B.P (unit 8) the 

Zoñar Lake frequently dried out and terrestrial vegetation colonized most of the basin as 

indicated by high percentages of NAP, steppe taxa and heliophytes (i.e. Cichorioideae 

and Chenopodiaceae). The onset of this dry period cannot be dated in Zoñar since the 

sediment core did not penetrate the compact layers of littoral sediments. There is ample 

evidence for an arid period of global scale between 3500 – 2500 cal yr BP (Mayewski et 

al, 2004). In Mediterranean areas a warm and dry period is associated with low lake 

levels from 4.5 to 2.8 kyr B.P. (Harrison et al., 1993 a, b; Issar, 2003; Sadori et al., 

2004), and it is also documented in Lake Tigalmammine, Middle Atlas of Morocco 

(Lamb et al., 1995). In the Iberian Peninsula, lower frequency of river floods occurred 

during the same age interval (Macklin et al., 2006), and many records show an increase 

in aridity during this period: Sobrestany, Girona (Parra, 1994), Navarrés, Valencia 

(Carrión and Dupré, 1996), Gulf of Cádiz, Almeria, Alicante and Gulf of Valencia (Goy 

et al., 1996), Cantabrian littoral (Zazo et al., 1996),  Lake Salines, Alicante (Roca and 

Juliá, 1997), Spanish Mediterranean coast (Jalut et al., 2000), Lake Siles, Jaén (Carrión 

2002), Las Tablas de Daimiel, Ciudad Real (Gil García et al., 2007), Estanya, Huesca 

(Morellón et al., 2007).  

From an archaeological point of view, the end of the Chalcolithic cultures in 

southern Spain (Salkield, 1987; Araus et al., 1997) coincides with this arid period, 

lasting until 2.8 cal. kyr BP in Zoñar. The collapse of the Argaric cultures in the SE 

region of Spain also occurred at around 3.5 kyr (Pozo et al., 2002 a,b; Carrión et al., 

2007). 
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The onset of the humid Period (2800 cal yr BP). The deeper SW basin in Zoñar 

Lake was permanently flooded after 2800 cal yr BP (unit 7) when a brackish, shallow 

lake established, and aragonite-bearing sediments were deposited. The decrease in 

Cichorioideae and NAP pollen content and the increase and better preservation of 

diatoms (Fig. 5) also indicate the transition from drier to wetter conditions. The onset of 

this major event in Zoñar coincides with a wetter period between 3000 and 2000 cal. yr 

BP in Europe (Girandi, 1989; Leira, 2005), and in the Mediterranean area (Roca and 

Juliá, 1997; Harrison et al., 1999; Sadori et al., 2004). Iron Age settlements in the 

Mediterranean area have been dated around this period (Araus et al., 1997). At a 

regional scale, the Tartessos culture flourished precisely between 2.9 and 2.6 cal. yr BP, 

when the rate of climate and hydrological change was larger. Interestingly, the Tartessos 

civilization collapse occurred at 2.5 kyr BP when conditions seem to have been more 

stable and humid from a climatic point of view in the Middle Guadalquivir valley from 

a climatic point of view. 

The Post Bronze – Iberian- Roman Humid Period. The occurrence of an overall 

more humid episode in the Gualdalquivir River Basin between 2.6 and 1.6 cal. ky B.P. 

encompasses the Post-Bronze, Iberian and Roman civilizations development in the area. 

The Zoñar record allows a precise dating of the onset of this period (2600 cal yr BP) 

and its structure. From 2600 to 1600 cal. yr B.P. (unit 6) two humid periods 

characterized by varve deposition occurred separated by one arid interval with gypsum 

deposition (Fig. 6). Well- preserved varves during the period 2600-2100 cal. yr B.P. 

correlate with high Olea and Mediterranean forest pollen percentages. During this 

period several Spanish rivers had more frequent floods (Macklin et al., 2006) and some 

lakes in northern Africa (Sidi Ali Lake, Lamb et al., 1999) show high lake level (Fig. 

