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ARID1A serves as a receivable biomarker 
for the resistance to EGFR-TKIs in non-small cell 
lung cancer
Dantong Sun, Fei Teng, Puyuan Xing* and Junling Li*  

Abstract 

ARID1A is a key component of the SWI/SNF chromatin remodeling complexes which is important for the maintain-

ing of biological processes of cells. Recent studies had uncovered the potential role of ARID1A alterations or expres-

sion loss in the therapeutic sensitivity of cancers, but the studies in this field requires to be further summarized and 

discussed. Therefore, we proposed a series of mechanisms related to the resistance to EGFR-TKIs induced by ARID1A 

alterations or expression loss and the potential therapeutic strategies to overcome the resistance based on published 

studies. It suggested that ARID1A alterations or expression loss might be the regulators in PI3K/Akt, JAK/STAT and 

NF-κB signaling pathways which are strongly associated with the resistance to EGFR-TKIs in NSCLC patients harboring 

sensitive EGFR mutations. Besides, ARID1A alterations or expression loss could lead to the resistance to EGFR-TKIs via 

a variety of processes during the tumorigenesis and development of cancers, including epithelial to mesenchymal 

transition, angiogenesis and the inhibition of apoptosis. Based on the potential mechanisms related to ARID1A, we 

summarized that the small molecular inhibitors targeting ARID1A or PI3K/Akt pathway, the anti-angiogenic therapy 

and immune checkpoint inhibitors could be used for the supplementary treatment for EGFR-TKIs among NSCLC 

patients harboring the concomitant alterations of sensitive EGFR mutations and ARID1A.
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Introduction

Lung cancer ranks first among all malignancies in cancer-

related mortality, and the 5-year overall survival (OS) is 

lower than 20% in China, which causes a serious situa-

tion for public health (Allemani et al. 2018). Besides the 

small cell lung cancer (SCLC), non-small-cell lung can-

cer (NSCLC) consists of approximately 85% of all lung 

cancer cases (Hou et al. 2019a) and the novel therapeu-

tics had achieved a better response than before. NSCLC 

patients are easily detected harboring cancer genome 

with highly instability, especially for Asians. Targeted 

therapeutics based on the driver mutations of NSCLC, 

such as mutations of epidermal growth factor recep-

tor (EGFR) (Santoni-Rugiu et  al. 2019) and rearrange-

ment of anaplastic lymphoma kinase (ALK) (Golding 

et  al. 2018), have significantly prolonged the survival of 

NSCLC patients. Unfortunately, NSCLC patients har-

boring sensitive EGFR mutations still could develop the 

resistance to EGFR-tyrosine kinase inhibitors (TKIs) pri-

marily or secondarily, which leads to treatment failure. 

According to previous studies, varieties of mechanisms 

have been proven to be associated with the resistance to 

EGFR-TKIs, such as the pre-existing T790M mutation of 

EGFR (Inukai et  al. 2006; Lee et  al. 2014) which causes 

the primary resistance to first generation of EGFR-TKIs, 

insulin-like growth factor 1 receptor (IGF1R) mutation 

(Sharma et  al. 2010), MET amplification (Turke et  al. 
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2010), hepatocyte growth factor (HGF) mutation (Yano 

et al. 2008) and mutations leading to sustained activated 

signaling in other pathways, including the PI3K/AKT 

pathway (Tan et  al. 2015), which causes the resistance 

to both first generation and third generation of EGFR-

TKIs. Nevertheless, still a proportion of NSCLC patients 

harboring sensitive EGFR mutations might develop the 

resistance to EGFR-TKIs via unknown mechanisms. 

Hence, it is of great significance to explore the potential 

mechanism related to the resistance to EGFR-TKIs.

