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Abstract

The recently adopted Ariel ESA mission will measure the atmospheric composition

of a large number of exoplanets. This information will then be used to better constrain

planetary bulk compositions. While the connection between the composition of a

planetary atmosphere and the bulk interior is still being investigated, the combination

of the atmospheric composition with the measured mass and radius of exoplanets will

push the field of exoplanet characterisation to the next level, and provide new insights

of the nature of planets in our galaxy. In this white paper, we outline the ongoing

activities of the interior working group of the Ariel mission, and list the desirable

theoretical developments as well as the challenges in linking planetary atmospheres,

bulk composition and interior structure.

Keywords Ariel · Planetary interiors · Planet composition ·

Atmosphere-interior interaction

1 Introduction

The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (Ariel) mission

will measure the atmospheric composition of a large number of exoplanets with dif-

ferent masses and radii (e.g., [25, 143]). A key question to be addressed by the Ariel

mission is ‘What are planets made of?’

Understanding the connection between the bulk composition and atmospheric

composition of planets and how they are linked to the planetary origin is a key topic

in planetary and exoplanetary science. Determining the atmospheric composition of

planets is critical for constraining the planetary bulk composition, which can then be
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linked to its formation process and planetary evolution (e.g., [148]). Determining the

atmospheric composition of many exoplanets will provide an additional constraint

to structure models, and can be used to put limits on elemental abundances in the

deep interiors of planets. While it is not possible to uniquely determine planetary

composition and internal structure from remote measurements, the atmospheric com-

position adds another piece of information and can break some of the degeneracy. In

this regard, a clear strength of the Ariel mission is that it will provide statistics. A

large enough sample of planetary atmospheres can be used to better understand the

trends, in particular, how the planetary composition depends on the planetary mass,

the orbital period, and the stellar properties such as stellar type, metallicity, and age.

The three aspects of formation, evolution and internal structure are inter-

connected. The formation environment and epoch determine the total availability

of each chemical element. The formation process determines the primordial inter-

nal structure and thermal state of the planet. This determines the heat transport

mechanism as well as the potential re-distribution of the materials, and the plane-

tary long-term evolution (contraction and cooling rate). The planetary evolution then

determines current-state internal structure. In particular, the interaction between the

atmosphere and the deep interior. The long-term evolution could be responsible for

the formation of secondary atmospheres as well as for atmospheric loss. Therefore,

in order to link the planetary internal structure and to understand the connection

between the atmosphere and the interior today, a good understanding of the planetary

origin and evolution is required.

From a planetary composition perspective the questions that will be addressed

with Ariel include:

• What can the M-R relation together with atmospheric measurements tell us about

the planet’s bulk composition?
• Under what conditions does the atmospheric composition represent the compo-

sition of the deep interior?
• Is atmospheric composition able to distinguish planetary archetypes, such as

mini-Neptunes versus super-Earths?
• How can we use the knowledge of exoplanets to better understand our own

planetary system and vice versa?
• How do we extract the similarities/differences between solar system (terrestrial)

planets and exoplanets from atmospheric element abundances?
• How do planetary atmospheres in hot conditions evolve?

Not only is connecting planetary atmospheric compositions with bulk composi-

tions challenging, but there will also be clear differences between various planetary

types (mass, orbital period, etc.), and as discussed above, with a planet’s forma-

tion history, and subsequent evolution and internal structure. Key questions to be

answered by Ariel with the suggested targets are summarised in Table 1. The colours

indicate whether the question addresses composition (red), evolution (blue) or origin

(green), or a combination of these aspects. The first three questions are fundamental:

“What are exoplanets made of ?” “How do exoplanets form?” and “How do exo-

planets evolve?” These questions are expected to remain open for a few decades,

and even with Ariel and other future missions, unique and clear answers might not
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be available. However, more specific questions, as listed in Table 1, can slowly be

answered providing a more complete understanding of planets and the connection

between composition, formation and evolution. Since the three aspects are linked,

often answering a question reflects on the three of them. As a result, many of the

questions listed in the table involve more than one colour representing the three

fundamental questions.

Figure 1 shows the mass-radius (M-R) relation of planets up to a mass of 120

M⊕ as presented by Otegi et al. [111]. Identified are the “terrestrial planets” whose

compositions are dominated by refractory materials, the gaseous (giant) planets that

are mostly composed of hydrogen and helium (H-He), and an intermediate population

(transitional planets) that includes planets that are massive Earth-like planets (super-

Earths) and Neptune-like planets as well as smaller version of the ice giants (mini-

Neptunes).

Below we discuss the research conducted related to the questions relevant for Ariel

science in terms of interiors. We organize the discussion based on the masses of the

objects as shown in Fig. 1: (i) Giant planets are the planets for which we currently

mass/size 

Fig. 1 The M-R diagram of planets with robust mass measurements with relative uncertainties smaller

than 25% for mass and smaller than 8% for radius. The red triangles and blue circles correspond to data

with mass determination from TTVs and RVs, respectively. Also shown are composition lines of pure-iron

(brown), Earth-like planets (light-brown) and water ice (blue), and the distribution of exoplanet mass (top)

and radius (right). We indicate the planets that are expected to be “terrestrial” “gaseous” or “intermediate”

in terms of composition (from [111])
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have the most data. (ii) Intermediate-mass planets have slightly smaller radii and are

thus not as well characterized, but their high occurrence rate in the galaxy [37] should

ensure a large number of potential targets to study with Ariel. (iii) Super-Earths rep-

resent the most challenging class of objects for Ariel, but they are a milestone towards

the characterization of planets more similar to our own Earth.

Our paper is organised as follows. Progress related to gas giant science is discussed

in Section 2. Intermediate-mass planets are presented in Section 3. Science related to

terrestrial planets is discussed in Section 4. Ariel is discussed in Sections 2, 3 and 4.

Finally, a summary is presented in Section 5.

2 Giant planets

When it comes to gas giant planets whose compositions are dominated by hydrogen

and helium (hereafter, H-He), the planetary bulk metallicity is typically characterised

by the metallicity, i.e., the mass fraction of heavy elements within the planet. Giant

planets are key to understand the formation of planetary system: Dynamically, their

migration shaped the final planetary systems, be it our Solar System (e.g. [147])

or exoplanetary systems (e.g. [85]). The gaseous envelopes of giant planets were

accreted during the first millions of years of the formation of planetary systems so

that the study of their bulk and atmospheric composition informs us on the conditions

that led to the formation of planetary systems (e.g. [42]).

