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Abstract-- This paper proposes a stochastic wind power model 

based on an autoregressive integrated moving average (ARIMA) 
process. The model takes into account the nonstationarity and 
physical limits of stochastic wind power generation. The model is 
constructed based on wind power measurement of one year from 
the Nysted offshore wind farm in Denmark. The proposed 
limited-ARIMA (LARIMA) model introduces a limiter and 
characterizes the stochastic wind power generation by mean 
level, temporal correlation and driving noise. The model is 
validated against the measurement in terms of temporal 
correlation and probability distribution. The LARIMA model 
outperforms a first-order transition matrix based discrete 
Markov model in terms of temporal correlation, probability 
distribution and model parameter number. The proposed 
LARIMA model is further extended to include the monthly 
variation of the stochastic wind power generation. 
 

Index Terms--ARIMA processes, Markov processes, stochastic 
processes, time series, wind power generation. 

I.  INTRODUCTION 

HE high integration of wind power into electrical systems 
calls for new methods and simulation tools that can assist 

electric utilities in analyzing the impact of stochastic wind 
power generation on power system operation and planning 
[1]. Such analyses usually require a probabilistic approach, 
which commonly relies on sequential Monte Carlo simulations 
[2]. The sequential Monte Carlo simulations consider both the 
probability distribution and chronological characteristics of 
wind power generation, load profiles, and transition states of 
all the system components [2]. Furthermore, the sequential 
Monte Carlo simulations usually require a large number of 
simulation runs to obtain statistically reliable results, for 
instance to capture rare events such as extreme wind 
situations. Thus, stochastic wind power models that are able to 
capture both the probability distribution and temporal 
correlation of the wind power generation are needed.  

As depicted in Fig. 1, existing approaches for the stochastic 
modeling of the wind power generation fall into two 
categories: the wind speed approach [3]-[8] and the wind 
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power approach [9]. Both approaches are based on wind speed 
measurements. The former approach requires a wind speed 
model. The available wind speed models include the 
autoregressive moving average (ARMA) model [3], [4], the 
discrete Markov model [5]-[7], and the wavelet-based model 
[8]. In contrast, the latter approach requires a wind power 
model. The available wind power model in [9] uses a 
transition matrix based discrete Markov model. 

The two approaches can be applied to planning of future 
wind farms in the power system. However, both approaches 
entail wind speed measurements and an accurate wind farm 
model, which is usually unavailable. The accurate wind farm 
model is not needed in the case where wind power 
measurements are available. In fact, electric utilities measure 
and record wind power flowing into their networks. Thus, 
they have direct access to these wind power data. In this case, 
as shown in Fig. 1, wind power measurements can be directly 
used to build a wind power model, which may be used for 
system planning involving already operating wind farms. In 
addition, the need for wind speed measurements is alleviated.  
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Fig. 1.  Alternative approaches for modeling wind power time series. 

 
In the case that only wind speed measurements are 

available, either approaches may be applied. One disadvantage 
of the wind power approach is that wind power generation has 
both lower and upper limits and does not follow a standard 
probability distribution. These make it more challenging to 
apply standard statistical models. On the other hand, one 
drawback of the wind speed approach is that an error, e.g. of 
3%, in wind speed modeling may cause an error of around 9% 
in wind power. This is because wind power varies with cube 
of wind speed when the speed is between cut in and rated 
value.  

In brief, the challenges of building the stochastic wind 
power model are that the wind power generation is a 
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nonstationary and non-Gaussian random process, where a 
direct application of ARMA models is not feasible. As 
proposed in [9], the discrete Markov model using transition 
matrix may be applied to modeling the wind power 
generation. This model is constructed based on a quantized 
wind power time series. The transition matrix defines 
probabilities of moving from one state to any other states. 
However, the model presents several practical problems. 
Firstly, the model does not consider the nonstationary 
characteristic of the wind power generation. Secondly, the 
model requires a large number of parameters and thus calls for 
a large amount of training data. Finally, the model gives a 
poor fit with respect to probability distribution. This lack-of-
fit is due to the error induced when quantizing the wind power 
time series.  

This paper proposes a parsimonious stochastic wind power 
model based on an autoregressive integrated moving average 
(ARIMA) model. The proposed model takes into account the 
nonstationary characteristic of the wind power generation with 
only few model parameters. In addition, the proposed model 
does not rely on quantization and thus does not suffer from 
quantization errors. 