Switch/sucrose nonfermenting (SWI/SNF) chromatin 

remodeling complexes perform essential roles in a series 

of biological processes, including DNA replication, gene 

expression and cell differentiation (Wang et  al. 2004; 

Zhang et  al. 2014). In addition, molecules of SWI/SNF 

chromatin remodeling complexes have been found to be 

dysregulated frequently in various cancer types (Huang 

et al. 2015). A variety of subunits of the SWI/SNF chro-

matin remodeling complexes had been identified, includ-

ing AT-rich interactive domain 1A (ARID1A) (Michel 

et al. 2018; Mashtalir et al. 2018) and so on. ARID1A is 

a key component of the SWI/SNF chromatin remodeling 

complexes (ARID1A is the key subunit of BAF, while BAF 

is the main assembly of SWI/SNF complexes) that can 

bind DNA in a non-sequence-specific manner via alter-

nating the tensity of nucleosome and are involved in the 

processes of DNA repair and stabilization (Wang et  al. 

2004; Reisman et al. 2009) which are closely related to the 

cell fate decision (Pagliaroli and Trizzino 2021) and also 

serve as a multifunctional regulator of subplate-depend-

ent guidance mechanisms essential to cortical circuit 

wiring (Doyle et  al. 2021). Alterations in ARID1A may 

be diverse and have been observed in a variety of cancer 

types, including urothelial carcinoma (Dugas et al. 2019), 

gastric cancer (Kim et al. 2019) and lung cancer (Huang 

et al. 2015; Naito et al. 2019) and the variants of ARID1A 

gene could also be detected through liquid biopsy even 

for cancers of unknown primary (Laprovitera et al. 2021) 

as well. Previous studies had demonstrated the essen-

tial role of ARID1A in carcinogenesis and cancer devel-

opment. �e loss of ARID1A, which usually lead to the 

resultant loss of intact BAF, would causes the rapid car-

cinogenesis across tissues (Wang et al. 2020a). Meantime, 

loss of ARID1A was found to be associated with the poor 

prognosis of a variety of cancers including hepatocellu-

lar carcinoma (HCC) (Yim et  al. 2020) and endometrial 

carcinoma (EC) (Leo et  al. 2021). Researchers had also 

focused on the role of ARID1A in cancer therapeutics. 

Andrade confirmed that the intact ARID1A is important 

in maintaining the sensitivity to radiotherapy in breast 

cancer via suppressing the accumulation of DNA double-

strand breaks (DSBs) caused by radiation (Andrade et al. 

2019). However, whether ARID1A plays a role in the 

resistance to EGFR-TKIs remains unclear and requires to 

be further elucidated.

In this review, we concluded a series of the published 

studies that focused on ARID1A in cancers and proposed 

the underlying mechanisms related to the resistance to 

EGFR-TKIs induced by ARID1A alterations or expression 

loss and the potential therapeutic strategies to overcome 

the resistance. It suggested that ARID1A might be the 

regulator in PI3K/Akt, JAK/STAT and NF-κB signaling 

pathways which are strongly associated with the resist-

ance to EGFR-TKIs in NSCLC patients. Besides, ARID1A 

alterations or expression loss could contribute to the 

resistance to EGFR-TKIs via a variety of pathological 

process during tumor development, including epithelial 

to mesenchymal transition (EMT), angiogenesis of tumor 

and the inhibition of apoptosis. According to the poten-

tial mechanisms related to ARID1A, we summarized 

that the small molecular inhibitors targeting ARID1A or 

PI3K/Akt signaling pathway, the anti-angiogenic therapy 

and immunotherapy could be used as the supplemen-

tary treatment for EGFR-TKIs among NSCLC patients 

harboring the concomitant alterations of sensitive EGFR 

mutations and ARID1A. �e mechanisms related to 

ARID1A alterations and expression loss in inducing the 

resistance to EGFR-TKIs are displayed in Fig. 1.