Because giant planets are H-He dominated and are compressible they contract as

their interior progressively cools (e.g., [35, 44, 60, 156]). This implies that deter-

mining their bulk composition from a measurement of mass and radius also requires

knowledge of age, equations of state, and atmospheric boundary conditions (e.g.,

[41]). Ariel’s observations are thus crucial in the sense that they complement precise

determinations of radii of transiting planets and ages of their parent stars, in particular

as expected from the Plato mission [117].

2.1 Importance of the atmosphere

The atmosphere is the external boundary condition used by interior models to calcu-

late the overall structure of a giant planet. It is also a lid that governs how interior

heat is progressively radiated away. A proper characterization of the atmosphere

is therefore crucial to infer the properties of the planet’s interior and its forma-

tion. For interior models, we seek to obtain with Ariel several key properties of the

atmospheres of giant planets:

– Their albedo, which is the main factor governing the equilibrium temperature

and therefore atmospheric entropy (e.g., [44]).

– Their day-night and equator-to-pole temperature contrasts, which also govern the

rate at which interior heat can leak through (e.g., [43, 119]).

– Cloud content and wind properties since these also affect how irradiation energy

is absorbed and redistributed in the atmosphere (e.g., [4, 6, 118, 134, 169]).
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– Generally, any variation in atmospheric properties, in particular abundances,

tracing both the radiative and dynamical properties of the atmosphere (e.g., [26,

113]).

2.2 Inflation of hot-Jupiters

The importance of the atmosphere was highlighted by the works of Bodenheimer

et al. [6] and Guillot and Showman [43] who showed that the radius of the famous hot

Jupiter HD 209458 b was larger than predicted by standard evolution models. This

inflation of Hot-Jupiters is highlighted with every newly discovered highly irradi-

ated giant planet. Figure 2 demonstrates the clear correlation between the irradiation

received by the planet and the decrease in bulk density. Figure 2 also shows that

planets with equilibrium temperature above 1200 K have a difference between the

observed radius and the one that results from evolution models that increases with

R ∝ T 1.4
eq [19, 76, 77, 97, 141].

The inflation of hot Jupiters spurred a series of explanations to explain the obser-

vations. These include hydrodynamical dissipation, where the heat gets transported

to the interior of the planet through vertical winds that push down kinetic energy

that is dissipated into heat [43, 134], heat being transported by turbulent mixing in

the external radiative zone [169], or vertical advection of potential temperature by

deep atmospheric circulation [123, 144]. Another possibility is Ohmic dissipation,

resulting from the interaction of the zonal winds with the planets’ magnetic field [4,

14, 40, 59, 114, 118, 121, 168, 169]. Finally, some studies have remained agnostic

towards the physical mechanism that cause the inflation, but showed how different

Fig. 2 Radii of transiting giant exoplanets plotted against their incident flux (or equilibrium temperature)

and colored by mass on the log scale. The dashed red line is the radius of a Jupiter-mass pure H/He model

with no inflation effect (from [141])
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fractions of heat deposition in the planet’s interior change its structure and observable

parameters [2, 69].

A common denominator from all these studies is that the inflation of hot-Jupiters

is caused by the intense stellar irradiation that these planets receive, and therefore

changes in the stellar irradiation either due to stellar evolution (e.g., [39, 40, 70]) or

to the planet migration—that changes their semi major axis and the received Flux—

(e.g., [12, 101]), can cause a change in the inflation rate of planets, reflecting the

planet history.

Ariel will aid in in this field with a better determination of composition, thermal

profile and circulation in giant planet atmospheres, that will help to find correlations

and identify the physical mechanisms that cause hot Jupiter inflation. This is expected

to improve our understanding of the internal structure, formation, and evolution of

giant exoplanets.

2.3 Atmospheric and bulk composition

Spectroscopic measurements of giant exoplanets allow us to further characterize

these objects. These measurements, combined with accurate mass and radius deter-

minations can be used to better understand the nature of giant planets (see e.g.,

[91], and references therein). The bulk composition of giant planets can be estimated

from accurate measurements of the mass and radius. This estimate, however, has a

relatively large (theoretical) uncertainty since it depends on the materials used to

represent the heavy elements, their assumed distribution, and the equations of state

used in the models as we discussed below (e.g., [3, 104, 156]). Although atmospheric

measurements cannot give us the radial distribution of heavy elements directly, it

can greatly illuminate this topic when compared to bulk internal enrichment inferred

from the mass/radius data alone. Indeed, the presence or absence of a systematic bias

between the enrichment values given by both methods would allow us to quantify

the degree of compositional segregation and inform us on the strength of the mixing

processes at play [152, 157].

The composition of gaseous exoplanets are typically inferred either by assuming

a common mechanism for inflated hot Jupiters [13, 45] or by analysing only warm

giant exoplanets, whose radii are not expected to be affected stellar irradiation [142].

However, it is not only the bulk composition that is important but the actual dis-

tribution of heavy elements within the planet. First of all, enriched envelopes have

higher molecular weights and therefore shrink more effectively than when the heavy

elements are concentrated in a central core. This also leads to a higher envelope opac-

ity which leads to a less efficient cooling and slower contraction [62]. This means

that at a given age, the estimated heavy-element mass from theoretical models varies

depending on the model assumptions. This effect is particularly important for planets

with significant enrichments and for intermediate-mass planets (sub-giants), since it

can result in an overestimate of the heavy-element mass required to reproduce the

measured radius [3, 156].

In order to take full advantage of the expected Ariel data progress in theory is

required. For example, structure and evolution models should consider the uncertain-

ties associated with the assumed opacity, assumed internal structure in particular, the
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distribution of the heavy elements, the used equation of state, and age of the planet. In

addition, available opacity tables as a function of metallicity, pressure and tempera-

ture are usually sparse and thus, often internal structure models are not self-consistent

in terms of the opacity calculation and the envelope metallicity. An attempt to bridge

these inconsistencies was presented by [152], and a more physically-based opacity

model that accounts for various compositions, grain properties and the existence of

clouds for gaseous planet is still missing.

Finally, the connection between the atmospheric and bulk composition of giant

exoplanets needs to be better understood. Even for the solar system gas giants, this

relation is still poorly understood and being intensively investigated (e.g. [47], and

references therein).

