
ARIESIKVL: A Key-Value Locking Method for Concurrency Control of
Multiaction Transactions Operating on B-Tree Indexes

C. MOHAN

Data Base Technology Institute, IBM Almaden Research Center, San Jose, CA 95120, USA
mohan@ibm.com

Abstract This paper presents a method, called ARIES/

KVL (Algorithm for Recovery and Isolation Exploiting Se-

mantics using Key-Value Locking), for concurrency con-
trol in B-tree indexes. A transaction may perform any
number of nonindex and index operations, including
range scans. ARIES/KVL guarantees serializability and
it supports very high concurrency during tree traversals,
structure modifications, and other operations. Unlike in
System R, when one transaction is waiting for a lock on
a key value in a page, reads and modifications of that
page by other transactions are allowed. Further, trans-
actions that are rolling back will never get into deadlocks.
ARIESIKVL, by also using for key value locking the IX
and SIX lock modes that were intended originally for
table level locking, is able to better exploit the semantics
of the operations to improve concurrency, compared to
the System R index protocols. These techniques are also
applicable to the concurrency control of the classical
links-based storage and access structures which are be-
ginning to appear in modern systems also.

1. Introduction

Methods for controlling concurrent access to B-trees
have been studied for a long time (see [BaSc77, Mino84,
Sagi86, Shas85, ShGo88] and references in them). None
of those papers considered thoroughly the problem of
efficiently guaranteeing serializability [EGLT76] of trans-
actions containing multiple operations on B-trees, in the
face of transaction and system failures, and concurrent
accesses by different transactions with fine-granularity
locking. [FuKa89] presents an incomplete (in the not

found case and locking for range scans) and expensive
(using nested transactions) solution to the problem. Un-
fortunately, the details of the algorithms used in existing
systems like System R [GMBLL81]. SQUDS [ChGY81],
Nonstop SQL’ [Tand87], and DB2’ [HaJa84] have not
been published. In spite of the fine-granularity locking
provided via record locking for data and key value lock-
ing for the index information, the level of concurrency
supported by the System R protocols, which are used in
the IBM product SQUDS, has been found to be inadequate
by some customers [IBM85].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
tit/e of the publication and its date appear, and notice is gfven
that copying is by permission of the Very Large Data Base En-
dowment. To copy otherwise, or to republish, requires a fee and/
or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia, August 1990

The primary goal of our work was to modify the System
R index concurrency control method to drastically im-
prove its concurrency, performance, and functionality
characteristics. Serializable executions had to be sup-
ported with efficient storage management and high con-
currency. We present a method, called ARIES/KVL (A/-

gorithm for Recovery and Isolation Exploiting Semantics

using Key-Value Locking), which supports very high con-
currency during tree traversals, structure modifications
(i.e., page splits and page deletes), and other operations
(i.e., key inserts, deletes, fetches and range scans).
When one transaction is waiting for a lock on a key value
in a page, reads and modifications of that page by other
transactions are allowed. Transactions that are rolling
back will never get into deadlocks, unlike in System R
[GMBLLBI] and R’ [MoL086]. Although the logging and
recovery aspects of ARlESlKVL are not covered in this
paper, the concurrent executions permitted by the locking
protocols are such that correct logging and recovery are
made possible. ARIES/KVL may be used with write-ahead
logging (WAL) [MHLPS89, MoLe89, MoPi90, RoMo89] or
the shadow-page recovery method [GMBLLII,
MHLPS891. We explain the subtleties involved in index
concurrency control, especially with a richer set of index
primitives like range scans and with conditions like ’ < ‘,
‘< 5’ ’ > ’ and ’ > =’ being associated with the input
key v;lue and the key value to be fetched. Most papers
on index concurrency control ignore these very important
operations.

For the benefit of the reader who may at first like to
have an overview of ARIES/KVL’s locking, the table in
Figure 1, summarizes the locks acquired during different
operations. In the section “5.5. Discussion”, we try to
provide an intuitive explanation of ARIES/KVL’s locking
behavior. Example locking scenarios are sprinkled
throughout the paper. This paper is part of the ARIES
series of papers that we have authored. These papers
describe an integrated set of concurrency control and
recovery protocols which provide high concurrency and
efficient recovery by exploiting the semantics of the user
operations.

The rest of the paper is organized as follows. In section
2, we introduce some of the basics relating to locking
and latc:hing, and the tree architecture. In order to grad-
ually introduce the reader to the complexities and sub-
tleties involved in index concurrency control, initially, a
very simplified view of the index concurrency control
problem is presented in section 3 and then a simple
algorithm is described. In the rest of the paper, this
simple algorithm is enhanced to provide more function
and higher levels of concurrency. Section 4 introduces
the algorithm for tree traversal, while section 5 presents

392

t

I NEXT KEY VALUE I CURRENT KEY VALUE
-

FETCH & S for Commit Duration
FETCH NEXT

INSERT Unique Index

Nonunique Index

IX for instant Duration

IX for Instant Duration. if Apparent/y Insert
Key Value Doesn’t Already Exist

No Lock, if Insert Key Value Already Exists

IX for Commit Durabon if Next Key Value Not
Previously Locked in S. X. or SIX Mode

X for Commit Duration. if Next Key Value
Previously Locked in S. X. or SIX Mode

IX for Commit Duration, if (1) Next Key Not
Locked During This Call, OR (2) Next Key
Locked Now But Next Key Not Previously
Locked in S, X. or SIX Mode

X for Commit Duration, if Next Key Locked
Now and It had Already Reen Locked in S. X.

or SIX Mode

DELETE Unique Index X for Commit Duratton X for Instant Duration

Nonunique Index X for Commit Duration, If Apparenfly DeleI? X for Instant Duration, if Delete Key Value
Key Value Will No Longer Exist Will Nof Definitely Exist After the Delete

No Lock, if Value Will Definitely Con(inue 13 X for Commit Duration, if Delete Key Value
Exist May or WIII Still Exist After the Delete

-

Figure 1: Summary of Locking in ARlESlKVL

all the locking algorithms for leaf-level operations like
key fetch, range scan, key insert and key delete, and for
structure modification operations. The locking algorithms
used in System R and the experiences with those algo-
rithms in IBM products are described for comparison
purposes in section 6. Section 7 concludes the paper by
discussing the application of our ideas to other access
structures (e.g., links) and other index concurrency con-
trol protocols.

2. The Basics

In this section, we introduce some of the basic concepts
of locking and latching that are of interest here. We also
introduce the index tree architecture that we are assum-
ing in our discussions.

2.1. Locks and Latches

We use locks and latches for synchronizing concurrent
activities. Latches are like semaphores. Usually, latches
are used to guarantee physical consistency of data, while
locks are used to assure logical consistency of data.
Typically, latches are owned by processes whereas locks
are owned by transactions. The distinction between pro-
cesses and transactions makes a difference in a system
like R’ [LHMWY84] in which, even without nested trans-
actions being supported, multiple processes may be
working on behalf of a single transaction. We do not
exclude the possibility of support for nested transactions
in a system which implements ARIESIKVL. In fact, in
[RoMo89], ARIES has been extended to support a very
general model of nested transactions.

Latches are usually held for a much shorter period of
time than are locks. Also, the deadlock detector is not

informed about latch waits. Latches are requested in
such a manner so as to avoid deadlocks involving latches
alone, or involving latches and locks. Acquiring a latch
is much cheaper than acquiring a lock (in the no-conflict
case, 10s of instructions versus 100s of instructions),
because the latch control information is always in virtual
memory in a fixed place, and direct addressability to the
latch information is possible given the latch name. On
the other hand, storage for locks is dynamically managed
and hence more instructions need to be executed to
acquire and release locks.

The compatibility relationships amongst the different
modes (S. X, IS. IX, SIX) of locking that were invented
in the context of System R [Gray781 are shown in Figure
2. A check mark (‘J) indicates that the corresponding
modes are compatible which means that two different
transactions may hold a lock simultaneously in those
modes. ARIES/KVL, by using for key value locking also
the IX and SIX lock modes, which were intended originally
for table level locking, is able to better exploit the se-
mantics of the index operations to improve concurrency,
compared to the System R index protocols. These modes
are used in addition to the S and X modes which were
the only ones that were originally used in System R for
key valae locking.

