
Aristotle’s Logic and Metaphysics

Roger Bishop Jones

Abstract

Formalisation in higher order logic of parts of Aristotle’s logic and metaphysics.

Created 2009/05/21

Last Change Date: 2012/01/23 21:40:02

Id: t028.doc,v 1.33 2012/01/23 21:40:02 rbj Exp

http://www.rbjones.com/rbjpub/pp/doc/t028.pdf

c© Roger Bishop Jones; Licenced under Gnu LGPL

http://www.rbjones.com/rbjpub/pp/doc/t028.pdf


Contents

1 Prelude 3

2 Introduction 4
2.1 Preliminary Formalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Metaphysics (I) 5
3.1 The Grice/Code/Speranza Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 References to Plato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Aristotelian References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Formal Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4.2 Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.3 The Principles in HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 Total Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Partial Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.7 Ontological Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8 Platonic Principles and Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.9 Some Comments on The Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 The Organon 18
4.1 Models and Their Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Generating the Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 The Square of Opposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Are The Syllogisms Tautologous? . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Interpretation in Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Generating The Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Proving the Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Propositional Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Naive Interpretation in Predicate Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.2 Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.3 The Laws of Immediate Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.4 The Square of Opposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.5 The Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.6 Generating Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Predicate Calculus Without Empty Terms . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6.2 Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6.3 Laws of Immediate Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6.4 The Valid Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.5 Proving the Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Existential Import in Universals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.2 Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7.3 The Laws of Immediate Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7.4 The Square of Opposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7.5 The Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Existential Import in Affirmations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2



4.8.2 Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8.3 The Laws of Immediate Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8.4 The Square of Opposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8.5 The Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Modal Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.9.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.9.2 Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.9.3 Laws of Immediate Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9.4 The Valid Modal Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.9.5 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.9.6 Proving the Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Demonstrative Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Metaphysics (II) 56
5.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Propositional Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Modal Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.8 Other Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.9 Syllogisms for Essential Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.10 Some Accidental Syllogisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.11 Grice and Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.11.1 Common Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusions 69

7 Postscript 69

A Theory Listings 71
A.1 The Theory ariscat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 The Theory syllog1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.3 The Theory syllog2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.4 The Theory syllog3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.5 The Theory syllog4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.6 The Theory syllog5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.7 The Theory syllog6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.8 The Theory modsyllog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.9 The Theory syllmetap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.10 The Theory gccon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 93

Index 95

1 Prelude

This document is intended ultimately to form a chapter of Analyses of Analysis [6].

Some of the material is not expected to be in that history including:
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• the material up to and including the Prelude

• the Postscript and any material following it.

• possibly some other parts which have been marked for exclusion

My original purpose in preparing this document was to analyse certain semi-formal statements,
relating to the philosophy of Aristotle, which were posted to the hist-analytic mailing list (see message
in archive) originating primarily in joint work by Grice [4] and Code [3].

This has now been overtaken by various other philosophical motivations.

Of these the most important for me at present lie in the perceived relevance of Aristotle’s metaphysics
to what I am trying elsewhere to write about Metaphysical Positivism. One tentative idea in this
exposition involves three comparisons intended to illuminate the tension between essentialism and
nominalism and inform the search for a middle ground. These three are between Plato and Aristotle,
between Hume and Kant, and between Carnap and one or more twentieth century metaphysicians.

For this purpose I seek some kind of understanding of Arstotle’s essentialism, and it is for me natural
to use formal modelling as one way of realising that understanding.

Since my own backround in formal modelling comes from Computer Science and Information Systems
Engineering, my own preferred languages, methods and tools, which I believe can be effectively
applied to some kinds of philosophical problems, are probably alien to most if not all philosophers, and
it is therefore a secondary purpose of this material to try to make this kind of modelling intelligible
to some philosophers. This is not a presentation of established methods with proven philosophical
benefits. It is an exploration and adaptation of methods from other domains to philosophy, and the
benefits, are to be discovered, not merely displayed.

The present state of the document is rather rough and ready. Formal modelling takes time, but
presenting such material takes longer, and while I am hot on the trail of better, more illuminating
models, the presentation will not be polished and transparent.

Further discussion of what might become of this document in the future may be found in my postscript
(Section 7).

In this document, phrases in coloured text are hyperlinks, like on a web page, which will usually get
you to another part of this document (the blue parts, the contents list, page numbers in the Index)
but sometimes take you (the red bits) somewhere altogether different (if you happen to be online)
like the hist-analytic archives.

For description of the formal languages, methods and tools used in or in producing this document
see: [5].

2 Introduction

My purpose here is to use formal models to aid in understanding the philosophies of Plato and
Aristotle, both in relation to their contribution generally to the areas of interest, philosophical
logic, semantics and metaphysics, and also more specifically in relation to the extent to which these
philosophers laid the ground for the distinction which was later expressed in Hume’s fork.

In doing this I began with some enquiries into Aristotle’s metaphysics published by Code [3] and
produced from this a preliminary model (Section 3). In these an important defect is that the model
does not support the u-p syllogisms on which Code’s analysis depends more heavily than one might
have expected, and also does not allow for modal operators, which not only enter into Code’s material
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but are also important for the kinds of comparison with later philosophers which I had hoped to
undertake. I have also failed at this stage to bring out the distinction between Plato and Aristotle.
Perhaps more important is that I did not arrive at a good understanding of Code and the model is
therefore unlikely to fully reflect his intensions. It is also the case that the method I adopted for the
analysis of Code is one which he would have been likely to question. His paper does briefly discuss
unfavourably the interpretation of Aristotle in terms of modern idom such as that of set theory. It
is an important part of my objectives in this document to discuss this kind of formal exgetics, and
hopefully to explain contra Code why the use of modern set theoretic language is appropriate and
helpful in the analysis of materials which could not have been originally conceived in such terms.

I then went back from the Metaphysics to the Organon and used formal models to come to a better
understanding of Aristotle’s formal syllogistic logic (Section 4). In this seven models of increasing
sophistication were produced and formed the basis for undertaking a further model of the metaphysics
which incorporated the u-p syllogisms and modal operators (Section 5). All of this is preliminary to
addressing the real issues, which has not yet seriously begun.

2.1 Preliminary Formalities

In the document several different formal models are presented. By and large they are independent,
but a some features are common and are therefore presented here for use in all the models.

SML

open theory "misc2";

force new theory "aristotle";

We define inequality:

SML

declare infix (300 , "6=");

HOL Constant

$ 6= : ′a → ′a → BOOL

∀x y• x 6= y ⇔ ¬ x = y

3 Metaphysics (I)

In this section we consider some material on Aristotle’s Metaphysics [2] which originated in work of
Grice and Code [3] and came to me from a posting of J.L. Speranza on the hist-analytic mailing list.
Code’s paper is also partially available at Google Books.

What Speranza posted was the list of formulae which are named below as c01 through c31 (though
not exactly as given, I have massaged them to be acceptable to HOL and also have quantified over
all free variables).

The analysis in this section is independent of the preceding analysis of Aristotle’s syllogism, and
considers predication from a rather different point of view, which hangs around the distinction
between essential and accidental predication. In the next section I will produce another model in
which essence and accident are combined with a full treatment of modal syllogism so that some
conclusions might be drawn about the relationship between essence and necessity in Aristotelean
philosophy.
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A new theory is needed which I will call “ariscat” which is created here:

SML

open theory "aristotle";

force new theory "ariscat";

3.1 The Grice/Code/Speranza Formulae

This work began with an attempt to analyse using ProofPower a set of formulae posted by J.L.
Speranza to the hist-analytic mailing list. These were a Speranzan transcript of formulae published
in a paper by Code [3], the work presented in that paper having begun with some joint work with
H.P. Grice [4].

The following material labelled “Code/Speranza” began as a transcription from Speranza’s email,
and was later updated when Speranza pointed me to the partial availability of the Code paper on
Google Books. I then put back some of the detail missed in the Speranza version, enclosed in square
brackets, and enclosed in curly braces some of the material which Speranza had added to Code’s.

The terminology used is Grice’s. Code uses “Is” and “Has” instead of “izz” and “hazz” (which were
coined by Grice and used by Speranza). Aristotle’s originals have been translated as “SAID OF”
and “IN”, according to Cohen (Grice and Code on IZZing and HAZZing).

The material is interspersed with a formalisation in ProofPower-HOL. I have adopted some of Code’s
headings for sections.

3.2 References to Plato

By footnote in Code.

30 Phaedo. 102B8C − 1 with C10ff (cf. B 4-6)

3.3 Aristotelian References

These are gathered together temporarily and will later be distributed as footnotes.

Cat. 1a, 12–15 Equivocally, Univocally and Derivatively.

Cat. 1b5, 3b12

Cat. 2a, 19–34 Presence and Predication.

Cat. 3a, 15–20 Subclasses and Predicability.

Cat. 10a, 27ff. Opposite, Contrary, Privative, Positive.

De. Int. 7, 17a9–40 Universal and Individual Subjects.

Post. An. A4, 73a34–b5 What are the premisses of demonstration. Distinguishing essential and
accidental predication.

Metap. I1, 1059a10− 14 The One.
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Metap. ∆9, 1018a1− 4 Same and Different. ‘Socrates’ and ‘musical Socrates’ are thought to be the
same; but ‘Socrates’ is not predicable of more than one subject, and therefore we do not say
’every Socrates’ as we say ’every man’.

Metap. ∆18, 1022a25− 27 In Virtue Of. Admissibility of self-predication of particulars.

Metap. ∆23, 1023a11− 13 Having and Being. Two kinds of predication.

Metap. Z5 Only substance is definable.

Metap. Z6, 1032a4− 6 Each thing and its essence are one and the same.

Metap. Z8, 1034a7 different in virtue of their matter

Metap. Z11, 1037a33−b 4 Formulae, Parts, Substance and Essence.

Topics. H(V II)1, 152b25− 29 Numerical identity.

3.4 Formal Principles

We begin with “Formal Principles” which we take as implicit definitions of two kinds of Aristotelian
predication.

Code/Speranza

[(A) Formal Principles]

[FP1 ] 1 . A izz A.

[FP2 ] 2 . (A izz B & B izz C ) −−> A izz C .

[FP3 ] 3 . A hazz B −> −(A izz B).

[FP4 ] 4 . A hazz B iff A hazz Some−Thing [something ] that izz B .

The modelling in ProofPower-HOLwill be entirely conservative, so we provide explicit definitions for
“izz” and “hazz” and prove that they satisfy these principles and suffice also for the definitions and
theorems which follow.

If the formal development is complete the definitions will have been shown to be sufficient. In order
to test whether the principles suffice I will attempt to proceed on these alone, though I suspect that
will not be possible. Failing that I will offer informal arguments to the contrary (a formal argument
would require ascent to a metatheory which would involve too much work).

In order to define these concepts we have to decide what they are about, and this is not straightfor-
ward.

3.4.1 Categories

Aristotle has a system of categories, and these seem central to the topic. Much hangs on what these
are, and to get a nice structure to our theory it seems advisable to do a bit of “category theory”
first. Of course this is not at all the same thing as the branch of mathematics which now goes by
that name, but the choice of name for the mathematics was not entirely quixotic and at some point
it might be interesting to think about the relationship between the two kinds of category theory.

Among these categories that of substances plays a special role. Substances can be particular in
which case they correspond to some individual, or not, in which case they are sets of individuals.
The particulars of the other categories are attributes, and the non-individuals are sets of attributes. I
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don’t think you can have singleton sets, so we can model all these categories as sets of sets in which the
singleton sets are the individuals. Attributes can also be considered as sets of individual substances
and so there is a type difference between the category of substances and the other categories.

The following introduce new types and type abbreviations for modelling Aristotle’s categories.

ACAT is a type of attribute categories

ISUB is a type of individual substances

CATM is the type of the things which are in categories.

This is a ‘disjoint union’, which means that there are two kinds of thing which one finds in
categories, either a set of individual substances (using singleton sets to represent individual
substances), or a set of properties of individual substances tagged with an attribute category.

CAT is a type abbreviation for a notion of category which is either an attribute category or some
other category (which will stand for the category of substances).

There are some oversimplifications here which I am hoping will not be too serious for a useful first
cut.

Modal Operators The main one is that this general approach will not permit the definition of
modal operators, which are used by Code. Whether there is real need for them seems to me
doubtful, but if necessary a modal model could be provided.

Empty Sets The second is that I have not excluded empty sets, and hence that there can be
predicates with null extensions. This is in fact consistent with Code’s “principles”, but we
find that his definitions are written as if there were no empty predicates, even though this is
not entailed by the principles. Where Code’s definitions presume non-emptiness of predicates
I have chosen another definition which does not. Some of the theorems are then unprovable.

