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ABSTRACT 
 

A nation’s GDP is an important index reflecting development in economy and incomes. This paper 
uses the annual data of Nigeria’s GDP from 1981 to 2019 as the research data. An Augmented 
Dick Fuller test was used to test for stationarity of the data and was seen to be stationary at the 
second differencing. ARIMA (1, 2, 1) was identified as an appropriate model using Eviews 11 
software after comparing the AIC values. The Ljung-Box test of the Residual satisfied that the 
model was adequate and was used to forecast the out of sample data. And with a Theil inequality 
of 0.022008, the model forecasting ability is deemed be a good. 
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1. INTRODUCTION 
 
One of the major objectives of time series model 
is to forecast future values or activities by 
studying the behavioral pattern of past data. In 
government and large organizations, long and 
short term planning is carried out on the basis of 
the analysis of past data of various economic 
variables. In all areas of human endeavor, when 
we intend to make forecast about the future, our 
previous experience, if it exist is usually relied 
on. 
 
Time series analysis deals with the statistical 
technique of analyzing past data in other to 
obtain estimates for future values. This is usually 
done by collecting data on past observations and 
making forecast about the future. 
 
Box and Jenkins [1], developed a practical 
procedure for an entire family of models, the 
autoregressive integrated moving average or 
ARIMA, applicable to stationary data series 
where the mean, the variance and the 
autocorrelation function remains constant 
through time. 
 
According to Anderson [2] and Pankratz [3], the 
Box-Jenkins approach is a powerful and flexible 
method for forecasting because it places more 
emphasis on the recent past data and where 
structural shift occur gradually rather than 
suddenly which makes the ARIMA model 
valuable when dealing with economic time series 
data. 
 
The model is generally referred to as an ARIMA 
(p, d, q) model where p is the autoregressive 
component, q is the moving average component 
and d is differencing and are all integers greater 
than or equal zero. Hence, an ARIMA model 
describes the non-stationary behavior that can 
be differenced to obtain a stationary process 
which is beneficial in modelling Gross Domestic 
Product (GDP). 
 
Gross domestic product (GDP) refers to the 
market value of all the final products (goods and 
services) which is produced or provided by 
economic society i.e. either a country or a region 
in a given period. GDP is an important indicator 
to measure a country's wealth and economic 
strength. GDP is part of the National income and 
product accounts which are statistics that enable 
policy makers to determine whether the economy 
is contracting or expanding and if either a 
recession or inflation beckons. GDP is used by 

economic to determine the level of development 
of a country. 
 
Gross domestic product (GDP) comprises of 
consumption(C), investment (I), government (G) 
purchase of goods and services and net exports 
(X) produced within the nation during that period. 
 

Hence, GDP = C+I+G+X. 
 
The objective of this paper is to use ARIMA 
model to model the stochastic mechanism that 
rise to the GDP series and to forecast future 
values of the series based on the history of the 
series. There are many studies that used these 
models for studying the GDP in different 
countries, such as Wabomba et al. [4], and 
Uwimana et al. [5]. 
 

2. REVIEW OF RELATED LITERATURE 
 
Box and Jenkins [1] methodology has been used 
severally by many researchers in highlight the 
future rates of gross domestic product (GDP). 
Dritsaki (2015), in his study of Greek GDP utilize 
ARIMA (1,1,1) in modelling and forecasting 
1980-2013 Greece’s GDP rate. Zakai [6] in 
investigating the forecast of Gross Domestic 
Product (GDP) for Pakistan using quarterly data 
from 1953-2012 choose an ARIMA (1,1,0) model 
and found out that the size of the increase for 
Pakistan’s GDP for the years 2013- 2025. 
Bluiyan et al. [7] studied the modelling and 
forecasting of Gross Domestic Product of 
manufacturing industries in Bangladesh. The 
non-stationary data was made stationary by 
taken second difference of the data. ARIMA 
(2,2,0) ARIMA (2,2,1), and ARIMA (2,2,2) were 
selected on the basis of their Akaike information 
criteria. And finally ARIMA (2,2,1) was selected 
based on smallest value of standard error and 
the result shows a GDP of sustainable upward 
trend and that the estimated value fits the data 
very well and forecast was made for next thirteen 
years beginning from 2002/2003. Abiola and 
Okafor [8], examined the various forecasting 
models for the Nigerian crude oil prices from 
2005Q1 to 2012Q4. The study discovered that 
ARIMA (1, 1, 4) model is best fitted forecasting 
model for predicting Nigerian crude oil price 
benchmark. Iwueze et al. (2013) initially fitted 
ARMA(1,0,0) to the non-stationary data series. 
After differencing, ARIMA (2,1,0) was fitted to the 
Nigeria External Reserves. From the results, 
ARIMA (2,1,0) provided better estimates than the 
initial ARMA (1,0,0) which was fitted to the data 
series. 
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3. METHODOLOGY 
 