Lock requests may be made with the conditional or the
uncond!tional option. A conditional request means that
the requestor is not willing to wait if the lock is not
grantatle immediately at the time the request is pro-
cessed. An unconditional request means that the reques-
tor is willing to wait until the lock becomes grantable.
Locks may be held for different durations. An uncondi-
tional request for an instant duration lock means that
the lock is not to be actually granted, but the lock man-

I Dl32, IBM and OS/2 are trademarks of the Jnlernaliwal Ilutinctr Mach~rw (‘orp. Nor.Sbr WI. and ‘l‘nndon WC trndcmnrkt of Tandem Computers. Inc.

393

s

X

c

IS

IX

SIX

J

X

II
IS J

J

I

IX SIX

:: L ::

J i

J

Figure 2: Lock Mode Compatibility Matrix

ager has to delay returning the lock call with the success
status until the lock becomes grantable. Manual duration

locks are released some time after they are acquired
and, typically. long before transaction termination. Com-
mit duration locks are released only at the time of ter-
mination of the transaction, i.e., after commit or abort is
completed. The above discussions concerning conditional
calls, S and X modes, and durations, except for commit
duration, apply to latches also. When a lock request for
a resource returns successfully, the lock manager will
indicate whether the current transaction was already
ho/ding (and not yet released) a lock on that resource
before the current request was issued. In this case, the
mode of the previously acquired lock will be returned.

Transactions may request different /ewe/s of isolation (or
consistency) with respect to each other. In the context
of System R, levels 0, 1, 2, ahd 3 were discussed
[Gray78]. The IBM products SOLIDS, the OS.12 Extended
Edition Database Manager’ and DB2, and Tandem’s
NonStop SQL support the isolation levels cursor stability
(consistency level 2 of System R) and repeatable read
(consistency /eve/ 3 of System R). These consistency
levels are referred to as CS and RR, respectively. Both
return only committed data to the transactions, unless
the accessed data is uncommitted data belonging to the
accessing transaction. Due to lack of space, CS trans-
actions are not treated in this paper (see [Moha89]).

With RR, locks are held on all the’accessed data until
the end of the transaction. Actually, locks are somehow
held even on nonexistent data which could have satisfied
the query. Later in this paper, we discuss how this is
done when the accesses are made via indexes. With
RR, if a certain query were to be posed at a certain
point in a transaction, and a little later the same query
were to be posed within the same transaction, then the
response to the query would be the same, even if it
were a negative response like not found, unless the
same transaction had changed the data base to cause
a difference to be introduced in the responses. If all the
transactions are run with RR, then their concurrent ex-
ecutions would be serializable in the sense of [EGLT76].
That is, the concurrent execution would be equivalent to
some serial execution of those transactions.

2.2. Conventions and Storage Str~rctuses

The data storage model that we assume is that of System
R, in which the data (i.e., the records of the table) are
stored in a set of data pages, which are separate from
the indexes. All the indexes on the table contain only
the key values and record identifiers (RIDS) of records
containing those key values. The RID of a record iden-

tifies the record’s location in the set of data pages. All
the leaf pages of an index contain key-va/ue,RlLl pairs,
where the RID is treated as if it were an extra key tield.
Without loss of generality, we assume that the keys are
maintained in ascending collating order on all the key
fields, including the RID. The leaf pages alone are for-
ward and backward chained using the PrevPage and
NextPage fields so that ascending and descending range
scans could be supported (see Figure 3).

Every nonleaf page contains a certain number of child
page pointers (page numbers) and one less number of
high keys - each high key is associated with one child
page pointer and there is no high key associated with
the rightmost (last) child’s page pointer. The high key
stored in the nonleaf page for a given child page is
always greater than the highest key actually stored in
the corresponding child page (note that RID is included
in the high key).

In most systems, when a nonunique index contains du-
plicate instances of a key value, the key value is stored
only once in each leaf page where it appears. The single
value is followed by as many RIDS as would fit on that
page (see Figure 3, which shows a leaf page - the key
value H has duplicates (RIDS 4 and 8)). We call this a
cluster of duplicates.

The USI? of the key map, which points to the keys in
ascending key sequence, allows one to do binary search
even when dealing with varying length keys or nonunique
indexes (see Figure 3). In the nonleaf pages also, the
key map is used and the map points to high key,page

pointer pairs in high key sequence. The pointer to the
last child alone is stored separately in the page header.
The nonleaves which are the parents of leaves have a
flag so that, when a leaf is about to be accessed, the
latch on the leaf can be obtained in the appropriate
mode, depending on the operation to be performed on
the leaf.

We refer to the page split and page deletion operations
as structure modification operations (SMOs). A page is
removed from the tree at the time the only key in the
page is deleted. Page splits and deletions are propagated
up the tree from the leaves toward the root (i.e., bottom-

up). To prevent deadlocks involving latches, the page
latches acquired at a lower level of the tree (e.g, leaf)
will be released before requesting latch(es) at the higher
level (e.g., nonleaf). SMOs are serialized by acquiring a
tree latch in the X mode. Typically, no I/OS will be done
while the tree latch is held and hence this serialization
should not cause any significant reduction in concurrency
(see [MoLe89] for more discussions and ways to relax
this restriction). During the actual page split or deletion
process, the tree structure may be inconsistent. That is,
a child may be split (deleted, respectively) but the parent
does not yet reflect the effect of that split (deletion).
This localized path inconsistency is detected by noticing
that a bit called the SM-Bit (Structure Modification Bit)
has a \Ialue of ‘I’. The latter is set by the structure
modifyi,?g transaction in the affected leaf and nonleaf
pages. In order to recover from a problem caused by
such ar inconsistency and to ensure that incorrect data
base recovery does not occur as a result of attempting
to perform a key insert or delete on a leaf which is a

394

Tree

LlM?l
Leaf Page of a Nonunique Index

SMJit(Delete,Bi t 1 Prevm lwaxtpalrr

participant in an incomplete SMO (see [MoLet39] for

details), the transaction merely requests the tree latch

in the S mode, thereby being forced to wait for any

incomplete SMO to complete and for a point ofstructural
consistency (POSC) to be established. Thus, our design

principles of indication of incomplete SMO via SM-Bit
and SMO serialization via tree latch allow us to perform

operations only in a valid state of the tree.

We assume that once an index is created its root page

does not change. That is, when a root split is needed,

the root page’s contents are copied to a new page, which

becomes the root’s child and which is then split. During

a split of a leaf, we split to the “right”. The new high

key for the split page will be the smallest key that is

moved to the new leaf page. We assume that every
index page has a version number (VN) in its header and
that every time the page is latched and modified, the

VN is updated so that it is a monotonically increasing

value. In systems which log index changes (e.g., DB2),

VN could be the log sequence number (LSN) of the log

record describing the most recent change to the page.

In systems which do not log those changes (e.g., System

R), it could be a counter which is incremented by one

for every change.

3. A Simple Locking Algorithm

In this section, we start with a simple set of index oper-

ations and discuss the simple locking algorithm needed

to support them. Then, we show why the simple locking

algorithm needs to be changed when additional opera-

tions and concurrency requirements are to be supported.

We delay discussing the algorithm followed during the

traversal of the tree until the section “4. Tree Traversal

in ARIES/KVL”.

3.1. Simple Operations

Let us first consider only the three index operations:

1. Fetch: Given a key value, fetch the RID(s) associated

with it, if the key value is present.

2. Insert: Insert the given key (key-value,RID).

3. Delete: Delete the given key (key-va/ue.RID).

Qa H 48

Figure 3: Tree Architecture

Key Map

We assume that before the insert and delete calls are

made to the index manager, an X lock would have been

obtained on the underlying data (either a record lock on

the record with the input RID or a data page lock on the

data page containing the record, depending on the gran-

ularity of data locking). In the algorithm that supports

only these operations, the obvious choice for the lock

name would be to derive it using the key value. Since

key values can vary in size and since lock managers

typically deal with only fixed length lock names, the key

value would have to be hashed to construct a fixed

length lock name. The index ID will also be concatenated

with the hash value to make the lock name unique across

all the indexes in the data base.

The locking algorithm to be followed is very simple.

Once the index manager is invoked with one of the above

operations, before the index manager starts traversing

the tree, it would first acquire the appropriate mode lock

(S for Fetch, and X for Insert and Delete) on the key

value. The S lock continues to be held even if the looked-

up key is not found. This is the way to ensure that no

other transaction is able to insert the same key value

before the transaction that did the look-up terminates.

Hence, the latter will be guaranteed the RR property.