The rest of the paper is organized as follows. Section II 
introduces necessary notations and concepts. Section III 
performs a statistical analysis on a one-year wind power time 
series measured from the Nysted offshore wind farm in 
Denmark. A standard ARIMA model for the measurement 
data is then identified in section IV. Section V improves the 
identified ARIMA model by introducing a limiter to the 
feedback loop of the model. The proposed model, referred to 
as the limited-ARIMA (LARIMA) model, is further extended 
to include the monthly variations of the wind power 
generation. Concluding remarks and future works are stated in 
section VI. 

II.  METHODOLOGY 

This section presents the necessary notations and concepts 
of stationary and nonstationary random processes. Then, the 
ARIMA model for the nonstationary random process is 
introduced and the Box-Jenkins’ procedures of model 
identification for a nonstationary time series is outlined. 
Interested readers are referred to [11], [12] for detailed 
information. 

A.  Wide-Sense Stationary and Nonstationary Random 
Process 

Let y(1), …, y(N) denote an observed time series, which is 
modeled by a random process Y(t). The temporal correlation 
of the random process can be described by the autocorrelation 
coefficient (ACC) [13] and partial autocorrelation coefficient 
(PACC). The ACC expresses the linear correlation of data 
among adjacent observations of a random process. The 
theoretical ACC of a random process is usually not known, 
but can be estimated from the observed time series by the 
sample ACC as [12] 
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where Ym  and 
2
Y  are the sample mean and variance of the 

observed time series, respectively. 
The PACC of Y(t) describes the correlation between Y(t) 

and Y(t+k) when the mutual linear dependency of Y(t+1), 
Y(t+2), …, Y(t+k-1) is removed. In other words, it is the 
correlation between Y(t) and Y(t+k) conditioned on Y(t+1), 
Y(t+2), …, Y(t+k-1). Given the sample ACC, the sample 

PACC   Y k  can be calculated iteratively through [12] 
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where   0 1Y  , and 

 
           , 1, 1,Y Y Y Yk j k j k k k j        .    (3) 

 
The standard error of the sample PACC is approximated by 
[12] 
 

PACC 1 NS  .                 (4) 

 
Hence, ±2SPACC can be used as critical limits on the sample 
PACC to test the hypothesis of a white noise process.  

With respect to the WSS random process, a nonstationary 
random process Y(t) distinguishes itself in a number of ways. 

It may have a time-varying mean mY(t) and variance  2
Y t . 

Some transformations, such as differencing and variance-
stabilizing [12], are introduced to transform the nonstationary 
random process to an approximately stationary one. 

For a process with the time-varying mean, a stochastic 
trend model can be applied [12]. The stochastic trend model is 
constructed by differencing the random process for d times, 
i.e. 
 

   ( ) 1 ,
d

Z t B Y t                 (5) 

 
where B is the backshift operator such that BjY(t) = Y(t-j). 

For a process with the time-varying variance, the Box-
Cox’s power transformation is applied to stabilize the variance 
by [12] 
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where G(Y) is the geometric mean of Y(1), …, Y(N): 
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  ,               (7) 

 
and ν is a parameter determining the transformation. The 
criterion for selecting ν for variance stabilizing transformation 
is to minimize the residual sum of squares [12]  
 

      N 2

1
T .Y

t
SS y t m


              (8) 

 
Some common transformations are listed in Table I together 
with the corresponding ν. The values of ln(SS(ν)) are 
calculated from the wind power measurements presented in 
the following section and will be further discussed in Section 
IV. The power transformation is usually applied before the 
differencing operation.  
 

TABLE I 
BOX-COX POWER TRANSFORMATION [12] AND LOGARITHM OF THE RESIDUAL 

SUM OF SQUARES OF THE POWER-TRANSFORMED WIND POWER TIME SERIES  
ν Transformation ln(SS(ν)) 
-1 1/Y(t) 38.5 

-0.5 
1 ( )Y t  

26.1 

0 lnY(t) 16.6 
0.5 ( )Y t  15.5 

1 Y(t) 17.1 

 

B.  The ARIMA-family model 

An ARIMA(p, d, q) model of the nonstationary random 
process Y(t) is expressed as [12] 
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where {φi} are the AR coefficients; {θi} are the moving 
average (MA) coefficients; a(t) is a white Gaussian process 
with zero mean and variance σa

2; the parameter θ0 is referred 
to as the deterministic trend term when d > 0. The 
deterministic trend term θ0 can be omitted unless the sample 

mean  Zm  of the transformed time series Z(t) as in (5) is 

significantly larger than its standard error  ZS m  [12]. The 

standard error can be approximated by 
 

           2 1 2 1 2 2 2 N,Z Z Z Z ZS m k          (10) 

 

where σZ
2 is the sample variance of Z(t) and   1Z ,…, 

  Z k  are the first k significant sample ACCs of Z(t). 