Underlying mechanisms related to the resistance 

to EGFR‑TKIs treatment in NSCLC induced by ARID1A 

alterations or expression loss

According to a latest study, Han et al. (2020) elucidated 

the potential role of ARID1A alterations in NSCLC 

patients harboring sensitive EGFR mutations. It sug-

gested that ARID1A alterations are associated with 

the shorter progression free survival (PFS) of icotinib 

treatment for NSCLC patients (P = 0.001) and related 

to a higher level of phosphorylation of EGFR protein. 

Although previous research (Hung et al. 2020) discovered 

that ARID1A alterations or expression loss correlated 

with the reduction of the frequency of EGFR mutations, 

few studies had focused on the mechanisms of ARID1A 

alteration in inducing the insensitivity of EGFR-TKIs 

treatment. �erefore, we concluded the potential mecha-

nisms as followed aim to clarify the role of ARID1A in 

EGFR-TKIs resistance and further explore the direction 

for research in this field.

The activation of compensatory signaling pathways 

related to the resistance to EGFR‑TKIs induced by ARID1A 

alterations or expression loss

1. PI3K/Akt signaling pathway

�e abnormal continuous activation of PI3K/Akt signal-

ing pathway was believed to be one of most important 

signaling pathway resulting in the resistance to both first 
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generation and third generation of EGFR-TKIs in NSCLC 

patients (Hrustanovic et  al. 2013; Lin et  al. 2014). �e 

PI3K/Akt signaling pathway upregulates the phospho-

rylated level of downstream molecules of EGFR signal-

ing pathway which endows the cancer cell the ability to 

escape from the inhibition of proliferation induced by 

EGFR-TKIs and could escape from the apoptosis which 

results in the development of the disease. In summary of 

the previous studies, it suggested that ARID1A is strongly 

believed to be the crucial trigger for the activation of 

PI3K/Akt signaling pathway. ARID1A alterations were 

found to be co-exist with a series of genes related to the 

PI3K/Akt signaling pathway especially including PTEN 

and PIK3CA (Samartzis et al. 2013; Takeda et al. 2016; Su 

et  al. 2019). �e aberrant of these genes was confirmed 

to reduce the inhibition of the pathway and result in 

the continuous activation. As for the expression loss of 

ARID1A, multiple studies had verified that the loss of 

ARID1A expression was also related to the alterations 

of genes belongs to PI3K/Akt signaling pathway (Bosse 

Fig. 1 Mechanisms related to the resistance to EGFR-TKIs induced by ARID1A alterations or expression loss
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et al. 2013; Huang et al. 2014) and alternate the biologi-

cal behaviors of tumor cells via this signaling pathway in 

variety of cancer types (Wiegand et al. 2014; Yang et al. 

2019). Especially for the researches for lung cancer, Sun 

et al. (2021) and Zhang et al. (2014) further clarified the 

role of ARID1A expression loss respectively in the regu-

lation of NSCLC behaviors via PI3K/Akt/mTOR signal-

ing pathway in  vitro and in  vivo. It suggested ARID1A 

expression loss enhances the proliferation, metastasis 

and inhibits the apoptosis of NSCLC via this signal-

ing pathway which contributed to the poor prognosis of 

NSCLC patients. To summarize the results above briefly, 

ARID1A alterations or expression loss could induce the 

resistance to EGFR-TKIs through the activation of PI3K/

Akt signaling pathway.