Note that the modes of the locks acquired by readers

and modifiers must be incompatible in order to ensure

that (1) an uncommitted inserted key of one transaction

is not fetched by another transaction and (2) a fetching

transaction is blocked when there is an uncommitted

delete of the requested key by another transaction. The

choice of the S and X modes to ensure this serializability

property has the following bad consequence. Even

though 2 different transactions are deleting (or inserting)

2 different records belonging to a particular table, if both

the records have the same key value for a particular

(nonunique) index. then one of them will be forced to

wait fat the other to terminate. There is no reason to

prevent these two operations from happening concur-

rently. One way to permit this level of concurrency is

to let t1-.e key delete (or insert) operation acquire the IX

lock instead of the X lock. Since IX is incompatible with

S, we still guarantee RR for readers. With these changes,

inserts and deletes of the same key value can go on

395

concurrently by different transactions. These changes

are correct, as long as we consider only nonunique in-
dexes.

If we now consider unique indexes, we could have a

problem with a scenario like the following: (1) Tl deletes

the key value ‘A’ (with RID 20) after acquiring the IX

lock on ‘A’; (2) T2 inserts the key value ‘A’ (with RID 10)

after acquiring the IX lock on ‘A’ (this is possible since

IX and IX are compatible and T2 does not find the value

‘A’ already in the index - T2 does not realize that there

is an uncommitted delete of ‘A’); (3) T2 commits; (4) Tl

aborts; (5) Tl puts back the value ‘A’ (with RID 20).

Clearly, there is a problem now since the uniqueness

constraint of the index is being violated. Not letting Tl

put back the value would violate the transaction atomicity

property. The way out of this problem is to change the

locking algorithm for unique indexes a/one so that the

insert and delete operations get the X lock, instead of

the IX lock.

3.2. More Powe@l Fetch Operation

Now let us consider enhancing the functionality of the

index manager so that in the Fetch call, in addition to

asking for the RID(s) associated with the given key value,

one could also ask for the retrieval of that key value

that is present in the index and that is higher than the

given key value (e.g., for the leaf page of Figure 3, the

Fetch call ’ > F’ should return G,5). The problem here

is that before the index manager starts traversing the

tree it does not know what lock to obtain. This means

that the locking for the Fetch call must be postponed

until a key value matching the search criterion is found

or it is determined that no such key exists. The same

PI

Time Tran

10 Tl

20 1‘2

30 T2

Action

X lock C and insert C on P2

Looks up key 5‘ A; accesses Pl first
and then P2; requests S lock on C and
waits

Gets lock, notices P2 hasn’t changed
since going into wait - reads C

Serializability Problem if at Time 25 Tl Inserts B and then
Commits, but 72 Does Not Read B

SO/UtiOf7: If Waited on Lock for First Key on Page, Even

if Page Has Not Changed, Restart Search From Previous
Page if Search Originally Began on Previous Page. Rede-
termine Key Satisfying Search Condition

Figure 4: Repositioning Afler Lock Wait

problem will arise, if we enhanced the Fetch call to let

the caller specify o/l/y a prefix of a key value and ask

for the retrieval of the first key value that matches the

given prefix. Once the key value is determined and a

lock is requested, the lock may not be granted right

away since the key value could be in the uncommitted

stats. This condition must be handled carefully. Other-

wise, holding the latch on the leaf page and waiting for

a lock could lead to a reduction in concurrency and,

more importantly, to a deadlock that goes undetected.

This requires that the lock be first requested conditionally
(i.e., while holding the latch on the leaf page). If the lock

is not granted, then the latch must be released and the

lock must be requested unconditional/y. Once the lock

is finally granted, it may not be correct to return the

locked key value as the result, due to situations like the

one illustrated in Figure 4. We need to verify that the

previously determined information is still valid. We call

this design principle revalidation after unconditional lock-
ing.

Even after we ensure that what is locked is the right

value to be returning to the caller (possibly after being

forced to lock a different value from the one that was

originally locked due to the changes that occurred while

waiting for the first lock to be granted), there may still

be problems. This comes from the fact that what the

Fetch call locked will not prevent another transaction

from later inserting a key value that (better) satisfies

the Fetch call of the first transaction. If such an insert

were to be permitted and the inserting transaction were

to commit later, and then the Fetching transaction were

to reissue its call, a different result would be returned,

thereby violating the RR guarantee. For example, if the

call were to fetch a key value ’ > F’, then ‘G’ would be

locked and returned. But this lock will not prevent an-

other transaction from inserting the value ‘FF’, which

would be returned, instead of ‘G’, if the Fetch call were

to be repeated by the first transaction.

Somehow, the fetching transaction needs to communi-

cate, to inserting transactions, the fact that no new key

should be inserted in the gap (i.e., between ‘F’ and ‘G’).

It would be extremely inefficient to make Fetch acquire

an S lock on all possible key values in the gap (i.e., the

nonexistent keys). The simplest way this is accomplished

is for the Fetch operation to leave behind an S lock on

the key value that satisfied the search condition or the
next higher value that is present, if no existing key sat-

isfied the search condition. Thus, a lock on a key value

is really a range lock on the range of keys spanning the

values from the preceding key value that is currently

present in the index to the locked key value. For this

range-locking protocol to work, the inserting transaction

must check the lock on the next key value, before it does

the insert of a given key value. The mode of Insert’s

lock request must be such that it is incompatible with

the S lock acquired by Fetch.

For the time being, let us assume that the mode of

Insert’s next key lock request is X, as is the case in

System Ii. If the lock on the next key is not grantable

righ! aw.ay, then the insert must be delayed until that

lock becomes grantable. Instead of using predicate lock-

ing, we are using next key locking to get a similar effect.

396

We call this design principle range locking via next key
locking. This is a conservative approach since the
nongrantability of the X lock on the next key is interpreted
to ‘imply that the holder of that lock does not want the
insert to happen until the holder terminates, when in fact
the holder might have the lock on the next key for a
totally different reason (e.g., it is an uncommitted insert,
or a Fetch was done specifically for that next key and
that Fetch request would not be satisfied by the value
about to be inserted). The lock on the next key need not
be held after the insert operation has been performed.
Only as of the time of an insert, it must be ensured that
the lock on the next key is not held by another transaction.
Hence, the next key lock is requested for instant duration
during an insert operation.

feature of ARIES/M, but with an increase in the locking
overhead. Given that, the following problems arise:

1. How to support serializability and locking during
range scans, without requiring support for predicate
locking?

We would like to avoid having to support predicate
locking, even with only simple predicates, since
checking for compatibility among predicates is much
more expensive than checking for compatibility
among locks. With the latter, the data structure is
usually a hash table that can be looked up very
efficiently. No such simple data structure exists for
organizing a collection of predicates and comparing
them.

Just as Insert needs to do next key locking, Delete also
needs to do such locking. Otherwise, when a key is in
the uncommitted deleted state, Fetch will not be aware
of such a key since Fetch locks only those keys that are
actually present in the index. As a result, Fetch would
wind up retrieving the next key erroneously, when in fact
the deleted key would have been the right one to retrieve
had it been present. This would cause an RR violation,
if the delete were to be rolled back and the Fetch were
to be repeated. To handle this correctly, Delete needs
to leave behind a lock on the next key which would cause
Fetch to wait until the deleting transaction terminates.
For this to happen, the mode of the next key lock must
be incompatible with the S lock that would be acquired
by Fetch. The next key lock must be held until commit
by the deleting transaction. For the time being, let us
assume that the mode of this request is X, as is the case
in System R. Contrast the commit duration next key lock
required in this case with the instant duration next key
lock that is sufficient for the Insert case - the difference
comes from the fact that an uncommitted inserted key
is visible to transactions that visit the page later, whereas
an uncommitted deleted key is not visible, since the key
is physically removed from the page.

2.

3.

4.

4.

If locking a range of keys is going to be supported
as in System R (i.e., lock the smallest key that exists
in the index that is higher than the end point of the
range - see the section “6. System R”), how to allow
one transaction to insert a key value that is just
smaller than an already existing uncommitted key
inserted by another transaction?

In a nonunique index, how to let more than one
transaction perform concurrently inserts of different
index entries with the same key value?

In a nonunique index, how to let different transactions
concurrently perform deletes of some duplicate in-
stances of keys in two neighboring clusters of dupli-
cates with different key values?

Tree Traversal in ARIES/KVL

It should be obvious that the next key locking cannot be
done before the tree is accessed since it is not known
as to what currently exists in the index as the next key,
until the leaf page is accessed.