6.). Gypsum deposition, the increase in Chenopodiaceae and the herbaceous component 
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(NAP) in Zoñar at 2100 – 1900 cal. yr B.P. (BC 250–-50), correlate with the abrupt 

decrease in flooding episodes at about 2350 - 2000 cal. yr B.P. (Macklin et al., 2006) 

and sharp lake level decrease in African lakes (Lamb et al., 1999) (Fig.6). A second 

varved deposition period at 1900-1600 cal. yr BP corresponds with an increased 

arboreal pollen and increased flooding episodes in Iberian rivers (Macklin et al., 2006). 

Deposition of the second varved stage in Zoñar corresponds with increased in arboreal 

pollen in the Tablas de Daimiel National Park (Gil García et al., 2007) from 2100 – 

1680 cal yr B.P. and climate improvement in NW Spain (Desprat et al., 2003).  

A moister period during the Roman Classical Period has been interpreted from 

archaeological, historical and proxy records in the Mediterranean (see revision by Reale 

and Dirmeyer, 2000) at around 2000 cal. yr B.P. Archaeological and geomorphological 

data from north eastern Spain show a link between slope accumulation in smooth 

hillsides with more vegetation and colder and moister climates during the Post-Bronze 

Stage around 2600–2100 cal. yr B.P. (Sopena, 1984; Gutierrez–Elorza and Peña Monné, 

1998; González-Sampériz and Sopena Vicién, 2002). It is also documented in Central 

and Northern Europe (van Geel et al., 1999): Sweden, Lake Igelsjön (Hammarlund et 

al., 2003), mid-Europe (Lake Petit Maclu, Jura Magny 2004), Spain, Poland and Great 

Britain (Macklin et al., 2006) and in Africa (Street-Perrott and Harrison 1984).  

The Medieval Climate Anomaly (1375 – 730 cal yr BP, 600 - 1200 AD). From 

1600 to 1350 cal. yr BP (375 – 600 AD, unit 5), the deposition of massive sediments, 

with higher clastic input, and the increase of reworked marine diatoms, suggest 

dominance of more littoral environments in Zoñar Lake and a progressive lake level 

decrease. Similarly, lower lake levels occurred in Europe (Magny, 2004 and Macklin et 

al., 2006) and Africa (Lake Turkana, Johnson et al., 1991) after the Roman period.  
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From 1350 to 730 yr BP (600 – 1200 AD) (unit 4) there are several lines of 

evidences pointing to drought episodes, e.g. precipitation of authigenic gypsum, 

presence of aragonite, and faecal pellets, dominance of benthic diatoms and highest 

values of Chenopodiaceae, the presence of Ruppia, and a decrease in Olea at the same 

time as in increase in Pistacia. This period represents a large hydrological change in 

Zoñar at about the same time as the Medieval Climate Anomaly (MWA) in northern 

Europe. Lower average annual precipitation during the MWA is recorded in Soreq Cave 

(Bar-Matthews et al., 1998a,b) and lower lake levels are inferred in central Italy 

(Dragoni, 1998; Issar, 2003) and northern Africa (Lamb et al., 1999) (Fig.6). In 

Northern Spain, evidence for lower lake levels and decreased floods during the 9th – 11th 

centuries occurred in the Iberian Range (La Cruz Lake, Juliá et al., 1998; Taravilla 

Lake, Valero-Garcés et al., in press), and the Pre-Pyrenean Range (Riera et al., 2004; 

Morellón et al., 2007). 

Post Medieval Climate Anomaly to the Little Ice Age: 1200 – 1650 AD. 

Unit 3 marks the onset of massive sediments deposition and an increase in 

sedimentation rate, likely related to agricultural practices (Olea rise) after the Christian 

conquest of the Guadalquivir River valley (13th century). A transition towards a colder 

and more humid climate has been identified in some Mediterranean areas from 1100 cal. 

yr B.P. until 400 cal. yr B.P. (Issar, 2003) and to an increase in large flood frequency 

during the early part of the Middle Ages (1100 – 700 yr cal. B.P.) (Benito et al., 1996). 