In the case of d = 0, the ARIMA(p, d, q) model is reduced 
to an ARMA(p, q) model [12]. For an ARMA model, θ0 is 

related to the sample mean Ym  of the process as 
 
  10 1Y pm      .              (11) 

 
The ARMA(p, q) model is reduced to an AR(p) model when 
q = 0, and an MA(q) model when p = 0. The coefficients of 
the ARMA model can be estimated by the Yule-Walker 
estimator, the least square estimator, the maximum likelihood 
estimator, etc [12]. 

The Box-Jenkins’s procedures of model identification for a 
nonstationary time series [12] are summarized in four steps: 
 Choose proper transformations of the observed time series. 

The most common transformations are variance-stabilizing 
transformation and differencing operation. 

 Calculate the sample ACC and PACC of the observed time 
series to decide the necessity and degree of differencing. 

 Calculate the sample ACC and PACC of the properly 
transformed time series to identify the orders of p and q of 
the ARIMA model. 

 Test the deterministic trend term θ0 if d > 0 to decide the 
necessity of including θ0 in the model. 
The Box-Jenkins’ procedures of model identification will 

be followed in section IV, after the analysis of the measured 
wind power time series in section III. 

III.  STATISTICAL ANALYSIS OF WIND POWER TIME SERIES 

A statistical analysis is performed on a wind power time 
series measured from the Nysted offshore wind farm 
connected to the Lolland-Falster distribution system in 
Denmark. The wind farm’s capacity is 165.6 MW. It consists 
of 72 fixed-speed wind turbines, each with capacity of 2.3 
MW. The data are hourly measurements from Jan. 1 to Dec. 
31, 2005.  

The time-domain plots of the wind power time series for 
the whole year and first ten days in January are shown in Fig. 
2. The wind power generation is on average higher in certain 
months (Nov. to Apr.) than in other months (May to Oct.). A 
strong temporal correlation is observed, e.g. a continuously 
high power generation between 48th h and 96th h. However, a 
dramatic change in power generation from almost maximum 
to zero is also observed between 168th h and 192nd h.  

The empirical probability density function of the measured 
time series is shown in Fig. 3. The probability mass 
concentrates around zero of the distribution and shows a small 
rise around the rated power. This effect is expected from the 
actual operation of the wind farm due to power limitations at 
the cut-in and rated wind speed. As a result, the distribution is 
not a standard exponential or any other standard probability 
distribution.  

The sample ACC and PACC of the measured time series 
are shown in Fig. 4. The sample ACC decays slowly. The 
sample PACC is significant for time lags up to 3. According 
to [12], this indicates that the time series may be 
nonstationary. The implication of the sample ACC and PACC 
on the model identification is to be discussed in section IV. 
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The periodogram [14] of the time series is shown in Fig. 5. 
No particularly dominant frequency components are observed. 
The frequency component corresponding to 24 h is present, 
but very weak. Thus, it will not be considered in the sequel. 
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Fig. 2.  Wind power time series from measurements: one-year time series 
(top), and first ten days in January (bottom) 
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Fig. 3.  Empirical probability density of the measured wind power time 
series. 
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Fig. 4.  Sample ACC (upper) and PACC (lower) of the measured wind 
power time series. 
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Fig. 5.  Periodogram of the measured wind power time series. 

IV.  ARIMA MODEL OF WIND POWER TIME SERIES 

In this section, ARIMA models are identified for the wind 
power data described in section III based on the Box-Jenkins’ 
procedures. Then, the model diagnostic and selection on the 
identified models are carried out. Finally, the deficiency of the 
selected models is discussed. 

A.  Model Identification 

The computed natural logarithm of the residual sum of 
squares of the wind power data according to (8) is 
summarized in Table I for different values of the 
transformation parameter ν. The results indicate that a square-
root transformation (ν = 0.5) has the smallest residual sum of 
squares, and should therefore be applied to the data. 