2. JAK/STAT signaling pathway

JAK/STAT signaling pathway serves as another impor-

tant downstream pathway of activated EGFR signaling 

besides PI3K/Akt signaling pathway (Lin et al. 2014) and 

especially the activation of STAT3 pathway. According 

to the previous study performed by Alvarez et al. (2006), 

STAT3 pathway is a critical mediator of the oncogenic 

effects of somatic EGFR mutations and is necessary for 

the downstream phosphorylation in NSCLC while the 

inhibition of STAT3 signaling pathway significantly 

increased the apoptosis of tumor cells. �e relationship 

between ARID1A alterations or expression loss with the 

activation of JAK/STAT signaling pathway, especially 

STAT3 signaling, had also been explored in the pub-

lished researches. Peng et al. (2020) discovered the func-

tion of ARID1A expression loss as the regulator for the 

related genes of STAT3 signaling pathway and resulted 

in the impairment of apoptosis via the activated STAT3 

signaling. In addition, Fang et al. (2015) proved that the 

ARID1A expression loss contributes to the tumorigen-

esis and development of HCC via activating the STAT3 

signaling pathway and NF-κB signaling pathway. In this 

research, the authors constructed the HCC mouse mod-

els with ARID1A knockdown, and it demonstrated the 

rapid development of the disease compared with the con-

trol group. �erefore, we proposed that JAK/STAT sign-

aling pathway plays an important role in the resistance to 

EGFR-TKIs induced by ARID1A alterations or expression 

loss. Nevertheless, it requires further clarification for this 

underlying mechanism.

3. NF‑κB signaling pathway

NF-κB signaling pathway is considered as the classi-

cal pivot signaling pathway related to tumorigenesis 

and development of malignancies and also confirmed 

to be associated with the resistance to EGFR-TKIs as 

described in previous studies (Hrustanovic et al. 2013; 

Cheong et  al. 2018; Feng et  al. 2018). As described 

above, ARID1A expression loss could activate the 

NF-κB signaling pathway and significantly change the 

biological behaviors of HCC (Fang et al. 2015). Besides, 

Kim et  al. ( 2016) suggested that the inhibitors for 

NF-κB signaling pathway could reverse the resistance 

to chemotherapeutic drugs and suppress the prolifera-

tion conducted by the loss of ARID1A expression in 

ovarian clear cell carcinoma (OCCC). However, Yang 

et al. (2018) discovered the different pattern of ARID1A 

in participating in the NF-κB signaling pathway in their 

research. It suggested ARID1A serves as the down-

stream molecule of this pathway, NF-κB firstly stimu-

lates the miR-223-3p expression which could directly 

bind to ARID1A and then influences the proliferation 

and migration of tumor cells through the function loss 

of ARID1A. To summarize the results above, ARID1A 

expression loss and NF-κB signaling pathway seem 

to be the feedback mechanism for the cancers and 

ARID1A expression loss could develop the resistance to 

EGFR-TKIs through this feedback mechanism.

The promotion of EMT program induced by ARID1A 

alterations or expression loss

EMT program is believed as a crucial pathological 

process related to the development and metastasis of 

the malignancies and recent studies had confirmed its 

critical correlation with the resistance to EGFR-TKIs 

(Hrustanovic et  al. 2013; Lin et  al. 2014; Hou et  al. 

2019b). Besides the acquired metastatic tendency of 

stromal phenotypic tumor cells after EMT process, 

group of tumor cells could have the stem-cell like fea-

tures through EMT process and escape from the inhi-

bition of targeted drugs. �e correlation between 

ARID1A and EMT had been found in previous stud-

ies. It suggested that ARID1A alterations are associ-

ated with the expression signature of EMT promoters 

related genes (Wilson et al. 2019). Furthers studies also 

confirmed the role of ARID1A expression loss in modu-

lating the biomarkers for EMT process through in vitro 

and in vivo experiments (Wang et al. 2019,2020b; Som-

suan et al. 2019; Tomihara et al. 2021). �e expression 

loss of ARID1A upregulates the expression of fibronec-

tin, vimentin and N-cadherin, while downregulates the 

expression of E-cadherin, which enables the transfor-

mation of the tumor cell phenotype to mesenchymal 

cell type characterized by the loss of cell polarity and 

the changes of cell morphology. �erefore, we strongly 

proposed that EMT program could participate into the 

resistance to EGFR-TKIs induced by ARID1A altera-

tions or expression loss.
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Enhancement of tumor angiogenesis induced by ARID1A 

alterations or expression loss

�e angiogenesis of tumor serves as another mechanism 

related to the resistance to EGFR-TKIs which nour-

ishes the tumor cells and enables the cells to invade to 

the stroma and further metastasis (Alvarez et  al. 2006). 