In the rest of this paper, we enhance this simple algorithm
in order to improve its concurrency and performance
characteristics. But before presenting the details of the
improved algorithm, called ARIES/KVL, we discuss next
the problems that we were interested in solving.

The basic search routine, Search, takes as input the key
(or prefix of key) value, the target level (at which to
stop), the action routine (Fetch, Insert, or Delete) to con-
tinue processing after Search has reached its target
page, and other parameters. Search traverses the index
tree from one page to that page’s child by holding an S
latch on the parent while requesting a latch (in S mode,
if nontarget child, else in S or X mode, depending on the
action to be performed) on the child. This protocol is
called lock-coupling in [BaSc77]. Our design principle
of latch-coupling allows us to validate the path from the
parent to the child.

3.3. Problems

The pseudo-code.for this procedure is given in Figure 5.
To simplify the presentation, we have shown only the
case where the target level is a leaf. We have not
specified the case where the root is a leaf.

/We would like to use key values as the objects of locking. If the child is participating in a structure modification.

This is to be contrasted with the data-only locking ap- which is done bottom-up, by another transaction, then
proach taken in ARIESIIM [MoLe89], where the locking the traverser waits for the propagation of the SM to be
is always done on the underlying data record, which is completed.* This is done by requesting the tree latch in

stored elsewhere and whose key is the one in the index the S mode, after releasing the page latches. Once the
entry to be locked. ARIES/KVL’s index-specific key value tree latch is granted, Search restarts its tree traversal.
locking would be necessary where the records are stored We may optimize the retraversal by restarting at the

in the index itself and an index entry contains the cor- parent, if the parent had not been modified since it was
responding record, instead of a record identifier, as in seen la:;1 - a modification of an ancestor can be detected
Tandem’s Nonstop SQL. It could also potentially lead to by remembering, as Search traversed down the tree, the
higher concurrency compared to the data-only locking VNs of 311 the accessed pages from the root; even if the

397

/* for simplicity, root = leaf case not specified here */
5 Latch Root and Note Root's VN
Child := Root
Parent := NIL

Descend:
IF Child is a Leaf Page AND Operation is (Insert OR Delete) THEN X latch Child
ELSE S Latch Child
Note Child's VN
IF Child is a Nonleaf Page OR (Child.SM-Bit = ‘1’) THEN

IF Chi1d.W Bit = '0' THEN
IF Parent-o NIL THEN Unlatch Parent

/* Not part of an ongoing SH */

Parent := Child
Child := Page-Search(Child) /* Search Child to Decide Which Page to Access Next */
Go to Descend

ELSE /* Unfinished Structure Modification */
Unlatch Parent 8 Child
S latch Tree for Instant Duration /* Wait for Unfinished SII to Finish */
Unwind Recursion as far as Necessary Based on Noted Page VNs and Go Down Again

ELSE /* Child is Leaf; Appropriate Latch (5 or X) Held on Child */
Unlatch Parent
1st Leaf :- Child
CASE Operation OF

Fetch: . . . /* Invoke Fetch Action Routine */
Insert: . . . /* Invoke Insert Action Routine */
Delete: . . . /* Invoke Delete Action Routine */

END

Figure 5: Search Procedure for Tree Traversal

parent has changed, we will still be able to restart from

that page, as long as the key of interest is still covered
by that parent. Otherwise, we can restart from the grand-
parent and so on recursively, if necessary. Once Search
reaches the leaf level, it leaves a latch on the leaf (call

it the 1st leaf) and passes control to the appropriate
action routine (Fetch, Insert, or Delete).

5. Basic Operations in ARIES/KVL

There are four basic index operations that ARIES/KVL
supports:

1. Fetch: Given a key value or a partial key value (its
prefix), check if it is in the index and fetch the full
key. A starting condition (-, Z, or > -) will also
be given.

2. Fetch Next: Having opened a range scan with a
Fetch call, fetch the next key satisfying the key range
specification (e.g., a stopping key and a comparison
operator (<, =, or < -)).

3. Insert: Insert the given key (key-va/ue,R/D). For a
unique index, Search is called to look for only the
key value. For a nonunique index, the whole new
key is provided as the Search key.

4. Delete: Delete the given key (key-va/ue,RID).

5.1. Fetch

The pseudo-code for the Fetch action routine is given in
Figure 6. When Fetch is called with an S latch held on
the 1st leaf, it searches the leaf to find a satisfying key

(i.e., the smallest key value that matches the starting
condition, or, if there is no such key value, then the next
higher key value). The 1st leaf could be in one of two
states. In the following, we discuss the two cases and
explain how Fetch deals with each one of them.

1. A satisfying key is found in the 1st leaf.

This will be the most common case.

2. Id leaf does not have a satisfying key.

Fetch S latches the successor page (call it the 2nd

leaf). If the 2nd leaf is empty (EM-Bit must be equal
to ‘1’). then Fetch unlatches both pages and requests
the tree latch in the S mode. Once the tree latch is
granted, it restarts the search. If a satisfying key is
found in the 2nd leaf (SM--Bit may be equal to ‘l’),
then Fetch continues to hold the latch on the
1st Leaf. This is done to make sure that a key
satisfying the request does not suddenly appear “be-
hind the back of. the searcher” in the 1 st leaf, without
the knowledge of the searcher, due to the abort of
a key delete operation by another transaction or due
to an insert by a transaction in forward processing.
This much care is required to guarantee RR.

If Fetch reaches the last (i.e., the rightmost) leaf page
and no matching or highei key value is found, then it is
treated as the EOF (End Of File) situation and a special
lock name unique to this index is used as the found key
value’s lock name. If the requested key value was not
found but a higher valued key was found or it is the EOF
case, then the not found status will be returned to the

2 We can do much better than this. For simplicity of presentation here, we are not shoiving how Search can traverse down the tree even when the child is
involved in a page split, thereby improving concurrency. Fetch can also deal with a leaf which is a participant in an on-going split. The interested reader
is referred to [Moha89, MoLe891 for the details of how these are accomplished.

398

/* Satisfying Key Value - Requested Key, if it Exists; Otherwise, Next Hiqher Key Value */
IF Satisfying Key Value Nat Found in lst-leaf THEN

2nd Leaf := 1st Leaf.NextPage
IF 2nd Leaf c> #IL THEN

S La&h 2nd Leaf
/* &d-Leaf exists */

IF Znd-Leaf-has a Satisfying Key THEN
Child := 2nd Leaf

/* Zntl-Leaf is Definitely Hot Empty ‘/

Found Key :=- Satisfying Key in 2nd Leaf
ELSE /” Znd-Leaf Must be Empty - wait for tree latch */

Unlatch 1st Leaf and 2nd Leaf
S Latch Tree for Instant-Duration /* Wait for Unfinished Sll to Finish “/
Unwind Recursion as far as Necessary Based on Noted Page VNs and Go Down Again

ELSE Found Key := End-Of-Fire /* Zntl-Leaf Doesn’t Exist */
ELSE /* lst-Leaf has a Satisfying Key */

Found Key := Satisfying Key in lst-Leaf

/* lst-Leaf 8 fnd-Leaf; if Accessed, Will he Held Latched in S tlode l /

S Lock Found Key Value for Commit Duration (tlayhe End-Of-File)

Unlatch Ist-Leaf and &d-Leaf, if Accessed
IF Locked Key Satisfied Search Condition THEN Return Key
ELSE Return Not Found

Figure 6: Pseudo-Code for Fetch Action Routine

--

caller. In any case, while holding the page latch(es), a

condifional S lock is requested on the found key value.3

If the conditional request is not granted, then, in order

to avoid a deadlock involving latches, the page latches

must be released and then the lock must be requested

UrJCOlJditiOlJa//y. Once the unconditional request is

granted, then the page must be reexamined to make

sure that the previously retrieved information is still the

correct one. If the state is not the same, then the new

satisfying key must be determined and locked.

With the leaf page as depicted in Figure 3, if the call

were to locate the key GG. then the lock would be ac-

quired on the key value H of H,4, which is in the nexl

cluster of duplicates; on the other hancl, if the requested

key had been G, then the lock would be acquired on the

key value G of G,5. Even if the requested key value is

not found, the next key value is locked to make sure

that the requested key does not suddenly appear (due

to an insert by another transaction) before the current

transaction termimks and prevent RR from being pos-

sible. As we will see later. the next key value locking

clone during inserts makes it possible to guarantee RR.