The time series analysis can provide short-run 
forecast for sufficiently large amount of data on 
the concerned variables very precisely, see 
Granger and Newbold [9]. In univariate time 
series analysis, the ARIMA models are flexible 
and widely used. The ARIMA model is the 
combination of three processes: (i) 
Autoregressive (AR) process, (ii) Differencing 
process, and (iii) Moving-Average (MA) process. 
 

4. AUTOREGRESSIVE (AR) PROCESS 
 
Autoregressive models are based on the idea 
that current value of the series, ��,  can be 
explained as a linear combination of �  past 
values, ����, ����, … , ���� ,  together with a 

random error in the same series. An 
autoregressive model of order �,  abbreviated 
�� (�), is of the form: 
 

�� = ∅����� + ∅����� + … + ∅� ���� + �� =

∑ ∅����� + ��
�
�� �           (3.1) 

 
where ��  is stationary, ��~ ��(0, ��

� ),  and 
∅�, ∅�, … , ∅�  are model parameters. The hyper 

parameter � represents the length of the series. 
 

5. MOVING AVERAGE (MA) PROCESS 
 
In AR models above, current observation ��  is 
regressed using the previous observations 
����, ����, ����, … , ���� , plus an error term ��  at 

current time point. One problem of AR model is 
the ignorance of correlated noise structures 
(which is unobservable) in the time series. { In 
other words, the imperfectly predictable terms in 
current time, ��,  and previous steps, 
����, ����, ����, … , ����, are also informative for 

predicting observations. 
 
A moving average model of order q, or MA(q), is 
defined to be 
 

�� = �� + ������ + ������ + ������ + ⋯ +
������ = �� + ∑ ������

�
�� �         (3.2) 

 
Where ��~ �� ��,���,  and ��, ��, ��, … , �� (�� ≠ 0) 

are parameters. 
 

5.1 ARMA Model 
 
In the statistical analysis of time series, the class 
of autoregressive-moving-average (ARMA) 

models is mostly utilized for the prediction of 
second-order stationary stochastic process. The 
ARMA model is a tool for understanding and 
analyzing the causal structure, or to obtain the 
predictions of the future values in this series. The 
model consists of two parts, one for 
autoregressive (AR) and the second for moving 
average (MA). The model is usually referred to 
as the ARMA (p, q) process where p is the order 
of the autoregressive part and q is the order of 
the moving average part. 
 
A second-order stationary process (X�) is called 
an ARMA (p, q) 
 
process, if there exist real coefficients c, ∅�, ∅�,
∅�, … , ∅�, θ�, θ�, θ�, … , θ�,  where p and q are 

integers, so 
 

�� − ∑ ∅����� = � + �� + ∑ ������,   ∀�∈�
�� �

�
�� �

ℤ              (3.3) 
 

where {��} is the white noise (0, ��). 
 