2.3.1 Compositions of hot Jupiters

Current exoplanet data have taught us that there is a large spread in the pre-

dicted metallicities of gas giant planets [142]. Therefore there is a clear need to

identify the trends in terms of planetary mass–metallicity relation, bulk-composition–

atmospheric–composition relation as well as the dependence of the stellar type and

age. Ariel will provide critical information on these relations and will therefore allow

us to better characterise exoplanets and will improve our understanding on the depen-

dence of the planetary bulk and atmosphere composition on the stellar and orbital

properties.

When the radius, mass, and age of a giant planet are measured by observation, the

heavy-element content can be inferred through theoretical modelling of the planet’s

internal structure and gravitational contraction. A significant proportion of close-in

giant planets detected so far are found to be quite enriched with heavy elements,

which account for several tens of percent of the planetary total mass [45, 142]. The

first example is HD 149026 b, which is a sub-Jupiter of ∼110 M⊕ with inferred

metal content of 60–80 M⊕ [125]. The discovery of such high density giant planets

certainly gives support to the core accretion theory of giant planet formation in which

a central core composed of heavy elements first forms and then captures the ambient

nebular gas composed of H-He in a runaway fashion [5, 100]. The standard core-

accretion theory does not predict such high enrichments as inferred for high-density

giant planets [52, 62].

One should keep in mind that the inferred composition depends on the material

chosen to represent the heavy elements. As a result, the exact composition of giant

exoplanets cannot be determined. Indeed, inferring the heavy-element masses in giant

exoplanets strongly relies on theoretical modelling. It was recently shown by [103]

that the inferred composition of giant exoplanets can significantly vary depending

on the model assumptions. Large theoretical uncertainties include the used equa-

tion of state, the assumed distribution of the elements, and the atmospheric model.

Another important property that should be considered is the planetary age. Its accu-

rate determination can be used to narrow the uncertainty in the inferred composition.

We therefore suggest that some of the Ariel giant planet targets should include planets

around stars with a relatively good age measurement (within ∼10%). This is expected

to be possible thanks to the upcoming Plato mission [117]. We stress that, in order to
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take full advantage of Ariel data, progress in theory is required. Although ambiguity

on the exact planetary composition are likely to remain, the large statistics expected

from Ariel will be used to identify the trends and improve our understanding of giant

planet origins.

2.3.2 Origin of heavy elements in warm Jupiters

The large amounts of heavy elements in warm Jupiters are expected to be accreted

during or after the runaway gas accretion phase. At these later stages the accreted

material does not settle all the way to the center (core) and instead it contaminates

the gaseous envelopes. According to detailed investigation of the dynamics of plan-

etesimals around a growing proto-gas giant, however, it is hard for a massive planet

to capture large amounts of the surrounding planetesimals in situ (e.g., [132]).

The effect of planetary inward migration on the capture efficiency of planetesi-

mals is shown in Fig. 3; the numerical results were obtained by N-body simulations

for 10-km planetesimals around a migrating Jupiter-mass planet in a protoplanetary

gas disc [133]. It is confirmed that orbital migration helps the planet capture plan-

etesimals. Especially for more than 50–100 M⊕ of heavy elements to be captured,

a long-distance migration (�40 AU) is needed, as shown in Fig. 3a. In addition,

planetesimal capture is found to occur in relatively limited regions (see Fig. 3b); in

particular, no planetesimal accretion occurs in inner warm regions due to strong aero-

dynamic shepherding. Thus, gas giants migrating over a long distance tend to capture

cold materials.

This leads to a prediction that highly metal-rich gas giants may have not low C/O,

but nearly stellar C/O ratios. At such large semi-major axes in passive disks, both

carbon and oxygen are contained in ice planetesimals (i.e., beyond the CO2 snow-

line) from a simple thermodynamic equilibrium consideration (e.g., [108]). Detailed

calculations of disk chemistry also demonstrate that the C/O ratio of ice is similar to

Fig. 3 Results of dynamical simulations of planetesimal capture by a migrating giant planet—The left

panel shows the total mass of the planetesimals that the planet captures during its orbital migration as a

function of the semi-major axis at which the planet starts migration; the right panel shows the fraction of

the planetesimals located initially at an semi-major axis that the planet engulfs. The vertical dotted lines

in panel (b) indicate the semi-major axes of the H2O and CO2 snowlines. Those panels have been adapted

from Figure 5 of [133]
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the stellar ratio at �10 au [27]. A determination of the C/O ratio of enriched gaseous

exoplanets with Ariel can be used to test this prediction.

The radii of close-in gas giants are known to increase with decreasing distance to

the central stars, on average (see e.g. [137]). This tendency is not only due to increase

in stellar irradiation, but also due to unknown mechanisms for energy injection. The

latter prevents us from estimating their bulk metallicities correctly. Thus, the close-in

giant planets with inferred bulk metallicities are ones with moderate irradiation (so-

called warm Jupiters; � a few ×108 erg/s/cm2 in [142]). Instead of bulk composition,

the atmospheric H2O abundances have been inferred for hot Jupiters with high stel-

lar irradiation via transmission spectroscopy done with Hubble/WFC3 in the near-IR

during their primary transits. Recent retrieval models for transmission spectra in the

optical and near-IR of ten hot Jupiters (e.g. [115]) show that half of those atmospheres

have sub-stellar H2O abundances, though the observational errors are still large. This

result apparently seems inconsistent with the high bulk metallicities of warm Jupiters.

However, this is still inconclusive, partly because the argument is based almost only

on the water features in the near-IR; and information on other molecules such as

CO, CO2, and CH4 is unavailable. In addition, we do not have enough knowledge of

haze and clouds, which possibly obscure the H2O features. Finally, the elements and

molecules in the atmospheres of giant exoplanets are measured in the uppermost part

of the atmosphere and therefore might not represent the bulk composition. Recent

developments in giant planet theory suggest that giant planets are likely to be inho-

mogeneous and have composition gradients (e.g., [18, 47, 51, 105, 159, 163]). As a

result, atmospheric composition only provides a limited glimpse into the composition

of giant exoplanets.

A determination of the atmospheric H2O abundance of giant planets is important

since it can be linked to their origin and evolution (e.g., [50, 93]). Collecting informa-

tion on the water abundance in the atmospheres of many hot Jupiters, and comparing

them to other elements (e.g., carbon) would reveal important information that could

be used to constrain planet formation and evolution models. Nevertheless, connecting

this information with the bulk composition remains a challenge.

