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Abstract This paper presents a method, called ARIES/ 

KVL (Algorithm for Recovery and Isolation Exploiting Se- 

mantics using Key-Value Locking), for concurrency con- 
trol in B-tree indexes. A transaction may perform any 
number of nonindex and index operations, including 
range scans. ARIES/KVL guarantees serializability and 
it supports very high concurrency during tree traversals, 
structure modifications, and other operations. Unlike in 
System R, when one transaction is waiting for a lock on 
a key value in a page, reads and modifications of that 
page by other transactions are allowed. Further, trans- 
actions that are rolling back will never get into deadlocks. 
ARIESIKVL, by also using for key value locking the IX 
and SIX lock modes that were intended originally for 
table level locking, is able to better exploit the semantics 
of the operations to improve concurrency, compared to 
the System R index protocols. These techniques are also 
applicable to the concurrency control of the classical 
links-based storage and access structures which are be- 
ginning to appear in modern systems also. 

1. Introduction 

Methods for controlling concurrent access to B-trees 
have been studied for a long time (see [BaSc77, Mino84, 
Sagi86, Shas85, ShGo88] and references in them). None 
of those papers considered thoroughly the problem of 
efficiently guaranteeing serializability [EGLT76] of trans- 
actions containing multiple operations on B-trees, in the 
face of transaction and system failures, and concurrent 
accesses by different transactions with fine-granularity 
locking. [FuKa89] presents an incomplete (in the not 

found case and locking for range scans) and expensive 
(using nested transactions) solution to the problem. Un- 
fortunately, the details of the algorithms used in existing 
systems like System R [GMBLL81]. SQUDS [ChGY81], 
Nonstop SQL’ [Tand87], and DB2’ [HaJa84] have not 
been published. In spite of the fine-granularity locking 
provided via record locking for data and key value lock- 
ing for the index information, the level of concurrency 
supported by the System R protocols, which are used in 
the IBM product SQUDS, has been found to be inadequate 
by some customers [IBM85]. 
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The primary goal of our work was to modify the System 
R index concurrency control method to drastically im- 
prove its concurrency, performance, and functionality 
characteristics. Serializable executions had to be sup- 
ported with efficient storage management and high con- 
currency. We present a method, called ARIES/KVL (A/- 

gorithm for Recovery and Isolation Exploiting Semantics 

using Key-Value Locking), which supports very high con- 
currency during tree traversals, structure modifications 
(i.e., page splits and page deletes), and other operations 
(i.e., key inserts, deletes, fetches and range scans). 
When one transaction is waiting for a lock on a key value 
in a page, reads and modifications of that page by other 
transactions are allowed. Transactions that are rolling 
back will never get into deadlocks, unlike in System R 
[GMBLLBI] and R’ [MoL086]. Although the logging and 
recovery aspects of ARlESlKVL are not covered in this 
paper, the concurrent executions permitted by the locking 
protocols are such that correct logging and recovery are 
made possible. ARIES/KVL may be used with write-ahead 
logging (WAL) [MHLPS89, MoLe89, MoPi90, RoMo89] or 
the shadow-page recovery method [GMBLLII, 
MHLPS891. We explain the subtleties involved in index 
concurrency control, especially with a richer set of index 
primitives like range scans and with conditions like ’ < ‘, 
‘< 5’ ’ > ’ and ’ > =’ being associated with the input 
key v;lue and the key value to be fetched. Most papers 
on index concurrency control ignore these very important 
operations. 

For the benefit of the reader who may at first like to 
have an overview of ARIES/KVL’s locking, the table in 
Figure 1, summarizes the locks acquired during different 
operations. In the section “5.5. Discussion”, we try to 
provide an intuitive explanation of ARIES/KVL’s locking 
behavior. Example locking scenarios are sprinkled 
throughout the paper. This paper is part of the ARIES 
series of papers that we have authored. These papers 
describe an integrated set of concurrency control and 
recovery protocols which provide high concurrency and 
efficient recovery by exploiting the semantics of the user 
operations. 

The rest of the paper is organized as follows. In section 
2, we introduce some of the basics relating to locking 
and latc:hing, and the tree architecture. In order to grad- 
ually introduce the reader to the complexities and sub- 
tleties involved in index concurrency control, initially, a 
very simplified view of the index concurrency control 
problem is presented in section 3 and then a simple 
algorithm is described. In the rest of the paper, this 
simple algorithm is enhanced to provide more function 
and higher levels of concurrency. Section 4 introduces 
the algorithm for tree traversal, while section 5 presents 
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I NEXT KEY VALUE I CURRENT KEY VALUE 
- 

FETCH & S for Commit Duration 
FETCH NEXT 

INSERT Unique Index 

Nonunique Index 

IX for instant Duration 

IX for Instant Duration. if Apparent/y Insert 
Key Value Doesn’t Already Exist 

No Lock, if Insert Key Value Already Exists 

IX for Commit Durabon if Next Key Value Not 
Previously Locked in S. X. or SIX Mode 

X for Commit Duration. if Next Key Value 
Previously Locked in S. X. or SIX Mode 

IX for Commit Duration, if (1) Next Key Not 
Locked During This Call, OR (2) Next Key 
Locked Now But Next Key Not Previously 
Locked in S, X. or SIX Mode 

X for Commit Duration, if Next Key Locked 
Now and It had Already Reen Locked in S. X. 

or SIX Mode 

DELETE Unique Index X for Commit Duratton X for Instant Duration 

Nonunique Index X for Commit Duration, If Apparenfly DeleI? X for Instant Duration, if Delete Key Value 
Key Value Will No Longer Exist Will Nof Definitely Exist After the Delete 

No Lock, if Value Will Definitely Con(inue 13 X for Commit Duration, if Delete Key Value 
Exist May or WIII Still Exist After the Delete 

- 

Figure 1: Summary of Locking in ARlESlKVL 

all the locking algorithms for leaf-level operations like 
key fetch, range scan, key insert and key delete, and for 
structure modification operations. The locking algorithms 
used in System R and the experiences with those algo- 
rithms in IBM products are described for comparison 
purposes in section 6. Section 7 concludes the paper by 
discussing the application of our ideas to other access 
structures (e.g., links) and other index concurrency con- 
trol protocols. 

2. The Basics 

In this section, we introduce some of the basic concepts 
of locking and latching that are of interest here. We also 
introduce the index tree architecture that we are assum- 
ing in our discussions. 

2.1. Locks and Latches 

We use locks and latches for synchronizing concurrent 
activities. Latches are like semaphores. Usually, latches 
are used to guarantee physical consistency of data, while 
locks are used to assure logical consistency of data. 
Typically, latches are owned by processes whereas locks 
are owned by transactions. The distinction between pro- 
cesses and transactions makes a difference in a system 
like R’ [LHMWY84] in which, even without nested trans- 
actions being supported, multiple processes may be 
working on behalf of a single transaction. We do not 
exclude the possibility of support for nested transactions 
in a system which implements ARIESIKVL. In fact, in 
[RoMo89], ARIES has been extended to support a very 
general model of nested transactions. 

Latches are usually held for a much shorter period of 
time than are locks. Also, the deadlock detector is not 

informed about latch waits. Latches are requested in 
such a manner so as to avoid deadlocks involving latches 
alone, or involving latches and locks. Acquiring a latch 
is much cheaper than acquiring a lock (in the no-conflict 
case, 10s of instructions versus 100s of instructions), 
because the latch control information is always in virtual 
memory in a fixed place, and direct addressability to the 
latch information is possible given the latch name. On 
the other hand, storage for locks is dynamically managed 
and hence more instructions need to be executed to 
acquire and release locks. 

The compatibility relationships amongst the different 
modes (S. X, IS. IX, SIX) of locking that were invented 
in the context of System R [Gray781 are shown in Figure 
2. A check mark (‘J) indicates that the corresponding 
modes are compatible which means that two different 
transactions may hold a lock simultaneously in those 
modes. ARIES/KVL, by using for key value locking also 
the IX and SIX lock modes, which were intended originally 
for table level locking, is able to better exploit the se- 
mantics of the index operations to improve concurrency, 
compared to the System R index protocols. These modes 
are used in addition to the S and X modes which were 
the only ones that were originally used in System R for 
key valae locking. 