However, in Zoñar, the increase in Myriophyllum shows that more humid conditions 

after the MWA started a little earlier, around 750 cal. yr B.P. (AD 1200). This fits with 

the overall trend across the Mediterranean basin showing maximum wetness around AD 

1250–1400  (Lamb et al., 1999) overlapping with the second half of the European 

Medieval Warm Period (Mayewski et al, 2004; Roberts et al., 1994). 
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From AD 1350 to AD 1650, the disappearance of Myriophyllum and the diatom 

assemblages suggest a lower lake level and more concentrated waters (Valero-Garcés et 

al., 2006) and it could be associated to a low lake level period prior to 390 cal. yr BP 

(AD 1650) when only the deepest basin was flooded and the core ZON-04-2A site (8 m 

water depth, NE area) was emerged. 

The 17
th

 – 19th
th

 century: the Little Ice Age. The Little Ice Age is a period with 

large climate variability and a strong human impact in Zoñar Lake. The onset is 

noticeable in the upper part of unit 3A with the deposition of facies 1, and dominance of 

planktonic Cyclotella meneghiniana (Diatom assemblage zone II, Valero-Garcés et al., 

2006), and relatively higher values of Myriopyllum indicating that lake levels increased 

at around AD 1650 (Fig. 6). The NE part of the basin would be flooded at this time. 

Conditions during deposition of the lower part of Unit 2 (laminated facies, subunit 2E 

and 2D) are still suggestive of similar, relatively high lake level. The main limnological 

change occurred at the base of subunit 2C with deposition of laminated sediments 

containing algal/bacterial mats, the disappearance of Myriophyllum and the dominance 

of benthic, more saline forms in the diatom assemblages. During the late 19th century at 

the beginning of the 20th century (unit 2C, 2B and 2A), Zoñar lake was characterized by 

low clastic input, low turbidity and a relatively lower lake level (Valero-Garcés et al., 

2006), although it was higher than during the Medieval Climate Anomaly when most of 

the NE shallower basin was exposed. According with this interpretation, the Little Ice 

Age seems to have a two-fold structure: a relatively more humid period (17th – 18th 

centuries) and a relatively more arid period, but with high climatic variability (19th 

century). 

The 20
th

 century. Human impact became the main driver of limnological change in 

the lake during the 20th century. Increased farming activities alongside, introduction of 
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machinery for agriculture activities caused very high soil erosion, increased turbidity 

and deposition of massive or faintly laminated sediments (subunit 1C) after 1950s. 

Faintly laminated sediments of subunit 1B could indicate lower lake levels and 

increased salinity during the 1960s – 1970s caused by decreased rainfall and also the 

use of water of the spring for human consumption. Lake level increased after 1982 

when the lake was declared a natural reserve and less water was diverted for agricultural 

purposes and human consumption. Figure 6 shows the general trend of higher lake 

levels during the 20th century and not these smaller hydrological fluctuations.  

(B) Paleoclimatic implications 

The complex geography of the Iberian Peninsula and its location between the 

Atlantic and the Mediterranean, at the southern limit of the Atlantic fronts, and with 

influences from mid-latitude and subtropical climates explain the modern climate 

variability and the large temperature and precipitation gradients (Rodriguez-Puebla et 

al. 1998). Most of the precipitation is related to Atlantic fronts, although meso-scale 

convective systems produce rainfall in the Mediterranean regions (García-Herrera et al. 

2005). During the Late Holocene, wetter conditions in the Iberian Peninsula may result 

from: i) a southward displacement of the westerlies (for example during periods of 

predominant negative phase of the North Atlantic Oscillation) leading to an increase in 

winter precipitation; ii) a local monsoon–cyclonic rainfall and storms consequence of 

depressions over the Mediterranean in summer (Harrison et al., 1992; Kutzbach et al., 

1993; Harrison et al. 1996).   