Extensionality Intracategorial equality will be extensional. That appears to be what is required,
so it probably isn’t a problem!

Predicability Aristotle defines particulars in terms of Predicability, they are the impredicables. Its
not clear how to deal with this, and it appears to be in terminological conflict with Code, who
appears to use use “predicable” to mean “truly predicable”. Code has the general principle “A
izz A” which implicitly asserts that everything is truly predicable of itself.

SML

new type("ACAT ", 0 );

new type("ISUB", 0 );

declare type abbrev ("CATM", [], p:ISUB P + (ACAT × (ISUB → BOOL)P)q);

declare type abbrev ("CAT ", [], p:ONE + ACATq);

We name the category of substances.

HOL Constant

CatSubs : CAT

CatSubs = InL One
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Now we define various operators over categories and their constituents which suffice for the develop-
ment of an appropriate theory, in the context of which rest of the Aristotelian terminology will we
hope prove definable.

First “projection” functions which yield the constituents of MCAT s.

HOL Constant

Cat : CATM → CAT

∀x• Cat x = if IsL x then CatSubs else InR(Fst (OutR x ))

HOL Constant

IndvSet : CATM → ISUB P

∀x• IndvSet x = OutL x

HOL Constant

AttrSet : CATM → (ISUB → BOOL)P

∀x• AttrSet x = Snd(OutR x )

This one turns out handy.

HOL Constant

CatSet : CATM → (ISUB + (ISUB → BOOL))P

∀x• CatSet x =

if Cat x = CatSubs

then {y | ∃z• z ∈ IndvSet x ∧ y = InL z}
else {y | ∃z• z ∈ AttrSet x ∧ y = InR z}

With these definitions in place we get a useful characterisation of identity for elements of CATM .

catm eq lemma =

` ∀ A B• A = B ⇔ Cat A = Cat B ∧ CatSet A = CatSet B

3.4.2 Predication

Now we can define predication. We do this in terms of Grice’s izz and hazz.

SML

declare infix (300 , "izz");

declare infix (300 , "hazz");

HOL Constant

$izz : CATM → CATM → BOOL

∀A B• A izz B ⇔ Cat A = Cat B ∧ CatSet A ⊆ CatSet B
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HOL Constant

$hazz : CATM → CATM → BOOL

∀A B• A hazz B ⇔ Cat A = CatSubs ∧ ¬ Cat B = CatSubs

∧ ∃a• a ∈ AttrSet B ∧ ∀s• s ∈ IndvSet A ⇒ a s

That was reasonably neat, but the definition of izz isn’t terribly convenient for proving things. Lets
have some izz lemmas:

izz lemma1 =

` ∀ A B• Cat A = CatSubs ⇒ (A izz B ⇔ Cat B = CatSubs ∧ IndvSet A ⊆ IndvSet B)

izz lemma2 =

` ∀ A B• Cat B = CatSubs ⇒ (A izz B ⇔ Cat A = CatSubs ∧ IndvSet A ⊆ IndvSet B)

izz lemma3 =

` ∀ A B• ¬ Cat A = CatSubs ⇒ (A izz B ⇔ Cat B = Cat A ∧ AttrSet A ⊆ AttrSet B)

izz lemma4 =

` ∀ A B• ¬ Cat B = CatSubs ⇒ (A izz B ⇔ Cat B = Cat A ∧ AttrSet A ⊆ AttrSet B)

3.4.3 The Principles in HOL

Here are the HOL versions of the Code “Principles”.

The following is a bit of program in a programming language called SML, which stands for “Standard
Meta Language”! It names various terms in HOL, the name on the left ‘c01’ (short for ‘conjecture
1’), the term on the right quoted in “Quine corners”. 1

SML

val c01 = p∀A• A izz Aq;

val c02 = p∀A B C• A izz B ∧ B izz C ⇒ A izz Cq;

val c03 = p∀A B• A hazz B ⇒ ¬ A izz Bq;

val c04 = p∀A B• A hazz B ⇔ ∃C• A hazz C ∧ C izz Bq;

One would expect this set of principles to be sufficient to characterise izz and hazz (i.e. sufficient to
derive any other true facts about them) but this seems doubtful.

Here are some supplementary conjectures.
SML

val c01b = p∀A• ¬ A hazz Aq;

val c03b = p∀A B• A izz B ⇒ ¬ A hazz Bq;

val c03c = p∀A B• A hazz B ⇒ ¬ A = Bq;

val c04a = p∀A B C• A hazz B ∧ B izz C ⇒ A hazz Cq;

val c04b = p∀A B C• A izz B ∧ B hazz C ⇒ A hazz Cq;

1“Quine corners” are a notation originally used by Quine for Godel numbers, i.e., in Quine’s use ‘p43q’ is a friendly
way of writing doen the Godel number of the numeral ‘43’. In ProofPower HOL these corners are used to refer to HOL
terms in the metalanguage SML. In HOL, a formula is a term of type p :BOOLq (the opening p : is used when quoting
a type rather than a term).
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Of the supplementaries:

• c01b is derivable from c03 and c01.

• c03b is the contrapositive of c03.

• c03c would be derivable for Code once he has defined equality, it is provable for us now because
we have a primitive equality.

• c04a is a preferable formulation of the right-left implication in c04, and we have used it to
prove c04.

• c04b is an obvious further transitivity-like property, which does not look like it’s provable from
the stipulated principles.

Proven Theorems

l01 = ` ∀ A• A izz A

l01b = ` ∀ A• ¬ A hazz A

l02 = ` ∀ A B C• A izz B ∧ B izz C ⇒ A izz C

l03 = ` ∀ A B• A hazz B ⇒ ¬ A izz B

l03b = ` ∀ A B• A izz B ⇒ ¬ A hazz B

l03c = ` ∀ A B• A hazz B ⇒ ¬ A = B

l04a = ` ∀ A B C• A hazz B ∧ B izz C ⇒ A hazz C

l04 = ` ∀ A B• A hazz B ⇔ (∃ C• A hazz C ∧ C izz B)

l04b = ` ∀ A B C• A izz B ∧ B hazz C ⇒ A hazz C

3.5 Total Definitions

Code/Speranza

[(B) Total Definitions]

{6 . (A hazz B & A is a particular) −> there is a C such that (C =/= A) & (A izz B).}

[D1 ] 7 . A is predicable of B iff ((B izz A) ∨ (B hazz Something that izz A).

[D2 ] 8 . A is essentially predicable [L−predicable] of B iff B izz A.

[D3 ] 9 . A is accidentally predicable [H−predicable] of B iff B hazz something that izz A.

[D4 ] 10 . A = B iff A izz B & B izz A.

[D5 ] 11 . A is an individual iff (Nec)(For all B) B izz A −> A izz B

[D6 ] 12 . A is a particular iff (Nec)(For all B) A is predicable of B −> (A izz B & B izz A)

[D7 ] 13 . A is a universal iff

(Poss) (There is a B) A is predicable of A[B ] & −(A izz B & B izz A)

There is a certain amount of duplication of terminology here, since essential and accidental predi-
cation seem to be just izz and hazz backwards. I’m not so happy with the “ables” here, for what
is clearly meant is “truly predicable”, which is not quite the same thing. Better names would be
simply “is essentially” and “is accidentally”, lacking the ambiguity of “able” (but then they would
have to be the other way round, exactly the same as izz and hazz).

Anyway here are the definitions (keeping the names (more or less) as they were for the present):
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SML

declare infix (300 , "predicable of ");

declare infix (300 , "essentially predicable of ");

declare infix (300 , "accidentally predicable of ");

HOL Constant

$essentially predicable of : CATM → CATM → BOOL

∀A B• A essentially predicable of B ⇔ B izz A

HOL Constant

$accidentally predicable of : CATM → CATM → BOOL

∀A B• A accidentally predicable of B ⇔ B hazz A

Aristotelian predication is then:

HOL Constant

$predicable of : CATM → CATM → BOOL

∀A B• A predicable of B ⇔ A essentially predicable of B ∨ A accidentally predicable of B

Because we have not precluded empty predicates Code’s definition will not do, and we have to make
“individual” primitive, insisting on an individual being a singleton.

HOL Constant

individual : CATM → BOOL

∀A• individual A ⇔ ∃a• CatSet A = {a}

According to Code’s definition a particular is a substantial individual, we also have to use a more
direct statemant of that principle.

HOL Constant

particular : CATM → BOOL

∀A• particular A ⇔ individual A ∧ Cat A = CatSubs

Again we have a problem with Code’s definition and therefore define a universal as a non-particular.

HOL Constant

universal : CATM → BOOL

∀A• universal A ⇔ ¬ particular A
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SML

val c06 = p∀A B• A hazz B ∧ particular A ⇒ ∃C• C 6= A ∧ A izz Bq;

val c06n = p¬ ∀A B• A hazz B ∧ particular A ⇒ ∃C• C 6= A ∧ A izz Bq;

val c07 = p∀A B• A predicable of B ⇔ (B izz A) ∨ ∃C• B hazz C ∧ C izz Aq;

val c08 = p∀A• A essentially predicable of B ⇔ B izz Aq;

val c09 = p∀A• A accidentally predicable of B ⇔ ∃C• B hazz C ∧ C izz Aq;

val c10 = p∀A B• A = B ⇔ A izz B ∧ B izz Aq;

val c11 = p∀A B• individual A ⇔ 2(∀B• B izz A ⇒ A izz B)q;

val c12 = p∀A• particular A ⇔ 2(∀B• A predicable of B ⇒ A izz B ∧ B izz A)q;

val c13 = p∀A• universal A ⇔ 3(∃B• (A predicable of B ∧ ¬(A izz B ∧ B izz A)))q;

l05 = ` ∀ x• form x ⇒ universal x

l06n = ` ¬ (∀ A B• A hazz B ∧ particular A ⇒ (∃ C• C 6= A ∧ A izz B))

l07 = ` ∀ A B• A predicable of B ⇔ B izz A ∨ (∃ C• B hazz C ∧ C izz A)

l08 = ` ∀ A• A essentially predicable of B ⇔ B izz A

l09 = ` ∀ A• A accidentally predicable of B ⇔ (∃ C• B hazz C ∧ C izz A)

l10 = ` ∀ A B• A = B ⇔ A izz B ∧ B izz A

c06 is false (see l06n), probably a typo. However, I couldn’t work out what was intended.

c11-13 are not provable in our model because of the existence of empty predicates (and the lack of
modal operators).

3.6 Partial Definitions

Code/Speranza

[(C ) Partial Definitions]

[D8 ] 14 . If A is Some Thing [a this somewhat ], A is an individual .

[D9 ] 15 . If A is a [(seperable) Platonic] Form,

A is Some Thing [a this somewhat ] and Universal .

This is D8/c14.

HOL Constant

SomeThing : CATM → BOOL

∀x• SomeThing x ⇒ individual x

A form is a non-substantial individual.

This is D9/c15

HOL Constant

form : CATM → BOOL

∀x• form x ⇒ SomeThing x ∧ universal x
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3.7 Ontological Theorems

Code/Speranza

[(D) Ontological Theorems]

[T1 ] 16 . A is predicable of B iff (B izz A) v (B hazz Some Thing that Izz A).

[T2 ] 17 . A is essentially predicable [L−predicable] of A.

[T3 ] 18 . A is accidentally predicable [H−predicable] of B −> A =/= B

[T4 ] A is not accidentally predicable [H−predicable] of A

{19 . − (A is accidentally predicable of B) −> A =/= B .}
[T5 ] 20 . A is a particular −> A is an individual .

[Note that the converse of T5 is not a theorem]

[T6 ] 21 . A is a particular −> No Thing [nothing ] that is Not Identical with A izz A.

[T7 ] 22 . No Thing is both particular & a [(separable) Platonic] Form.

[T8 ] 23 . A is a (seperable Platonic) Form −> nothing that is not identical with A izz A.

[T9 ] 24 . A is a particular −> there is no (seperable Platonic) form B such that A izz B .

[T10 ] 25 . A is a (seperable Platonic) form

−> ((A is predicable of B & A =/= B) −> B hazz A)

[T11 ] 26 . (A is a (seperable Platonic) form & B is a particular)

−> (A is predicable of B iff B hazz A).