This locking in Fetch also makes sure that the requested

key has not been deleted by another transaction which

has not ye1 cornmilted. As we will see later, the deletcr

of the last inslance of a key value leaves a trace of ils

action by X locking the next key value for commit durnlion.

If the condifiorJa/ lock request is not granted. then the

found key and the current page’s VN are remembnred.

Then, the current page and any other page that is still

held latched are unlatched and an uncor,ditiona/. mnnunt

duration, S lock is requested on the found key value.

After the lock is granted. the leaf page which contained

the key is relatched. This is done to enforce our earlier

described design principle of revalidation after uncondi-
tionalkcking. The VN was remembered before unlatching

to make the cost of revalidation cheap. If the page was

the 1st leaf page (this check is to handle the problem

illustrated in Figure 4) and the page’s VN is still the

same, no further work is required. This means that the

page had not changed since it was seen last. The page

is unlatched and control is returned to the caller with

the appropriate status, and, possibly, the key.

If the page’s VN is different and the page is (1) empty,

(2) I; no longer part of that index, (3) is no longer a leaf

page, or (4) is nonempty but it was the 2nd leaf and the

first key in the page is greater than or equal to the

searched-for key (may not necessarily be the locked

key), then Fetch restarts Search. If the first key in the

page is less than the searched-for key, but the page’s

VN has changed and the highest key in the page is equal

to cr oreater t/Jar, the searched-for key, then Fetch

searches that page again; otherwise, it restarts Search.

If the key value found now matches the previously locked

key JaIllo. then the page is unlatched and the appropriate

stntlls, and, possibly. the key are returned to the caller.

If a different key value? is found, then the old key value

is uljlocked and the new key value is locked using the

above ;Ilgorithm in a recursive manner as necessary.

For a Fetch cnll that is being issued at the start of a

range scan (i.e , the suhscqucnt calls will be Fetch Next

CZ~II~~). il rl key is hcing rclrlrncd to 1he caller, then Fetch

399

--

IF Ist-Leaf Needs to be Split IllElI
Invoke the Page-Split PI.OCP~III.P and Return

/' 1111 spill-e for ln!.Pt~t nf KPY '/

IF Insert key Volue Air-eody in Ist-Leaf THEN /' tln llcerl to Lock Next Key '/
IF Unique Index THEN

S lock Insert Key Value for Consnit Duration
Return Unique Key Viol&ion Status

ELSE
IX Lock Insert Key Value for Commit Duration

/' Iln~~w~iqt~~ Intl~~ and Insert Kpy Value All-party on Ist-leaf */

Insert Key, Log, Unlatch lst-Leaf and Return

/* Insert Key Value NOT Already in lst-Leaf "/

IF No Higher Key Value in lst-Leaf AND &d-leaf Exists THEN
S Latch 2nd Leaf
IF 2nd Leaf-is Empty THEN

/* blhile Holding X Latch on 1st Leaf '/

UnlaTch 1st Leaf and 2nd Leaf
/+ Page Delete in I'roqwss - !Jait for it tn he Over */

S Latch Tre; for Instant-Duration
Unwind Recursion as far as Necessary Based on Noted Page VEls and Go Dnwn Again

ELSE /* 2nd Leaf is NOT Empty '/
IF Insert Key Value found in Znd-Leaf THEN /* Thi; Can't he a IJnirlue Index +/

IX Lock Insert Key Value for Commit Duration
Unlatch 2ntl_Leaf, Insert Key in lst-Leaf, Log, Unlatch Ist-leaf an:1 Return

ELSE Next Key Value := First Key Value in Z,,d-Leaf
ELSE

IF No Higher Key Value in lst-Leaf THEN Next Key Value := End-Of-file
ELSE Next Key Value := Higher Key Value in lst-Leaf

IX Lock Next Key Value for Instant Duration

Unlatch 2nd Leaf, if Accessed
If Next Key-4Zready Locked in X, S or SIX Fbde by Curwnt 7rnnsnctim THEIt Lmode := 'X'
ELSE Lmode:= 'IX'
lock in Lmode Insert Key Value for tomnit Duration
Insert Key in lst-Leaf, Log, Unlatch lst-Leaf and Return

Figure 7: Pseudo-Code for Insert Action Routine

remembers the returned key’s key map slot number, violated (and hence a no! foclrld condition needs to be

and. for a nonunique index, the ordinal position of the returned to the caller), then that higher key value has

returned RID in the RID list of the duplicate cluster. This to be locked, unless the stopping condition was -= ” and

position information will be used during a subsequent the stopping key was the most recently returned key

Fetch Next call to avoid a binary search to locate the value. In the latter case, the lock already held on the

current key, if the page’s VN had not changed in between. stopping key value will be sufficient to prevent future

To detect a change to the page in between, the page’s insertions. by other transactions, of other key-va/ue,R/D

VN is remembered in the cursor’s control block. pairs with the stopping key value.

5.2. Fetch Next

If the current cursor position already satisfies the stop-

ping key specification (unique index and a stopping con-

dition of “=“), then Fetch Next returns right away to the

caller with a not found status. Otherwise, the leaf page

which is expected to contain the key on which the cursor

is currently positioned is latched and a check is made

to see if the page’s current VN is different from the VN

remembered at the time of the last positioning. The

current key (current cursor position) may not be in the

index anymore due to a key deletion earlier by the same

transaction. If a change is noticed, then repositioning to

the next key-value,R/D pair is done as before in a Fetch

call.

The difference from a Fetch call is that, if the next pair’s

key value is the same as the current position’s key

value, then there is no need to lock that value again. If

the key value is different and the stopping condition is

With the leaf page of our example of Figure 3, if the

stopping condition is = F, then, after F,7 is returned, if

there is a Fetch Next call, then there would be no need

to lock G before a /lot found is returned. On the other

hand, if the stopping condition is <’ G or = Ff then G

would be locked..

5.3. IllScl~t

The pseudo-code for the Insert action routine is given in

Figure 7. If there isn’t enough space to insert the key,

then the page splitting algorithm is executed. The pseudo-

code for the page split procedure is presented in Figure

8. Note that the tree latch is acquired only after all the

affected pages have been brought into the buffer pool.

This is done to minimize the serialization delays due to

the X tree latch. Note also that the effects of the split

are completely propagated up the tree before the insert

which caused the split is performed. Points like this are

further discussed and rationalized in [Moha89, MoLe89].

400

Znd-Leaf := lst-Leaf.NextPage

IF 2nd Leaf (> NIL THEN

Fix &d-Leaf in Buffer Pool

X Latch Tree for Manual Duration

Allocate New Page and X Latch it

New-Page.SM-iit := ‘1’

New-Page.PrevPage := lst-Leaf

New-Page.NextPage := Znd-Leaf

lst-Leaf.SM-Bit := ‘1’

lst-Leaf.NextPage := New-Page

Move Sonle Keys frotii lst-Leaf to New-Page

and Log Changes

Unlatch New-Page

IF 2nd Leaf c> NIL THEN

X Latch 2nd-Leaf

2nd-Leaf.PrevPage := New-Page

Unlatch 2nd-Leaf

Unlatch lst-Leaf

Propagate Split Up the Tree, Reset SFl-Bits to ‘0’

Unlatch Tree and Then Restart Insert

Figure 8: Pseudo-Code for Page-Split Procedure

.

If there is enough space, then, after the page is searched.

Insert is positioned at a key with the same key value,

positioned at a key with a higher value, or positioned

past the last key in the page. If the key value to be

inserted is already in the leaf and this is a nonunique

index, then a commit duration IX lock needs to be ac-

quired on that key value and there is no need to lock

the next key value. For the example of Figure 3, an

insert of H,6 would require locking in IX mode the key

value H. Getting only an IX lock, as opposed to an X

lock, allows the insertion of the same key value or a

smaller key value by multiple transactions concurrently

since IX is compatible with IX. Such concurrent activities

are not possible in System R since the inserted key

values are always locked in the X mode in that system.

Note that since IX is incompatible with S, readers will

still not be able to read uncommitted data, unless the

reader is the only inserter of that uncommitted value.

In the latter case, the held lock mode will become SIX.

Since SIX is incompatible with IX, inserts by other trnns-

actions will be delayed, as is required.