The main hydrological transitions in the Zoñar Lake record are synchronous with 

the major periods of Holocene rapid climate change (RCC) described by Mayewski et 

al. (2004). Most of these events during the Late Holocene (4200–3800, 3500–2500, 

1200–1000 cal. yr B.P.) are characterized by polar cooling, tropical aridity and major 
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changes in the atmospheric circulation, although the most recent one (600–150 cal. yr 

B.P.) showed increased humidity in some parts of the tropics.  

In Zoñar Lake, the 3500–2500 and 600–150 cal. yr B.P. RCC intervals shows 

transitions to humid conditions while the 4200–3800 and 1200–1000 cal. yr B.P. RCC 

intervals correspond to a decrease in humidity. The 3500–2500 cal. yr B.P. RCC 

interval corresponds to the most significant transition in the Zoñar record when the lake 

basin was flooded at 2800 cal. yr B.P.. At a Northern Hemispheric scale, the onset of 

this humid period corresponds with a North–Atlantic iceberg-rafting event (Bond et al., 

1997), glacier advances in the Alps and retreat in west central Europe (Holzhauser et al., 

2005), strengthened westerlies over the North Atlantic and Siberia (Meeker and 

Mayewski, 2002), and cooling over the NE Mediterranean (Rohling et al., 2002). Arid 

conditions predominated in tropical Africa during this interval. Wetter conditions 

occurred later in northern Africa (around 2500 yr B.P.) than in Europe, but the highest 

lake levels coincides with the maximum lake level in Zoñar (Lamb et al., 1995; Lamb et 

al., 1999) (Fig.6). 

The 600–150 cal. yr B.P. RCC period coincides with glaciers advance in the Alps, 

westerlies strengthened over North Atlantic and Siberia, the Greenland’s Norse colonies 

collapse and humid conditions over Equatorial Africa (Verschuren et al., 2000) and in 

Eastern Mediterranean (Soreq Cave, Bar-Mattews et al., 1999). 

The Zoñar Lake response to both RCCs is similar (increased humidity). A 

maximum 14C and 10Be records during the 3500 – 2500 cal. yr BP and the 600 cal yr BP 

suggest that a decline in solar output is a plausible forcing for these periods of rapid 

climate change (Mayewski et al., 2004). On the other hand two of the three main arid 

periods in Zoñar Lake coincide with “cool poles, dry tropics” RCCs. The Roman 
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“warm” period identified in Zoñar and in other Mediterranean areas did not have a 

global signal as an RCC. 

 The Zoñar and the Azores records (Björck et al., 2006) (Fig.6) show similar 

hydrological response for the Late Holocene. In the Azores island records, main 

cooler/drier periods occur at 600, 1400-1500, 2600-3000 and 3300 cal yr BP, while 

more humid phases occur 300-400, 900-1000, 2000-2400, 3100-3200, 3800-4000 and 

4700-5000 cal yr BP (Björck et al., 2006). The humid Post Bronze- Iberian – Roman 

Period in Zoñar is one of the most humid periods in Azores, followed by a period of 

generally lower precipitation that includes the post Roman till the Medieval Climate 

Anomaly in Zoñar. The humid phase at 300-400 cal yr BP  (AD 1540 – 1700) in Azores 

corresponds to the flooding of the Zoñar Basin in the 16th century.  

On the other hand, comparison with an eastern Mediterranean high-resolution 

record for the last 1700 years (Jones et al., 2006) shows similarities in the timing of the 

main abrupt changes (AD 530 and AD 1400) but a different response: the transition at 

AD 530 in Turkey towards a wetter climate corresponds with the transition in unit 5 

towards more arid conditions in Zoñar, and the period after AD 1400 is more humid in 

Turkey and generally more arid in Zoñar. This antiphase pattern between eastern and 

western Mediterranean records has been explained by atmospheric teleconnections 

between the North Sea and the Caspian Sea (Jones et al., 2006).  