Recent studies had discovered the important function 

of ARID1A in regulating the process of angiogenesis. 

ARID1A expression loss was found tightly associated 

with the vessel density in solid tumor tissue (Hu et  al. 

2018) and more important, ARID1A expression loss 

causes the abnormal activation of angiopoietin-2 (Ang2) 

enhancer and promoter, which eventually leads to the 

ectopic expression of Ang2 (Hu et al. 2018; Yoodee et al. 

2021), which is an essential molecule for angiogenesis 

process, and the resultant occurrence of the enhance-

ment of angiogenesis. In addition, researchers confirmed 

that the blockage of Ang2 significantly reduced the den-

sity of vessels and the development of HCC with ARID1A 

deficiency (Hu et al. 2018). Evidences above suggest the 

underlying mechanism of EMT which is related to the 

resistance to EGFR-TKIs induced by ARID1A alterations 

or expression loss.

Inhibition of the apoptosis induced by ARID1A alterations 

or expression loss.

It suggested that the expressions of B-cell lymphoma-2 

(Bcl-2) family molecules play important roles in balanc-

ing the apoptosis and survive of tumor cells and the fam-

ily was divided into two main group including apoptotic 

molecules, such as Bax, and anti-apoptotic molecules 

such as Bcl-2 and Bcl-XL. Specially, the overexpression 

of Bcl-2 resulting in the inhibition of the apoptosis which 

lead to the development of the disease and therapeu-

tic resistance including EGFR-TKIs (Hou et  al. 2019b). 

�rough the review of the published studies, we discov-

ered the role of ARID1A alterations or expression loss in 

the regulation of Bcl-2 expression and apoptosis of tumor 

cells which might participate into the resistance to EGFR-

TKIs. It elucidated that loss of ARID1A expression could 

upregulate the expression of Bcl-2 and contribute to the 

inhibition of apoptosis of tumor cells (Zhang et al. 2018). 

Besides, researchers suggested that the tumor cells har-

boring ARID1A alterations showed the therapeutic sen-

sitivity to Bcl-2 inhibitors which indicated the activation 

of apoptotic pathways induced by ARID1A alterations or 

expression loss.

Strategies for overcoming the resistance to EGFR‑TKIs 

induced by ARID1A alterations or expression loss

1. Enhancer of zeste homolog 2 (EZH2) inhibitors

EZH2 is primarily an essential component of polycomb 

repressive complex 2 (PRC2) which serves a role in 

epigenetic gene suppression (Yamagishi and Uchimaru 

2017). Latest reviews had concluded the role of EZH2 in 

the poor prognosis of a variety of cancers and the under-

lying potentiality of EZH2 inhibitors among cancer treat-

ment (Yamagishi and Uchimaru 2017; Kim and Roberts 

2016). In this review, we proposed that EZH2 inhibitors 

could be used in patients harboring ARID1A alterations 

or expression loss and serve as a potential option for the 

supplementary treatment of EGFR-TKIs. Firstly, EZH2 

inhibitors is highly selective for the target of ARID1A 

alterations or expression loss. Bitler et  al. (Bitler et  al. 

2015) confirmed that EZH2 inhibitors could significantly 

inhibit the proliferation of OCCC cells with altered 

ARID1A and either in cells with ARID1A knockdown. It 

suggested that ARID1A and EZH2 are a pair of impor-

tant molecules in maintaining the balance of the prolif-

eration and apoptosis of cells while ARID1A serves as 

the tumor suppressor. ARID1A alterations or expression 

loss leads to the advantage of EZH2 function and result 

in the excessive proliferation of tumor cells. �erefore, 

the purpose of EZH2 inhibition is to draw the balance 

of ARID1A and EZH2 back to the status before ARID1A 

alterations or expression loss which might reverse the 

resistance to EGFR-TKIs induced by ARID1A alterations 

or expression loss and have the synergistic interaction 

with EGFR-TKIs.