2.4 Gradual composition distribution and envelope enrichment by

convective-mixing

A main challenge in linking the atmospheric composition with the bulk is due to the

fact that giant planets might not be homogeneously mixed. This possibility seems to

be rather realistic for the solar-system gas giants and there is no reason to believe that

giant exoplanets are significantly different. At the same time, we are still lacking an

understanding of under what conditions giant planets tend to be homogeneous (mass,

age, formation process). This topic should be investigated further in order to take full

advantage of Ariel data.

Composition gradients in giant planets could be a result of number of physical

processes such as: (1) Solids (heavy elements) accretion during the formation process

(e.g. [7, 11, 16, 61, 89, 153, 154]). (2) Solubility of materials in metallic hydrogen fol-

lowed by convective mixing (e.g. [135, 138, 162, 166]). (3) Helium phase separation

(e.g. [34, 102, 138]). (4) Rotation and magnetic field effects [15].
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The resulting gradual composition distribution can change with time by

convective-mixing [157], which in turn leads to enrichment the outer gaseous lay-

ers with deep interior materials. The occurrence of convective-mixing depends on

the ratio between the temperature gradient and the composition gradient along the

interior, according to the Ledoux convection criterion [80].

Simulations of self-consistent structure and thermal evolution find convective mix-

ing to be efficient in a large range of giant planets interiors [104, 157, 158]. However,

since the mixing parameters in planetary conditions are poorly constrained, such sim-

ulations provide a range of possible solutions and the efficiency of mixing is yet to be

determined. For example, mixing could take place in the form of layered-convection,

which provides a lower prediction for the efficiency of mixing in giant planet interiors

(e.g., [18, 79]).

Measurements of the atmospheric abundances with Ariel for large sample of giant

planets can help to constrain the parameter-space of the convective-mixing efficiency.

It is known that planet current location is not necessarily its formation location. In the

protoplanetary disk phase young protoplanets are expected to migrate, usually inward

(e.g., [140], and many more), while they are still growing. The gas-to-dust ratio and

the chemical element content of different material phases in the protoplanetary disk

varies with location and time. We discuss changes with location in the disk, controlled

by the temperature.

Naively, the outer envelope of a gaseous planet is composed of later accreted (cur-

rent location) materials, while the deep interior composition is related to the planet’s

formation location. However, efficient convective mixing sweeps deep interior mate-

rials upward, and enriches the outer envelope with formation composition. Thus, the

abundance of different species by the Ariel mission, will indicate on the convective

mixing efficiency, and on the planet formation location.

A similar idea was used in several studies to determine Jupiter’s formation

location, based on its current atmospheric abundances (e.g., [107]). Modeling the

evolution of Jupiter interior indeed suggests that the early accreted deep interior mate-

rials can reach the outer envelope in less than one giga year [159]. The Ariel data

will allow us to perform similar studies for a large sample of exoplanets, namely

to examine material abundances of chemical spices that are not expected to appear

in the current planetary location. If these elements are found to be abundant the

atmospheres, then it would imply that convective mixing from the deep interior is a

significant process in giant planet interiors. Therefore, the Ariel mission will improve

our understanding of convective mixing and material transport processes in giant

planet interiors.

2.5 Ariel observations of giant planets

Giant planets are thus key targets to address questions linked to the composition,

formation and evolution of planets identified in Table 1:

– The source of the inflation mechanism for hot Jupiters discussed in Section 2.2

can be better identified by fully characterising the atmospheric properties of both
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hot and warm Jupiters. Typically, several tens of targets would be needed to

improve the statistics and address this topic.

– The origin of very metal-rich gas giants that require several tens M⊕ of heavy

elements is still poorly understood and reflects on their formation and evolution

histories. Ariel observations of a handful of bright, super-enriched gas giants

would lead to a robust determination of the planetary radius and atmospheric

metallicity to decrease uncertainties in the models.

– Understanding the distribution of heavy elements in giant planets requires mea-

suring both their bulk and atmospheric properties. A large-enough statistical

sample of tens of targets with well-determined stellar and planetary properties is

required.

– The role of tides in the evolution of giant planets may be addressed through the

characterisation of the atmospheres of highly eccentric planets, in order to get

both their atmospheric properties and atmospheric thermal evolution at periapsis.

This may be achieved through the characterisation of a handful of bright targets.

– The characterisation of atmospheric properties in giant planets, in particular

the presence of clouds, their physical and chemical properties and their evolu-

tion in time is crucial to understand the planetary long-term evolution and infer

bulk compositions. Also in that case, the possibility to observe tens or hundreds

of planets with Ariel to acquire spectra spanning the entire visible to infrared

wavelength range is needed.

– Finally, we stress that the observation of signatures of refractory species like TiO,

Fe, Na or S (which may be brought into planets as FeS) may yield constraints

on the ice-to-rock ratios in giant exoplanets, a crucial parameter for formation

models (see [73]).

From the viewpoints both of planet formation and planetary interior, of particular

interest are the atmospheric compositions of giant planets with estimated bulk com-

positions. At present, the problem is that different types of samples (warm Jupiters’

interiors and hot Jupiters’ atmospheres) have been compared. There are more than ten

target planets that are overlapping between the current Ariel MRS list [25] and [142]’s

list, which include CoRoT-10 b, HAT-P-15 b, HAT-P-17 b, HAT-P-20 b, HAT-P-54 b,

HATS-6 b, HATS-17 b, HD 17156 b, HD 80606 b, Kepler-16 b, WASP-8 b, WASP-

80 b, WASP-84 b, WASP-130 b, and WASP-132 b. We suggest that these planets

are particularly interesting for understanding the origin of heavy elements of close-in

gas giants and also the partitioning of heavy elements between the atmosphere and

interior.

3 Intermediate-mass planets

3.1 An abundant yet poorly known class of planets

While in the Solar System there is a clear division between terrestrial and giant plan-

ets by mass and/or size, exoplanet data have taught us that although planets can be

refractory or H-He dominated, there is a non-negligible population of planets that
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have intermediate masses (1–20 M⊕) and radii (1-4 R⊕), [111]. These planets rep-

resent a unique planetary class—it is not possible to simply re-scale models of the

terrestrial or gas giant planets. Intermediate-mass planets can be larger versions of

terrestrial planets (e.g., super-Earths) or smaller versions of giant planets (e.g., mini-

Neptunes) but could also be a class of planets that have different compositions than

what is typically assumed, such as iron-coreless [29], carbon-rich [92, 98], water-

rich [72, 81], or Ca-Al-rich [24] planets. The transition between terrestrial-like to

gaseous-like (H-He dominated) planets is unclear, and at a given planetary mass a

planet can belong to either of these populations [1]. This is demonstrated in Fig. 1,

where we show the M-R relation of exoplanets with well-determined masses and

radii.