If the key value to be inserted does not already exist in

the 1st leaf and Insert is positioned past the last key in

the 1st leaf, then Insert S latches the 2nd leaf and po-

sitions on the next key-va/ue,R/D pair, if there is one, in

a manner similar to what happens in Fetch. Note that

only the 1st leaf needs to be latched in the X mode. The

2nd leaf needs to be latched only in the S mocle since

Insert is only trying to prevent a reader frotn scanning

from the highest key in the 1st leaf to the next key in

the 2nd leaf.

If Insert were positioned at an equal key value in a

unique index, then it requests an S lock on the found

key value to make sure that the key value is in the

committed state, unless of course it is an uncommitted

insert of the same transaction. After this lock is granted,

if Insert discovers that the previously found key value

is still in the index, then it returns the unique key viola-

tion status to the caller. The lock is a commit duration

one to make sure that the error condition is repeatable.

If the to-be-inserted key value is not already present,

then Insert requests an instant duration IX lock on the

next key value. In System R, the next key lock is always

obtained. Furthermore, it is always requested in the X

mode. ARIESIKVL’s IX locking permits the insert to occur

when the next key value is an uncommitted insert of

another transaction, whereas System R causes a wait

under those conditions. In ARIESIKVL, with the example

of Figure 3, an insert of HH,Q would require acquiring an

instant duration IX lock on I and later a commit duration

IX lock on HH.

One of the purposes of the instant duration lock that is

requested on the next key value is to determine if, as

of the time the X latch was acquired on the leaf (hence

the instant duration rather than commit duration lock),

there was any other concurrently running transaction

which had looked for and not found the key value being

inserted. This is to handle the phantom problem

[EGLT76] and to guarantee RR. Note that in a nonunique

index, when we are adding one more instance to an

already existing key value, the IX lock obtained on the

key value being added is itself sufficient to make sure

that no other concurrent reader’s previously read state

is being disturbed. Not having to lock the next key value

should lead to higher concurrency in this case compared

to the other cases. The System R method does not have

this optimization. The advantage of not locking the next

key value, if we can avoid it, is that the inserter does

not have to wait even if the next key value is currently

locked by another transaction in an incompatible mode

(an S lock due to a read, or an X or SIX lock due to an

uncommitted insert or delete - see below). It will possibly

save even an l/O if the next key value is not in the same

page.

In the case of a unique index, with the next key value

locking, Insert is also trying to determine if there exists

an uncommitted delete by another transaction of the

same key value as the one to be inserted.

When the instant duration lock on the next key value is

granted, using the return code from the lock manager,

Insert checks wl+her the current transaction already

held th;at lock in the X. SIX, or S mode. If the lock was

held in one of those ~notlcs. then the key value being

inset-tad must be locked in the X mode for commit du-
ration. This we call lock state replication via next key

locking. We are essentially transferring a range lock

from th? next key to the current key. Otherwise, a com-

mit dur.#ion IX lock must he obtained on the key value

being inserted. Note that nothing special needs to be

done if the next key value is already held in the IX mode

by tlie current transaction (i.e., the next key value is an

uncomrlitted insert of the same transaction).

The reasons for this difference in the mode of locking (X

verrus IX) of the key value being inserted are subtle.4

Let IS c:onsidcr an index with the key values A, 8, E, K,

401

IF >I Instance of Delete Key IVuIue in 1st Lrof THEll /’ Hn IIPPd tn lock lbyt Pey VRlllP ‘/
X Lock Delete Key Value for Comit Duraiion

ti---

Delete Key, ILog, Unlatch lst-Leaf and Retwri

/* Only 1 Instance of Delete Key Value in lst_Leaf */

IF No Higher Key Value in lst-Lenf AND Znd-Leaf Exists THEN
S Latch 2nd Leaf
IF 2nd Leaf-is Empty THEN

/* Wile Holding X Latch w lst_LPaf ‘/

Unlaich 1st Leaf and 2nd Leaf
/* Page Delete in Progress - \,!iiit for it to he Iher */

S Latch Tre; for Instant-Duration
Unwind Recursion as far as Necessary Based on Noted Page VfJs and Go Own Again

ELSE /+ Znd-Leaf is not Empty '/
IF Delete Key VuZue found in Znd-Leuf THEN

X Lock Delete Key Value for Conmit Duration
IF lst-Leaf Will Become Empty After Key Delete THFII

Invoke the Page-Delete Procedure and Return
ELSE Unlatch Znd-Leaf, Delete Key from Ist-Leaf, Log, IJnlatch Ist-lraf and Return

ELSE Next Key Value := First Key Value in Znd-Leaf
FISF ____

IF No Higher Key Value in lst-Leuf THEN Next Key Value := Ende.Df-f;le
ELSE Next Key Value := Higher Key Value in lst-Leaf

X Lock Next Key Value for Cotmnit Duration

Unlatch 2nd Leaf, if Accessed
IF Delete Kgy Value is Snwllest Key Value in Ist-Leaf AND Nonunique index THEN

/* Other Instances of Delete Key Hay Exist in the Predecessor of l:,t-Leaf */
X Lock Delete Key Value for Connit Duration
IF Is-t-Leuf wiZZ Become Empty After Key Delete THEN

Invoke the Page-Delete Procedure and Return
Delete Key from lst-Leaf, Log, Unlatch lst-Leaf and Return

ELSE /* Delete Key Value Not Smallest in lst-Leaf '/

X Lock Delete Key Value for Instant Duration
Delete Key from lst-Leaf, Log, Unlatch Ist-Leaf and Return

Figure 9: Pseudo-Code for Delete Action Routine

and M. In the first scenario, let us assume that Tl had

done a range scan from B through K. If now Tl were to

insert G and it were to lock G only in the IX mode, then

that would permit T2 to insert F (T2’s request of the IX

lock on G would be compatible with the IX lock held by

Tl) and commit. If now Tl were to repeat its scan, then

it would retrieve F, which would be a violation of the RR

guarantee. When Tl requested IX on K, during the insert

of G, and found that it already had an S lock on K, then

it should have obtained an X lock on G. The latter would

have prevented T2 from inserting f until Tl committed.

In the second scenario, Tl might have an SIX lock on K
because it had first inserted K (getting a commit duration

IX on it) and later did a scan of 8 through K (getting a

commit duration S lock on K, which causes the resultant

hold mode to be changed from IX to SIX). In the third

scenario, Tl might have an X lock on K because it had

deleted f (deletion causes instant duration X lock to be

acquired on the deleted key and a commit duration X

lock on the next key value, assuming a unique index -

see the section “5.4. Delete”). Now, if G were to be

inserted by Tl and locked only in the IX mode, then that

would permit T2 to insert F and commit. If later Tl were

to rollback then it would put back its f and introduce

duplicate keys in a unique index! This is the reason Ti

should have noticed that it already held K in the X mode

and hence should have locked G in the X mode also,

thereby preventing the insertion of any key immediately

behind G by any other transaction.

After obtaining the X or IX lock request on the key value

being inserted, Insert inserts the key in the 1st leaf,

unlatches the page(s). and returns to the user with the

success status. The latching protocol is used to guarantee

that the instant lock was requested on the correct next

key value.

5.4. Delete

The pseudo-code for the Delete action routine is given

in Figure 9. After searching the leaf page, Delete should

be positioned at the key to be deleted. Only if (1) this

is a unique index or (2) this is a nonunique index and

this key deletion is definitely or, possibly, causing the

only instance of the key value to be deleted, then the

next key value is determined. A commit duration X lock
is then requested on the next key value. This lock is

necessary to warn other transactions, which may be

looking to insert or retrieve the key value being deleted,

about the uncommitted delete, Note that if this weren’t

the only instance of the to-be-deleted key value currently

402

in the index, then the commit duration X lock that will

be obtained on the to-be-deleted key value itself would

be sufficient to let other transactions know about the

uncommitted delete and there is no need to lock the

next key value.

In System R. the next key value is always locked in the

X mode. The advantage of not locking the next key

value, if we can safely avoid it, is that it allows new keys

to be added after the deleted key value (i.e., key values

larger than the deleted key value) and the next key value

to be deleted by other transactions, even before the

current transaction commits its delete. Also, the deleter

does not have to wait, even if the next key value is

currently locked by another transaction. Additionally, it

allows other transactions to start scanning from the next

key value. Furthermore, if the next key value is in a

different page, then not having to lock that value will

potentially save an l/O.