Lock requests may be made with the conditional or the 
uncond!tional option. A conditional request means that 
the requestor is not willing to wait if the lock is not 
grantatle immediately at the time the request is pro- 
cessed. An unconditional request means that the reques- 
tor is willing to wait until the lock becomes grantable. 
Locks may be held for different durations. An uncondi- 
tional request for an instant duration lock means that 
the lock is not to be actually granted, but the lock man- 

I Dl32, IBM and OS/2 are trademarks of the Jnlernaliwal Ilutinctr Mach~rw (‘orp. Nor.Sbr WI. and ‘l‘nndon WC trndcmnrkt of Tandem Computers. Inc. 
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Figure 2: Lock Mode Compatibility Matrix 

ager has to delay returning the lock call with the success 
status until the lock becomes grantable. Manual duration 

locks are released some time after they are acquired 
and, typically. long before transaction termination. Com- 
mit duration locks are released only at the time of ter- 
mination of the transaction, i.e., after commit or abort is 
completed. The above discussions concerning conditional 
calls, S and X modes, and durations, except for commit 
duration, apply to latches also. When a lock request for 
a resource returns successfully, the lock manager will 
indicate whether the current transaction was already 
ho/ding (and not yet released) a lock on that resource 
before the current request was issued. In this case, the 
mode of the previously acquired lock will be returned. 

Transactions may request different /ewe/s of isolation (or 
consistency) with respect to each other. In the context 
of System R, levels 0, 1, 2, ahd 3 were discussed 
[Gray78]. The IBM products SOLIDS, the OS.12 Extended 
Edition Database Manager’ and DB2, and Tandem’s 
NonStop SQL support the isolation levels cursor stability 
(consistency level 2 of System R) and repeatable read 
(consistency /eve/ 3 of System R). These consistency 
levels are referred to as CS and RR, respectively. Both 
return only committed data to the transactions, unless 
the accessed data is uncommitted data belonging to the 
accessing transaction. Due to lack of space, CS trans- 
actions are not treated in this paper (see [Moha89]). 

With RR, locks are held on all the’accessed data until 
the end of the transaction. Actually, locks are somehow 
held even on nonexistent data which could have satisfied 
the query. Later in this paper, we discuss how this is 
done when the accesses are made via indexes. With 
RR, if a certain query were to be posed at a certain 
point in a transaction, and a little later the same query 
were to be posed within the same transaction, then the 
response to the query would be the same, even if it 
were a negative response like not found, unless the 
same transaction had changed the data base to cause 
a difference to be introduced in the responses. If all the 
transactions are run with RR, then their concurrent ex- 
ecutions would be serializable in the sense of [EGLT76]. 
That is, the concurrent execution would be equivalent to 
some serial execution of those transactions. 

2.2. Conventions and Storage Str~rctuses 

The data storage model that we assume is that of System 
R, in which the data (i.e., the records of the table) are 
stored in a set of data pages, which are separate from 
the indexes. All the indexes on the table contain only 
the key values and record identifiers (RIDS) of records 
containing those key values. The RID of a record iden- 

tifies the record’s location in the set of data pages. All 
the leaf pages of an index contain key-va/ue,RlLl pairs, 
where the RID is treated as if it were an extra key tield. 
Without loss of generality, we assume that the keys are 
maintained in ascending collating order on all the key 
fields, including the RID. The leaf pages alone are for- 
ward and backward chained using the PrevPage and 
NextPage fields so that ascending and descending range 
scans could be supported (see Figure 3). 

Every nonleaf page contains a certain number of child 
page pointers (page numbers) and one less number of 
high keys - each high key is associated with one child 
page pointer and there is no high key associated with 
the rightmost (last) child’s page pointer. The high key 
stored in the nonleaf page for a given child page is 
always greater than the highest key actually stored in 
the corresponding child page (note that RID is included 
in the high key). 

In most systems, when a nonunique index contains du- 
plicate instances of a key value, the key value is stored 
only once in each leaf page where it appears. The single 
value is followed by as many RIDS as would fit on that 
page (see Figure 3, which shows a leaf page - the key 
value H has duplicates (RIDS 4 and 8)). We call this a 
cluster of duplicates. 

The USI? of the key map, which points to the keys in 
ascending key sequence, allows one to do binary search 
even when dealing with varying length keys or nonunique 
indexes (see Figure 3). In the nonleaf pages also, the 
key map is used and the map points to high key,page 

pointer pairs in high key sequence. The pointer to the 
last child alone is stored separately in the page header. 
The nonleaves which are the parents of leaves have a 
flag so that, when a leaf is about to be accessed, the 
latch on the leaf can be obtained in the appropriate 
mode, depending on the operation to be performed on 
the leaf. 

We refer to the page split and page deletion operations 
as structure modification operations (SMOs). A page is 
removed from the tree at the time the only key in the 
page is deleted. Page splits and deletions are propagated 
up the tree from the leaves toward the root (i.e., bottom- 

up). To prevent deadlocks involving latches, the page 
latches acquired at a lower level of the tree (e.g, leaf) 
will be released before requesting latch(es) at the higher 
level (e.g., nonleaf). SMOs are serialized by acquiring a 
tree latch in the X mode. Typically, no I/OS will be done 
while the tree latch is held and hence this serialization 
should not cause any significant reduction in concurrency 
(see [MoLe89] for more discussions and ways to relax 
this restriction). During the actual page split or deletion 
process, the tree structure may be inconsistent. That is, 
a child may be split (deleted, respectively) but the parent 
does not yet reflect the effect of that split (deletion). 
This localized path inconsistency is detected by noticing 
that a bit called the SM-Bit (Structure Modification Bit) 
has a \Ialue of ‘I’. The latter is set by the structure 
modifyi,?g transaction in the affected leaf and nonleaf 
pages. In order to recover from a problem caused by 
such ar inconsistency and to ensure that incorrect data 
base recovery does not occur as a result of attempting 
to perform a key insert or delete on a leaf which is a 
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participant in an incomplete SMO (see [MoLet39] for 

details), the transaction merely requests the tree latch 

in the S mode, thereby being forced to wait for any 

incomplete SMO to complete and for a point ofstructural 
consistency (POSC) to be established. Thus, our design 

principles of indication of incomplete SMO via SM-Bit 
and SMO serialization via tree latch allow us to perform 

operations only in a valid state of the tree. 

We assume that once an index is created its root page 

does not change. That is, when a root split is needed, 

the root page’s contents are copied to a new page, which 

becomes the root’s child and which is then split. During 

a split of a leaf, we split to the “right”. The new high 

key for the split page will be the smallest key that is 

moved to the new leaf page. We assume that every 
index page has a version number (VN) in its header and 
that every time the page is latched and modified, the 

VN is updated so that it is a monotonically increasing 

value. In systems which log index changes (e.g., DB2), 

VN could be the log sequence number (LSN) of the log 

record describing the most recent change to the page. 

In systems which do not log those changes (e.g., System 

R), it could be a counter which is incremented by one 

for every change. 

3. A Simple Locking Algorithm 

In this section, we start with a simple set of index oper- 

ations and discuss the simple locking algorithm needed 

to support them. Then, we show why the simple locking 

algorithm needs to be changed when additional opera- 

tions and concurrency requirements are to be supported. 

We delay discussing the algorithm followed during the 

traversal of the tree until the section “4. Tree Traversal 

in ARIES/KVL”. 

3.1. Simple Operations 

Let us first consider only the three index operations: 

1. Fetch: Given a key value, fetch the RID(s) associated 

with it, if the key value is present. 