As shown in Fig. 4, the sample ACC of the measured time 
series decays slowly, while the sample PACC damps off after 
lag 3. This indicates that the differencing is needed [12]. With 
one degree of differencing on the square root of the measured 
time series, the resulting transformed time series is shown in 
Fig. 6. The time series now appears to be approximately 
stationary. The sample ACC and PACC of the transformed 
time series are shown in Fig. 7. The sample ACC cuts off after 
time lag 1 and the sample PACC damps off after time lag 2. 
This matches with an MA(1) model with a negative θ1 [12]. 
Fitting the MA(1) model directly on the transformed wind 
power time series gives θ1 = −0.224 and σa

2 = 1.172. The 
theoretical ACC of an MA(1) model is calculated by [11] 
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The corresponding values of PACC can be obtained using (2). 
The theoretical ACC and PACC of the MA(1) model with 
θ1 = −0.224 are shown as the dashed lines in Fig. 7. The 
sample ACC and PACC of the transformed time series 
matches with the corresponding theoretical values of the 
MA(1) model. 

The sample mean of the transformed time series (after 

square-root and differencing) is 
Zm = −2.054710-5. 

According to (10), the standard error is  ZS m = 0.0203 , 

which is much larger than the sample mean. Thus, the 
deterministic trend term θ0 is insignificant and can be omitted 
from the model.  

Consequently, the following ARIMA(0,1,1) model is 
entertained for the wind power time series. It is a first-order 
integrated MA model. 
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The block diagram of the model is shown in Fig. 8, where 

the back shifter B is the same as a unit delay. The estimated 
parameters, θ1 and σa

2, are listed in Table II. 
 



 5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-10

-5

0

5

10

Time (h)  
Fig. 6.  Square root followed by one-order differencing of measured time 
series. 

 

0 1 2 3 4 5 6 7 8 9 10
-0.2

0
0.2
0.4
0.6
0.8

1

Time Lag (h)

A
C

C
 (

 
 )

 

 

Sample ACC
Theoretical ACC of MA(1)

 

0 1 2 3 4 5 6 7 8 9 10
-0.2

0
0.2
0.4
0.6
0.8

1

Time Lag (h)

PA
C

C
 (

  
)

 

 

Sample PACC
Theoretical PACC of MA(1)

 
Fig. 7.  ACC (upper) and PACC (lower): transformed wind power time series 
(solid) and MA(1) model with θ1 = -0.2241 (dashed). 

 

 
Fig. 8.  Block diagram of ARIMA(0,1,1) model of wind power time series. 

 
TABLE II 

PARAMETER ESTIMATES FOR THE ARIMA(0,1,1) AND ARMA(1,1) MODELS 
Model φ1 θ0 θ1 σa

2 
ARIMA(0,1,1) — — −0.224 1.172 

ARMA(1,1) 0.971 0.197 −0.241 1.148 

 

B.  Model Diagnostic and Selection 

The model diagnostic is required to assess the adequacy of 
the model by checking whether or not the model assumption is 
valid. The fundamental assumption is that the residual a(t) is a 
white noise [11], i.e. an uncorrelated random process with 
zero mean and constant variance. The residual a(t) is obtained 
by 
 

       11 1a t B y t a t     (14) 

 
The Box-Cox power transformation of the residual 

indicates that the residual sum of square is minimized when 
no transformation is applied. This indicates a constant 
variance of the residual [12]. The sample ACC and PACC of 
the residual are shown in Fig. 9. The values at lag 0 are equal 
to 1 and not shown. The sample ACC and PACC do not 
exhibit any obvious pattern and are generally within the 
critical limits. This indicates an uncorrelated random process. 

Therefore, the white noise assumption of the residual is found 
to be valid. 

Although the ARIMA(0,1,1) model according to the 
preceding analysis is assessed to be an adequate model for the 
wind power time series, there may be several other adequate 
models as well. For example, higher-order ARIMA(p,1,q) 
models with p > 0 and q > 1. In addition, as shown in Fig. 8, 
the coefficient of the feedback of I0(t) is 1, corresponding to 
one degree of differencing. If the coefficient is varied within 
(0, 1), the model becomes an ARMA(1,1) model, which also 
shows a good modeling in ACC and PACC. The ARMA(1,1) 
model is expressed as 
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where the estimated parameters, φ1, θ0, θ1 and σa

2, are listed in 
Table II. Consequently, the problem in this case becomes 
selecting one among models of varying complexity. 
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Fig. 9.  Sample ACC and PACC of the residual of the ARIMA(0,1,1) model. 