Mediterranean climate reconstruction from sedimentary record and historical 

documents (Rodrigo et al., 1999, 2000; Grove, 2001; Sousa and García-Murillo, 2003), 

and climate reconstructions for the last millennium in northern Europe (Visbeck et al., 

2001; Björck et al., 2006; Gourirand et al. 2007) and in the Iberian Peninsula (Zorita.et 

al 1992; Muñoz-Díaz and Rodrigo, 2003, Trigo et al 2004) demonstrate that the North 

Atlantic Oscillation (NAO) has a strong influence in winter precipitation over the 
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Iberian Peninsula. During positive NAO phases, warmer than normal temperatures 

occur in central and northern Europe (Wibig and Glowicki, 2002), wet conditions 

dominate over western Scandinavia and Scotland (Knippertz et al., 2003), and drier 

conditions in southwestern Europe (Iberian Peninsula) and northwestern Africa 

(Marshall et al., 2001); opposite scenarios occur for negative NAO phases. 

 Comparison between Mediterranean and northern European records show an 

opposite response during some intervals of RCCs, particularly the LIA and the MCA 

suggesting a link to the North Atlantic Oscillation. Annually laminated records from 

Lake Nautajärvi (Ojala and Alenius, 2005) (Fig.6) and Lake Korttajärvi (Tiljander et al., 

2003) in Finland show low catchment erosion caused by milder and wetter winter 

(+NAO phases) during the MCA, which is characterized by drier climate in Zoñar. 

From about 1440 AD, Nautajärvi record indicates a strong human impact, although 

more severe winters conditions (-NAO phases) conducive to increased detrital input 

dominate (Ojala and Alenius, 2005). Conversely, although climate variability is large in 

southern Spain during the LIA, there is an increase in rainfall after AD 1600 and several 

wet phases during the LIA (19th century) that could correspond to periods of more 

frequent –NAO phases over southern Europe. The most humid period in Zoñar (2600 – 

1600 cal yr BP) corresponds to another period of increased mineral matter in the 

Finland lakes between BC 1500 to AD 500 (Ojala and Alenius, 2005). The long term 

changes in precipitation in Mediterranean and Azores latitudes may be related to 

changes in NAO phasing and comparable to millennial trends generated by the 

AO/NAO (Rimbu et al., 2004). 

The Zoñar record supports the hypothesis that the timing of the main humid 

periods during the Holocene follows solar insolation, however, the occurrence of the 

arid periods does not follow the same pattern. Possible causes may be the northward 
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migration of the associated winter rain belt, the strengthening of the Azores high during 

dominant NAO phases and/or decreased SST and evaporation due to disturbances in the 

thermohaline circulation of the North Atlantic (Björck et al., 2006). 

   

(A) Conclusions 

Paleoclimate reconstruction for Zoñar Lake shows the rapid responsiveness of 

this lake system to the Mediterranean climate evolution during the last 4000 years. 

Hydrological reconstruction, based on sedimentological, geochemical and biological 

proxies, from Zoñar Lake record allow to define four main paleohydrological episodes 

during the Late Holocene: i) an arid period prior to 2.8 cal. kyr BP, ii) a humid period 

from 2.6-1.6 cal. kyr BP that corresponds to the Late Iron–Iberian and Roman culture 

development in the region and includes a 300 yr arid stage (2.1 -1.8 cal kyr BP), iii) an 

arid period 1.3-0.6 cal. ky BP synchronous to the Medieval Climate Anomaly and iv) a 

humid period around 400 cal. yr BP- AD 1550 coinciding with the onset of the Little Ice 

Age. In addition, the Zoñar record also supports a connection between humidity 

changes in the lake, rapid climate changes (RCCs) during the Holocene and NAO 

dynamics.  
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Table I. AMS data for cores ZON-04-1B, ZON-04-2A and ZON-01-1A. Dates marked 

with * were not included in the age model. 