Let’s denote B as the back-shift operator such 
that ���� = ����. Using B, rewrite the ARMA (p, 
q) equation above as ∅(�)�� = �(�)��.       (3.4) 
 

5.2 ARIMA Models 
 

The ARMA models can further be extended to 
non-stationary series by allowing the differencing 
of the data series resulting to ARIMA models. 
The general non-seasonal model is known as 
ARIMA (p, d, q): where with three parameters; p 
is the order of autoregressive, d is the degree of 
differencing, and q is the order of moving-
average. For example, if �� is non-stationary 
series, we will take a first-difference of �� so that 
∆��  becomes stationary, then the ARIMA (p, d, 
q) model is: 
 

��� = � + ∅����� + ∅����� + ∅����� + ⋯ +
∅����� − ������ − ������ − ������ − ⋯ −

������                                                                    (3.5) 
 

After considering the differencing for an ARMA 
model in order to be able to extended the model 
to a non-stationary series, we have: 
 

∇��� = ∅�∇����� + ∅�∇����� + ∅�∇����� +
⋯ + ∅�∇����� + �� + ��∇����� + ��∇����� +

��∇����� + ⋯ + ��∇�����. 

 
where {�� } is the error term in the equation; a 
white noise process, a sequence of 
independently and identically distributed (iid) 
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random variables with � (��) = 0 and ��� (��) = 

�� and ∅’s and �’s are the model parameters. 
 
The autoregressive (AR) order may be 
determined by the lap at which the partial 
autocorrelation function (PACF) cuts off. The 
moving average (MA) order may be estimated as 
the lap at which the autocorrelation function 
(ACF) cuts oft. Estimation of α’s and β’s may be 
done by the method of lest squares. 
 

6. RESULTS AND DISCUSION 
 

Autoregressive integrated moving average was 
used to determine an appropriate model for 
estimating Nigeria’s annual Gross Domestic 
Product (GDP). The data used in this paper is 
the yearly Nigeria’s GDP data from 1981 to 2019. 
The data was obtained from the Central Bank of 
Nigeria (CBN. These data are transformed into 
logged data in other to stabilize the variance [10]. 

From the logged time plot of the real gross 
domestic product above, it can be observed that 
the data shows a certain trend. Hence, we can 
check the data’s stationarity, correlogram and 
randomness in other to identify a suitable model 
for the series. 
 
Testing for stationarity: Since ARIMA model 
can only be applied to non-stationary time series 
data only when the data is stationary. Then, 
before we perform the analysis of the time series 
data it is expected that we determine the 
stationarity of the data. The stationarity test of 
the GDP is performed by Augmented Dick Fuller 
(ADF) Test. The test result obtained is shown in 
the Tables below. 
 
Table 1 shows the ADF result for the actual real 
gross domestic plot data, showing its non-
stationarity behavior. 

 
Table 1. Augmented Dickey- Fuller Test 

 
Null Hypothesis: LGDP has a unit root  
Trend Specification: Intercept only  
Break Specification: Intercept only  
Break Type: Innovational outlier  
Break Date: 1991   
Break Selection: Minimize Dickey-Fuller t-statistic 
Lag Length: 0 (Automatic - based on Schwarz information criterion, maxlag=9) 
   t-Statistic Prob.* 
Augmented Dickey-Fuller test statistic -4.666607 0.0271 
Test critical values: 1% level  -4.949133  
 5% level  -4.443649  
 10% level  -4.193627  
*Vogelsang (1993) asymptotic one-sided p-values. 
Augmented Dickey-Fuller Test Equation  
Dependent Variable: LGDP   
Method: Least Squares   
Date: 09/19/20   Time: 18:24   
Sample (adjusted): 1982 2019   
Included observations: 38 after adjustments  
Variable Coefficient Std. Error t-Statistic Prob. 
LGDP(-1) 0.953616 0.009940 95.94142 0.0000 
C 0.385739 0.060058 6.422781 0.0000 
INCPTBREAK 0.257472 0.053380 4.823344 0.0000 
BREAKDUM -0.178643 0.091799 -1.946029 0.0600 
R-squared 0.998803 Mean dependent var 8.716068 
Adjusted R-squared 0.998697 S.D. dependent var 2.320507 
S.E. of regression 0.083762 Akaike info criterion -2.022365 
Sum squared resid 0.238548 Schwarz criterion -1.849988 
Log likelihood 42.42494 Hannan-Quinn criter. -1.961035 
F-statistic 9454.274 Durbin-Watson stat 1.205090 
Prob(F-statistic) 0.000000    
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Fig. 1. Time plot of the real GDP 
 