 
Model selection criteria based on residuals are applied to 

choose the best model among the adequate ones. The common 
selection criteria are Akaike’s information criterion (AIC) and 
Bayesian information criterion (BIC). The AIC of the ARIMA 
model is defined as [12] 

 

  2AIC N ln 2 ,aM M               (16) 

 
where M is the number of parameters in the model. The 
optimal order of the model is chosen by the value of M, so that 
AIC(M) is minimum. The parameters and AIC values of five 
adequate ARIMA models are summarized in Table III.  

The ARMA(1,1) model yields the smallest AIC value 
whereas the ARIMA(0,1,1) model gives the second smallest 
AIC value. It turns out that the AIC criterion favors the 
ARMA(1,1) model with 4 parameters instead of the 
ARIMA(0,1,1) model with 2 parameters. The BIC criterion 
leads to a similar conclusion. In fact, the ARMA(1,1) model 
resembles with the ARIMA(0,1,1) model as φ1 is close to 
unity. This also implies that the time series may be 
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nonstationary. In addition, the ARIMA(0,1,1) model requires 
less parameters. Hence, both the ARMA(1,1) and 
ARIMA(0,1,1) model are considered to be candidate models. 
 

TABLE III 
AIC CRITERIA OF DIFFERENT ARIMA MODELS 

Model Parameters M σa
2 AIC 

ARMA(1,1) φ1, θ0, θ1, σa
2 4 1.1483 1219 

ARIMA(0,1,1) θ1, σa
2 2 1.1717 1392 

ARIMA(0,1,2) θ1, θ2, σa
2 3 1.1721 1397 

ARIMA(1,1,1) φ1, θ1, σa
2 3 1.1721 1397 

ARIMA(1,1,0) φ1, σa
2 2 1.1759 1423 

 

C.  Model Deficiency 

Due to the physical limitations of the wind farm, the wind 
power generation is bounded within [0, 165.6] MW. However, 
neither the ARMA nor the ARIMA model considers these 
limitations. The mean and variance of the ARMA(1,1) model 
are calculated by [11] 
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However, the sample mean and variance of the square-root 
transformed wind power data are 6.7 and 16.5, respectively. 
The ARMA(1,1) model fits the measurement in terms of the 
mean but not the variance. The variance of the ARIMA(0,1,1) 
model does not converge and increases as time proceeds due 
to its nonstationarity property. The discrepancy in the variance 
indicates that the standard ARMA or ARIMA model cannot 
be directly applied to a bounded random process. The 
following proposes a new model for the bounded random 
process. 

V.  PROPOSED MODEL OF WIND POWER TIME SERIES 

This section first proposes four modified ARMA and 
ARIMA models, referred to as the ARMA model with limiter, 
ARIMA model with limiter, LARMA model and LARIMA 
model, respectively, for the bounded wind power time series. 
Then, the model that has the best fit in probability distribution 
is selected. Moreover, the selected model is compared with a 
transition matrix based discrete Markov model in terms of 
probability distribution and temporal correlation. Finally, the 
selected model is extended to include the monthly variation of 
the wind power generation. 

A.  Modified ARMA and ARIMA Models 

Since the wind power output is bounded, a limiting 
operation is introduced as 
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where Imax and Imin denote the upper and lower bounds of the 
square root of the wind power output, respectively. For the 
considered wind farm, the wind power output is bounded 

within [0, 165.6] MW, yielding maxI 165.6 12.87   and 

Imin = 0. Consequently, the wind power time series can be 
simulated by 
 

   2 , for 1, ..., N.Y t I t t   (19) 

 
The limiter may be included outside or inside the feedback 

loop of I0(t) shown in Fig. 8. The model with the limiter 
outside the feedback loop is shown in Fig. 10 (a). The model 
is referred to as the ARMA model with limiter when 
0 < φ1 < 1, and the ARIMA model with limiter when φ1 = 1. 
The model with the limiter inside the feedback loop is shown 
in Fig. 10 (b). The model is referred to as the LARMA model 
when 0 < φ1 < 1, and the LARIMA model when φ1 = 1, with 
‘L’ indicating the introduction of the limiter. 