Depth (cm) Dated material  Lab. number 14C age 
yr BP 

Calibrated age 
yr BP 

Core ZON04-1B 
60 

 
bulk organic matter 

 
Poz-18438 

 
modern 

 
modern 

96 bulk organic matter Poz-16053 695±30* 665±23* 
175 bulk organic matter Poz-16013 1025±30* 945±39* 
229 bulk organic matter Poz-18459 845±30 740±54 
242 Aquatic seeds GRA-28167 825±40 735±61 
280 bulk organic matter Poz- 16014 1350±30 1275±38 
342 Aquatic seeds Poz-15969 2245±30* 2210±57* 
364 bulk organic matter Poz-18507 1865±30 1795±76 
394 bulk organic matter Poz-18460 2165±30 2155±56 
452 bulk organic matter Poz-16015 2560±30* 2725±28* 
472 bulk organic matter Poz-18508 2525±30 2565±77 
532 Aquatic seeds GRA-28166 2595±40 2740±43 
565 bulk organic matter GRA-30025 3145±40 3385±65 
Core ZON-04-2A 
103,5 

 
Littoral plant (reed) 

 
Poz-15971 

 
330±30 

 
390±82 

Core  ZON01-1A  
125  
correlated with core 
ZON04-1B, 168 cm)  
 

 
Aquatic macrophyte 

 
AA47855 

 
593±38 

 
595±58 

165 
correlated with core 
ZON04-1B, 208 cm  

Pollen concentrate AA60921 1771±38* 1705±113* 
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Table II. Sedimentary Facies in Zoñar core (ZON-04-1B). 

Facies Description Occurrence Depositional subenvironment 
Massive facies    

Facies 1. Massive to faintly 
laminated, brownish calcite 
mud. 

Cm-thick and dm-thick layers with gradational boundaries. Relatively low MS (4-8), low 
organic matter content (TOC 1-3%, TN <0.5%) and low Fe (200 cps); C/N: 10-15.  

Units 1, 3 and 
5 

Littoral lacustrine  

Facies 2. Massive to faintly 
laminated gray calcite silty mud.  

Cm- to dm-thick layers (gray and brown). Relatively high MS (8-12), high organic matter 
content (TOC 3-6%, TN 1-1,5%) and high Fe (600 cps); C/N: 15-30  

Units 1, 3 and 
5. 

Littoral lacustrine with high 
alluvial influence. 

Laminated Facies    

Facies 3. Cm-thick, massive, dark 
brown organic ooze.  
 

Cm-thick layers of greenish-brownish, amorphous organic matter. Very low MS (0-2) and the 
highest organic matter content (TOC: 18%, TN: 2,5%) and BGS (15-20 %). C/N: 10-15 

Unit 2 Benthic bacterial/algal mat  

Facies 4. Organic-rich, finely 
laminated variegated  
 

Mm-thick laminae composed of i) greenish algal organic matter and diatoms, ii) benthic 
diatoms; iii) authigenic calcite; iv) brown, massive layer (algal mats) v) detrital carbonate 
mud. Organic laminae dominate. 

Unit 2 Freshwater to brackish lake 
with development of 
bacterial/algal mat  

Facies 5. Irregularly laminated (>2 
mm thick) variegated  

Mm-thick irregular laminae composed of i) greenish algal organic matter and benthic diatoms, 
ii) authigenic calcite and iii) detrital carbonate mud. Aragonite and faecal pellet are common.  

Unit 4  Brackish to saline lake  

Facies 6. Gypsum laminae 

 

Laminae (3-5mm thick, unit 4) and cm-thick layers (unit 6). Both, diagenetic (nodules and 
intrasedimentary 100 µ long crystals) and primary (prismatic, 20 µm long crystals) occur. 

Units 4 and 6 Saline lake  

Facies 7: Varves, annually-
laminated. 

 
Mm-thick laminae arranged in 2-5 mm thick triplets (varves) composed of i) authigenic 
calcite,ii) organic ooze and iii) calcite mud.  