SML

val c05 = p∀x• universal x ⇒ form xq;

val c05b = p∀x• form x ⇒ universal xq;

val c16 = p∀A B• A predicable of B ⇔ (B izz A) ∨ ∃C• (B hazz C ∧ C izz A)q;

val c17 = p∀A• A essentially predicable of Aq;

val c18 = p∀A• A accidentally predicable of B ⇒ A 6= Bq;

val c19 = p∀A• ¬ A accidentally predicable of Aq;

val c20 = p∀A• particular A ⇒ individual Aq;

val c21 = p∀A• particular A ⇒ ¬ ∃C• C 6= A ∧ C izz Aq;

val c22 = p¬ ∃A• particular A ∧ form Aq;

val c23 = p∀A• form A ⇒ ¬ ∃C• C 6= A ∧ C izz Aq;

val c23b = p∀A• form A ⇒ individual Aq;

val c24a = p∀ A B• particular A ∧ individual B ∧ A izz B ⇒ particular Bq;

val c24 = p∀A• particular A ⇒ ¬ ∃B• form B ∧ A izz Bq;

val c24b = p∀A• particular A ⇒ ¬ form Aq;

val c25 = p∀A B• form A ⇒ A predicable of B ∧ A 6= B ⇒ B hazz Aq;

val c26 = p∀A B• form A ∧ particular B ⇒ (A predicable of B ⇔ B hazz A)q;

These are the ones I have proved.

l16 = ` ∀ A B• A predicable of B ⇔ B izz A ∨ (∃ C• B hazz C ∧ C izz A)

l17 = ` ∀ A• A essentially predicable of A

l19 = ` ∀ A• ¬ A accidentally predicable of A

l20 = ` ∀ A• individual A ⇒ particular A

l22 = ` ¬ (∃ A• particular A ∧ form A)
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l23b = ` ∀ A• form A ⇒ individual A

l24a = ` ∀ A B• particular A ∧ individual B ∧ A izz B ⇒ particular B

l24 = ` ∀ A• particular A ⇒ ¬ (∃ B• form B ∧ A izz B)

l26 = ` ∀ A B• form A ∧ particular B ⇒ (A predicable of B ⇔ B hazz A)

T6/c21, T8/c23, T10/c25 are all unprovable because of the existence of empty predicates.

3.8 Platonic Principles and Theorems

This section is a bit of a mess. I now see that the reason for this is that Code is now presenting a
different theory here, which is Aristotle’s conception of Plato’s metaphysics. This explains why these
principles at least augment (and possibly contradict) concepts which have already been defined.
In our method, which involves, for the sake of ensuring consistency, the use of only conservative
extensions, this cannot be done simply by adding new principles. We have to develop two systems in
separate theories in which the differences of conception between Aristotle and Aristotle’s conception
of Plato are investigated in distinct contexts (though we could place in a single parent theory the
elements which are common to both).

This will be considered later.

Code/Speranza

[(E ) Platonic Principle]

[PP1 ] 5 . Each universal is a (seperable Platonic) form.

[PP2 ] 27 . (A is particular & B is a universal & predicable of A)

−> there is a C such that (A =/= C & C is essentially predicable of A)

SML

val c05 = p∀x• universal x ⇒ form xq;

val c05b = p∀x• form x ⇒ universal xq;

val c27 = p∀A B• particular A ∧ universal B ∧ B predicable of A

⇒ ∃C• (A 6= C ∧ C essentially predicable of A)q;

c05 is not provable, its converse c05b is. c27 is not provable, since it would require that there be
more than one particular and we have no reason to believe that to be the case.

l05b = ` ∀ x• form x ⇒ universal x

Code/Speranza

[(F ) Platonic Theorem]

{28 . If there are particulars, of which universals are predicable,

not every universal is Some Thing .}
[PT1 ] 29 . Each universal is Some Thing [a this somewhat ].

[PT2 ] 30 . If A is a particular , there is no B such that

(A =/= B & B is essentially predicable of A).

[PT3 ] 31 . (A is predicable of B & A =/= B) −> A is accidentally predicable of B .
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SML

val c28 = p(∃P• particular P ∧ ∃U • universal U ∧ U predicable of P)

⇒ ¬ (∀U • universal U ⇒ thing U )q;

val c29 = p∀U • universal U ⇒ thing U q;

val c30 = p∀A• particular A ⇒ ¬ ∃B• (A 6= B ∧ B essentially predicable of A)q;

val c31 = p∀A B• A predicable of B ∧ A 6= B ⇒ A accidentally predicable of Bq;

These are the ones I have proved.

l06n = ` ¬ (∀ A B• A hazz B ∧ particular A ⇒ (∃ C• C 6= A ∧ A izz B))

3.9 Some Comments on The Conjectures

The main problem with the conjectures is that as a group they are inconsistent. Consequently, one
cannot find definitions which are consistent with all the conjectures.

So first I will expose some of the most obvious contradications which flow from the conjectures.

1. From 5 and 15 we conclude that form and universal are coextensive. I think it may be that
this is part of the Platonic view but not of the Aristotelian one.

Here are some observations on specific conjectures (now out of date).

c01 Note here that this is quantified over everything, and hence over individuals, whereas Aristotle
describes individuals as thing of which one may predicate, but which are not themselves predi-
cable. Perhaps this inderdiction applies to hazz but not to izz, to accidental but not essential
predication. (We should add the rule p¬ A hazz Aq which is easy to prove.) I don’t know any
more detail about Aristotle’s attitude towards predication by individuals. If one cannot, where
do we stand when we do, as in “Socrates is Socrates” and “Socrates is Aristotle”. Anyway, if
these were to have a truth value (which surely they do) then the truth value will be as in this
rule.

c02 Behind the scenes this is transitivity of set inclusion.

c03 This is because izz is intracategorial and hazz is intercategorial. An obvious but useful corrolary
is that they are not equal (c03b).

c04 This, and most of the other theorems involving existential quantification, is rather odd. Its
proof depends on the conjecture c04a, which we have proven, and which involves no existential
quantification, but its content is not significantly greater than that rule. From right to left l04
is l04b (you just pull out the existential and it turns into a universal). From left to right l04 is
trivial, since B serves as a witness for the existential.

Ideally we would be working with claims which are expressible syllogistically, i.e. without
benefit of quantifiers. We can make an exception for universals on the left, since these are in-
terconvertible with the conjecture with free variables instead which we can think of as schemata.
Where an existential quantifier appears in a negative context it will turn universal if pulled
out to the top level and can therefore be dispensed with. Elsewhere its worth asking whether
the content is significant (including, as here, one half of the content implicit in putting an
existential under an equivalence).

co4b is an obvious similar result to c04a.
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c05 According to my definition this is the wrong way round.

c06 As it stands this is provably false since we have pAhazzB q on the left, which entails that A
and B are not of the same category, and pAizzB q in the right, which entails that they are of
the same category.

c07 This, at the expense of using an existential, nevertheless tells us nothing that is not immediate
from the definitions.

c08 Is just our definition.

c09 This turns into c04 (apart from the variable names) once you expand the definition of acciden-
tally predicable of.

c10 Behind the scenes, izz is set inclusion, so this is obvious.

c11-13 These contain modal operators which cannot be defined using this model.

c14-c15 I’ve not worked out what a “thing” is. Not even sure that I should have rendered Speranza’s
version using that term. However, I do think I know that particular and universal are opposites
(contradictories), and hence I could conclude from these two conjectures that there can be no
forms since they entail that a form is both individual and universal. Sounds like I have the
wrong end of some stick or other.

c16 I don’t know enough about “thing”s to prove this one.

c17 This is c01 in other words.

c18 This is c03b in other words.

c19 This is the contrapositive of the claim that accidentally predicable of is reflexive, which is false.
Would be true for essentially predicable of, but we already have that stated directly as c17.

c20 Immediate from my definitions.

c21 This turns out to be false under my definitions, because I have not excluded the possibility of
an empty predicate. However, one wonders why this should be excluded.

If I go over to a model adquate for modal operators then it will be easy to exclude this possibility.

c21 Fails for same reason as c20, though I could fix this by making the definition of universal insist
on more than one member.

c23 I don’t know why this should be true. Any particular which partakes of a form contradicts it.

c24 This is not true in the present model, because we might have only one particular, and hence no
non-trivial forms.

c25-c26 These two tell me that forms are not substance, but attributes, which contradicts c24 which
tells us that there are subtantial forms (if particulars are substances).

c27 I don’t see why this should be true.

c28-c29 These two together entail that no universal is predicable of any particular.

c30 This says that nothing is essentially predicable of a particular except itself.

c31 This is a stronger version of c30 which says that, even if something isn’t particular, nothing but
itself is essentially predicable of it.
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4 The Organon

The Organon is a collection of 6 books by Aristotle which form the main part of his work on Logic.
The first of these is the Categories [1], on which Aristotle’s Metaphyics depends. The Metaphysics,
at least the parts involved in the Grice/Code analysis [4, 3], is concerned with predication, which is
also central to the formal core of Aristotle’s logic, the theory of the syllogism, presented in the Prior
Analytic, Book 1 [1].

Aristotle’s account of syllogistic logic covers modal reasoning. In attempting to understand Aris-
totelian essentialism, one of the key problems is to establish the relationship between the two distinc-
tions between necessary and contingent proposition, and between essential and accidental predication.

Though Code [3] does not conceive of himself as engaged in formalising Aristotle in a modern
predicate logic, his presentation seems much closer to predicate logic than to syllogistic logic. I
would like to understand the metaphysics if possible in terms of the kind of logic which Aristotle
had at his disposal. To explore the extent to which this might be possible, some models of syllogistic
logic might be helpful.

When we look at the syllogism with particular concern for the notion of predication involved, we
find that the Grice’s “izz/hazz” distinction (in Aristotle “said of” and “in”) is not relevant. In this
respect predication is simpler in the syllogism, but instead we have an orthogonal distinction into
four kinds of predication according to whether the subject is universal or particular, and whether
the predication is affirmative or negative, over which are later added the modal operators.

The semantics of the syllogism remains a matter of controversy in some respects. The majority of
the syllogisms held to be valid by Aristotle would be valid if universal and particular propositions
were translated as universal and existential quantification in a modern predicate logic. Four of the
syllogisms held to be valid by Aristotle would not be sound under such an interpretation. These four
are distinguished by having universal premises but a particular conclusion. I propose to call these
the universal-particular syllogisms, which I may abbreviate u-p.

There are three most common approaches to the u-p syllogisms:

1. Consider them to be fallacious (possibly admitting the implicature).

2. Consider Aristotle’s formal logic to be concerned exclusively with non-empty terms.

3. Consider universal propositions to be, in effect, the conjunction of a universal and an existential
quantification.

However, it now seems that none of these are correct and that the approach closest to Aristotle’s
text may be to have existential import in assertions (whether universal or particular) and absent
from denials.

4.1 Models and Their Significance

Three different methods of analysis are illustrated in a very simple way in application to the laws of
direct inference and the assertoric (i.e. non-modal) syllogistic.

These consisting in interpreting or modelling aspects of Aristotelian logic using modern languages
and tools. It is important to understand that the construction of an interpretation or a model says by
itself nothing about Aristotelian logic until the author makes a claim about the relationship between
the model and the thing modelled. It is never the intention that a model should be in all respects
similar to the original.
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In producing these models I prepare the model first, with only a vague sense of what it might
be good for, and then make certain comparisons, and describe the results. Thus the first two
interpretations, which may be called translations or reductions, serve only to reduce the question of
truth or provability in Aristotelian logic to that of truth or provability in some other notation or
deductive system.

This they do incompletely. The first interpretation fails to demonstrate a subset of the syllogisms
(those which I here refer to as u-p syllogisms). Its purpose is therefore primarily to show that the
most naive interpretations of Aristotle’s language fail to validate his reasoning, and thereby to cast
doubt on such interpretations.

The next set of models may also be understood in similar ways, but they can also be considered as
attempts to capture the truth conditions of categorical assertions. The evaluation of these models
is based again in the first instance on the correspondence between truth and provability between
the model and the original. Only one of these models fails to show significant differences in these
respects from Aristotle. It is therefore only in respect of the last of the models that we are motivated
to enquire closer into the fidelity of the truth-conditional semantics which they exhibit.

The claims made for the models are very limited, and the purposes of the models are:

• to exhibit certain methods and consider their merits

• to provide a basis for formal reasoning using a modern proof tool in a manner consistent with
Aristotle’s logic

• to provide a basis for an exploration of Aristotle’s metaphyics using the same tools and methods

Three methods of modelling are used. These methods may be described as:

• translation

• shallow embedding

• deep embedding

In a translation syntax is not preserved, the aristotelian assertions are translated into some other
form altogether.