Due to the nonstationarity of an ARIMA model, its mean 
and variance diverge as time proceeds [11]. With the inclusion 
of the limiter, however, the mean and variance of the 
LARIMA model is bounded. Consider two extreme cases 
when σa

2 approaches zero and infinity while θ0 = 0. It is not 
difficult to derive that the mean and variance of I(t) in the 
LARIMA model is bounded as:  
 

max

2 2
max

0 I 2
.

0 I 4

I

I

m



  

 

                  (20) 

 
Therefore, a modification is required to control the mean of 
the model. In other words, a deterministic trend term must be 
included. The value of θ0 is adjusted until the sample mean of 
Y(t) coincides with that of the measured time series y(t). The 
variance is automatically adjusted as it is the autocorrelation at 
time lag zero minus the square of the mean. According to the 
simulation, θ0 = 0.011 for the LARIMA model.  
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(a) ARMA(1,1) with limiter (0 < φ1 < 1), ARIMA(0,1,1) with limiter (φ1 = 1). 

 
(b) LARMA(1,1) (0 < φ1 < 1), LARIMA(0,1,1) (φ1 = 1). 

Fig. 10.  Block diagrams of four ARIMA-type wind power time series models. 
 

B.  Model Selection 

The selection among the ARMA model with limiter, the 
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ARIMA model with limiter, the LARMA model, and the 
LARIMA model depends on which one providing the best fit 
in probability distribution. 

In order to compare the probability distribution of the four 
models, the quantile values of the time series simulated from 
the models are plotted against those from the original 
measurement data as shown in Fig. 11 (a)-(d). Each plot is 
computed from 100 independently generated time series of 
8760 samples The quantile-quantile plot is a standard means 
of comparing probability distributions. Different quantiles 
correspond to values of a cumulative distribution function at 
different probabilities. If the simulated time series and the 
measured one are from the same probability distribution, then 
the quantile-quantile plot follows a straight line with a unit 
slope (the solid line in the figure).  
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             (e)  
Fig. 11.  Quantile-quantile plots of simulated time series from six models 
against the measured time series (dashed line), and straight lines with unit 
slope (solid line). 

 
It is observed from Fig. 11 (a) that the ARMA(1,1) model 

with limiter fits well for quantiles less than 120 MW, but fits 
poorly in the higher power region. The ARIMA(0,1,1) model 
with limiter shown in Fig. 11 (b) shows a poor fit in all 
quantiles. This observation indicates that the simulated values 
from the ARIMA(0,1,1) model with limiter hit the upper and 
lower limit most of the time. This effect is caused by the 
nonstationarity characteristic of the ARIMA model. The 

LARMA(1,1) model in Fig. 11 (c) also deviates evidently 
from the straight line and gives a poor fit in probability 
distribution. The LARIMA(0,1,1) model in Fig. 11 (d) gives 
the best fit among the four models. Due to the importance of 
the accuracy in probability distribution of wind power 
generation, the LARIMA(0,1,1) is favored among the four 
modified ARMA and ARIMA models. Thus, the 
LARIMA(0,1,1) model is finally selected as the best model 
for modeling the wind power time series. Fig. 11 (e) is to be 
discussed in the following subsection. 

C.  LARIMA model vs. Discrete Markov Model 

The LARIMA(0,1,1) model proposed in this paper is 
compared with the first-order transition matrix based discrete 
Markov model proposed in [9]. The first-order discrete 
Markov model is implemented as described in [9] with a state 
number of ten. The comparisons are made in terms of 
probability distribution, ACC, PACC and model parameter 
number. 

The quantile-quantile plot of the simulated time series 
using the first-order discrete Markov model is shown in Fig. 
11 (e). Although the trend of the quantile-quantile plot follows 
the straight line, it exhibits a staircase-like behavior due to the 
use of quantization in the discrete Markov model. By 
comparing Fig. 11 (d) and (e), it is apparent that in terms of 
the fit of probability distribution, the proposed 
LARIMA(0,1,1) model outperforms the ten-state first-order 
discrete Markov model. 