2. Insert: Insert the given key (key-value,RID). 

3. Delete: Delete the given key (key-va/ue.RID). 

Qa H 48 

Figure 3: Tree Architecture 

Key Map 

We assume that before the insert and delete calls are 

made to the index manager, an X lock would have been 

obtained on the underlying data (either a record lock on 

the record with the input RID or a data page lock on the 

data page containing the record, depending on the gran- 

ularity of data locking). In the algorithm that supports 

only these operations, the obvious choice for the lock 

name would be to derive it using the key value. Since 

key values can vary in size and since lock managers 

typically deal with only fixed length lock names, the key 

value would have to be hashed to construct a fixed 

length lock name. The index ID will also be concatenated 

with the hash value to make the lock name unique across 

all the indexes in the data base. 

The locking algorithm to be followed is very simple. 

Once the index manager is invoked with one of the above 

operations, before the index manager starts traversing 

the tree, it would first acquire the appropriate mode lock 

(S for Fetch, and X for Insert and Delete) on the key 

value. The S lock continues to be held even if the looked- 

up key is not found. This is the way to ensure that no 

other transaction is able to insert the same key value 

before the transaction that did the look-up terminates. 

Hence, the latter will be guaranteed the RR property. 

Note that the modes of the locks acquired by readers 

and modifiers must be incompatible in order to ensure 

that (1) an uncommitted inserted key of one transaction 

is not fetched by another transaction and (2) a fetching 

transaction is blocked when there is an uncommitted 

delete of the requested key by another transaction. The 

choice of the S and X modes to ensure this serializability 

property has the following bad consequence. Even 

though 2 different transactions are deleting (or inserting) 

2 different records belonging to a particular table, if both 

the records have the same key value for a particular 

(nonunique) index. then one of them will be forced to 

wait fat the other to terminate. There is no reason to 

prevent these two operations from happening concur- 

rently. One way to permit this level of concurrency is 

to let t1-.e key delete (or insert) operation acquire the IX 

lock instead of the X lock. Since IX is incompatible with 

S, we still guarantee RR for readers. With these changes, 

inserts and deletes of the same key value can go on 
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concurrently by different transactions. These changes 

are correct, as long as we consider only nonunique in- 
dexes. 

If we now consider unique indexes, we could have a 

problem with a scenario like the following: (1) Tl deletes 

the key value ‘A’ (with RID 20) after acquiring the IX 

lock on ‘A’; (2) T2 inserts the key value ‘A’ (with RID 10) 

after acquiring the IX lock on ‘A’ (this is possible since 

IX and IX are compatible and T2 does not find the value 

‘A’ already in the index - T2 does not realize that there 

is an uncommitted delete of ‘A’); (3) T2 commits; (4) Tl 

aborts; (5) Tl puts back the value ‘A’ (with RID 20). 

Clearly, there is a problem now since the uniqueness 

constraint of the index is being violated. Not letting Tl 

put back the value would violate the transaction atomicity 

property. The way out of this problem is to change the 

locking algorithm for unique indexes a/one so that the 

insert and delete operations get the X lock, instead of 

the IX lock. 

3.2. More Powe@l Fetch Operation 

Now let us consider enhancing the functionality of the 

index manager so that in the Fetch call, in addition to 

asking for the RID(s) associated with the given key value, 

one could also ask for the retrieval of that key value 

that is present in the index and that is higher than the 

given key value (e.g., for the leaf page of Figure 3, the 

Fetch call ’ > F’ should return G,5). The problem here 

is that before the index manager starts traversing the 

tree it does not know what lock to obtain. This means 

that the locking for the Fetch call must be postponed 

until a key value matching the search criterion is found 

or it is determined that no such key exists. The same 

PI 

Time Tran 

10 Tl 

20 1‘2 

30 T2 

Action 

X lock C and insert C on P2 

Looks up key 5‘ A; accesses Pl first 
and then P2; requests S lock on C and 
waits 

Gets lock, notices P2 hasn’t changed 
since going into wait - reads C 

Serializability Problem if at Time 25 Tl Inserts B and then 
Commits, but 72 Does Not Read B 

SO/UtiOf7: If Waited on Lock for First Key on Page, Even 

if Page Has Not Changed, Restart Search From Previous 
Page if Search Originally Began on Previous Page. Rede- 
termine Key Satisfying Search Condition 

Figure 4: Repositioning Afler Lock Wait 

problem will arise, if we enhanced the Fetch call to let 

the caller specify o/l/y a prefix of a key value and ask 

for the retrieval of the first key value that matches the 

given prefix. Once the key value is determined and a 

lock is requested, the lock may not be granted right 

away since the key value could be in the uncommitted 

stats. This condition must be handled carefully. Other- 

wise, holding the latch on the leaf page and waiting for 

a lock could lead to a reduction in concurrency and, 

more importantly, to a deadlock that goes undetected. 

This requires that the lock be first requested conditionally 
(i.e., while holding the latch on the leaf page). If the lock 

is not granted, then the latch must be released and the 

lock must be requested unconditional/y. Once the lock 

is finally granted, it may not be correct to return the 

locked key value as the result, due to situations like the 

one illustrated in Figure 4. We need to verify that the 

previously determined information is still valid. We call 

this design principle revalidation after unconditional lock- 
ing. 

Even after we ensure that what is locked is the right 

value to be returning to the caller (possibly after being 

forced to lock a different value from the one that was 

originally locked due to the changes that occurred while 

waiting for the first lock to be granted), there may still 

be problems. This comes from the fact that what the 

Fetch call locked will not prevent another transaction 

from later inserting a key value that (better) satisfies 

the Fetch call of the first transaction. If such an insert 

were to be permitted and the inserting transaction were 

to commit later, and then the Fetching transaction were 

to reissue its call, a different result would be returned, 

thereby violating the RR guarantee. For example, if the 

call were to fetch a key value ’ > F’, then ‘G’ would be 

locked and returned. But this lock will not prevent an- 

other transaction from inserting the value ‘FF’, which 

would be returned, instead of ‘G’, if the Fetch call were 

to be repeated by the first transaction. 

Somehow, the fetching transaction needs to communi- 

cate, to inserting transactions, the fact that no new key 

should be inserted in the gap (i.e., between ‘F’ and ‘G’). 

It would be extremely inefficient to make Fetch acquire 

an S lock on all possible key values in the gap (i.e., the 

nonexistent keys). The simplest way this is accomplished 

is for the Fetch operation to leave behind an S lock on 

the key value that satisfied the search condition or the 
next higher value that is present, if no existing key sat- 

isfied the search condition. Thus, a lock on a key value 

is really a range lock on the range of keys spanning the 

values from the preceding key value that is currently 

present in the index to the locked key value. For this 

range-locking protocol to work, the inserting transaction 

must check the lock on the next key value, before it does 

the insert of a given key value. The mode of Insert’s 

lock request must be such that it is incompatible with 

the S lock acquired by Fetch. 

For the time being, let us assume that the mode of 

Insert’s next key lock request is X, as is the case in 

System Ii. If the lock on the next key is not grantable 

righ! aw.ay, then the insert must be delayed until that 

lock becomes grantable. Instead of using predicate lock- 

ing, we are using next key locking to get a similar effect. 
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We call this design principle range locking via next key 
locking. This is a conservative approach since the 
nongrantability of the X lock on the next key is interpreted 
to ‘imply that the holder of that lock does not want the 
insert to happen until the holder terminates, when in fact 
the holder might have the lock on the next key for a 
totally different reason (e.g., it is an uncommitted insert, 
or a Fetch was done specifically for that next key and 
that Fetch request would not be satisfied by the value 
about to be inserted). The lock on the next key need not 
be held after the insert operation has been performed. 
Only as of the time of an insert, it must be ensured that 
the lock on the next key is not held by another transaction. 
Hence, the next key lock is requested for instant duration 
during an insert operation. 

feature of ARIES/M, but with an increase in the locking 
overhead. Given that, the following problems arise: 

1. How to support serializability and locking during 
range scans, without requiring support for predicate 
locking? 

We would like to avoid having to support predicate 
locking, even with only simple predicates, since 
checking for compatibility among predicates is much 
more expensive than checking for compatibility 
among locks. With the latter, the data structure is 
usually a hash table that can be looked up very 
efficiently. No such simple data structure exists for 
organizing a collection of predicates and comparing 
them. 