 
 

Fig. 2. The plot of the first differenced real GDP 
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Table 2. Augmented dickey- fuller test of the first differenced data 
 

Null Hypothesis: D(LGDP) has a unit root  
Trend Specification: Intercept only  
Break Specification: Intercept only  
Break Type: Innovational outlier  
Break Date: 1995   
Break Selection: Minimize Dickey-Fuller t-statistic 
Lag Length: 0 (Automatic - based on Schwarz information criterion, maxlag=9) 
   t-Statistic Prob.* 
Augmented Dickey-Fuller test statistic -4.221697 0.0925 
Test critical values: 1% level  -4.949133  
 5% level  -4.443649  
 10% level  -4.193627  
*Vogelsang (1993) asymptotic one-sided p-values. 
Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(LGDP)   
Method: Least Squares   
Date: 09/19/20   Time: 18:31   
Sample (adjusted): 1983 2019   
Included observations: 37 after adjustments  
Variable Coefficient Std. Error t-Statistic Prob. 
D(LGDP(-1)) 0.464004 0.126962 3.654655 0.0009 
C 0.118994 0.032295 3.684567 0.0008 
INCPTBREAK -0.038958 0.027915 -1.395588 0.1722 
BREAKDUM 0.259955 0.083043 3.130358 0.0036 
R-squared 0.487370 Mean dependent var 0.184750 
Adjusted R-squared 0.440768 S.D. dependent var 0.105579 
S.E. of regression 0.078954 Akaike info criterion -2.138107 
Sum squared resid 0.205711 Schwarz criterion -1.963954 
Log likelihood 43.55498 Hannan-Quinn criter. -2.076710 
F-statistic 10.45799 Durbin-Watson stat 2.088542 
Prob(F-statistic) 0.000055    

 
From Table 2, the statistic shows that the data is non-stationary and hence, the data is differenced 
further. 
 

 
 

Fig. 3. The plot of the second differenced real GDP 
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Table 3. Augmented dickey-fuller test of the second differenced data 
 

Null Hypothesis: D(LGDP,2) has a unit root  

Trend Specification: Intercept only  

Break Specification: Intercept only  

Break Type: Innovational outlier  

Break Date: 1997   

Break Selection: Minimize Dickey-Fuller t-statistic 

Lag Length: 0 (Automatic - based on Schwarz information criterion, maxlag=9) 

   t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic -10.19480 < 0.01 

Test critical values: 1% level  -4.949133  

 5% level  -4.443649  

 10% level  -4.193627  

*Vogelsang (1993) asymptotic one-sided p-values. 

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(LGDP,2)   

Method: Least Squares   

Date: 09/19/20   Time: 18:36   

Sample (adjusted): 1984 2019   

Included observations: 36 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob. 

D(LGDP(-1),2) -0.581246 0.155103 -3.747479 0.0007 

C 0.035769 0.023576 1.517207 0.1390 

INCPTBREAK -0.038055 0.029677 -1.282292 0.2090 

BREAKDUM -0.313341 0.091618 -3.420072 0.0017 

R-squared 0.377067 Mean dependent var 0.001968 

Adjusted R-squared 0.318667 S.D. dependent var 0.100531 

S.E. of regression 0.082981 Akaike info criterion -2.035971 

Sum squared resid 0.220347 Schwarz criterion -1.860025 

Log likelihood 40.64748 Hannan-Quinn criter. -1.974561 

F-statistic 6.456618 Durbin-Watson stat 2.412365 

Prob(F-statistic) 0.001526    
 
As show in Table 3, the result shows                     
that the ADF test at the second difference                       
is 0.01 and seen to be stationary at the                 
second differencing and hence, we can               
proceed to determine a suitable model for the 
series. 
 
The actual correlogram of the real GDP is 
presented in Fig. 4, showing significant 
autocorrelation that are outside the error              
bound, showing its non-stationarity properties. 
This lead to taking the first and                             
second difference, where it was found to be 
stationary. 

As seen above, it is reasonable to say that the 
data plot above is stationary with only the first 
ACF and PACF statistically significant. 
 