In an embedding of either depth, an attempt is made to preserve and work with the original syntax,
though in practice there may be alterations to the syntax to enable the analysis to be undertaken
using some preferred software for formal analysis. In this document the software is ProofPower.

A series of mappings into HOL have been used to evaluate these possibilities:

1. a set theoretic interpretation (Section 4.3)

2. an interpretation in propositional logic (Section 4.4)

3. a naive predicate calculus interpretation (Section 4.5)

4. predicate calculus with no empty terms (Section 4.6)

5. existential import in universals (Section 4.7)

6. existential import in affirmations (Section 4.8)
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7. reasoning about deep embeddings

8. modal syllogisms (by non-emptyness) (Section 4.9)

Of these the first two are simplistic translations. The categorical propositions are mapped to sen-
tences in HOL which resemble set theory, or the predicate calculus and by this means is obtained a
partial reduction of the decision problem for truth of syllogisms.

The next three are ‘shallow embeddings’. This means that the established representation of cate-
gorical assertions in the AEIO form is retained as syntax, so no translation of syntax is involved.
These are given meaning by defining constants in HOL named ‘a’, ‘e’, ‘i’, and ‘o’ to capture the truth
conditions of the four forms. This involves in the first instance a choice of type for the term variables
and then the definition of these forms as functions from two such values to the type BOOL.

The interpretation is then evaluated by proving the soundness of various laws and syllogisms repre-
sented syntactically much as they are in the relevant literature.

Of these three shallow embeddings, the first two are based upon Strawson [11]. The third benefits
from discussion on the phil-logic mailing list, and in particular on advice on the interpretation of
Aristotle from Drake O’Brien supported by textual references which convinced me that neither of
the Strawsonian interpretations could be correct.2 These two points are firstly that Aristotle cannot
be construed as presuming non-emptyness of terms (or as committing an existential fallacy), and
that existential import is associated with the quality of the proposition, attaching to affirmative but
not to negative propositions.

To facilitate comparison between the different interpretations the following list of ‘features’ will be
checked. These are the various rules which might or might not be valid. My aim is to check which
of these hold in each interpretation and then to summarise the results in a table.

• Laws of immediate inference.

These fall into the following categories:

– Simple conversion.

– Conversions per accidens.

– Obversion.

– Contraposition and inversion.

– The square of opposition.

• The syllogisms.

The present treatment was based firstly on the wikipedia account of Aristotle’s Logic, secondly on
Strawson [11] from whom I first obtained the syllogisms not in Aristotle and began incorporation of
direct inference, and then from Spade[10] I obtained the names for the extra syllogisms and a fuller
account of how the syllogisms can be derived which is not yet reflected in the following. Using these
sources I didn’t get very close to the real Aristotle. Drake O’Brien, in discussion on phil-logic helped
get be closer.

The main interest at present is the sequence of models which contributes to the formulation of an
integrated model for the syllogism and the metaphysics in Section 5.

2This seems to be the accepted interpretation among contemporary scholars, and is described bt Terence Parsons
in his “Overview of Aristotle’s Logic” [8] available from his website.

20

http://en.wikipedia.org/wiki/Syllogism


4.2 Preliminaries

4.2.1 Generating the Syllogisms

This following presentation of the forms of syllogism is based primarily on the one at wikipedia.

In the following several different interpretations of the syllogism are formalised as shallow semantic
embeddings in HOL. Part of the evaluation of these interpretations consists in demonstrating that
certain syllogisms are sound relative to the particular versions of the semantics. This is done by
constructing a conjecture in HOL which will be true if the syllogism is sound, and then proving that
the conjecture is true (i.e. proving the corresponding theorem). This procedure does not amount to
a proof of the soundness of the syllogisms relative to the semantics, but gives almost the same level
of confidence. A standard soundness proof would require a ‘deep embedding’, which would involve
formalisation of the syntax of the syllogism and of the semantics as a relation between the syntax and
the models. This would be considerably more arduous, and would not deliver comparably greater
insights.

Before looking at alternative semantics for the syllogistic some machinery for generating syllogisms
which will be used throughout is provided in this section.

Structurally a syllogism consists of two premises and a conclusion. The premises and conclusion are
propositions, each of which is built from two terms in one of four ways. The different interpretations of
the syllogism are obtained by chosing different types for the terms and different ways of constructing
the propositions from the terms. For some purposes distinct ways of combining the propositions to
form the completed syllogism will be necessary.

The information determining a particular interpretation will therefore be certain values in the met-
alanguage:

mkAT a function which converts a name to a term of that name (having type: pMLstring− > TERM q)

mkAP a function which takes a propositional form and delivers a proposition constructor taking
two terms and delivering a proposition (having type: pMLstring− > (TERM ∗ TERM)− >
TERM q )

mkAS a function which takes a list of propositions (the premises) and a single proposition (the con-
clusion) and delivers a syllogism as a sequent goal (having type: pML(TERMlist ∗ TERM)− >
GOAL q )

A choice about the semantics will be encapsulated as a record having these three components.

SML

type mapkit =

{mkAT :string −> TERM ,

mkAP :string −> (TERM ∗ TERM ) −> TERM ,

mkAS :(TERM list ∗ TERM ) −> GOAL};

There are four forms of predication which are normally presented as infix operators over terms using
the vowels “a”, “e”, “i”, “o”.

These are to be construed as follows:
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HOL term Meaning

pA a Bq All A are B
pA e Bq All A are not B
pA i Bq An A is B
pA o Bq An A is not B

Though exactly what these mean remains controversial and is a principle point of variation in the
interpretations presented here.

Syllogisms come in four figures, according to the configuration of variables in the premises:

Figure 1 M-P, S-M ` S-P

Figure 2 P-M, S-M ` S-P

Figure 3 M-P, M-S ` S-P

Figure 4 P-M, M-S ` S-P

Where S, P and M are the subject, predicate and middle term respectively.

The following function generates a list of four quadruples of HOL variables which correspond to the
four figures of syllogisms. It is parameterised by the HOL type used for predicates to that it can be
re-used when we change the representation type.

SML

fun figureS mkt =

let val M = mkt "M "

and P = mkt "P"

and S = mkt "S"
in [(M ,P ,S ,M ), (P ,M ,S ,M ), (M ,P ,M ,S ), (P ,M ,M ,S )]

end ;

In most cases terms are mapped to variables of appropriate types for the chosen semantics. The
following function when given a type will return a term constructor mapping term names to variables
of that type.

SML

fun mkATvar tt s = mk var(s,tt);

For these cases the list of figures with the relevant terms is obtained by this function:

SML

fun figurest tt = figureS (mkATvar tt);

and the following function when instantiated to some type will give the nth figure with terms as
variables of that type.

SML

fun nthfig tt n = nth n (figurest tt);

These four figures are then repeated for each combination of the four types of premise in each of the
premises and the conclusion. This gives 4× 4× 4× 4 = 256 possibilities, of which 19 were held to be
valid by Aristotle, four of them u-p syllogisms.
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The use of vowels for the predicators allows the valid cases to be named using names in which the
vowels tell you the form of the syllogism (if you also know the figure). The first vowel tells you the
kind of syllogism in the first premise, the second vowel that in the second premise, and the third
vowel that in the conclusion.

In the following table the names in square brackets are for u-p syllogisms. The names followed by
exclamation marks are “subalternate mood”, they do not appear in aristotle but are valid in the
models here for which the u-p syllogisms hold 3.

Figure 1 Figure 2 Figure 3 Figure 4

Barbara Cesare [Darapti] [Bramantip]
Celarent Camestres Disamis Camenes
Darii Festino Datisi Dimaris
Ferio Baroco [Felapton] [Fesapo]
Barbari! Cesaro! Bocardo Fresison
Celaront! Camestrop! Ferison Camenop!

A syllogism may be identified either by the name in the above table (for the valid syllogisms), or by
the three vowels, and the figure.

The above table is captured by the following definitions in our metalanguage:

We now define a data structure from which the valid syllogisms can be generated. With the model
we are using only the 15 non-u-p syllogisms. They are shown in the following data structure.

SML

val syllogism data1 =

[("Barbara", 1 ),

("Celarent", 1 ),

("Darii", 1 ),

("Ferio", 1 ),

("Cesare", 2 ),

("Camestres", 2 ),

("Festino", 2 ),

("Baroco", 2 ),

("Disamis", 3 ),

("Datisi", 3 ),

("Bocardo", 3 ),

("Ferison", 3 ),

("Camenes", 4 ),

("Dimaris", 4 ),

("Fresison", 4 )];

The rest of the table consists of “universal-particular” syllogisms, i.e. syllogisms with universal
premises but a particular conclusion.

The following four u-p syllogisms were held to be valid by Aristotle (the ones in square brackets in
the table).

3This I got from Spade [10].
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SML

val syllogism data2 =

[("Darapti", 3 ),

("Felapton", 3 ),

("Bramantip", 4 ),

("Fesapo", 4 )];

The following five further syllogisms are also sound, though not noted as such by Aristotle (the ones
followed by exclamation marks in the table).

SML

val syllogism data3 =

[("Barbari", 1 ),

("Celaront", 1 ),

("Cesaro", 2 ),

("Camestrop", 2 ),

("Camenop", 4 )];

We now assume available the triple of constructors mentioned above and define a function which
converts syllogism identification in the form of a string of three vowels and a number in the range 1-4
into a syllogism. This is parameterised by a mapkit so that we can use it to deliver several different
interpretations of the syllogism.

SML

fun vowels from string s = filter (fn x => x mem (explode "aeiou")) (explode s);

fun mkSyll (sk :mapkit) (s, n) =

let val [pa, pb, co] = vowels from string s

val (a,b,c,d) = nth (n−1 ) (figureS (#mkAT sk))

val pl = [#mkAP sk pa (a,b), #mkAP sk pb (c,d)]

val c = #mkAP sk co (#mkAT sk "S", #mkAT sk "P")

in #mkAS sk (pl , c)

end ;

We can then map this operation over the a list of syllogism data as follows:

SML

fun mkGoals sk = map (fn (s,n) => (s, mkSyll sk (s, n)));

If we further supply a proof tactic and a labelling suffix then we can prove a whole list of goals and
store the results in the current theory.

SML

fun proveGoals tac suff = map

(fn (s,g) =>

(s,

save thm (ŝsuff , tac proof (g , tac))

handle => t thm));
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SML

fun proveSylls sk tac suff sd = proveGoals tac suff (mkGoals sk sd);

The following functions take a string which is the name of a syllogism extract the vowels which occur
in it and convert them into the corresponding predication operator to give a triple of operators.

SML

fun op from char ot c = mk const (if c = "o" then "u" else c, ot);

fun optrip from text ot s =

let val [a, b, c] = (map (op from char ot) o vowels from string) s;

in (a, b, c)

end ;

A Common Special Case The most common pattern is that:

• Terms are mapped to variables of some type.

• Propositions are formed using infix operators a, e, i, o.

• Syllogisms are sequents, the premises in the assumptions.

The following constructs a mapkit for such cases when supplied with the type of the term variables,
and the four proposition constructors.

SML

fun mkSimpMapkit ty opl =

let val mkcop = fn s => snd (find (combine (explode "aeio") opl) (fn (n,v) => n = s))

in

{mkAT = fn s => mk var(s, ty),

mkAP = fn s => fn (l ,r) => mk app(mk app (mkcop s, l), r),

mkAS = fn x => x}
end ;

4.2.2 The Square of Opposition

A contraries E

subalternates contradictories subalternates

I subcontraries O

Table 1: The square of Opposition 1

The relationships between corners of the square of opposition have the following names:

The full set of relationships exhibited by the square is:

The goal conclusions for theorems expressing compliance are (details of syntax will vary between
interpretations):
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SML

val ao contrad = pA a B ⇔ ¬ A o Bq;

val ei contrad = pA e B ⇔ ¬ A i Bq;

val ae contrar = p¬ (A a B ∧ A e B)q;

val io subcont = pA i B ∨ A o Bq;

val ai subalt = pA a B ⇒ A i Bq;

val eo subalt = pA e B ⇒ A o Bq;

This provides a compact way of comparing different interpretations of the assertoric forms.

The principal point of difference is in subalternation which fails when the quantifiers are interpreted
in the modern sense and empty terms are admitted. One remedy for this defect might be to add
existential import to the universal quantifier, but this by itself would cause the contradictories to
fail. Another remedy is to add existential import to the universal and define the particular modes
through the contradictories.

Peter Strawson enumerates 14 laws of immediate inference, not all of which seem to have been em-
braced by Aristotle. The list nevertheless provides a good collection against which an interpretation
of the propositions can be evaluated, along with the 24 syllogisms.