2. MTOR inhibitors (rapamycin)

Previous studies established the role of mTOR inhibitors, 

especially rapamycin, in the treatment of NSCLC and 

its’ relationship with the administration of EGFR-TKIs. 

Kwon et  al. (2019) proved that the the inhibition of the 

autophagy via targeting PI3K/Akt/mTOR signaling path-

way could overcome the resistance to anti-EGFR treat-

ment in NSCLC. Rolfo et  al. (2014) also elucidated that 

rapamycin could serve as an option for NSCLC patients 

harboring sensitive EGFR mutations that do not response 

to EGFR-TKIs. As described above, PI3K/Akt/mTOR 

signaling pathway serve as the main mechanism related 

to the resistance to EGFR-TKIs induced by ARID1A alter-

ations and expression loss in NSCLC patients. �erefore, 

rapamycin might benefit the NSCLC patients harboring 

the concomitant alterations of EGFR and ARID1A.

3. Anti‑angiogenic therapy

As far as we concerned, ARID1A alterations or expres-

sion loss could upregulate the expression of Ang2 and 

initiate the process of angiogenesis (Hu et al. 2018; Yoo-

dee et al. 2021). In addition, Hu et al. (2018) revealed that 

the blockage of Ang2 could reverse the change of tumor 

behaviors induced by ARID1A alterations or expression 

loss which uncovers the potentiality of anti-angiogenic 

therapy in overcoming the resistance to EGFR-TKIs, 
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such as the treatment of EGFR-TKIs combined with 

bevacizumab.

4. Immune checkpoint inhibitors (ICIs)

ICIs had been wildly used in the treatment of cancers 

recently. According to latest researches, ARID1A was 

found to be related to the sensitivity of ICIs treatment. 

Li et  al. (2020) disclosed that the intact ARID1A con-

tributes to the chromatin accessibility and expression 

to IFN-responsive genes which eventually influence the 

infiltration of lymphocytes. It suggested that ARID1A 

has the function of modulating the immune phenotype of 

cancers. Other studies also pointed that cancer patients 

harboring ARID1A alterations could benefit from ICIs 

treatment (Goswami et  al. 2020; Takahashi et  al. 2021). 

Although NSCLC patients harboring driver mutations 

such as EGFR was considered as the group that might not 

benefit from ICIs, the concomitant alterations of EGFR 

and ARID1A might reverse the consequences of the 

treatment.

5. Other underlying targets

Latest studies discovered several novel targets for the 

treatment of ARID1A-mutated cancers. It suggested 

that the inhibition of GLS1 (Wu et  al. 2021) or CCNE1 

(Kawahara et  al. 2021) could significantly suppress the 

proliferation of ARID1A-mutated cancer cells in  vitro 

and in  vivo, respectively, but not in the wild type cells. 

Another study also confirmed that the inhibition of 

ATM/Chk2 DNA damage checkpoint axis would exhibit 

anti-cancer efficacy only in ARID1A-mutated cancer cells 

(Wang et  al. 2020c). Targets above would provided us 

with more options for the treatment of ARID1A-mutated 

cancer but requires further studies.

Conclusion

ARID1A is the regulator a series of signaling pathways, 

including PI3K/Akt, JAK/STAT and NF-κB signaling 

pathway and related to the resistance to EGFR-TKIs in 

NSCLC patients. Besides, ARID1A alterations or expres-

sion loss could lead to the resistance to EGFR-TKIs via 

enhancing the EMT, angiogenesis and the inhibition of 

apoptosis in NSCLC. In order to overcome the resistance 

to EGFR-TKIs related to ARID1A, EZH2 inhibitor, rapa-

mycin and the anti-angiogenic therapy could be used for 

the supplementary treatment for NSCLC patients that do 

not response to EGFR-TKIs.
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