Just as Insert needs to do next key locking, Delete also 
needs to do such locking. Otherwise, when a key is in 
the uncommitted deleted state, Fetch will not be aware 
of such a key since Fetch locks only those keys that are 
actually present in the index. As a result, Fetch would 
wind up retrieving the next key erroneously, when in fact 
the deleted key would have been the right one to retrieve 
had it been present. This would cause an RR violation, 
if the delete were to be rolled back and the Fetch were 
to be repeated. To handle this correctly, Delete needs 
to leave behind a lock on the next key which would cause 
Fetch to wait until the deleting transaction terminates. 
For this to happen, the mode of the next key lock must 
be incompatible with the S lock that would be acquired 
by Fetch. The next key lock must be held until commit 
by the deleting transaction. For the time being, let us 
assume that the mode of this request is X, as is the case 
in System R. Contrast the commit duration next key lock 
required in this case with the instant duration next key 
lock that is sufficient for the Insert case - the difference 
comes from the fact that an uncommitted inserted key 
is visible to transactions that visit the page later, whereas 
an uncommitted deleted key is not visible, since the key 
is physically removed from the page. 

2. 

3. 

4. 

4. 

If locking a range of keys is going to be supported 
as in System R (i.e., lock the smallest key that exists 
in the index that is higher than the end point of the 
range - see the section “6. System R”), how to allow 
one transaction to insert a key value that is just 
smaller than an already existing uncommitted key 
inserted by another transaction? 

In a nonunique index, how to let more than one 
transaction perform concurrently inserts of different 
index entries with the same key value? 

In a nonunique index, how to let different transactions 
concurrently perform deletes of some duplicate in- 
stances of keys in two neighboring clusters of dupli- 
cates with different key values? 

Tree Traversal in ARIES/KVL 

It should be obvious that the next key locking cannot be 
done before the tree is accessed since it is not known 
as to what currently exists in the index as the next key, 
until the leaf page is accessed. 

In the rest of this paper, we enhance this simple algorithm 
in order to improve its concurrency and performance 
characteristics. But before presenting the details of the 
improved algorithm, called ARIES/KVL, we discuss next 
the problems that we were interested in solving. 

The basic search routine, Search, takes as input the key 
(or prefix of key) value, the target level (at which to 
stop), the action routine (Fetch, Insert, or Delete) to con- 
tinue processing after Search has reached its target 
page, and other parameters. Search traverses the index 
tree from one page to that page’s child by holding an S 
latch on the parent while requesting a latch (in S mode, 
if nontarget child, else in S or X mode, depending on the 
action to be performed) on the child. This protocol is 
called lock-coupling in [BaSc77]. Our design principle 
of latch-coupling allows us to validate the path from the 
parent to the child. 

3.3. Problems 

The pseudo-code.for this procedure is given in Figure 5. 
To simplify the presentation, we have shown only the 
case where the target level is a leaf. We have not 
specified the case where the root is a leaf. 

/We would like to use key values as the objects of locking. If the child is participating in a structure modification. 

This is to be contrasted with the data-only locking ap- which is done bottom-up, by another transaction, then 
proach taken in ARIESIIM [MoLe89], where the locking the traverser waits for the propagation of the SM to be 
is always done on the underlying data record, which is completed.* This is done by requesting the tree latch in 

stored elsewhere and whose key is the one in the index the S mode, after releasing the page latches. Once the 
entry to be locked. ARIES/KVL’s index-specific key value tree latch is granted, Search restarts its tree traversal. 
locking would be necessary where the records are stored We may optimize the retraversal by restarting at the 

in the index itself and an index entry contains the cor- parent, if the parent had not been modified since it was 
responding record, instead of a record identifier, as in seen la:;1 - a modification of an ancestor can be detected 
Tandem’s Nonstop SQL. It could also potentially lead to by remembering, as Search traversed down the tree, the 
higher concurrency compared to the data-only locking VNs of 311 the accessed pages from the root; even if the 
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/* for simplicity, root = leaf case not specified here */ 
5 Latch Root and Note Root's VN 
Child := Root 
Parent := NIL 

Descend: 
IF Child is a Leaf Page AND Operation is (Insert OR Delete) THEN X latch Child 
ELSE S Latch Child 
Note Child's VN 
IF Child is a Nonleaf Page OR (Child.SM-Bit = ‘1’) THEN 

IF Chi1d.W Bit = '0' THEN 
IF Parent-o NIL THEN Unlatch Parent 

/* Not part of an ongoing SH */ 

Parent := Child 
Child := Page-Search(Child) /* Search Child to Decide Which Page to Access Next */ 
Go to Descend 

ELSE /* Unfinished Structure Modification */ 
Unlatch Parent 8 Child 
S latch Tree for Instant Duration /* Wait for Unfinished SII to Finish */ 
Unwind Recursion as far as Necessary Based on Noted Page VNs and Go Down Again 

ELSE /* Child is Leaf; Appropriate Latch (5 or X) Held on Child */ 
Unlatch Parent 
1st Leaf :- Child 
CASE Operation OF 

Fetch: . . . /* Invoke Fetch Action Routine */ 
Insert: . . . /* Invoke Insert Action Routine */ 
Delete: . . . /* Invoke Delete Action Routine */ 

END 

Figure 5: Search Procedure for Tree Traversal 

parent has changed, we will still be able to restart from 

that page, as long as the key of interest is still covered 
by that parent. Otherwise, we can restart from the grand- 
parent and so on recursively, if necessary. Once Search 
reaches the leaf level, it leaves a latch on the leaf (call 

it the 1st leaf) and passes control to the appropriate 
action routine (Fetch, Insert, or Delete). 

5. Basic Operations in ARIES/KVL 

There are four basic index operations that ARIES/KVL 
supports: 

1. Fetch: Given a key value or a partial key value (its 
prefix), check if it is in the index and fetch the full 
key. A starting condition (-, Z, or > -) will also 
be given. 

2. Fetch Next: Having opened a range scan with a 
Fetch call, fetch the next key satisfying the key range 
specification (e.g., a stopping key and a comparison 
operator (<, =, or < -)). 

3. Insert: Insert the given key (key-va/ue,R/D). For a 
unique index, Search is called to look for only the 
key value. For a nonunique index, the whole new 
key is provided as the Search key. 

4. Delete: Delete the given key (key-va/ue,RID). 

5.1. Fetch 

The pseudo-code for the Fetch action routine is given in 
Figure 6. When Fetch is called with an S latch held on 
the 1st leaf, it searches the leaf to find a satisfying key 

(i.e., the smallest key value that matches the starting 
condition, or, if there is no such key value, then the next 
higher key value). The 1st leaf could be in one of two 
states. In the following, we discuss the two cases and 
explain how Fetch deals with each one of them. 

1. A satisfying key is found in the 1st leaf. 

This will be the most common case. 

2. Id leaf does not have a satisfying key. 

Fetch S latches the successor page (call it the 2nd 

leaf). If the 2nd leaf is empty (EM-Bit must be equal 
to ‘1’). then Fetch unlatches both pages and requests 
the tree latch in the S mode. Once the tree latch is 
granted, it restarts the search. If a satisfying key is 
found in the 2nd leaf (SM--Bit may be equal to ‘l’), 
then Fetch continues to hold the latch on the 
1st Leaf. This is done to make sure that a key 
satisfying the request does not suddenly appear “be- 
hind the back of. the searcher” in the 1 st leaf, without 
the knowledge of the searcher, due to the abort of 
a key delete operation by another transaction or due 
to an insert by a transaction in forward processing. 
This much care is required to guarantee RR. 