The following table shows the correspondence between the numbers used by Strawson, the names
used here, and a fuller name.

4.2.3 Are The Syllogisms Tautologous?

This section is a kind of preliminary skirmish provoked by some discussions on phil-logic in which
one or two specific questions are addressed.

The question which provoked this section was:

• Are the valid syllogisms tautologous?

This is complex because it depends on a view about the semantics of the syllogism and also upon
what particular notion of tautology is in play.

Two related questions come from remarks by P.V.Spade. P.V. Spade, in a thumbnail history of logic
[10] remarks that some later peripatetics attempted to show that stoic propositional logic was simply
the syllogism in other clothes, and others that the two are in some sense equivalent.

• Is there any sense in which the syllogism can be said to encompass Stoic propositional logic?

• Is there any sense in which the syllogism might be seen to be equivalent to Stoic propositional
logic?

contradictories A and B are contradictories if pA⇔ ¬B q
contraries A and B are contraries if they are not both true.
subcontraries A and B are sub-contraries if they are not both false.
subalternates B is subalternate to A if A implies B

Table 2: The square of Opposition 2
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I have no knowledge of Stoic propositional logic, and this section is therefore concerned with the
relationship between the syllogism and modern propositional logic, which I presume is a superset
(probably but not necessarily proper) of Stoic propositional logic.

I distinguish three notions of tautology (though this is not intended to be an exhaustive list) on
which something can be said in this connection.

propositional A valid sentence of the propositional calculus.

first order A valid sentence of first order logic.

analytic A sentence whose truth conditions assign truth to it in every situation or interpretation con-
sistent with the meanings of the language in which it is expressed.

The connection between these is in the notions of truth function and truth condition. The first
two are notions of truth functional tautology. In both languages the truth value of a sentence is
a function of the truth values of the atomic sentences it contains, and a sentence is tautologous if
that truth function is the one which always delivers the value “true”. In the second of these two the
notion of truth function is slightly more complex and some explanation may be necessary of how
the quantifiers can be so construed. It may be noted however that it is a thesis of Wittgenstein’s
Tractatus[12] that logical truth in general is tautologous. In the last case the restriction to truth
functions (i.e. functions which take truth values as arguments and deliver truth values as results)
is dropped, allowing that the essential element is that the relevant part of the semantics can be
rendered as truth conditions in which the result is a truth value but the argument need not be, and
that it is of the essence of the concept tautology to single out from truth functions or conditions in
general those which always deliver the truth value ‘true’.

In relation to these three notions of tautology, one thinks naturally of categorical propositions as
involving quantification, and therefore, of syllogisms, if tautologous being so at best as first order
validities, but in any case, if sound, as analytic. These intuitions do not support a connection between
syllogisms and propositional tautologies.

The connection we illustrate here is obtained via elementary set theory. The intuition behind this is
that Aristotelian predication is analogous to set inclusion, taking terms to denote their extensions
(and singular terms as denoting singleton sets), together with complementation and negation. This
works except for the problematic univeral-particular syllogisms which infer particular conclusions
from universal premises. A connection with propositional logic can be obtained from this, since the
elementary set theory required for this interpretation is a boolean algebra, as is the propositional
calculus.

Partial reductions to set theory and propositional logic are exhibited in sections 4.3 and 4.4. The
reduction to set theory is semantically more plausible than the second step to proposional logic,
and provides an account of those u-p syllogisms, which are not accounted for by the propositional
reduction.

ao contrad contradictories
ei contrad contradictories
ae contrar contraries
io subcont subcontraries
ai subalt subalternates
eo subalt subalternates

Table 3: The square of Opposition 3
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We obtain kind of reduction of the decision problem for the non-u-p syllogisms to the decision
problem for truth functional tautologies, but only in a very informal sense, since there are only a
small finite set of valid syllogisms (though schemata) and so the decision problem is trivial. For
this reason syllogistic logic cannot be as expressive as a modern propositional logic, but conceivably
might be closer to Stoic propositional logic.

The first step, to set theory is illustrated in the Wikpedia article on the syllogism, which gives Venn
diagrams for all 24 “valid” syllogisms.

Though it is convenient to think of this as a two stage reduction, in the following implementation
the two different reductions are generated independently.

4.3 Interpretation in Set Theory

SML

open theory "aristotle";

force new theory "syllog1";

Under the proposed mapping terms of the syllogism are mapped to propositions. The term “Mortal”
may be thought of as being mapped to the proposition “x is Mortal”.

Thus the Barbara syllogism:

• All As are Bs

• All Bs are Cs

• =========

• All As are Cs

might be rendered set theoretically as:

(A ⊆ B ∧ B ⊆ C ) ⇒ (A ⊆ C )

where A, B and C are subsets of some universal set.

However, since we are working here in a sequent calculus we can render the theorems closely to the
original as:

[A ⊆ B ,

B ⊆ C ]

` A ⊆ C

A set theoretic presentation of the non-u-p syllogisms can be obtained by assuming that the sets are
not empty, but no similarly plausible account of these syllogisms is available in propositional logic.

Here is a table describing the proposed mappings:

Aristotle Meaning Set Theory Propositional Analogue

A a B All A are B A ⊆ B A ⇒ B
A e B All A are not B A ⊆ ∼ B A ⇒ ¬B
A i B An A is B ¬(A ⊆ ∼ B) ¬(A ⇒ ¬B)
A o B An A is not B ¬(A ⊆ B) ¬(A ⇒ B)
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These mappings can be encapsulated as two ‘mapkits’.

First the set theory mapping:

SML

val st mkAP =

let fun a (su, pr) = p pMLsuq ⊆ pMLprqq

fun e (su, pr) = p pMLsuq ⊆ ∼ pMLprqq

fun i (su, pr) = p¬ pMLsuq ⊆ ∼ pMLprqq

fun u (su, pr) = p¬ pMLsuq ⊆ pMLprqq

in fn s => case s of "a" => a | "e" => e | "i" => i | "o" => u

end ;

declare type abbrev("TermS", [], p:′a SETq);

val st mapkit :mapkit =

{ mkAT = fn s => mk var(s, p:TermSq),

mkAP = st mkAP ,

mkAS = fn x => x};

4.3.1 Generating The Propositions

This section is mainly given over to short programs in our metalanguage the end effect of which is to
secure the proof of the 15 theorems of set theory and 15 propositional tautologies which are obtained
from non-u-p syllogisms by this naive transformation.

The results are visible in the “theorems” section of the theory listing in Appendix A.2, and this
section can be safely skipped by anyone whose interest is purely philosophical.

Mostly this uses functionality devised in the previous section to achieve two slightly different sets of
theorems.

The following functions take a string which is the name of a syllogism, extract the vowels which occur
in it and convert them into the corresponding propositional formula to give a triple of propositions.

giving the following list of “goals”:

val it =

[ ([pM ⊆ Pq, pS ⊆ M q], pS ⊆ Pq),

([pM ⊆ ∼ Pq, pS ⊆ M q], pS ⊆ ∼ Pq),

([pM ⊆ Pq, p¬ S ⊆ ∼ M q], p¬ S ⊆ ∼ Pq),

([pM ⊆ ∼ Pq, p¬ S ⊆ ∼ M q], p¬ S ⊆ Pq),

([pP ⊆ ∼ M q, pS ⊆ M q], pS ⊆ ∼ Pq),

([pP ⊆ M q, pS ⊆ ∼ M q], pS ⊆ ∼ Pq),

([pP ⊆ ∼ M q, p¬ S ⊆ ∼ M q], p¬ S ⊆ Pq),

([pP ⊆ M q, p¬ S ⊆ M q], p¬ S ⊆ Pq),

([p¬ M ⊆ ∼ Pq, pM ⊆ Sq], p¬ S ⊆ ∼ Pq),

([pM ⊆ Pq, p¬ M ⊆ ∼ Sq], p¬ S ⊆ ∼ Pq),

([p¬ M ⊆ Pq, pM ⊆ Sq], p¬ S ⊆ Pq),

([pM ⊆ ∼ Pq, p¬ M ⊆ ∼ Sq], p¬ S ⊆ Pq),
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([pP ⊆ M q, pM ⊆ ∼ Sq], pS ⊆ ∼ Pq),

([p¬ P ⊆ ∼ M q, pM ⊆ Sq], p¬ S ⊆ ∼ Pq),

4.3.2 Proving the Syllogisms

Here is a proof tactic for the non-u-p syllogisms under the set theory interpretation.
SML

val st tac = REPEAT (POP ASM T ante tac)

THEN PC T1 "hol1" rewrite tac []

THEN prove tac[];

We now apply this to the non-u-p syllogisms, saving the results in the theory (Appendix A.2).
SML

proveSylls st mapkit st tac "" syllogism data1 ;

We now adjust the set theoretic reduction to deliver u-p syllogisms by including a non-emptyness
assumption and obtain proofs of the nine syllogisms valid u-p syllogisms.

giving the following list of “goals”:

val it =

[ ([p¬ {} ∈ {M ; S; P}q, pM ⊆ Pq, pM ⊆ Sq], p¬ S ⊆ ∼ Pq),

([p¬ {} ∈ {M ; S; P}q, pM ⊆ ∼ Pq, pM ⊆ Sq], p¬ S ⊆ Pq),

([p¬ {} ∈ {M ; S; P}q, pP ⊆ M q, pM ⊆ Sq], p¬ S ⊆ ∼ Pq),

([p¬ {} ∈ {M ; S; P}q, pP ⊆ ∼ M q, pM ⊆ Sq], p¬ S ⊆ Pq),

([p¬ {} ∈ {M ; S; P}q, pM ⊆ Pq, pS ⊆ M q], p¬ S ⊆ ∼ Pq),

([p¬ {} ∈ {M ; S; P}q, pM ⊆ ∼ Pq, pS ⊆ M q], p¬ S ⊆ Pq),

([p¬ {} ∈ {M ; S; P}q, pP ⊆ ∼ M q, pS ⊆ M q], p¬ S ⊆ Pq),

([p¬ {} ∈ {M ; S; P}q, pP ⊆ M q, pS ⊆ ∼ M q], p¬ S ⊆ Pq),

([p¬ {} ∈ {M ; S; P}q, pP ⊆ M q, pM ⊆ ∼ Sq], p¬ S ⊆ Pq)]

: (TERM list ∗ TERM ) list

We now apply this to the non-u-p syllogisms, saving the results in the theory.

The following code generates the goals for proving the above syllogisms from the previously defined
data structure desribing the valid syllogisms, generates and checks formal proofs and saves the
resulting theorems in the current theory.
SML

val st2 mapkit :mapkit =

{ mkAT = fn s => mk var(s, p:TermSq),

mkAP = st mkAP ,

mkAS = fn (ps, c) => (p¬ ({}:′a SET ) ∈ {M ; S; P}q::ps, c)};

SML

val st2 tac = REPEAT (POP ASM T ante tac)

THEN PC T1 "hol1" rewrite tac [] THEN prove tac[];

SML

proveSylls st2 mapkit st2 tac "" (syllogism data2 @ syllogism data3 );

The full set of syllogisms may be found in the theory (Appendix A.2).
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4.4 Propositional Interpretation

SML

open theory "aristotle";

force new theory "syllog2";

The term “Mortal” may be thought of as being mapped to the proposition “x is Mortal”.

Thus the Barbara syllogism:

• All As are Bs

• All Bs are Cs

• =========

• All As are Cs

is rendered in the propositional calculus as:

(A ⇒ B ∧ B ⇒ C ) ⇒ (A ⇒ C )

where A, B and C are boolean values or propositions.