The sample ACC and PACC of the measured time series 
and simulated ones using the LARIMA(0,1,1) and first-order 
discrete Markov model are shown in Fig. 12. The sample 
ACC of the LARIMA(0,1,1) model and Markov model match 
with that of the measurement. However, the PACC exposes 
the difference between the LARIMA model and Markov 
model. The sample PACC of the measured time series 
approaches zero for time lags larger than three. The sample 
PACC of the LARIMA model matches that of the measured 
time series for time lags up to three and approaches zero for 
time lags larger than three. However, the PACC of the 
Markov model approaches zero for time lags larger than one. 

Recall that PACC describes the correlation between Y(t) 
and Y(t+k) when the mutual linear dependency of Y(t+1), 
Y(t+2), …, Y(t+k-1) is removed. For a first-order discrete 
Markov model, the next state depends only on the current 
state, not the other states visited before. Therefore, the PACC 
of the discrete Markov model approaches zero for time lags 
larger than 1. However, due to its feedback loop (see Fig. 10 
(b)), the LARIMA(0,1,1) model gives good accuracy of 
PACC at time lags larger than one. Therefore, the 
LARIMA(0,1,1) model gives better fit in PACC than the first-
order discrete Markov model. 

The fit of the first-order discrete Markov model to the 
measurement data can be improved by using higher order 
models, e.g. a second-order discrete Markov model. However, 
the number of parameters increases exponentially; the 
transition matrix of an n-state discrete Markov model of order 
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r has nr(n-1) parameters. This leads to 90 parameters for a 
first-order ten-state model (n = 10, and r = 1), and 900 
parameters for a second-order ten-state model (n = 10, and 
r = 2). In contrast, the proposed LARIMA(0,1,1) model is 
described by only three parameters. Generally, the accuracy of 
a fitted model depends essentially on the amount of data 
available relative to the number of parameters to be estimated 
[15]. Thus, parsimonious models are preferred, and in some 
cases even required, when limited amount of data are 
available. 

In summary, the proposed LARIMA(0,1,1) model is 
superior to the first-order transition matrix based discrete 
Markov model in terms of the probability distribution, the 
PACC, and the model parameter number. 

In addition, the time-domain plot and power spectral 
density of the simulated time series using the proposed 
LARIMA(0,1,1) model are shown in Fig. 13 and Fig. 14, 
respectively. As mentioned in section III, the component 
corresponding to the diurnal period is not included in the 
present model. In the case of a strong diurnal period, the 
proposed model can be improved by applying a seasonal 
ARIMA model on the time series [12].  
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Fig. 12.  Sample ACC (upper) and PACC (lower) of the measured time series, 
LARIMA(0,1,1) model, and first-order discrete Markov model. 
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Fig. 13.  Simulated wind power time series using the LARIMA(0,1,1) model. 
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Fig. 14.  Power spectral density of simulated wind power time series using the 
LARIMA (0,1,1) model. 
 

D.  Modeling of Seasonal Trend  

So far a time series model that captures the averaged 

sample probability distribution, ACC, and PACC over a whole 
year has been developed. In order to take into account the 
seasonal trend, the same procedures can be applied to different 
parts of the time series representing different seasons or 
months. However, the length of each month (maximum 744 
hours) of the time series is reduced approximately by a factor 
of 12 compared to that of a whole year (8760 hours). This 
shows the importance of a parsimonious model. A transition 
matrix based Markov model requires a large number of 
parameters. Thus, more data than a year are necessary to 
model the seasonal variability. In other words, the Markov 
model is not suitable when modeling seasonal trend with 
limited data. However, the proposed LARIMA(0,1,1) model 
relies on only three parameters, which is advantageous for 
modeling the seasonal trends.  

Following the LARIMA(0,1,1) model in Fig. 10 (b), the 
estimated model parameters, θ0, θ1, and σa

2, for each month 
are shown in Fig. 15. It is noted that the values of the 
deterministic trend θ0 are all negative in the summer months 
(May to October), and positive in the winter months 
(November to April). The phenomena reflect that the mean 
value of wind power generation is higher in winter months 
than in summer months. The monthly variation of θ0 is large 
in the sense that its standard deviation is around 19 times of its 
mean. i.e. 0.0035. However, the monthly variation of θ1 and 
σa

2 are quite small. The corresponding standard deviations are 
around 33% and 18% of the means, i.e. -0.225 and 1.165, 
respectively. This tends to indicate that the 12 monthly models 
can be connected by the same value of θ1 and σa

2 but 
distinguished by θ0. A longer time series measurement is 
required to further verify this conclusion. The monthly mean 
and variance of the simulated and measured time series are 
shown in Fig. 16. The results show that the model is able to 
capture the seasonal trend.  