If Fetch reaches the last (i.e., the rightmost) leaf page 
and no matching or highei key value is found, then it is 
treated as the EOF (End Of File) situation and a special 
lock name unique to this index is used as the found key 
value’s lock name. If the requested key value was not 
found but a higher valued key was found or it is the EOF 
case, then the not found status will be returned to the 

2 We can do much better than this. For simplicity of presentation here, we are not shoiving how Search can traverse down the tree even when the child is 
involved in a page split, thereby improving concurrency. Fetch can also deal with a leaf which is a participant in an on-going split. The interested reader 
is referred to [Moha89, MoLe891 for the details of how these are accomplished. 
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/* Satisfying Key Value - Requested Key, if it Exists; Otherwise, Next Hiqher Key Value */ 
IF Satisfying Key Value Nat Found in lst-leaf THEN 

2nd Leaf := 1st Leaf.NextPage 
IF 2nd Leaf c> #IL THEN 

S La&h 2nd Leaf 
/* &d-Leaf exists */ 

IF Znd-Leaf-has a Satisfying Key THEN 
Child := 2nd Leaf 

/* Zntl-Leaf is Definitely Hot Empty ‘/ 

Found Key :=- Satisfying Key in 2nd Leaf 
ELSE /” Znd-Leaf Must be Empty - wait for tree latch */ 

Unlatch 1st Leaf and 2nd Leaf 
S Latch Tree for Instant-Duration /* Wait for Unfinished Sll to Finish “/ 
Unwind Recursion as far as Necessary Based on Noted Page VNs and Go Down Again 

ELSE Found Key := End-Of-Fire /* Zntl-Leaf Doesn’t Exist */ 
ELSE /* lst-Leaf has a Satisfying Key */ 

Found Key := Satisfying Key in lst-Leaf 

/* lst-Leaf 8 fnd-Leaf; if Accessed, Will he Held Latched in S tlode l / 

S Lock Found Key Value for Commit Duration (tlayhe End-Of-File) 

Unlatch Ist-Leaf and &d-Leaf, if Accessed 
IF Locked Key Satisfied Search Condition THEN Return Key 
ELSE Return Not Found 

Figure 6: Pseudo-Code for Fetch Action Routine 

-- 

caller. In any case, while holding the page latch(es), a 

condifional S lock is requested on the found key value.3 

If the conditional request is not granted, then, in order 

to avoid a deadlock involving latches, the page latches 

must be released and then the lock must be requested 

UrJCOlJditiOlJa//y. Once the unconditional request is 

granted, then the page must be reexamined to make 

sure that the previously retrieved information is still the 

correct one. If the state is not the same, then the new 

satisfying key must be determined and locked. 

With the leaf page as depicted in Figure 3, if the call 

were to locate the key GG. then the lock would be ac- 

quired on the key value H of H,4, which is in the nexl 

cluster of duplicates; on the other hancl, if the requested 

key had been G, then the lock would be acquired on the 

key value G of G,5. Even if the requested key value is 

not found, the next key value is locked to make sure 

that the requested key does not suddenly appear (due 

to an insert by another transaction) before the current 

transaction termimks and prevent RR from being pos- 

sible. As we will see later. the next key value locking 

clone during inserts makes it possible to guarantee RR. 

This locking in Fetch also makes sure that the requested 

key has not been deleted by another transaction which 

has not ye1 cornmilted. As we will see later, the deletcr 

of the last inslance of a key value leaves a trace of ils 

action by X locking the next key value for commit durnlion. 

If the condifiorJa/ lock request is not granted. then the 

found key and the current page’s VN are remembnred. 

Then, the current page and any other page that is still 

held latched are unlatched and an uncor,ditiona/. mnnunt 

duration, S lock is requested on the found key value. 

After the lock is granted. the leaf page which contained 

the key is relatched. This is done to enforce our earlier 

described design principle of revalidation after uncondi- 
tionalkcking. The VN was remembered before unlatching 

to make the cost of revalidation cheap. If the page was 

the 1st leaf page (this check is to handle the problem 

illustrated in Figure 4) and the page’s VN is still the 

same, no further work is required. This means that the 

page had not changed since it was seen last. The page 

is unlatched and control is returned to the caller with 

the appropriate status, and, possibly, the key. 

If the page’s VN is different and the page is (1) empty, 

(2) I; no longer part of that index, (3) is no longer a leaf 

page, or (4) is nonempty but it was the 2nd leaf and the 

first key in the page is greater than or equal to the 

searched-for key (may not necessarily be the locked 

key), then Fetch restarts Search. If the first key in the 

page is less than the searched-for key, but the page’s 

VN has changed and the highest key in the page is equal 

to cr oreater t/Jar, the searched-for key, then Fetch 

searches that page again; otherwise, it restarts Search. 

If the key value found now matches the previously locked 

key JaIllo. then the page is unlatched and the appropriate 

stntlls, and, possibly. the key are returned to the caller. 

If a different key value? is found, then the old key value 

is uljlocked and the new key value is locked using the 

above ;Ilgorithm in a recursive manner as necessary. 

For a Fetch cnll that is being issued at the start of a 

range scan (i.e , the suhscqucnt calls will be Fetch Next 

CZ~II~~). il rl key is hcing rclrlrncd to 1he caller, then Fetch 
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-- 

IF Ist-Leaf Needs to be Split IllElI 
Invoke the Page-Split PI.OCP~III.P and Return 

/' 1111 spill-e for ln!.Pt~t nf KPY '/ 

IF Insert key Volue Air-eody in Ist-Leaf THEN /' tln llcerl to Lock Next Key '/ 
IF Unique Index THEN 

S lock Insert Key Value for Consnit Duration 
Return Unique Key Viol&ion Status 

ELSE 
IX Lock Insert Key Value for Commit Duration 

/' Iln~~w~iqt~~ Intl~~ and Insert Kpy Value All-party on Ist-leaf */ 

Insert Key, Log, Unlatch lst-Leaf and Return 

/* Insert Key Value NOT Already in lst-Leaf "/ 

IF No Higher Key Value in lst-Leaf AND &d-leaf Exists THEN 
S Latch 2nd Leaf 
IF 2nd Leaf-is Empty THEN 

/* blhile Holding X Latch on 1st Leaf '/ 

UnlaTch 1st Leaf and 2nd Leaf 
/+ Page Delete in I'roqwss - !Jait for it tn he Over */ 

S Latch Tre; for Instant-Duration 
Unwind Recursion as far as Necessary Based on Noted Page VEls and Go Dnwn Again 

ELSE /* 2nd Leaf is NOT Empty '/ 
IF Insert Key Value found in Znd-Leaf THEN /* Thi; Can't he a IJnirlue Index +/ 

IX Lock Insert Key Value for Commit Duration 
Unlatch 2ntl_Leaf, Insert Key in lst-Leaf, Log, Unlatch Ist-leaf an:1 Return 

ELSE Next Key Value := First Key Value in Z,,d-Leaf 
ELSE 

IF No Higher Key Value in lst-Leaf THEN Next Key Value := End-Of-file 
ELSE Next Key Value := Higher Key Value in lst-Leaf 

IX Lock Next Key Value for Instant Duration 

Unlatch 2nd Leaf, if Accessed 
If Next Key-4Zready Locked in X, S or SIX Fbde by Curwnt 7rnnsnctim THEIt Lmode := 'X' 
ELSE Lmode:= 'IX' 
lock in Lmode Insert Key Value for tomnit Duration 
Insert Key in lst-Leaf, Log, Unlatch lst-Leaf and Return 

Figure 7: Pseudo-Code for Insert Action Routine 

remembers the returned key’s key map slot number, violated (and hence a no! foclrld condition needs to be 

and. for a nonunique index, the ordinal position of the returned to the caller), then that higher key value has 

returned RID in the RID list of the duplicate cluster. This to be locked, unless the stopping condition was -= ” and 

position information will be used during a subsequent the stopping key was the most recently returned key 

Fetch Next call to avoid a binary search to locate the value. In the latter case, the lock already held on the 

current key, if the page’s VN had not changed in between. stopping key value will be sufficient to prevent future 

To detect a change to the page in between, the page’s insertions. by other transactions, of other key-va/ue,R/D 

VN is remembered in the cursor’s control block. pairs with the stopping key value. 