6.1 Estimated Model 
 
The model, ARIMA(1, 2, 1) was selected using 
the Akaike criterion as seen in Table 4. 
 
From the results in the Table 4, the best model is 
ARIMA (1, 2, 1), having the minimum values of 
AIC and BIC and the model coefficient is given 
below which are all significant at 5% level of 
significance. 

 



Fig. 4. Correlogram of the real GDP rate (Level)
 

Fig. 5. Correlogram of the real GDP rate (Second Difference)
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Fig. 4. Correlogram of the real GDP rate (Level) 

 
Fig. 5. Correlogram of the real GDP rate (Second Difference) 
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Table 4. ARIMA model comparison 
 

Model Selection Criteria Table   
Dependent Variable: DLOG(LGDP)   
Date: 09/19/20   Time: 19:24   
Sample: 1981 2025    
Included observations: 38   
Model LogL AIC* BIC HQ 
(1,1)(0,0) 114.874278 -5.835488 -5.663111 -5.774158 
(1,0)(0,0) 114.368893 -5.834521 -5.662238 -5.771523 
(2,0)(0,0) 114.807086 -5.831952 -5.659574 -5.770621 
(3,0)(0,0) 114.917887 -5.785152 -5.569680 -5.708489 
(1,2)(0,0) 114.875009 -5.782895 -5.567423 -5.706232 
(2,1)(0,0) 114.874729 -5.782880 -5.567409 -5.706217 
(2,3)(0,0) 116.752084 -5.776425 -5.474765 -5.669097 
(0,4)(0,0) 115.049984 -5.739473 -5.480907 -5.647477 
(0,3)(0,0) 114.029061 -5.738372 -5.522900 -5.661708 
(1,3)(0,0) 114.938029 -5.733580 -5.475014 -5.641585 
(4,0)(0,0) 114.934153 -5.733376 -5.474810 -5.641381 
(3,1)(0,0) 114.923876 -5.732836 -5.474269 -5.640840 
(3,3)(0,0) 116.914271 -5.732330 -5.387575 -5.609669 
(3,2)(0,0) 115.907242 -5.731960 -5.430300 -5.624632 
(2,2)(0,0) 114.886693 -5.730879 -5.472312 -5.638883 
(2,4)(0,0) 116.863331 -5.729649 -5.384894 -5.606988 
(4,1)(0,0) 115.761056 -5.724266 -5.422606 -5.616938 
(0,2)(0,0) 112.723528 -5.722291 -5.549913 -5.660960 
(4,2)(0,0) 116.481108 -5.709532 -5.364777 -5.586871 
(1,4)(0,0) 115.081267 -5.688488 -5.386827 -5.581159 
(4,3)(0,0) 116.912400 -5.679600 -5.291751 -5.541606 
(0,1)(0,0) 110.828082 -5.675162 -5.545879 -5.629164 
(3,4)(0,0) 116.045578 -5.633978 -5.246128 -5.495984 
(4,4)(0,0) 116.534204 -5.607063 -5.176120 -5.453737 
(0,0)(0,0) 104.574340 -5.398649 -5.312461 -5.367984 

 
Table 5. The ARIMA model 

 
Dependent Variable: LGDP   
Method: ARMA Conditional Least Squares (Marquardt - EViews legacy) 
Date: 09/19/20   Time: 19:35   
Sample (adjusted): 1982 2019   
Included observations: 38 after adjustments  
Convergence achieved after 14 iterations  
MA Backcast: 1981   
Variable Coefficient Std. Error t-Statistic Prob. 
C 30.73783 25.51606 1.204647 0.2364 
AR(1) 0.991849 0.009323 106.3926 0.0000 
MA(1) 0.410431 0.152895 2.684404 0.0110 
R-squared 0.998417 Mean dependent var 8.716068 
Adjusted R-squared 0.998326 S.D. dependent var 2.320507 
S.E. of regression 0.094931 Akaike info criterion -1.795686 
Sum squared resid 0.315413 Schwarz criterion -1.666403 
Log likelihood 37.11804 Hannan-Quinn criter. -1.749688 
F-statistic 11036.66 Durbin-Watson stat 1.722827 
Prob(F-statistic) 0.000000    
Inverted AR Roots .99   
Inverted MA Roots -.41   

 



The model coefficient from Table 
significant at 0.05. 
 