This intermediate “overlapping” population is of great interest to the planetary

community since the formation and evolutionary paths of such planets are poorly

understood. This is true both for super-Earths [75] and mini-Neptunes [48, 161].

It may be possible to distinguish between dominantly rocky, icy or gaseous plan-

ets, when additional information on the age of the exoplanetary system exists and

the composition of the planetary atmosphere becomes known. In Fig. 4 one can

see the intermediate-mass/size planetary population. Several key questions linked to

intermediate-mass exoplanets include:

• What is the atmospheric composition of intermediate-mass planets?
• Are the atmospheres of intermediate-mass exoplanets primordial?
• What are the typical compositions of intermediate-mass planets?

Fig. 4 Theoretical mass vs. radius relationships for planets of pure iron, rock (MgSiO3) and water com-

position as well as Earth-like interior, in addition to rocky planets harboring H-He atmospheres with mass

fractions of 2%, 5% and 10%. The black dots with the error-bars show a sample of small and intermediate

mass exoplanets. The figure is taken from [90]
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• Are intermediate-mass planets rich in water?
• How do the atmospheres of intermediate-mass planets interact with their deep

interiors/surfaces?

Intermediate-mass planets of several Earth masses with gaseous envelopes, are

expected to stay in a molten phase for giga-years [160]. The long-last interaction

of the molten magma-ocean surface with the convective envelope can enrich the

envelope with metals, and affect the planet atmospheric abundances [68]. Yet, the par-

titioning behaviour of volatiles into magma at increasingly high pressures is uncertain

and requires concerted experimental effort to connect atmospheric models of extra-

solar planets to petrologic data. Measurements of the atmospheric abundance of

magma-ocean planets with gas envelopes by the Ariel mission will put constraints on

the efficiency of the magma-envelope interaction.

Water-rich interiors are also possible scenarios for intermediate-mass planets of

radii below 2.6 R⊕ [90]. For example, stars of very low-mass or low content of 26Al

are thought to host planets rich in water [84]. However, mass and radius alone can-

not distinguish between gas-rich or water-rich interiors and additional constraints on

atmospheric composition by Ariel are key to further reduce the degeneracy.

In the Solar System, this class of planets is only represented by Uranus and Nep-

tune, which are poorly understood (e.g., [49, 53]). Observations of planets with

similar masses and radii of Uranus and Neptune with Ariel would provide highly

informative and complementary statistical information on a wide variety of planets

with intermediate masses/sizes. A future mission to Uranus and Neptune (e.g., [32,

46]) would give us the keys to really understand Uranus and Neptune and reflect this

knowledge on intermediate-mass exoplanets.

3.2 Ariel observations of intermediate-mass planets

Like gas giant planets, intermediate-mass planets are key targets to address ques-

tions linked to the composition, formation, and evolution of planets as identified in

Table 1. Given their common occurrence in the galaxy (e.g., [37]), we can expect sig-

nificant improvement in the characterization of this diverse and still mysterious class

of planets with Ariel. In particular, key observations include:

– The transition from gas to ice giants needs to be well understood, in partic-

ular by characterizing atmospheric compositions of a variety of planets with

masses ∼0.3 MJ. Given the large parameter space (in terms of orbital period,

composition, eccentricity, stellar properties), we envision that a large ensemble

of tens or hundreds of planetary atmospheres should be characterised by Ariel.

This will lead to a significant progress in our understanding of the nature of

intermediate-mass planets and their formation mechanism.

– Because of their smaller mass, and therefore, lower gravity and limited atmo-

spheric/envelope mass, intermediate-mass planets, together with Super-Earths,

are crucial targets to understand atmospheric evaporation. Observations of tens

to hundreds of planets with intermediate masses that orbit close to their stars

class are desirable.
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– Intermediate-mass planets should show a much larger variety of atmospheric

compositions than giant planets, owing to the potentially low abundance of

hydrogen and helium (or conversely, the potentially high metallicity) in their

atmospheres. Studies of their atmospheric compositions can be used to under-

stand the link between ice-to-rock ratio and planet formation mechanisms, the

role of clouds in planetary atmospheres, and the relations between atmospheric

and bulk composition.

4 Terrestrial planets

Recent studies indicate rocky exoplanets are common [66]. So far, over 1000 exo-

planets whose radii are less than 2 R⊕ have been discovered. At the lower radius

end of these size range (1–2 R⊕) the planet classification enters the terrestrial planet

regime [65, 112]. Fulton et al. [37] suggests that there is a detection deficiency around

1.5–2 R⊕ for small close-in planets so that the observed limit may rather be 1.5 R⊕.

Observations of terrestrial planets are generally restricted to radius and mass, thus

the bulk density can be determined. Detailed interior structure models of terrestrial

planets are obtained by combining mineral physics and average composition. Pre-

dictions for Earth-like exoplanets derived from solar system terrestrial planets are

limited by the defined composition, which results in iron cores, silicate mantles and

negligible but visible atmospheric mass.

During the main epoch of accretion, rocky planets likely melt entirely due to

release of potential energy [28], of short-lived radioactive isotopes as in the Solar

System [54, 82], and thermal blanketing of the captured nebular proto-atmosphere

[63, 109]. As a result Fe metal, which is immiscible with silicate, is able to sink to

the planet’s centre forming a metal core (carrying with it elements with an affinity to

chemically bind to Fe, such as Ni and limited amounts of light elements, e.g., H, C,

N, O, S, Si, [17, 31, 55, 57]). The silicate mantle left behind undergoes further differ-

entiation, producing a crust and atmosphere. Such differentiated planets may enter a

range of geodynamic regimes, of which Earth’s plate tectonics is one example [127].

The geodynamic regime entered is intimately linked with a planet’s thermal history,

influencing whether a magnetic field develops due to core convection, the structure

and stability of planetary crusts, rates of volcanism, and the efficiency of surface

recycling [33]. A comprehensive review of the solar system terrestrial bodies can be

found in Trønnes et al. [145].