5.2. Fetch Next 

If the current cursor position already satisfies the stop- 

ping key specification (unique index and a stopping con- 

dition of “=“), then Fetch Next returns right away to the 

caller with a not found status. Otherwise, the leaf page 

which is expected to contain the key on which the cursor 

is currently positioned is latched and a check is made 

to see if the page’s current VN is different from the VN 

remembered at the time of the last positioning. The 

current key (current cursor position) may not be in the 

index anymore due to a key deletion earlier by the same 

transaction. If a change is noticed, then repositioning to 

the next key-value,R/D pair is done as before in a Fetch 

call. 

The difference from a Fetch call is that, if the next pair’s 

key value is the same as the current position’s key 

value, then there is no need to lock that value again. If 

the key value is different and the stopping condition is 

With the leaf page of our example of Figure 3, if the 

stopping condition is = F, then, after F,7 is returned, if 

there is a Fetch Next call, then there would be no need 

to lock G before a /lot found is returned. On the other 

hand, if the stopping condition is <’ G or = Ff then G 

would be locked.. 

5.3. IllScl~t 

The pseudo-code for the Insert action routine is given in 

Figure 7. If there isn’t enough space to insert the key, 

then the page splitting algorithm is executed. The pseudo- 

code for the page split procedure is presented in Figure 

8. Note that the tree latch is acquired only after all the 

affected pages have been brought into the buffer pool. 

This is done to minimize the serialization delays due to 

the X tree latch. Note also that the effects of the split 

are completely propagated up the tree before the insert 

which caused the split is performed. Points like this are 

further discussed and rationalized in [Moha89, MoLe89]. 
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Znd-Leaf := lst-Leaf.NextPage 

IF 2nd Leaf (> NIL THEN 

Fix &d-Leaf in Buffer Pool 

X Latch Tree for Manual Duration 

Allocate New Page and X Latch it 

New-Page.SM-iit := ‘1’ 

New-Page.PrevPage := lst-Leaf 

New-Page.NextPage := Znd-Leaf 

lst-Leaf.SM-Bit := ‘1’ 

lst-Leaf.NextPage := New-Page 

Move Sonle Keys frotii lst-Leaf to New-Page 

and Log Changes 

Unlatch New-Page 

IF 2nd Leaf c> NIL THEN 

X Latch 2nd-Leaf 

2nd-Leaf.PrevPage := New-Page 

Unlatch 2nd-Leaf 

Unlatch lst-Leaf 

Propagate Split Up the Tree, Reset SFl-Bits to ‘0’ 

Unlatch Tree and Then Restart Insert 

Figure 8: Pseudo-Code for Page-Split Procedure 

. 

If there is enough space, then, after the page is searched. 

Insert is positioned at a key with the same key value, 

positioned at a key with a higher value, or positioned 

past the last key in the page. If the key value to be 

inserted is already in the leaf and this is a nonunique 

index, then a commit duration IX lock needs to be ac- 

quired on that key value and there is no need to lock 

the next key value. For the example of Figure 3, an 

insert of H,6 would require locking in IX mode the key 

value H. Getting only an IX lock, as opposed to an X 

lock, allows the insertion of the same key value or a 

smaller key value by multiple transactions concurrently 

since IX is compatible with IX. Such concurrent activities 

are not possible in System R since the inserted key 

values are always locked in the X mode in that system. 

Note that since IX is incompatible with S, readers will 

still not be able to read uncommitted data, unless the 

reader is the only inserter of that uncommitted value. 

In the latter case, the held lock mode will become SIX. 

Since SIX is incompatible with IX, inserts by other trnns- 

actions will be delayed, as is required. 

If the key value to be inserted does not already exist in 

the 1st leaf and Insert is positioned past the last key in 

the 1st leaf, then Insert S latches the 2nd leaf and po- 

sitions on the next key-va/ue,R/D pair, if there is one, in 

a manner similar to what happens in Fetch. Note that 

only the 1st leaf needs to be latched in the X mode. The 

2nd leaf needs to be latched only in the S mocle since 

Insert is only trying to prevent a reader frotn scanning 

from the highest key in the 1st leaf to the next key in 

the 2nd leaf. 

If Insert were positioned at an equal key value in a 

unique index, then it requests an S lock on the found 

key value to make sure that the key value is in the 

committed state, unless of course it is an uncommitted 

insert of the same transaction. After this lock is granted, 

if Insert discovers that the previously found key value 

is still in the index, then it returns the unique key viola- 

tion status to the caller. The lock is a commit duration 

one to make sure that the error condition is repeatable. 

If the to-be-inserted key value is not already present, 

then Insert requests an instant duration IX lock on the 

next key value. In System R, the next key lock is always 

obtained. Furthermore, it is always requested in the X 

mode. ARIESIKVL’s IX locking permits the insert to occur 

when the next key value is an uncommitted insert of 

another transaction, whereas System R causes a wait 

under those conditions. In ARIESIKVL, with the example 

of Figure 3, an insert of HH,Q would require acquiring an 

instant duration IX lock on I and later a commit duration 

IX lock on HH. 

One of the purposes of the instant duration lock that is 

requested on the next key value is to determine if, as 

of the time the X latch was acquired on the leaf (hence 

the instant duration rather than commit duration lock), 

there was any other concurrently running transaction 

which had looked for and not found the key value being 

inserted. This is to handle the phantom problem 

[EGLT76] and to guarantee RR. Note that in a nonunique 

index, when we are adding one more instance to an 

already existing key value, the IX lock obtained on the 

key value being added is itself sufficient to make sure 

that no other concurrent reader’s previously read state 

is being disturbed. Not having to lock the next key value 

should lead to higher concurrency in this case compared 

to the other cases. The System R method does not have 

this optimization. The advantage of not locking the next 

key value, if we can avoid it, is that the inserter does 

not have to wait even if the next key value is currently 

locked by another transaction in an incompatible mode 

(an S lock due to a read, or an X or SIX lock due to an 

uncommitted insert or delete - see below). It will possibly 

save even an l/O if the next key value is not in the same 

page. 

In the case of a unique index, with the next key value 

locking, Insert is also trying to determine if there exists 

an uncommitted delete by another transaction of the 

same key value as the one to be inserted. 

When the instant duration lock on the next key value is 

granted, using the return code from the lock manager, 

Insert checks wl+her the current transaction already 

held th;at lock in the X. SIX, or S mode. If the lock was 

held in one of those ~notlcs. then the key value being 

inset-tad must be locked in the X mode for commit du- 
ration. This we call lock state replication via next key 

locking. We are essentially transferring a range lock 

from th? next key to the current key. Otherwise, a com- 

mit dur.#ion IX lock must he obtained on the key value 

being inserted. Note that nothing special needs to be 

done if the next key value is already held in the IX mode 

by tlie current transaction (i.e., the next key value is an 

uncomrlitted insert of the same transaction). 