Hence, the ARIMA equation is given as
 
��� = 30.73783 + 0.991849���� + 0.410431
 

 

Fig. 7. Ljung
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Table 2, shows that AR(1) and MA(1) coefficient are all statistically 

equation is given as 

410431���� + ��. 

 
Fig. 6. Fitting the model 

 
Fig. 7. Ljung-Box Q test of the residual 
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Diagnostic checking of the model will be 
performed to help us check the acceptability 
and statistical significance of the estimated 
model i.e. if the model residuals are 
not autocorrelated. Q statistic will be used t
test for autocorrelation for the model ARIMA(1, 2, 
1). 
 
From the Fig. 7 indicates a 24 lag Q statistic 
of Ljung-Box hav values greater than 0.05 
helping us to state that the null hypothesis 
cannot be rejected. Hence, there is no 
 

Fig. 8. The plot of actual, fitted and residual of the real 
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Diagnostic checking of the model will be 
performed to help us check the acceptability               
and statistical significance of the estimated 
model i.e. if the model residuals are                           
not autocorrelated. Q statistic will be used to             
test for autocorrelation for the model ARIMA(1, 2, 

7 indicates a 24 lag Q statistic            
Box hav values greater than 0.05 

helping us to state that the null hypothesis 
cannot be rejected. Hence, there is no 

autocorrelation for the examined residuals of the 
series. 
 

6.2 Forecast 
 
We use the ARIMA(1, 2, 1) model to forecast the 
GDP from 2020 to 2025 comparing it with the 
actual data. As seen below, the Theil inequality 
of 0.022008, making the model a reasonable 
model for forecasting future data,
our model may have a very good forecasting 
ability. 

 
plot of actual, fitted and residual of the real GDP 

 
Fig. 9. Model forecast 
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tocorrelation for the examined residuals of the 

We use the ARIMA(1, 2, 1) model to forecast the 
GDP from 2020 to 2025 comparing it with the 
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Table 6. Forecast 

 

Year Total 

(GDPF) 

Year Total  

(GDPF) 

Year Total 

(GDPF) 

1981 144.83 1998 4,588.99 2015 94,144.96 

1982 154.98 1999 5,307.36 2016 101,489.49 

1983 163 2000 6,897.48 2017 113,711.63 

1984 170.38 2001 8,134.14 2018 127,736.83 

1985 192.27 2002 11,332.25 2019 144,210.49 

1986 202.44 2003 13,301.56 2020 161050.8903 

1987 249.44 2004 17,321.30 2021 178404.9527 

1988 320.33 2005 22,269.98 2022 196141.7039 

1989 419.2 2006 28,662.47 2023 214377.9 

1990 499.68 2007 32,995.38 2024 233009.4588 

1991 596.04 2008 39,157.88 2025 252129.1643 

1992 909.8 2009 44,285.56   

1993 1,259.07 2010 54,612.26   

1994 1,762.81 2011 62,980.40   

1995 2,895.20 2012 71,713.94   

1996 3,779.13 2013 80,092.56   

1997 4,111.64 2014 89,043.62   

 
7. CONCLUSION 
 
In this study, we use ARIMA model in trying to 
model the real GDP rate of Nigeria. After 
stationarity was checked using Augmented Dick 
Fuller test, correlogram  was used in identifying 
the most suitable model with minimum value of 
Akaike Informtaion Criterion and this result was 
used in forecasting with Theil inequality of 
0.022008, making the model a reasonable model 
for forecasting future data, after the residual of 
the model was checked using Ljung-Box that 
shows no sign of autocorrelation in the residual. 
The ARIMA (1, 2, 1) was considered the most 
appropriate model for the data since the model 
diagnostic tests showed significant parameter 
estimates and randomness in the plot of the 
residuals. Out of sample forecast was    
generated for 2020 through 2025 using Eviews 
version 11. 
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