The history of Earth, Venus, and Mars demonstrates the diversity of terrestrial

planet atmospheres. The mass and composition of an atmosphere of terrestrial planets

evolves through delivery of volatiles by nebular ingassing [109, 165], volatile-ice rich

precursors [122], outgassing from the rocky interior [56, 63, 126], and loss to space

[63]. Delivery by solid phases due to planetesimals/pebbles is expected to dominate

during the early stages, and may be altered due to their internal geophysical evolution

[84] that can alter the structural properties of rocky planets in a statistical fashion

(Fig. 5). Outgassing occurs during magma ocean cooling [10, 56, 63, 124, 130] but

can continue during a planet’s life-time through volcanism (e.g., like we know it from

Earth today).

338 Experimental Astronomy (2022) 53:323–356



Fig. 5 Predicted deviations in M-R diagram for rocky planets formed with solar system-like abundances

of the short-lived radionuclide 26Al compared to 26Al-free systems. Planets with similar or higher than

Solar abundances tend to form dried-out rocky planets; planets in 26Al-free systems are statistically sig-

nificantly enriched in water. The abundances of 26Al scale with the mass of the star-forming environment

of a given planetary system [83], suggesting a significant divergence in rocky planetary radii across these

two regimes: planetary systems from massive star-forming regions form terrestrial planets; those from

low-mass environments statistically tend to form ocean worlds with water contents on the order of ∼10%.

Figure modified from [84]

The chemistry and efficiency of outgassing/ingassing are controlled by many

aspects among which some are largely unconstrained (e.g., mantle dynamics, thermal

state) and some can be constrained (e.g., surface gravity, bulk composition, redox

state). While small terrestrial exoplanets cannot be probed directly, their composition

and evolution may be inferred from knowledge of the thickness and composition of

their atmospheres as constrained by Ariel observations. However, further progress in

theory is required to take full advantage of Ariel data.

Like for the gaseous planets, major challenges for understanding the planetary

interior structure relate to our progress in developing structure and evolution mod-

els. We need to further investigate uncertainties associated with the assumed interior

structure, which are the abundance of elements, the used equations of state, and the

actual size of the planet, as well as the effect of the stellar radiation on the planet.

Observations by Ariel could permit inferences and allow for constraining or dis-

carding current model postulates, including several aspects such as implications for

interior dynamics, crusts, and atmospheres.

4.1 Bulk composition and consequences for secondary atmospheres

Planets that form within the same proto-planetary disk can have very different volatile

element budgets (e.g., [106]) but are expected to have similar budgets in relative

refractory elements (e.g., [30]). The reason is that condensation fronts of refractory

compounds (e.g., of Al, Ca, Mg, Si, Fe, Na) occur within a small region near the star,

whereas condensation fronts of volatile compounds (incl. S, C, O, N, He, H) occur

in a very extended region around the star (e.g., [164]). Chemical kinetics timescales
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for volatile elements also become comparable to other evolutionary timescales in the

disk, adding variation to the fraction available as condensates or vapor. Therefore,

relative abundances of refractory and rock-forming elements have been thought to

be, to first order, identical between the host star and the planetary building blocks

and eventually the planets. As a result, it is often assumed that Mg/Si and Fe/Si ratios

of the planet bulk can be directly informed by the host star abundance [22, 149]. The

majority of planet hosting stars have molar Mg/Si-ratios between 0.7 and 1.5, and

molar Fe/Si-ratios between 0.5 and 1.0. Within this range, the Solar composition is

average in terms of Mg/Si, but near the higher end of Fe/Si.

However, a recent study suggests that the refractory ratios of both Fe/Si and Fe/Mg

ratios have a wider distribution in super-Earth planets compared to that of planet-

hosting stars [116]. This finding challenges the assumption that super-Earths and the

cores of mini-Neptunes can be assumed to have the same refractory composition

as that of the hosting star. A recent study by [131] investigates the eleven individ-

ual systems with well-characterized Super-Earths for which host star abundances are

available. It was found that only one planet does not reflect its host star abundance

and is expected to have a Super-Mercury interior.

Plotnykov and Valencia [116] showed that the uncompressed density is an ideal

metric to compare the planetary composition. This is different than the commonly

used bulk composition that depends on both pressure-temperature regime and com-

position. They obtain the uncompressed density of all exoplanets that are consistent

with a rocky composition (below the threshold radius for rocky planets [89]) and with

mass and radius uncertainty less than 25%. It appears there is a maximum enrichment

in iron corresponding to an uncompressed density of ∼6 g cm−3.

Fortunately, the Ariel mission will provide reliable and homogeneous stellar abun-

dances (Danielski et al. in prep., Ariel Stellar Characterisation WG). In combination

with internal structure models we will be able to test the primordial origin hypothesis

for solid planets, determine if there is indeed a maximum iron enrichment possi-

ble from formation, and put key constraints on the bulk abundance of terrestrial

exoplanets.

The bulk rock composition of planets also has direct consequences on the plan-

etary evolution of and the secondary atmosphere. The planetary bulk composition

influences tectonic processes that allow volatiles to ingas from the atmosphere to

the mantle [150] and outgassing through volcanism [23]. Furthermore, the bulk rock

composition influences whether exoplanet mantles convect in a single layer or expe-

rience double-layered convection [136]. This has direct implications for the exchange

of volatile between reservoirs. A comprehensive study that rigorously investigates

the effects of bulk rock composition on melting and outgassing is still lacking and

further theoretical efforts are needed to better understand the link between bulk rock

composition and atmosphere evolution and chemistry.

Finally, a crucial aspect that determines the chemistry of a secondary atmosphere

is the mantle oxidation state. Under reducing conditions, the outgassing of H2 and

CO is favoured, while oxidising conditions favour H2O and CO2 to outgas [21, 56].

Changing how reducing an atmosphere is has important implications for prebiotic

chemistry [120] and climate [167].

340 Experimental Astronomy (2022) 53:323–356



4.2 Interior structure and dynamics

The system’s redox state of terrestrial planets is of high importance. This is because

it determines the core-mantle fraction, as well as the secondary atmosphere compo-

sition, which can be dominated either by H2O and CO2 or H2 and CH4 for example.

The availability of oxygen in the exoplanetary system and during planetary accretion,

allows for core formation due to the oxidation of the mantle (e.g., [36]).