The reasons for this difference in the mode of locking (X 

verrus IX) of the key value being inserted are subtle.4 

Let IS c:onsidcr an index with the key values A, 8, E, K, 
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IF >I Instance of Delete Key IVuIue in 1st Lrof THEll /’ Hn IIPPd tn lock lbyt Pey VRlllP ‘/ 
X Lock Delete Key Value for Comit Duraiion 

ti--- 

Delete Key, ILog, Unlatch lst-Leaf and Retwri 

/* Only 1 Instance of Delete Key Value in lst_Leaf */ 

IF No Higher Key Value in lst-Lenf AND Znd-Leaf Exists THEN 
S Latch 2nd Leaf 
IF 2nd Leaf-is Empty THEN 

/* Wile Holding X Latch w lst_LPaf ‘/ 

Unlaich 1st Leaf and 2nd Leaf 
/* Page Delete in Progress - \,!iiit for it to he Iher */ 

S Latch Tre; for Instant-Duration 
Unwind Recursion as far as Necessary Based on Noted Page VfJs and Go Own Again 

ELSE /+ Znd-Leaf is not Empty '/ 
IF Delete Key VuZue found in Znd-Leuf THEN 

X Lock Delete Key Value for Conmit Duration 
IF lst-Leaf Will Become Empty After Key Delete THFII 

Invoke the Page-Delete Procedure and Return 
ELSE Unlatch Znd-Leaf, Delete Key from Ist-Leaf, Log, IJnlatch Ist-lraf and Return 

ELSE Next Key Value := First Key Value in Znd-Leaf 
FISF ____ 

IF No Higher Key Value in lst-Leuf THEN Next Key Value := Ende.Df-f;le 
ELSE Next Key Value := Higher Key Value in lst-Leaf 

X Lock Next Key Value for Cotmnit Duration 

Unlatch 2nd Leaf, if Accessed 
IF Delete Kgy Value is Snwllest Key Value in Ist-Leaf AND Nonunique index THEN 

/* Other Instances of Delete Key Hay Exist in the Predecessor of l:,t-Leaf */ 
X Lock Delete Key Value for Connit Duration 
IF Is-t-Leuf wiZZ Become Empty After Key Delete THEN 

Invoke the Page-Delete Procedure and Return 
Delete Key from lst-Leaf, Log, Unlatch lst-Leaf and Return 

ELSE /* Delete Key Value Not Smallest in lst-Leaf '/ 

X Lock Delete Key Value for Instant Duration 
Delete Key from lst-Leaf, Log, Unlatch Ist-Leaf and Return 

Figure 9: Pseudo-Code for Delete Action Routine 

and M. In the first scenario, let us assume that Tl had 

done a range scan from B through K. If now Tl were to 

insert G and it were to lock G only in the IX mode, then 

that would permit T2 to insert F (T2’s request of the IX 

lock on G would be compatible with the IX lock held by 

Tl) and commit. If now Tl were to repeat its scan, then 

it would retrieve F, which would be a violation of the RR 

guarantee. When Tl requested IX on K, during the insert 

of G, and found that it already had an S lock on K, then 

it should have obtained an X lock on G. The latter would 

have prevented T2 from inserting f until Tl committed. 

In the second scenario, Tl might have an SIX lock on K 
because it had first inserted K (getting a commit duration 

IX on it) and later did a scan of 8 through K (getting a 

commit duration S lock on K, which causes the resultant 

hold mode to be changed from IX to SIX). In the third 

scenario, Tl might have an X lock on K because it had 

deleted f (deletion causes instant duration X lock to be 

acquired on the deleted key and a commit duration X 

lock on the next key value, assuming a unique index - 

see the section “5.4. Delete”). Now, if G were to be 

inserted by Tl and locked only in the IX mode, then that 

would permit T2 to insert F and commit. If later Tl were 

to rollback then it would put back its f and introduce 

duplicate keys in a unique index! This is the reason Ti 

should have noticed that it already held K in the X mode 

and hence should have locked G in the X mode also, 

thereby preventing the insertion of any key immediately 

behind G by any other transaction. 

After obtaining the X or IX lock request on the key value 

being inserted, Insert inserts the key in the 1st leaf, 

unlatches the page(s). and returns to the user with the 

success status. The latching protocol is used to guarantee 

that the instant lock was requested on the correct next 

key value. 

5.4. Delete 

The pseudo-code for the Delete action routine is given 

in Figure 9. After searching the leaf page, Delete should 

be positioned at the key to be deleted. Only if (1) this 

is a unique index or (2) this is a nonunique index and 

this key deletion is definitely or, possibly, causing the 

only instance of the key value to be deleted, then the 

next key value is determined. A commit duration X lock 
is then requested on the next key value. This lock is 

necessary to warn other transactions, which may be 

looking to insert or retrieve the key value being deleted, 

about the uncommitted delete, Note that if this weren’t 

the only instance of the to-be-deleted key value currently 
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in the index, then the commit duration X lock that will 

be obtained on the to-be-deleted key value itself would 

be sufficient to let other transactions know about the 

uncommitted delete and there is no need to lock the 

next key value. 

In System R. the next key value is always locked in the 

X mode. The advantage of not locking the next key 

value, if we can safely avoid it, is that it allows new keys 

to be added after the deleted key value (i.e., key values 

larger than the deleted key value) and the next key value 

to be deleted by other transactions, even before the 

current transaction commits its delete. Also, the deleter 

does not have to wait, even if the next key value is 

currently locked by another transaction. Additionally, it 

allows other transactions to start scanning from the next 

key value. Furthermore, if the next key value is in a 

different page, then not having to lock that value will 

potentially save an l/O. 

Next, if this is a unique index or this is a nonunique 

index and definitely the only instance of the key value 

in the index is being deleted, then Delete has to X lock 

for instant duration the to-be-deleted key value - this is 

to make sure that the key value is not currently locked 

by an active transaction which has performed an index- 

only scan; if (1) the next key value did not have to be 

locked or (2) the next key value was locked and it is not 

definite that the only instance of the key value is being 

deleted, then the to-be-deleted key value has to be X 

locked for commit duration. The advantage of an instant 

duration lock, compared to a commit duration one, is 

that the former does not consume any storage and it 

does not cause a hash synonym chain in the lock table 

to become longer. After this locking is done successfully, 

usually Delete deletes the specified key, unlatches the 

page(s) and returns to the caller. But, if the key to be 

deleted is the only key in the page, which would make 

the page become empty after the key delete is completed, 

Delete invokes the page deletion procedure. The pseudo- 

code for the latter is given in Figure 10. This procedure, 

like the page split procedure, requests the X latch on 

the tree after ensuring that all the affected pages are 

already in the buffer pool to minimize the time during 

which the X latch is held. On obtaining the latch, it 

cleletes the key and then performs the page delete re- 

lated processing (modifying the neighboring pages’ point- 

ers, propagating the page deletion, etc.). 

In this section, we try to explain why there at-e some 

significant differences in the locking protocols that arc 

followed during the different leaf-level operations. 

In the case of Delete, unlike in the case of Insert. the 

lock mode for the deleted key value and the next key 

value has to be X instead of IX. The reason is a subtle 

one. If the next key value lock mode had been IX during 
a delete, then that would permit another transaction to 

do an insert of a key value less than the next key value. 

before the commit of the deletion by the first transacfion. 

The newly inserted value may be less than, equal 10. or 

greater than the deleted key value. If the newly inserted 

value happened to be greater than the deleted key value. 

0th Leaf := 1st Leaf.PrevPage 
IF 8th Leaf <> fi1L THEN Fix 0th Leaf in Buffer Pool -1 X LatcT; Tree for Manual Duration 
IF 2nd Leuf <> NIL THEN Unlatch 
Delete-Key from 1st Leaf and Log 

Znrl-Leaf 

1st Leaf.91 Bit := ‘1’ 
Oeailocate ist Leaf 
IF Znd-Leaf -=--NIL THEN 

X latch 2nd-Leaf 
2nd Leaf.PrevPage := lst- 
Unlatch 2nd Leaf 

.L 

Unlatch lst-Leaf 
IF Qth Leaf c> NIL THE11 

X La&h 0th leaf 
Oth-Lcaf.Ne%Page := 2nd- 
Unlatch Oth-Leaf 

eaf. PrevPage 

eaf 

Propagate the Delete Up the Tree, Reset W-Bits to ‘0’ 
Unlatch Tree 

Figure 10: Pseudo-Code for Page-Delete Procedure 

then RR cannot be guaranteed. For example, let Tl 

delete G,5 and lock H only in the IX mode for commit 

duration. This would permit T2 to insert the value GG, 

which it would lock in the IX mode for commit duration. 

Before actually inserting that key value, T2 would also 

request an IX lock on H which would be granted since it 

is compatible with the IX lock held by Tl. Now, if T2, 

were to look for G it would not find it. and it would then 

request an S lock on GG which would be granted. Then, 

Tl might rollback and put back G,5. Now, if T2 were to 

repeat its search, then it will find G, thereby violating RR! 

To see why the mode of the lock on the deleted key has 

to be X instead of IX. in our example, assume that H,4 

is an uncommitted insert of Tl. This means that Tl 

would he holding an IX lock on H for commit duration. 