However, since we are working here in a sequent calculus we can render the theorems closely to the
original as:

[A ⇒ B ,

B ⇒ C ]

` A ⇒ C

The propositional logic mapping is determined as follows:

SML

declare type abbrev("TermP", [], p:BOOLq);

val pl mapkit :mapkit =

let fun a (su, pr) = p pMLsuq ⇒ pMLprqq

fun e (su, pr) = p pMLsuq ⇒ ¬ pMLprqq

fun i (su, pr) = p¬ ( pMLsuq ⇒ ¬ pMLprq)q

fun u (su, pr) = p¬( pMLsuq ⇒ pMLprq)q

in { mkAT = fn s => mk var(s, p:TermPq),

mkAP = fn s => case s of

"a" => a

| "e" => e

| "i" => i

| "o" => u,

mkAS = fn x => x}
end ;

giving the following list of “goals”:
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val it =

[([pM ⇒ Pq, pS ⇒ M q], pS ⇒ Pq),

([pM ⇒ ¬ Pq, pS ⇒ M q], pS ⇒ ¬ Pq),

([pM ⇒ Pq, p¬ (S ⇒ ¬ M )q], p¬ (S ⇒ ¬ P)q),

([pM ⇒ ¬ Pq, p¬ (S ⇒ ¬ M )q], p¬ (S ⇒ P)q),

([pP ⇒ ¬ M q, pS ⇒ M q], pS ⇒ ¬ Pq),

([pP ⇒ M q, pS ⇒ ¬ M q], pS ⇒ ¬ Pq),

([pP ⇒ ¬ M q, p¬ (S ⇒ ¬ M )q], p¬ (S ⇒ P)q),

([pP ⇒ M q, p¬ (S ⇒ M )q], p¬ (S ⇒ P)q),

([p¬ (M ⇒ ¬ P)q, pM ⇒ Sq], p¬ (S ⇒ ¬ P)q),

([pM ⇒ Pq, p¬ (M ⇒ ¬ S)q], p¬ (S ⇒ ¬ P)q),

([p¬ (M ⇒ P)q, pM ⇒ Sq], p¬ (S ⇒ P)q),

([pM ⇒ ¬ Pq, p¬ (M ⇒ ¬ S)q], p¬ (S ⇒ P)q),

([pP ⇒ M q, pM ⇒ ¬ Sq], pS ⇒ ¬ Pq),

([p¬ (P ⇒ ¬ M )q, pM ⇒ Sq], p¬ (S ⇒ ¬ P)q),

([pP ⇒ ¬ M q, p¬ (M ⇒ ¬ S)q], p¬ (S ⇒ P)q)] : (TERM list ∗ TERM ) list

The following tactic suffices for proving propositional tautologies.

SML

val pl tac = REPEAT (POP ASM T ante tac)

THEN REPEAT strip tac;

We now apply this to the non-u-p syllogisms, saving the results in the theory.

SML

val valid psylls = proveSylls pl mapkit pl tac "" syllogism data1 ;

This is the resulting value.

val valid psylls =

[("Barbara", M ⇒ P , S ⇒ M ` S ⇒ P),

("Celarent", M ⇒ ¬ P , S ⇒ M ` S ⇒ ¬ P),

("Darii", M ⇒ P , ¬ (S ⇒ ¬ M ) ` ¬ (S ⇒ ¬ P)),

("Ferio", M ⇒ ¬ P , ¬ (S ⇒ ¬ M ) ` ¬ (S ⇒ P)),

("Cesare", P ⇒ ¬ M , S ⇒ M ` S ⇒ ¬ P),

("Camestres", P ⇒ M , S ⇒ ¬ M ` S ⇒ ¬ P),

("Festino", P ⇒ ¬ M , ¬ (S ⇒ ¬ M ) ` ¬ (S ⇒ P)),

("Baroco", P ⇒ M , ¬ (S ⇒ M ) ` ¬ (S ⇒ P)),

("Disamis", ¬ (M ⇒ ¬ P), M ⇒ S ` ¬ (S ⇒ ¬ P)),

("Datisi", M ⇒ P , ¬ (M ⇒ ¬ S) ` ¬ (S ⇒ ¬ P)),

("Bocardo", ¬ (M ⇒ P), M ⇒ S ` ¬ (S ⇒ P)),

("Ferison", M ⇒ ¬ P , ¬ (M ⇒ ¬ S) ` ¬ (S ⇒ P)),

("Camenes", P ⇒ M , M ⇒ ¬ S ` S ⇒ ¬ P),

("Dimaris", ¬ (P ⇒ ¬ M ), M ⇒ S ` ¬ (S ⇒ ¬ P)),

("Fresison", P ⇒ ¬ M , ¬ (M ⇒ ¬ S) ` ¬ (S ⇒ P))] : (string ∗ THM ) list

.. which is a list of name/theorem pairs of the tautologies corresponding to each syllogism.
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The theorems are also displayed in the theory listing in Appendix A.3

Some words about the very limited signficance of this little exercise would be appropriate here!

4.5 Naive Interpretation in Predicate Calculus

SML

open theory "aristotle";

force new theory "syllog3";

4.5.1 Semantics

Aristotle’s syllogistic logic is concerned with inferences between judgements considered as predica-
tions. A predication in Aristotle affirms a predicate of some subject, but by contrast with more recent
notions of predication the subject need not be an individual, the kinds of things which appear as
predicates may also appear as subjects, and the relationship expressed seems closer to a modern
eye to set inclusion than to what we now regard as predication. Since subject and predicate are for
present purposes the same kind of thing, it is useful to have a name for that kind of thing, and I will
use the name property.

There are four kinds of predication which we have here to account for, which we will do by offering
definitions which provide a good model for syllogistic logic, i.e. one in which the syllogisms held to
be true by Aristotle are in fact true. Before providing these definitions we must decide what kind of
thing are the terms which are related by Aristotelian predication.

In HOL the most natural answer to this is “boolean valued functions” which are objects of type
p : ′a → BOOL q for some type of individuals which we can leave open by using the type variable
p : ′a q . This provides a simple model of Aristotle’s non-u-p syllogistic reasoning. Four of the
syllogisms which Aristotle considered valid fail under this conception of predicate, because among
the objects of type p : ′a→ BOOL q is the function pλx :′ a • F q which corresponds to a predicate
with empty extension and does not admit inference from the universal to the existential (unless the
universal is interpreted specially).
SML

declare type abbrev("Term2", [], p:′a → BOOLq);

4.5.2 Predication

“o” is already in use for functional composition, so we will use “u” instead and then use an alias to
permit us to write this as “o” (type inference will usually resolve any ambiguity).

The predication operators are defined as follows:
SML

declare infix (300 , "a");

declare infix (300 , "e");

declare infix (300 , "i");

declare infix (300 , "u");

HOL Constant

$a : Term2 → Term2 → BOOL

∀A B• A a B ⇔ ∀x• A x ⇒ B x
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HOL Constant

$e : Term2 → Term2 → BOOL

∀A B• A e B ⇔ ∀x• A x ⇒ ¬ B x

HOL Constant

$i : Term2 → Term2 → BOOL

∀A B• A i B ⇔ ∃x• A x ∧ B x

HOL Constant

$u : Term2 → Term2 → BOOL

∀A B• A u B ⇔ ∃x• A x ∧ ¬ B x

SML

declare alias("o", p$uq);

Note that as defined above these come in complementary pairs, a being the negation of o and e of i.
If we had negation we could manage with just two predication operators.

4.5.3 The Laws of Immediate Inference

Though in the source of this kind of “literate script” are to be found the scripts for generating and
checking the proofs of all the theorems presente, it will not be my practice to expose these scripts
in the printed version of the document. These scripts are not usually intelligible other than in that
intimate man-machine dialogue which they mediate, and sufficient knowledge for most purposes of
the structure of the proof will be found in the detailed lemmas proven (since the level of proof
automation is modest).

However, I will begin by exposing some of the scripts used for obtaining proofs of syllogisms in this
model, to give the reader an impession of the level of complexity and kind of obscurity involved in
this kind of formal work, I will not attempt sufficient explanation to make these scripts intelligible,
they are best understood in the interactive environment, all the scripts are available for readers who
want to run them.

Most readers are expected to skip over the gory details, the philosophical points at stake do not
depend on the details of the proofs.

Before addressing the laws of immediate inference 4 I devise a tactic for automating simple proofs in
this domain.

The following elementary tactic expands the goal by applying the definitions of the operators and
then invokes a general tactic for the predicate calculus. A rule is also defined using that tactic for
direct rather than interactive proof.

SML

val syll tac = asm prove tac (map get spec [p$aq, p$eq, p$iq, p$uq]);

fun syll rule g = tac proof (g , syll tac);

4in which I followed Strawson [11], though I can now cite Aristotle, Prior Analytic, Book 1, Part 2. [1]
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Simple Conversion Using the above tactic thus:
SML

val e conv thm = save thm ("e conv thm", syll rule([pA e Bq], pB e Aq));

val i conv thm = save thm ("i conv thm", syll rule([pA i Bq], pB i Aq));

The following two theorems are obtained.

val e conv thm = A e B ` B e A : THM

val i conv thm = A i B ` B i A : THM

The following two theorems show that the other obvious conversions are false.

a not conv thm = ` ∃ A B• A a B ∧ ¬ B a A

o not conv thm = ` ∃ A B• A o B ∧ ¬ B o A

Conversion Per Accidens These don’t work here because they rely upon the u-p syllogisms.

Obversion For these we need to define an operation of complementation on terms.
HOL Constant

Complement : Term2 → Term2

∀A α• (Complement A) α ⇔ ¬ (A α)

We will use “~” as a shorthand for “complement”.
SML

declare alias ("∼", pComplementq);

ae obv thm = A a B ` A e ∼ B

ea obv thm = A e B ` A a ∼ B

io obv thm = A i B ` A o ∼ B

oi obv thm = A o B ` A i ∼ B

Contraposition and Inversion

4.5.4 The Square of Opposition

ao contrad thm = ` A a B ⇔ ¬ A o B

ei contrad thm = ` A e B ⇔ ¬ A i B

¬ae contrar thm = ` ¬ (∀ A B• ¬ (A a B ∧ A e B))

¬io subcont thm = ` ¬ (∀ A B• A i B ∨ A o B)

¬ai subalt thm = ` ¬ (∀ A B• A a B ⇒ A i B)

¬eo subalt thm = ` ¬ (∀ A B• A e B ⇒ A o B)

4.5.5 The Syllogisms

The fifteen valid non-u-p syllogisms are true under this semantics and can be proven formally with
ease.

35



4.5.6 Generating Syllogisms

First we make a mapkit.

SML

val s1mapkit :mapkit = mkSimpMapkit p:Term2q [p$aq,p$eq,p$iq,p$uq];

Then we apply this in generating and proving the non u-p syllogisms.

SML

proveGoals syll tac "" (mkGoals s1mapkit syllogism data1 );

This is the resulting value.

val valid sylls = [

("Barbara", M a P , S a M ` S a P),

("Celarent", M e P , S a M ` S e P),

("Darii", M a P , S i M ` S i P),

("Ferio", M e P , S i M ` S o P),

("Cesare", P e M , S a M ` S e P),

("Camestres", P a M , S e M ` S e P),

("Festino", P e M , S i M ` S o P),

("Baroco", P a M , S o M ` S o P),

("Disamis", M i P , M a S ` S i P),

("Datisi", M a P , M i S ` S i P),

("Bocardo", M o P , M a S ` S o P),

("Ferison", M e P , M i S ` S o P),

("Camenes", P a M , M e S ` S e P),

("Dimaris", P i M , M a S ` S i P),

("Fresison", P e M , M i S ` S o P)

] : (string ∗ THM ) list

The theorems are also displayed in the theory listing in Appendix A.4

4.6 Predicate Calculus Without Empty Terms

There is more than one way in which the semantics of the syllogism can be modified to make the
inference from “All As are Bs” to “Some As are Bs” sound. One way would be to change the
meaning of “All”. This would interfere with the square of opposition by making diagonal entries
no longer contradictories. From this I initially inferred that the exclusion of empty predicates is a
better approach. 5

We can then prove valid 24 forms of syllogism.

For the most concise statement of the results of the exercise, the reader should refer directly to the
theory listing in Appendix A.5.

SML

open theory "aristotle";

force new theory "syllog4";

5This seemed then to be endorsed by Robin Smith in the Stanford Encyclopaedia of Philosophy [9].
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4.6.1 Semantics

The key to getting the u-p syllogisms into the model is the adoption of a type for the variables in
the syllogisms which does not include empty predicates. We could do this by defining a new type
which is a sub-type of the propositional functions, but it is simpler to use another type-abbreviation
as follows.

Instead of using a propositional function, which might be unsatisfiable, we use an ordered pair. The
pair consists of one value, a value for which the predicate is true, and a propositional function. The
predicate (v, pf) is then to be considered true of some value x either if x is v or if pf is true of x.

SML

declare type abbrev("Term3", [], p:′a × (′a → BOOL)q);

4.6.2 Predication

To work with this new type for the predicates we define a function which will convert this kind of
predicate into the old kind, as follows:

HOL Constant

p : Term3 → (′a → BOOL)

∀A• p A = λx• let (v ,f ) = A in x = v ∨ f x

The resulting values have the same type as the old, but they will never have empty extension.

The following principle can be proven (proof omitted):

p ∃ lemma =

` ∀ A• ∃v• p A v

This principle is what we need to prove the u-p syllogisms.

It should be noted that there is no complementation operation on terms of this type and that the
obversions will therefore fail.