Super-Earths cover a mass range of up to 10 M⊕, although early studies speculate

interior structures with Earth-like mantle-core fraction to up to 20 M⊕, [58, 111].

Given the solar system planet composition range, there is likely an upper limit of

super-Earth radius for an Earth-like mean density [67], which is at most 2 R⊕ [90].

Scaling Earth’s structure to larger objects, Tackley et al. [139] investigated the poten-

tial range of interior dynamics and surface tectonic expressions (stagnant, episodic,

mobile), finding that convection still takes place in the interior of large super-Earths

but that it can be sluggish, and confirming earlier findings (e.g., [151]) that larger

planets are more likely to display plate tectonics. With possibly only slight variations

in the parameter set, however, it has also been found that size may not be important or

increased size rather hinder the development of plate tectonics ([33], and references

therein). Conditions can vary due to the variations in the different systems, which

include surface temperature (regulated by atmosphere and distance to the central

star), internal heating (related to radiogenic elements and/or tidal dissipation), differ-

ences in yield stress (due to composition, particularly variations in water content of

the rock crystal structure).

Several studies provide a phase diagram that suggests a complex relation of

these parameters for the evolution of surface tectonic regimes (e.g., [110]); how-

ever, such studies neglected magmatism and crustal production, which can have a

first order effect on the tectonic regime, particularly during early, hot phases [87,

88]. Thus, there are not only limitations in the numerical implementation of geo-

logical processes, but actual lack of knowledge on for example material behaviour

under high pressures, when the mixtures are more complex, which hinders more reli-

able determination of interior structure, composition and evolution of the terrestrial

exoplanets.

The orbital setting of close-in planets suggests that they are tidally locked, so that

interior dynamics and surface tectonics may differ between the star facing and its

opposite side. Several studies investigated the stellar side melting of surface materials

and the formation of hemispherical magma oceans [155]. This molten surface adds a

fourth tectonic regime besides, stagnant, episodic or mobile lid known from our solar

system. Given the potential of an hemispherical protracted magma ocean, exoplanet

interior dynamics may not follow any of the solar system regimes. Observations

and phase maps of rocky super-Earths can improve our understanding of the phys-

ical mechanisms driving tectonic changes on rocky planets. Furthermore, different

regimes of interior-atmosphere exchange relative to Earth and the solar system ter-

restrial planets will guide our development of more robust geophysical models of the

thermo-chemical evolution of rocky proto-planets and their emerging atmospheres.
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Using constraints from such phase maps (e.g., [20, 71]), interior dynamical mod-

elling provide insight to interior states of observed super-Earths in order to relate the

tectonic, degassing, and atmospheric evolution (Fig. 6). Phenomena related to these

hemispherical tectonic regimes may, however, be short-lived, because the planet may

continuously reorient due to true polar wander [78], and then such a hemispherical

difference may be small.

4.3 Time dependence of the interior state and implications for atmospheres

The potential for a terrestrial planet to form (and hold) an atmosphere depends on

is mass, as well as the distance to the host star [65]. The atmospheric composition

depends on the evolutionary stage (age) of the planetary system and the interior struc-

ture and interior dynamics generating a magnetic field for the individual planet [9,

38].

Earth’s atmosphere has been profoundly shaped by the presence of life (e.g., the

release of oxygen by photosynthesising plants, and sequestration of atmospheric car-

bon into rocks). The detection of water in the atmosphere may be a requirement

for life, but it is insufficient to demonstrate life being present in other systems. At

the earliest stages of planet formation, potentially primordial (H-He) composition

dominates the atmospheres, but water may be present [63]. Water or steam atmo-

spheres could cause protracted magma oceans and delay cooling of the surface [8,

10], prohibiting the formation of lids (lithosphere).

Fig. 6 Model of the geodynamic and tectonic state of the interior of LHS 3844b, assuming isothermal

surface boundary conditions according to the phase maps from Kreidberg et al. [71]. The figure shows the

temperature field with a weak (left) and a strong (right) surface layer, with a substellar surface temperature

of 1000 K and antistellar surface temperature of 20 K. The distribution of plumes in the hemispheric

tectonics regime (right) beneath the substellar point and the distribution of largely molten regions points

to a tectonic regime not observed in the Solar System and may provide vital clues as to the potential

variability of tectonic states across the rocky exoplanet census. Figure adapted from Meier et al. [94]
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The extent and mass of an atmosphere has a significant impact on the proportions

of the solid and gaseous parts of terrestrial planets, and thus on the observed density.

The evolution of terrestrial planet atmospheres and speciation of volcanic gases is

temperature dependent [36, 56]. Degassing due to volcanism enriches the atmosphere

in water, ammonia, methane and/or carbon dioxide, while the primordial atmosphere

is lost to space, if the planet is too small, too hot (interior or stellar insulation), or

does not have a protecting magnetic field. The latter requires a convecting metal core

(terrestrial planets) or, in instances where these objects are similar to giant planet’s

satellites, subsurface saline oceans. The persistence of a magnetic field of the small

icy satellites in the solar system requires external heat sources such as tidal interaction

with the planet. The persistence of a strong magnetic field of rocky planets is often

linked to active plate tectonics. High or low surface temperatures, or climate, has

been suggested an important boundary condition of whether plate tectonics would

occur. In turn plate tectonic processes have been suggested to moderate climate to be

temperate, and allow for cooling of the interior to sustain mantle and core convection

to generate the magnetic field.

There are large uncertainties regarding the initiation and sustainability of plate tec-

tonics ([33], and references therein), which relate to the unknown composition and

rheologic properties of the material and the planet, and it remains unclear whether

there is a size dependency on the propensity to plate tectonics and similarly the

magnetic field strength.

Close-in terrestrial planet are expected to lose their atmosphere due to the stellar

radiation pressure. However, if atmospheric gases would be detected by Ariel, a dom-

inance of H2 and CH4 suggest active degassing, while the dominance of H2O and

CO2 may indicate the presence of an atmosphere protecting strong magnetic field,

including possible plate tectonics in old systems.

4.4 Constraints onmagma composition of hot rocky super-Earths

from atmospheric measurements

Over 1000 exoplanets with radii smaller than 2 R⊕ have been discovered. About

half of these planets have substellar-point equilibrium temperatures Tirr high enough

(�1500 K) for rock to melt and vaporise (see Fig. 7), which include 55 Cnc e whose

substellar-point temperature is estimated to be about 2700 K, with zero planetary

albedo. Most of the close-in small exoplanets, if they are rocky, are probably planets

that have lost their primordial hydrogen-rich atmosphere due to photo-evaporation.