E.  Further Discussions 

The proposed LARIMA model captures the probability 
distribution, the ACC, the PACC and the seasonal trend 
adequately. However, as discussed in Section III, the 24 h 
period is ignored in the modeling of this wind power time 
series. The motivation for ignoring this effect is that the 24 h 
period is observed to be rather weak in the available data set 
shown in Fig. 5. Therefore, to adhere to the Principle of 
Parsimony, we leave out the explicit modeling of the diurnal 
period. In many cases, the diurnal period is also an important 
issue for modeling wind power generation. This is because of 
the strong diurnal period of electric loads that may be 
correlated (either positive or negative) with wind power 
generation. In the case of a time series that possesses a strong 
diurnal period or any other periods, the standard Box-Jenkins’ 
seasonal ARIMA model can be applied [11], [12]. 
Accordingly, the seasonal LARIMA model can also be 
developed.  

It is worth pointing out that the wind power data used for 
developing the LARIMA model are from a wind farm with 
fixed speed wind turbines. For wind farms with variable speed 
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wind turbines, both the probability distribution and the 
autocorrelation of the wind power may be different. The 
developed wind power model is only based on the data 
measured from the wind farm without the assumption of 
specific turbine types. Thus, the same modeling procedures 
can still be applied. 

The proposed LARIMA model for wind power generation 
can be applied in the reliability assessment of power systems 
incorporating wind energy. The model can generate synthetic 
wind power time series, which are used in sequential Monte 
Carlo simulations to evaluate the adequacy of the system 
generation to meet future load demand. The proposed wind 
power model has a good fit in probability density function, 
especially  on  the  tail  regions.  This  fact,  as  well  as  the 
model’s  computational  simplicity,  makes  the  model 
especially  suitable  and  reliable  for  Monte  Carlo 
simulations. 
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Fig. 15.  ARIMA(0,1,1) based model parameters for each month: θ0 (upper), 
θ1 (middle), and σa

2 (lower). 
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Fig. 16.  Monthly mean (upper) and standard deviation (lower) of one-year 
measured (solid-circle) and simulated (dotted-square) time series considering 
seasonal trend in the model. 

 

VI.  CONCLUSIONS AND FUTURE WORK 

This paper contributes to the statistical analysis and 
modeling of a nonstationary and bounded wind power time 
series. The analyses indicate that the examined wind power 
time series is a nonstationary random process with high 
fluctuation and temporal correlation. However, the time series 
has a rather weak 24 h period. It is found that its probability 
distribution does not resemble a standard distribution such as 
an exponential, or a Gaussian distribution.  

A novel LARIMA model is proposed for the wind power 
time series. The LARIMA model is obtained by introducing a 
limiter into a standard ARIMA model to represent the upper 
and lower bounds of the wind power generation. The 
proposed model characterizes the wind power generation by 
three unknown parameters, representing the mean level (θ0), 
temporal correlation (θ1), and driving noise (σa

2) of the wind 
power generation, respectively. The proposed 
LARIMA(0,1,1) model outperforms the ARMA(1,1) model 
with limiter and the LARMA(1,1) model when evaluating the 
probability distribution. The proposed LARIMA(0,1,1) model 
also outperforms the first-order transition matrix based 
discrete Markov model when evaluating the probability 
distribution, PACC and model parameter number. The 
monthly variation of the wind power time series is modeled by 
applying the LARIMA(0,1,1) model to the individual months 
of the time series. It is found that the monthly variation is 
mainly caused by different mean level (θ0) of wind power in 
each month. The monthly variation in θ1 and σa

2 is observed to 
be relatively small. 

The developed stochastic wind power model can facilitate 
the understanding and analysis of the impact of stochastic 
wind power generation on power system planning and 
reliability studies. The sensitivity analysis of the stochastic 
wind power generation with respect to the variation in mean 
level, temporal correlation and driving noise can be readily 
carried out using the proposed model. Future work on the 
proposed LARIMA model includes the derivation of 
analytical expressions for the probability density function as 
well as its moments. If wind power measurements of longer 
periods are available, the year-to-year variation can be 
modeled and used to improve the accuracy of the model for 
long-term planning applications. 
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