We then proceed in a similar manner to the first model, using the function p to convert the new kind
of predicate into the old.

They predication operators are then defined. Note that the differences are small and uniform. The
type p : PROP q is changed to p : Term3q and the function p is invoked before applying a predicate.

SML

declare infix (300 , "a");

declare infix (300 , "e");

declare infix (300 , "i");

declare infix (300 , "u");

HOL Constant

$a : Term3 → Term3 → BOOL

∀A B• A a B ⇔ ∀x• p A x ⇒ p B x
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HOL Constant

$e : Term3 → Term3 → BOOL

∀A B• A e B ⇔ ∀x• p A x ⇒ ¬ p B x

HOL Constant

$i : Term3 → Term3 → BOOL

∀A B• A i B ⇔ ∃x• p A x ∧ p B x

HOL Constant

$u : Term3 → Term3 → BOOL

∀A B• A u B ⇔ ∃x• p A x ∧ ¬ p B x

SML

declare alias("o", p$uq);

With these defined we can now produce a ‘mapkit’ for translating the syllogisms under this semantics.

SML

val s2 mapkit :mapkit = mkSimpMapkit p:Term3q [p$aq, p$eq, p$iq, p$uq];

4.6.3 Laws of Immediate Inference

The same tactic used for proof of the syllogisms in the previous model still works with this model
(with the new definitions), but does not prove the u-p syllogisms.

To obtain proofs of these other syllogisms we need to make use of the lemma we proved about p, p
∃ lemma. This we do by instantiating it for each of the variables which appear in the syllogisms and
supplying these for use in the proof.

SML

val syll tac2 =

(MAP EVERY (fn x => strip asm tac (∀ elim x p ∃ lemma))

[pM :Term3q, pP :Term3q, pS:Term3q, pA:Term3q, pB :Term3q])

THEN asm prove tac (map get spec [p$aq, p$eq, p$iq, p$uq]);

fun syll rule2 g = tac proof (g , syll tac2 );

SML

val e conv = ([pA e Bq], pB e Aq);

val i conv = ([pA i Bq], pB i Aq);
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SML

val e conv thm = save thm ("e conv thm", syll rule2 e conv);

val i conv thm = save thm ("i conv thm", syll rule2 i conv);

val e conv thm = A e B ` B e A : THM

val i conv thm = A i B ` B i A : THM

Simple Conversion In this version of the semantics, “a” and “o” conversion is neither provable nor
refutable. In the previous version, since the universe is a HOL type there is at least one individual,
and contradictory predicates are allowed, we can use these two to disprove the two conversions.
With this semantics there is no empty predicate, and we cannot know that there are two distinct
predicates.

SML

val sg 03 = ([pA a Bq], pB i Aq);

val sg 04 = ([pA e Bq], pB u Aq);

SML

val ai conv thm = save thm ("ai conv thm", syll rule2 sg 03 );

val eo conv thm = save thm ("eo conv thm", syll rule2 sg 04 );

val ai conv thm = A a B ` B i A : THM

val eo conv thm = A e B ` B o A : THM

Conversion Per Accidens

Obversion We have been unable to define a complementation operation and the obversions listed
by Strawson cannot even be expressed in this representation.

SML

val sg 09 = ([]:TERM list , pA a B ⇔ ¬ A u Bq);

val sg 10 = ([]:TERM list , pA e B ⇔ ¬ A i Bq);

val sg 11 = ([]:TERM list , p¬ (A a B ∧ A e B)q);

val sg 12 = ([]:TERM list , pA i B ∨ A u Bq);

val sg 13 = ([pA a Bq], pA i Bq);

val sg 14 = ([pA e Bq], pA u Bq);

SML

val sg 09 thm = save thm ("sg 09 thm", syll rule2 sg 09 );

val sg 10 thm = save thm ("sg 10 thm", syll rule2 sg 10 );

val sg 11 thm = save thm ("sg 11 thm", syll rule2 sg 11 );

val sg 12 thm = save thm ("sg 12 thm", syll rule2 sg 12 );

val sg 13 thm = save thm ("sg 13 thm", syll rule2 sg 13 );

val sg 14 thm = save thm ("sg 14 thm", syll rule2 sg 14 );

The Square of Opposition
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4.6.4 The Valid Syllogisms

The valid syllogisms have been described in Section 4.2.1.

All twenty four syllogisms are true under this semantics and have been proven. The actual theorems
are shown in the theory listing in Appendix A.5.

To implement a mapping corresponding to the above semantics we must create a matching mapkit
as follows:

SML

val mods mapkit:mapkit = mkSimpMapkit p:Term3q [p$aq, p$eq, p$iq, p$uq];

4.6.5 Proving the Syllogisms

The resulting translation yields goals which look exactly like the previous versions but have the
meanings defined in this context. They are proven and stored in the theory listing (see Appendix
A.5) by the following:

SML

proveSylls mods mapkit syll tac2 "" (syllogism data1 @ syllogism data2 @ syllogism data3 );

4.7 Existential Import in Universals

A more complete description of this interpretation, which is taken from Strawson [11] though not
endorsed by him, is that existential import in relation both to the subject and the complement of
the predicate, is present in universals and is absent from particular assertions. This combination is
though by Strawson to be unsatisfactory primarily I believe because of its poor correspondence with
any plausible account of the ordinary usage of the terms involved, however it appears also to be in
poor correspondence with Aristotle. The difficulties can be traced to Strawson’s acceptance of all
four obversions, which appear not to have been endorsed by Aristotle. These obversions lead to the
equivalence of contrapositives, and create a symmetry between subject and predicate in consequence
of which presuppositions or implications of non emptyness attach both to subject and predicate.

My aim here is to confirm what Strawson says about this, which is that it satisfies all 14 laws and 28
syllogisms. He writes as if it were the only interpretation of this kind (i.e. not involving existential
presuppositions rather than implications) which meet this requirement, on which I am sceptical but
have not come to a definite conclusion.

SML

open theory "aristotle";

force new theory "syllog5";

4.7.1 Semantics

Aristotle’s syllogistic logic is concerned with inferences between judgements considered as predica-
tions. A predication in Aristotle affirms a predicate of some subject, but by contrast with more recent
notions of predication the subject need not be an individual, the kinds of things which appear as
predicates may also appear as subjects, and the relationship expressed seems closer to a modern
eye to set inclusion than to what we now regard as predication. Since subject and predicate are for
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present purposes the same kind of thing, it is useful to have a name for that kind of thing, and I will
use the name property.

There are four kinds of predication which we have here to account for, which we will do by offering
definitions which provide a good model for syllogistic logic, i.e. one in which the syllogisms held to
be true by Aristotle are in fact true. Before providing these definitions we must decide what kind of
thing are the terms which are related by Aristotelian predication.

In HOL the most natural answer to this is “boolean valued functions” which are objects of type
p : ′a → BOOL q for some type of individuals which we can leave open by using the type variable
p : ′a q . This provides a simple model of Aristotle’s non-u-p syllogistic reasoning. Four of the
syllogisms which Aristotle considered valid fail under this conception of predicate, because among
the objects of type p : ′a→ BOOL q is the function pλx :′ a • F q which corresponds to a predicate
with empty extension and does not admit inference from the universal to the existential (unless the
universal is interpreted specially).

SML

declare type abbrev("Term2", [], p:′a → BOOLq);

4.7.2 Predication

“o” is already in use for functional composition, so we will use “u” instead and then use an alias to
permit us to write this as “o” (type inference will usually resolve any ambiguity).

To render these in HOL we first declare the relevant letters as infix operators:

They predication operators are defined as follows:

SML

declare infix (300 , "a");

declare infix (300 , "e");

declare infix (300 , "i");

declare infix (300 , "u");

HOL Constant

$a : Term2 → Term2 → BOOL

∀A B• A a B ⇔ (∀x• A x ⇒ B x ) ∧ (∃x• A x ) ∧ (∃x• ¬ B x )

HOL Constant

$e : Term2 → Term2 → BOOL

∀A B• A e B ⇔ (∀x• A x ⇒ ¬ B x ) ∧ (∃x• A x ) ∧ (∃x• B x )

HOL Constant

$i : Term2 → Term2 → BOOL

∀A B• A i B ⇔ (∃x• A x ∧ B x ) ∨ ¬ (∃x• A x ) ∨ ¬ (∃x• B x )
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HOL Constant

$u : Term2 → Term2 → BOOL

∀A B• A u B ⇔ (∃x• A x ∧ ¬ B x ) ∨ ¬ (∃x• A x ) ∨ ¬ (∃x• ¬ B x )

SML

declare alias("o", p$uq);

Note that as defined above these come in complementary pairs, a being the negation of o and e of i.
If we had negation we could manage with just two predication operators.

4.7.3 The Laws of Immediate Inference

Though in the source of this kind of “literate script” are to be found the scripts for generating and
checking the proofs of all the theorems presente, it will not be my practice to expose these scripts
in the printed version of the document. These scripts are not usually intelligible other than in that
intimate man-machine dialogue which they mediate, and sufficient knowledge for most purposes of
the structure of the proof will be found in the detailed lemmas proven (since the level of proof
automation is modest).

However, I will begin by exposing some of the scripts used for obtaining proofs of syllogisms in this
model, to give the reader an impession of the level of complexity and kind of obscurity involved in
this kind of formal work, I will not attempt sufficient explanation to make these scripts intelligible,
they are best understood in the interactive environment, all the scripts are available for readers who
want to run them.

Most readers are expected to skip over the gory details, the philosophical points at stake do not
depend on the details of the proofs.

Before addressing the laws of immediate inference 6 I devise a tactic for automating simple proofs in
this domain.

The following elementary tactic expands the goal by applying the definitions of the operators and
then invokes a general tactic for the predicate calculus. A rule is also defined using that tactic for
direct rather than interactive proof.

SML

val syll tac3 = asm prove tac (map get spec [p$aq, p$eq, p$iq, p$uq]);

fun syll rule3 g = tac proof (g , syll tac3 );

SML

val e conv thm = save thm("e conv thm", syll rule3 ([pA e Bq], pB e Aq));

val i conv thm = save thm("i conv thm", syll rule3 ([pA i Bq], pB i Aq));

Simple Conversion The following two theorems are obtained.

e conv thm = A e B ` B e A

i conv thm = A i B ` B i A

6in which I followed Strawson [11], though I can now cite Aristotle, Prior Analytic, Book 1, Part 2. [1]

42

http://texts.rbjones.com/rbjpub/philos/classics/aristotl/o3102c.htm


The following two theorems show that the other obvious conversions are also false. Note that the
theorems are not polymorphic, they are proven specifically for terms of type N → BOOL (though
any type of more than one element would do).

¬a conv thm = ` ∃ A B• A a B ∧ ¬ B a A

¬o conv thm = ` ∃ A B• A o B ∧ ¬ B o A

Conversion Per Accidens These come out OK.

SML

val ai conv thm = save thm ("ai conv thm", syll rule3 ([pA a Bq], pB i Aq));

val eo conv thm = save thm ("eo conv thm", syll rule3 ([pA e Bq], pB u Aq));

val ai conv thm = A a B ` B i A : THM

val eo conv thm = A e B ` B o A : THM

Obversion For these we need to define an operation of complementation on terms.

HOL Constant

Complement : Term2 → Term2

∀A α• (Complement A) α ⇔ ¬ (A α)

We will use “~” as a shorthand for “Complement”.

SML

declare alias ("∼", pComplementq);

ae obv thm = A a B ` A e ∼ B

ea obv thm = A e B ` A a ∼ B

io obv thm = A i B ` A o ∼ B

oi obv thm = A o B ` A i ∼ B

Contraposition and Inversion

4.7.4 The Square of Opposition

This is complete with this semantics.

ao contrad thm = ` A a B ⇔ ¬ A o B

ei contrad thm = ` A e B ⇔ ¬ A i B

ae contrar thm = ` ¬ (A a B ∧ A e B)

io subcont thm = ` A i B ∨ A o B

ai subalt thm = ` A a B ⇒ A i B

eo subalt thm = ` A e B ⇒ A o B
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4.7.5 The Syllogisms

First we make a mapkit.

SML

val s3mapkit :mapkit = mkSimpMapkit p:Term2q [p$aq,p$eq,p$iq,p$uq];

Then we apply this in generating and proving the syllogisms.

SML

proveGoals syll tac3 "" (mkGoals s3mapkit syllogism data1 );

proveGoals syll tac3 "" (mkGoals s3mapkit syllogism data2 );

proveGoals syll tac3 "" (mkGoals s3mapkit syllogism data3 );

Three of the 24 generally accepted syllogisms prove unsound under this semantics: Camenes, Dimaris
and Fresison.