The closer the planets are to the star, they may be bare of all volatiles, but their rocky

surfaces are thought to be molten and they have secondary atmospheres vaporised

from the magma due to the high temperatures. We call these rocky planets hot rocky

super-Earths (hereafter HRSEs).

Depending on their evolutionary pathways, starting as solar system type terres-

trial planets or inwards migrated mini-Neptunes from beyond the ice line, they may

be rocky planets, but their interior structures and compositions are mostly unknown

at present. Several theoretical studies argue for the presence of not only terrestrial

planets with similar interiors to those of solar system’s rocky planets, but also (iron-)

coreless planets [29], carbon-rich planets [92, 98], water-rich planets [84, 170] or
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Ca-Al-rich planets [24]. To determine the interior composition of rocky exoplanet,

atmospheric observations of HRSEs in particular allow direct constraints, because

their secondary atmospheres are likely composed of materials directly vaporised from

their magma ocean.

If HRSEs are dry, they likely have atmospheres composed of rocky materials such

as Na, K, Fe, Si, O, O2 and SiO [64, 96, 128]. On the other hand, if HRSEs have

remaining volatile elements such as H, C, N, S and Cl, they likely have atmospheres

composed mainly of H2O and/or CO2 with rocky vapours such as Na and SiO [10,

129]. Or by HCN in case of N-dominated atmospheres [95, 171] Generally, we call

the former case a mineral atmosphere and the latter case a steam atmosphere. Thus,

detection of rocky vapour would provide a definitive piece of evidence for HRSEs

and their surface composition, including indications of their deeper structure. Iden-

tifying the atmospheric constituents could give constraints on the bulk composition

and formation processes of the HRSEs, but this requires an atmosphere with low

cloud coverage (compare report of the Ariel Chemical Working Group). Currently, no

studies on the vaporised atmospheres of molten coreless, carbon-rich, or Ca-Al-rich

planets exist, and we suggest that this topic should be addressed in future research.

Ariel observations will provide clues for interior structure of HRSEs and suffice

to distinguish a mineral atmosphere from a cloud-free, hydrogen-rich or water-rich

atmosphere, while planets covered completely with thick clouds or with no atmo-

sphere show flat spectra, which are similar to that of mineral atmospheres, detection
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the substellar-point equilibrium temperatures with zero planetary albedo larger than 1500 K. The data has

been taken from an open exoplanet catalogue database (http://exoplanets.org)
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of Na (0.6 µm) and K (0.8 µm) with ground-based telescopes would be help-

ful to distinguish a mineral atmosphere from other possibilities. Therefore, Ariel

would provide information on the absence or presence of volatile elements in molten

surfaces of HRSEs.

Using 55 Cancri e as an example for the discussion, composition is a matter of

speculation and needs observational constraints, but the tentative detection of hydro-

gen [146] indicates that some concepts may be oversimplified. The closeness of a

planet to a star suggests that all volatile components should have been evaporated,

if its interior mixing had been fast enough to rapidly supply these materials to the

atmosphere [74, 86]. Numerical studies [99, 139], however, predict that mantle con-

vection of a super-Earth sized terrestrial planet can be very slow. Therefore, HRSEs’

magma can retain volatile materials due to the weak interior-atmosphere interaction.

The presence of abundant H but an absence of water vapour might suggest that the

atmosphere is vaporised from reduced magma retaining hydrogen and also CO and

SiO [129]. Therefore, the detection of these gas species would lead to ascertaining the

reduced magma composition and mantle convection slow enough to retain hydrogen

in the interior.

4.5 Ariel observations of terrestrial planets

Like the other planetary types, terrestrial exoplanets are of particular interest. With

the aim to a better understand the diversity of terrestrial planet interiors and interac-

tions with their atmosphere, transiting planets with measured masses and radii with

high accuracy are ideal targets for atmospheric follow-up characterisation. This infor-

mation can then be used to infer the relation between interior, formation and evolution

as indicated in Table 1. Although the Ariel mission is not focused on small planets, it

may help to address the following questions:

– Ariel measurements will be used to determine the frequency of terrestrial planets

(i.e., super-Earths) with significant atmospheres.

– Identifying metal-rich (Mercury-like) and Earth-like planets is important for our

understanding of small planets and their potential habitability. Therefore spectra

of tens of small planets could help to better characterize these planets.

– The diversity of potential surface compositions of terrestrial planets is yet to

be determined. Ariel could provide insight on the surface composition of many

small planets orbiting close to their stars.

– Ariel will also address the issue of atmosphere escape in super-Earths. This

can be used to indirectly indicate the existence of magnetic fields that prevent

atmospheric loss.

Planets that are included in the Ariel MRS list of [25] and that are of particular

interest in this regard include 55Cnc e, GJ1132 b, GJ9827 b, HD219134 b, Kepler-

138 b and d, LHS1140 b and c, and the seven Trappist planets b-h. Planets without

measured masses are also of interest, especially when their stellar abundances are

determined. Such planets include GJ9827 c, Kepler-444b, c, d, e, HD3167b, K2-

129b.

345Experimental Astronomy (2022) 53:323–356



5 Summary

Exoplanet characterisation is a key goal of exoplanet science. Measurements of the

planetary mass and radius alone are insufficient to uniquely determine the plane-

tary composition. Ariel’s measurements of the atmospheric composition can break

some of the degeneracy in determining the planetary compositions and improve our

understanding of planets.

The statistical evaluation of the various atmosphere types can assist us to discrimi-

nate among different formation and evolutionary pathways. The mission’s results will

allow us to promote/dismiss current and upcoming theoretical models using observa-

tions. Linking the atmospheric composition with the bulk composition, and using the

information from specific elements to further constrain the composition, evolution

and formation of planets is challenging and yet to be determined. Clearly, progress

in theory is required in order to take full advantage of the upcoming data. The many

targets of Ariel which include planets with various masses, host stars, and orbital

properties will provide a wide view of the characteristics of exoplanets and on the

connection between atmospheric and bulk composition.

Finally, the Ariel mission is expected to significantly improve our understanding

of the interplay between planet formation, evolution and internal structure.
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