Next, if this is a unique index or this is a nonunique

index and definitely the only instance of the key value

in the index is being deleted, then Delete has to X lock

for instant duration the to-be-deleted key value - this is

to make sure that the key value is not currently locked

by an active transaction which has performed an index-

only scan; if (1) the next key value did not have to be

locked or (2) the next key value was locked and it is not

definite that the only instance of the key value is being

deleted, then the to-be-deleted key value has to be X

locked for commit duration. The advantage of an instant

duration lock, compared to a commit duration one, is

that the former does not consume any storage and it

does not cause a hash synonym chain in the lock table

to become longer. After this locking is done successfully,

usually Delete deletes the specified key, unlatches the

page(s) and returns to the caller. But, if the key to be

deleted is the only key in the page, which would make

the page become empty after the key delete is completed,

Delete invokes the page deletion procedure. The pseudo-

code for the latter is given in Figure 10. This procedure,

like the page split procedure, requests the X latch on

the tree after ensuring that all the affected pages are

already in the buffer pool to minimize the time during

which the X latch is held. On obtaining the latch, it

cleletes the key and then performs the page delete re-

lated processing (modifying the neighboring pages’ point-

ers, propagating the page deletion, etc.).

In this section, we try to explain why there at-e some

significant differences in the locking protocols that arc

followed during the different leaf-level operations.

In the case of Delete, unlike in the case of Insert. the

lock mode for the deleted key value and the next key

value has to be X instead of IX. The reason is a subtle

one. If the next key value lock mode had been IX during
a delete, then that would permit another transaction to

do an insert of a key value less than the next key value.

before the commit of the deletion by the first transacfion.

The newly inserted value may be less than, equal 10. or

greater than the deleted key value. If the newly inserted

value happened to be greater than the deleted key value.

0th Leaf := 1st Leaf.PrevPage
IF 8th Leaf <> fi1L THEN Fix 0th Leaf in Buffer Pool -1 X LatcT; Tree for Manual Duration
IF 2nd Leuf <> NIL THEN Unlatch
Delete-Key from 1st Leaf and Log

Znrl-Leaf

1st Leaf.91 Bit := ‘1’
Oeailocate ist Leaf
IF Znd-Leaf -=--NIL THEN

X latch 2nd-Leaf
2nd Leaf.PrevPage := lst-
Unlatch 2nd Leaf

.L

Unlatch lst-Leaf
IF Qth Leaf c> NIL THE11

X La&h 0th leaf
Oth-Lcaf.Ne%Page := 2nd-
Unlatch Oth-Leaf

eaf. PrevPage

eaf

Propagate the Delete Up the Tree, Reset W-Bits to ‘0’
Unlatch Tree

Figure 10: Pseudo-Code for Page-Delete Procedure

then RR cannot be guaranteed. For example, let Tl

delete G,5 and lock H only in the IX mode for commit

duration. This would permit T2 to insert the value GG,

which it would lock in the IX mode for commit duration.

Before actually inserting that key value, T2 would also

request an IX lock on H which would be granted since it

is compatible with the IX lock held by Tl. Now, if T2,

were to look for G it would not find it. and it would then

request an S lock on GG which would be granted. Then,

Tl might rollback and put back G,5. Now, if T2 were to

repeat its search, then it will find G, thereby violating RR!

To see why the mode of the lock on the deleted key has

to be X instead of IX. in our example, assume that H,4

is an uncommitted insert of Tl. This means that Tl

would he holding an IX lock on H for commit duration.

Now, let T2 try to delete H,8. Since T2 is not deleting

the only instance of H, it would request a commit duration

lock on H. Let it be in the IX mode, instead of X. T2’s

IX mode lock request would be granted since it is com-

patible with Tl’s IX mode lock and T2 would delete H,8

successfully. Then, Tl could rollback removing its H,4,

now the only instance of H. T3 might then try to fetch

H and Ilot finding it, T3 will lock I in the S mode. Then,

T2 could rollback and put back H.8. Then, if T3 were to

repeat its search it would find H, thereby violating RR!

The asgmmelry bctwe!en insert and delete partly comes

from the fact that an uncommitted insert is “visible”

sine? tilt! inserted key exists in the index, whereas an

uncommitted delete is not visible since the deleted key

disappears from the index. So, in the latter case, we

need to leave behind a -strong’ lock on a still-existing

key for .xthers to “trip on’ (i e., conflict on a lock request).

The lock has to be strong enough to prevent others from

building a ‘wall” behind the “tripping point’ such that the

wall hic’es Ihe tripping point from the point of deletion.

In the c:ase of an insert, the inserted key itself serves

as the tripping point, whereas for delete the tripping

point may have to be another key value or if it is the

same key value. then iI must be guaranteed to be a

“s’?Me’ one?. The reader slmuld now be able to map the

403

above examples to these analogies to visualize what is

going on.

Note that, if we are not careful, a transaction which has

deleted a key might itself create a wall behind its tripping

point, thereby allowing another transaction to create a
wall behind the first one’s wall, which then enables a

violation of RR. To take an example, let Tl try to fetch

the range of key values from f to those less than G. Tl

will fetch F and acquire S locks on F and G. Then, Tl

inserts FK, acquiring an instant duration IX lock on G

(the next key value) and a commit duration IX lock on

FK. Now, T2 can insert FC, acquiring an instant IX lock

on FK (the next key value) and a commit duration IX

lock on FC. Then, T2 commits. Now, if Tl were to repeat

its range scan, it will retrieve FC, thereby violating RR.

It is to prevent situations like this that in ARIESIKVL,

during an insert, we get an X lock on the inserted key

value, if the next key value needs to be locked and that

next key value was already locked by the inserting trans-

action in the S, X, or SIX mode. Thus, the inserter, while

“erecting” a wall right behind its own tripping point “rep-

licates” its tripping point on the newly inserted value.

This is what we earlier called lock state replication via

next key locking.

6. System R

As far as we know, System R was the first system to do

key-value locking and support RR. Unfortunately, the

System R concurrency control method for index locking

was never documented in the literature. ARlESlKVL has

some similarities to the System R method, but we have

also adapted many of the ideas reported in [MHLPS89,

MoLe89] along with other innovations to improve per-

formance and concurrency.

A feature of the System R locking method is that many

times (especially during inserts, deletes, and at the end

of range scans, and sometimes during fetches) the key

value (termed the next key value) following the one(s)

of interest is locked in S mode during read operations

and in X mode, otherwise. A bigger range of key values

(from the one preceding the one(s) of interest to the

next key value) gets locked due to this feature. This has

been termed the adjacent key conflict problem and cus-

tomers have suffered reduced concurrency due to this

also [IBM85]. One way of reducing the occurrence of

this problem is to avoid acquiring such locks whenever

it is safe to avoid them. Some of the differences between

the System R method and ARIES/KVL accomplish this

reduction in lock conflicts and the ranges of key values

locked.

System R uses page locks for physical consistency, while

doing key value locking for logical consistency. Unfortu-

nately, all these page locks are not released until the

end of the RSS (the data manager) call. This means that

these index and data pages’ locks are held even during

110s and lock waits. Depending on the operation to be

performed, read or write, the page lock will be acquired

in the S or the X mode. Typically there will be many

I/OS during a single RSS call. The *waits for physical

locks caused by prolonged holding of the page locks

causes deadlocks and unnecessary delays to other trans-

actions. Unfortunately, this approach of holding all the

page locks until the end of the RSS call, which amounts

to treating each RSS call as a mini-transaction, is also

suggested by others that discuss multilevel transaction

management (see, e.g., [WeikS’I]). From practical expe-

rience with the SOL/DS product, it has been found that
a significant percentage of deadlocks are caused by the

page locks when record/key locking is being done. The

reduction in concurrency due to the next key locking has

also been a cause for concern, especially because the

VMlSP Shared File System uses the SQL/DS index man-

ager to store meta-information about ordinary user files,

etc.

Since pages are locked even during rollbacks, a trans-

action that is rolling back may get into a deadlock. Sys-

tem R and R’ serialize the execution within RSS by the

rolling back transactions to avoid a deadlock involving

only such transactions [MoL086]. Since ARlESlKVL ac-

quires only latches during rollbacks and latches never

get involved in deadlocks, transactions that are rolling

back will never get into deadlocks.