Unit 6 Offshore lacustrine, relatively 
deep, with anoxic bottom 
conditions.  

Massive facies with edaphic 
textures 

 
  

Facies 8. Massive, aragonite-bearing 
mud with edaphic textures 

Massive, brownish carbonate mud. Relatively high MS (6-10) and upcore increasing TOC 
values (up to 4%); Aragonite 5-8%; C/N: 10-15, Presence of subaerial cracks and soil textures. 

Unit 7 Ephemeral, freshwater to 
brackish lake  

Facies 9. Massive, quartz and clay –
rich carbonate mud with edaphic 
textures. 

Massive and greyish – brownish mud. High MS (16); Low TOC (< 1%); high quartz content; 
C/N up to 25. Presence of gastropods, subaerial cracks and soil textures (clay cutans and 
mottling). 

Unit 8 Ephemeral lake, frequently 
dried out and with incipient soil 
formation 



Figure captions 

Figure 1. (a) Geographic location of Zoñar Lake in the Iberian Peninsula. (b) The Zoñar 

Lake catchment and a bathymetic map over the aerial photograph. 

Figure 2. Age-depth model for the last 4000 years of Zoñar Lake based on AMS 14C and 

137Cs dates. 

Figure 3. Stratigraphic correlation of the Zoñar cores, including the Kullenberg cores 

from the 2004 expedition (deep SW basin cores ZON04-1B, 1A, 1C and shallow NE 

basin ZON04-2A core) and the Livinsgtone cores from the 2001 expedition (ZON01-1A 

and1B from Valero-Garcés et al., 2006). The location of the cores is shown in a NE-SE 

longitudinal section of the lake. The correlation horizon is the boundary between units 2 

and 1. 

Figure 4. Sedimentary facies and units, magnetic susceptibility and sedimentological 

and geochemical proxies for core ZON04-1B. S and Fe intensities are expressed in 

count per second (cps), magnetic susceptibility in SI units, and mineralogical and 

compositional data en percentages. Valid AMS data are also indicated. 

Figure 5. Selected pollen taxa compared with some sedimentological, mineralogical, 

geochemical, and biological indicators. The Mediterranean component curve includes 

Rhamnus, Thymelaea, Phillyrea, Ligustrum, Ceratonia, Lycium, Cistus, Ericaceae, 

Ephedra, Genisteae and Lamiaceae, but excludes the main arboreal elements of this 

group (Olea europaea, evergreen Quercus and Pistacia), plotted individually. Only 

some selected herb taxa (Cichorioideae and Chenopodiaceae) and hydrohygrophytes 

(Ruppia and Myriophyllum) are shown. Ostracod curve is based on semiquantitative 

data. Planktonic/Periphytic diatom ratio and percentages of marine diatoms are based on 

semiquantitative date from core ZON-04-1B. Diatom species percentages are from core 

ZON-01-1B (Valero-Garcés et al., 2006).  
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Figure 6. Lake level reconstruction for Zoñar Lake for the last 4000 yr BP compared 

with other paleoclimatic and paleohydrological records. Humid and arid periods in 

Zoñar lake are indicated with different shades: BIRP, Post Bronze – Iberian – Roman 

Humid Period; MCA, Medieval Climate Anomaly; LIA, Litte Ice Age. From left to 

right: lake level reconstruction from the Jura Mountains (Pre-Alps) (Magny, 2004); 

aridity index from Caveiro Lake (Azores Islands) (Björk et al., 2006); lake level 

reconstruction inferred from magnetic susceptibility from Sidi Ali Lake (Morocco) 

(Lamb et al., 1999); lake level reconstruction from Tigalmamine Lake (North of Africa) 

(Lamb et al., 1995); paleoprecipitation inferred from δ18O in Nar Gölü Lake (Turkey) 

(Lamb et al., 1999) and Spanish flooding episodes (Macklin et al., 2006).  
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