Now, let T2 try to delete H,8. Since T2 is not deleting 

the only instance of H, it would request a commit duration 

lock on H. Let it be in the IX mode, instead of X. T2’s 

IX mode lock request would be granted since it is com- 

patible with Tl’s IX mode lock and T2 would delete H,8 

successfully. Then, Tl could rollback removing its H,4, 

now the only instance of H. T3 might then try to fetch 

H and Ilot finding it, T3 will lock I in the S mode. Then, 

T2 could rollback and put back H.8. Then, if T3 were to 

repeat its search it would find H, thereby violating RR! 

The asgmmelry bctwe!en insert and delete partly comes 

from the fact that an uncommitted insert is “visible” 

sine? tilt! inserted key exists in the index, whereas an 

uncommitted delete is not visible since the deleted key 

disappears from the index. So, in the latter case, we 

need to leave behind a -strong’ lock on a still-existing 

key for .xthers to “trip on’ (i e., conflict on a lock request). 

The lock has to be strong enough to prevent others from 

building a ‘wall” behind the “tripping point’ such that the 

wall hic’es Ihe tripping point from the point of deletion. 

In the c:ase of an insert, the inserted key itself serves 

as the tripping point, whereas for delete the tripping 

point may have to be another key value or if it is the 

same key value. then iI must be guaranteed to be a 

“s’?Me’ one?. The reader slmuld now be able to map the 
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above examples to these analogies to visualize what is 

going on. 

Note that, if we are not careful, a transaction which has 

deleted a key might itself create a wall behind its tripping 

point, thereby allowing another transaction to create a 
wall behind the first one’s wall, which then enables a 

violation of RR. To take an example, let Tl try to fetch 

the range of key values from f to those less than G. Tl 

will fetch F and acquire S locks on F and G. Then, Tl 

inserts FK, acquiring an instant duration IX lock on G 

(the next key value) and a commit duration IX lock on 

FK. Now, T2 can insert FC, acquiring an instant IX lock 

on FK (the next key value) and a commit duration IX 

lock on FC. Then, T2 commits. Now, if Tl were to repeat 

its range scan, it will retrieve FC, thereby violating RR. 

It is to prevent situations like this that in ARIESIKVL, 

during an insert, we get an X lock on the inserted key 

value, if the next key value needs to be locked and that 

next key value was already locked by the inserting trans- 

action in the S, X, or SIX mode. Thus, the inserter, while 

“erecting” a wall right behind its own tripping point “rep- 

licates” its tripping point on the newly inserted value. 

This is what we earlier called lock state replication via 

next key locking. 

6. System R 

As far as we know, System R was the first system to do 

key-value locking and support RR. Unfortunately, the 

System R concurrency control method for index locking 

was never documented in the literature. ARlESlKVL has 

some similarities to the System R method, but we have 

also adapted many of the ideas reported in [MHLPS89, 

MoLe89] along with other innovations to improve per- 

formance and concurrency. 

A feature of the System R locking method is that many 

times (especially during inserts, deletes, and at the end 

of range scans, and sometimes during fetches) the key 

value (termed the next key value) following the one(s) 

of interest is locked in S mode during read operations 

and in X mode, otherwise. A bigger range of key values 

(from the one preceding the one(s) of interest to the 

next key value) gets locked due to this feature. This has 

been termed the adjacent key conflict problem and cus- 

tomers have suffered reduced concurrency due to this 

also [IBM85]. One way of reducing the occurrence of 

this problem is to avoid acquiring such locks whenever 

it is safe to avoid them. Some of the differences between 

the System R method and ARIES/KVL accomplish this 

reduction in lock conflicts and the ranges of key values 

locked. 

System R uses page locks for physical consistency, while 

doing key value locking for logical consistency. Unfortu- 

nately, all these page locks are not released until the 

end of the RSS (the data manager) call. This means that 

these index and data pages’ locks are held even during 

110s and lock waits. Depending on the operation to be 

performed, read or write, the page lock will be acquired 

in the S or the X mode. Typically there will be many 

I/OS during a single RSS call. The *waits for physical 

locks caused by prolonged holding of the page locks 

causes deadlocks and unnecessary delays to other trans- 

actions. Unfortunately, this approach of holding all the 

page locks until the end of the RSS call, which amounts 

to treating each RSS call as a mini-transaction, is also 

suggested by others that discuss multilevel transaction 

management (see, e.g., [WeikS’I]). From practical expe- 

rience with the SOL/DS product, it has been found that 
a significant percentage of deadlocks are caused by the 

page locks when record/key locking is being done. The 

reduction in concurrency due to the next key locking has 

also been a cause for concern, especially because the 

VMlSP Shared File System uses the SQL/DS index man- 

ager to store meta-information about ordinary user files, 

etc. 

Since pages are locked even during rollbacks, a trans- 

action that is rolling back may get into a deadlock. Sys- 

tem R and R’ serialize the execution within RSS by the 

rolling back transactions to avoid a deadlock involving 

only such transactions [MoL086]. Since ARlESlKVL ac- 

quires only latches during rollbacks and latches never 

get involved in deadlocks, transactions that are rolling 

back will never get into deadlocks. 

7. Conclusions 

We presented a method called ARlESlKVL for concur- 

rency control in B-tree indexes. Some of the design 

principles that we adopted in the design of ARIESIKVL 

to improve concurrency and performance are: (1) use of 

latches instead of locks for physical c’onsistency, (2) re- 

leasing latches during lock waits, (3) revalidation after 

unconditional locking, (4) use of VN to detect page state 

changes, (5) range locking via next key locking, (6) lock 

state replication via next key locking, (7) SMO serializa- 

tion via tree latch, (8) indication of incomplete SMO via 

SM-Bit and (9) latch-coupling. The table in Figure 1 

summarizes the locking performed by the different leaf- 

level operations. At most 2 page latches are held simul- 

taneously. ARIESIKVL can used in conjunction with two- 

phase locking for the table data. As far as we know, 

compared to the published papers, this is the only paper 

which presents a comprehensive, and a high concurrency, 

efficient solution to the problem of providing concurrency 

control of multiaction transactions operating on B-tree 

indexes. Due to lack of space, we have not discussed 

backward scans, protocols for cursor stability and recov- 

ery in this paper. The latter and ways to improve con- 

currency during structure modifications are presented in 

deplh irr [MoLe89]. Variations of the presented protocols 

for cursor stability are discussed in [Moha89]. ARIES/ 

KVL brings us closer to the power of predicate locking 

using only traditional locking and without using any ad- 

ditional lock modes other than the ones introduced in 

System R. We have studied alternatives to key-value 

locking to improve concurrency in indexes in [MHWCSO, 

MohaSF, MoLe89 1. 

Many of the design principles of ARIESIKVL are also 

applicable to the concurrency control of the classical 

links-based storage and access structures which are be- 
ginning to appear in more modern systems also 

[ShCa89]. If the children records of a parent record are 

linked together and scans along such links are permitted, 

then, in order to guarantee RR scans, inserters and 
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deleters of children records would have to do next key 

locking. Then, our ideas would apply. Our techniques 

may also be combined with the data-only locking ap- 

proach of ARIES/IM [MoLe89] to improve concurrency 

further in ARIESIIM. The basic idea is to make record 

inserters obtain IX locks rather than X locks on the 

records or data pages, depending on the locking granu- 

larity in use. In the case of page locking, this permits 

multiple transactions to insert on the same page. For 

inserts alone, for the price of page locking, we can get 

the concurrency of record locking! With this change to 

ARIES/IM, in the index, during a key insert, the lock on 

the data of the next index entry will be requested in the 

IX mode rather than in the X mode. If the current trans- 

action is found to have already a lock on the next index 

entry’s data in any mode other than IX, then the lock on 

the inserted index entry’s data is converted to the X 

mode, if it is not already held in that mode. Thus, some 

of the features of ARIESIKVL are being implemented in 

the context of ARIES/IM. 
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