7. Conclusions

We presented a method called ARlESlKVL for concur-

rency control in B-tree indexes. Some of the design

principles that we adopted in the design of ARIESIKVL

to improve concurrency and performance are: (1) use of

latches instead of locks for physical c’onsistency, (2) re-

leasing latches during lock waits, (3) revalidation after

unconditional locking, (4) use of VN to detect page state

changes, (5) range locking via next key locking, (6) lock

state replication via next key locking, (7) SMO serializa-

tion via tree latch, (8) indication of incomplete SMO via

SM-Bit and (9) latch-coupling. The table in Figure 1

summarizes the locking performed by the different leaf-

level operations. At most 2 page latches are held simul-

taneously. ARIESIKVL can used in conjunction with two-

phase locking for the table data. As far as we know,

compared to the published papers, this is the only paper

which presents a comprehensive, and a high concurrency,

efficient solution to the problem of providing concurrency

control of multiaction transactions operating on B-tree

indexes. Due to lack of space, we have not discussed

backward scans, protocols for cursor stability and recov-

ery in this paper. The latter and ways to improve con-

currency during structure modifications are presented in

deplh irr [MoLe89]. Variations of the presented protocols

for cursor stability are discussed in [Moha89]. ARIES/

KVL brings us closer to the power of predicate locking

using only traditional locking and without using any ad-

ditional lock modes other than the ones introduced in

System R. We have studied alternatives to key-value

locking to improve concurrency in indexes in [MHWCSO,

MohaSF, MoLe89 1.

Many of the design principles of ARIESIKVL are also

applicable to the concurrency control of the classical

links-based storage and access structures which are be-
ginning to appear in more modern systems also

[ShCa89]. If the children records of a parent record are

linked together and scans along such links are permitted,

then, in order to guarantee RR scans, inserters and

404

deleters of children records would have to do next key

locking. Then, our ideas would apply. Our techniques

may also be combined with the data-only locking ap-

proach of ARIES/IM [MoLe89] to improve concurrency

further in ARIESIIM. The basic idea is to make record

inserters obtain IX locks rather than X locks on the

records or data pages, depending on the locking granu-

larity in use. In the case of page locking, this permits

multiple transactions to insert on the same page. For

inserts alone, for the price of page locking, we can get

the concurrency of record locking! With this change to

ARIES/IM, in the index, during a key insert, the lock on

the data of the next index entry will be requested in the

IX mode rather than in the X mode. If the current trans-

action is found to have already a lock on the next index

entry’s data in any mode other than IX, then the lock on

the inserted index entry’s data is converted to the X

mode, if it is not already held in that mode. Thus, some

of the features of ARIESIKVL are being implemented in

the context of ARIES/IM.

Acknowledgements I would like to thank Laura Haas,

Yehoshua Sagiv, Beau Shekita and the anonymous ref-

erees for their comments on earlier versions of this paper.

8. References

f3aSc77

ChGY81

EGLT76

FuKa69

GMBLL81

Gray78

HaJa84

IBM65

LHMWY64

MHLPS89

Bayer, R., Schkolnick, M. Concurrency of Opera-
tions on El-Trees, Acta Informatica, Vol. 9, No. 1.
pl-21, 1977.
Chamberlin, D., Gilbert, A., Yost, R. A History of
System R and SQL/Data System, Proc. 7th tnterna-
tional Conference on Verv Larae Data Bases.
Cannes, September 1981. - ”
Eswaran, K.P., Gray, J., Lorie, R., Traiger, I. The
Notion of Consistency and Predicate Locks in a
Database System, Communications of the ACM, Vol.
19, No. 11, November 1976.
Fu, A., Kameda, T. Concurrency Control for Nested
Transactions Accessing B-Trees, Proc. 8th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Svstems. Philadelphia. March 1989.
Gray, J., l&J&es, F., Blasg&, h., Lindsay. B.,
Lorle, R., Price, T., Putzolu, F., Traiger, I. The Re-
covery Manager of the System R Database Manager.
ACM Computing Surveys, Vol. 13, No. 2, June 1981.
Grav. J. Notes on Data Base Ooeratmo Svstems.
In dierating Systems - An Advabced C&&e, Lec-
ture Notes in Computer Science, Volume 60,
Springer-Verlag, 1978.
Haderle, D., Jackson, R. IBM Database 2 Overview.
IBM Systems Journal, Vol. 23, No. 2, 1984.
IBM SQL/Data System Dfagnosis Guide for VMI
System Product Release 3.5, SY24-5230, Novetnh~r
1985.
Lindsay, B., Haas, L., Mollan, C., Wilms, P.. Yost.
R. Commutation and Communlcahon m R’: A DIS
tributed’ Database Manager, ACM Transactions on
Computer Systems, Vol. 2, No. 1, February 1984.
Moh&, C., Haderle, D., Lindsay, B., Pirahesh, I-i.,
Schwarz, P. ARIES: A Transactron Recovery Method
Supportmg Fine-Granularity Locking and Part/a/
Rollbacks Using Write-Ahead Logging. To Appear

MHWC96

Mino84

Moha89

Moha96

MoLe89

MoL066

MoPi

RoMo69

Sagi

Shas85

ShCa89

ShGo88

Tand87

Weik87

in ACM Transactions on Database Systems. Also
Available as tBM Research Report RJ6649, IBM
Almaden Research Center, January 1989.
Mohan, C., Haderle, D., Wang, Y., Cheng, J. Sing/e
Table Access Using Multiple Indexes: Optimization,
Execution and Concurrency Control Techniques,
Proc. International Conference on Extending Data
Base Technology, Venice, March 1990, Springer-
Verlag. An expanded version is available as IBM
Research Report RJ7341, IBM Almaden Research
Center, March 1990.
Minoura, T. Multi-Level Concurrency Control of a
Database System, Proc. 4th IEEE Symposium on
Reliability in Distributed Software and Database
Systems, Silver Spring, October 1984.
Mohan, C. ARIESIKVL: A Key-Value Locking Method
for Concurrency Control of Multiaction Transactions
Operating on B-Tree Indexes, IBM Research Report
RJ7608, IBM Almaden Research Center, September
1989.
Mohan, C. Commit-LSN: A Novel and Simple
Method for Reducing Locking and Latching in Trans-
action Processing Systems, Proc. 16th International
Conference on Very Large Data Bases, Brisbane,
August 1990. Also available as IBM Research Re-
port RJ7344, IBM Almaden Research Center, Feb-
ruary 1990.
Mohan, C., Levine, F. AR/ES//M: An Efficient and
High Concurrency Index Management Method Using
Write-Ahead Logging, IBM Research Report RJ6846,
IBM Almaden Research Center, August 1989.
Mohan, C., Lindsay, B., Obermarck, R. Transaction
Manaaement in the R’ Distributed Data Base Man-
agemknt System, ACM Transactions on Database
Systems, Vol. 11, No. 4, December 1986. Also IBM
Research Report RJ5037. IBM Almaden Research
Center. Febriarv 1986. .
Mohan; C., Plrahksh, H. ARIES-RRH: Restricted Re-
peatinq of History in the AR/ES Transaction Recov-
ery Method, IBM Research Report RJ7342, IBM
Almaden Research Center, February 1990.
Rothermel, K., Mohan, C. AR/ES/NT: A Recovery
Method Based on Write-Ahead Logging for Nested
Transactions, Proc. 15th International Conference
on Very Large Data Bases, Amsterdam, August
1989. A longer version available as IBM Research
Report RJ6650, IBM Almaden Research Center,
January 1989.
Sagiv, Y. Concurrent Operations on B’-Trees wrth
Overtaking, Journal of Computer and System Sci-
ences, Vol. 33, No. 2, p275-296, 1986.
Shasha, D. What Good are Concurrent Search
Structure Algorithms for Databases Anyway?, IEEE
Database Engineering. Vol. 8, No. 2, June 1985.
Shekita, E., Carey, M. Performance Enhancement
Jhrouah Reolicabon in an Obiect-Oriented DBMS.
Proc. UACM-‘SIGMOD lntematibnal Conference on
Management of Data, Portland, June 1989.
Shasha, D., Goodman, N. Concurrent Search Struc-
ture A/go/-lthms, ACM Transactions on Database
Systems, Vol. 13, No. 1, March 1988.
The Tandem Database Group Nonstop SQL: A Dis-
Irfbuted, High-Pet formance, Hugh-AvaUabilrty Imp/e-
mentabon of SQL, Proc. 2nd International Workshop
on High Performance Transaction Systems,
Asllomar. Pptemher 1987.
Weikum. G. Prmciples and Realisabon Strategies
of Mu&Level T tansaction Management, Technical
Report DVSI-1987-Tl, Technical University of
Darm~tarft. 1987.

405