¬ Fresison = ` ¬ (∀ P M S• P e M ∧ M i S ⇒ S o P)

¬ Dimaris = ` ¬ (∀ P M S• P i M ∧ M a S ⇒ S i P)

¬ Camenes = ` ¬ (∀ P M S• P a M ∧ M e S ⇒ S e P)

for the record the counterexamples which disprove these syllogisms are all combinations of unversal
(U) and empty (E) terms as follows.

P M S

Fresison U E U

Dimaris E U U

Camenes U U E

The theorems are also displayed in the theory listing in Appendix A.6

4.8 Existential Import in Affirmations

This is my present best attempt at an interpretation which correponds closely to Aristotle.

SML

open theory "aristotle";

force new theory "syllog6";

4.8.1 Semantics

Aristotle’s syllogistic logic is concerned with inferences between judgements considered as predica-
tions. A predication in Aristotle affirms a predicate of some subject, but by contrast with more recent
notions of predication the subject need not be an individual, the kinds of things which appear as
predicates may also appear as subjects, and the relationship expressed seems closer to a modern
eye to set inclusion than to what we now regard as predication. Since subject and predicate are for
present purposes the same kind of thing, it is useful to have a name for that kind of thing, and I will
use the name property.

There are four kinds of predication which we have here to account for, which we will do by offering
definitions which provide a good model for syllogistic logic, i.e. one in which the syllogisms held to
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be true by Aristotle are in fact true. Before providing these definitions we must decide what kind of
thing are the terms which are related by Aristotelian predication.

In HOL the most natural answer to this is “boolean valued functions” which are objects of type
p : ′a → BOOL q for some type of individuals which we can leave open by using the type variable
p : ′a q . This provides a simple model of Aristotle’s non-u-p syllogistic reasoning. Four of the
syllogisms which Aristotle considered valid fail under this conception of predicate, because among
the objects of type p : ′a→ BOOL q is the function pλx :′ a • F q which corresponds to a predicate
with empty extension and does not admit inference from the universal to the existential (unless the
universal is interpreted specially).

SML

declare type abbrev("Term2", [], p:′a → BOOLq);

4.8.2 Predication

“o” is already in use for functional composition, so we will use “u” instead and then use an alias to
permit us to write this as “o” (type inference will usually resolve any ambiguity).

To render these in HOL we first declare the relevant letters as infix operators:

They predication operators are defined as follows:

SML

declare infix (300 , "a");

declare infix (300 , "e");

declare infix (300 , "i");

declare infix (300 , "u");

HOL Constant

$a : Term2 → Term2 → BOOL

∀A B• A a B ⇔ (∀x• A x ⇒ B x ) ∧ ∃x• A x

HOL Constant

$e : Term2 → Term2 → BOOL

∀A B• A e B ⇔ (∀x• A x ⇒ ¬ B x )

HOL Constant

$i : Term2 → Term2 → BOOL

∀A B• A i B ⇔ (∃x• A x ∧ B x )

HOL Constant

$u : Term2 → Term2 → BOOL

∀A B• A u B ⇔ (∃x• A x ∧ ¬ B x ) ∨ ¬ (∃x• A x )
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SML

declare alias("o", p$uq);

Note that as defined above these come in complementary pairs, a being the negation of o and e of i.
If we had negation we could manage with just two predication operators.

4.8.3 The Laws of Immediate Inference

Though in the source of this kind of “literate script” are to be found the scripts for generating and
checking the proofs of all the theorems presente, it will not be my practice to expose these scripts
in the printed version of the document. These scripts are not usually intelligible other than in that
intimate man-machine dialogue which they mediate, and sufficient knowledge for most purposes of
the structure of the proof will be found in the detailed lemmas proven (since the level of proof
automation is modest).

However, I will begin by exposing some of the scripts used for obtaining proofs of syllogisms in this
model, to give the reader an impession of the level of complexity and kind of obscurity involved in
this kind of formal work, I will not attempt sufficient explanation to make these scripts intelligible,
they are best understood in the interactive environment, all the scripts are available for readers who
want to run them.

Most readers are expected to skip over the gory details, the philosophical points at stake do not
depend on the details of the proofs.

Before addressing the laws of immediate inference 7 I devise a tactic for automating simple proofs in
this domain.

The following elementary tactic expands the goal by applying the definitions of the operators and
then invokes a general tactic for the predicate calculus. A rule is also defined using that tactic for
direct rather than interactive proof.

SML

val syll tac6 = asm prove tac (map get spec [p$aq, p$eq, p$iq, p$uq]);

fun syll rule6 g = tac proof (g , syll tac6 );

val syll tac6b = REPEAT (POP ASM T ante tac)

THEN rewrite tac (map get spec [p$aq, p$eq, p$iq, p$uq])

THEN contr tac THEN asm fc tac[];

fun syll rule6b g = tac proof (g , syll tac6b);

SML

val e conv thm = save thm ("e conv thm", syll rule6 ([pA e Bq], pB e Aq));

val i conv thm = save thm ("i conv thm", syll rule6 ([pA i Bq], pB i Aq));

val e conv thm = A e B ` B e A : THM

val i conv thm = A i B ` B i A : THM

Simple Conversion

7in which I followed Strawson [11], though I can now cite Aristotle, Prior Analytic, Book 1, Part 2. [1]
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Conversion Per Accidens These are OK.
SML

val ai conv thm = save thm ("ai conv thm", syll rule6 ([pA a Bq], pB i Aq));

val eo conv thm = save thm ("eo conv thm", syll rule6 ([pA e Bq], pB u Aq));

val ai conv thm = A a B ` B i A : THM

val eo conv thm = A e B ` B o A : THM

Obversion For these we need to define an operation of complementation on terms.
HOL Constant

Complement : Term2 → Term2

∀A α• (Complement A) α ⇔ ¬ (A α)

We will use “~” as a shorthand for “Complement”.
SML

declare alias ("∼", pComplementq);

Only two of the obversions are valid.

val ae obv thm = A a B ` A e ∼ B : THM

val iu obv thm = A i B ` A o ∼ B : THM

4.8.4 The Square of Opposition

This is complete with this semantics.

ao contrad thm = ` A a B ⇔ ¬ A o B

ei contrad thm = ` A e B ⇔ ¬ A i B

ae contrar thm = ` ¬ (A a B ∧ A e B)

io subcont thm = ` A i B ∨ A o B

ai subalt thm = ` A a B ⇒ A i B

eo subalt thm = ` A e B ⇒ A o B

4.8.5 The Syllogisms

First we make a mapkit.
SML

val s6mapkit :mapkit = mkSimpMapkit p:Term2q [p$aq,p$eq,p$iq,p$uq];

Then we apply this in generating and proving the syllogisms.
SML

proveGoals syll tac6 "" (mkGoals s6mapkit syllogism data1 );

proveGoals syll tac6 "" (mkGoals s6mapkit syllogism data2 );

proveGoals syll tac6 "" (mkGoals s6mapkit syllogism data3 );

The theorems are also displayed in the theory listing in Appendix A.7
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4.9 Modal Syllogisms

The language of syllogistic logic does not have operators over propositions. The only operators are
the ones which apply predicates to subjects.

The modalities are perhaps therefore better thought of as kinds of judgements rather than as op-
erations on propositions. This would give us three kinds of judgement, which assert a predication
contingently, necessarily or possibly.

It is natural to consider the modal aspects in terms of possible worlds, and I will model it first in those
terms (not knowing whether this will provide a good model of Aristotle’s conception of modality).
The propositional functions could then be modelled as functions from possible worlds to non-empty
propositional functions.

The following first attempt at a modal syllogism is poorly representative of Aristotle, since, it appears,
considered two definitions of possibilty in terms of necessity, but based his work on modal syllogisms
primarily on one which does not correspond to the modern usage which is implicit in the treatment
given here. It is to be expected therefore that any examination of the results obtained here will differ
from Aristotle’s views substantially because of this different conception of necessity. In due course
I will add another kind of modal judgement which will be closer to the one principally investigated
by Aristotle.

Aristotle’s principle definition of ‘possibly P’ was:

not necessarily P and not necessarily not P

This corresponds more closely with the concept ‘contingent’ or its modern counterpart, ‘synthetic’
than with contemporary usage of ‘possible’, though the contemporary rendering which corresponds
to Aristotle’s other notion of possibility is a pre-Kripkean one in which we assume a fixed set of
possible worlds with modal operators quantifying over the whole.

I adapt the treatment of u-p syllogisms by treating predicates as parameterised by a possible world.

Rather than using a type variable (which is what I did for the two preceding treatments) I will use
two new type constants for individual aubstances and possible worlds.

It may suffice for the reader to refer directly to the theory listing in Appendix A.8.

SML

open theory "aristotle";

force new theory "modsyllog";

4.9.1 Semantics

The complexity required in the semantics of modal operators depends upon other features of the
language in which they occur. Because the language of the syllogism is very simple, having neither
propositional operators nor variables for individuals a very simple semantics may suffice. When we
come to consider the metaphyics there will be some increase in the complexity of the other features
of the language, and also a greater premium on getting the semantics to correspond intuitively with
the content of the metaphysics, but at this stage we will adopt the simplest semantic model which
seems likely to secure the results expressible in our restrictied language.

So are now talking about predicates parameterised by possible worlds. Furthermore, we will model
this with a fixed set to individuals, independent of the possible world. Possible worlds differ only in
the extension of predicates.
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First some new types, “I” for individual substances, “W” for possible worlds:

SML

new type ("I",0 );

new type ("W ",0 );

Then a type abbreviation for the predicates:

SML

declare type abbrev("MPROP", [], p:W → I × (I → BOOL)q);

4.9.2 Predication

To work with this new type for the predicates we define a function which will convert this kind of
predicate into the old kind, as follows:

HOL Constant

p : MPROP → (W → I → BOOL)

∀A• p A = λw x• let (v ,f ) = A w in x = v ∨ f x

The following principle can be proven (proof omitted):

p ∃ lemma =

` ∀ A w• ∃ v• p A w v

This principle is what we need to prove the u-p syllogisms.

We then proceed in a similar manner to the other models, using the function p to convert the new
kind of predicate into the old.

They predication operators are then defined. Note that the differences are small and uniform. The
type p : Term3 q is changed to p : MPROP q and the function p is invoked before applying a
predicate.

Now we think of a predication as being a set of possible worlds, or BOOLean valued function over
possible worlds.

SML

declare infix (300 , "a");

declare infix (300 , "e");

declare infix (300 , "i");

declare infix (300 , "u");

HOL Constant

$a : MPROP → MPROP → W → BOOL

∀A B w• (A a B) w ⇔ ∀x• p A w x ⇒ p B w x
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HOL Constant

$e : MPROP → MPROP → W → BOOL

∀A B w• (A e B) w ⇔ ∀x• p A w x ⇒ ¬ p B w x

HOL Constant

$i : MPROP → MPROP → W → BOOL

∀A B w• (A i B) w ⇔ ∃x• p A w x ∧ p B w x

HOL Constant

$u : MPROP → MPROP → W → BOOL

∀A B w• (A u B) w ⇔ ∃x• p A w x ∧ ¬ p B w x

SML

declare alias("o", p$uq);

We now have to define some additional constants for the forms of judgement, which will assert the
predications either of the actual world or of some or all possible worlds.

First I define a constant (rather loosely) to be the actual world:

HOL Constant

actual world : W

T

Then the two modal judgement forms:

HOL Constant

3 : (W → BOOL) → BOOL

∀s• 3 s ⇔ ∃w• s w

HOL Constant

2 : (W → BOOL) → BOOL

∀s• 2 s ⇔ ∀w• s w

Aristotle’s other notion of possibility is:

HOL Constant

3a : (W → BOOL) → BOOL

∀s• 3a s ⇔ ¬ (∀w• s w) ∧ ¬ (∀w• ¬ s w)
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Finally the non-modal judgements also need a judgement forming constant.
HOL Constant

� : (W → BOOL) → BOOL

∀s• � s ⇔ s actual world

Special difficulties are raised by reasoning with 3a and to help with these difficulties it is useful to
have negation as a kind of propositional operator in this modal logic.
SML

declare prefix (350 , "¬m");

HOL Constant

$¬m : (W → BOOL) → (W → BOOL)

∀x• ¬m x = λw• ¬ (x w)

Though this constant is distinct from the non-modal negation, we might as well drop the subscript
where no ambiguity arises.
SML

declare alias ("¬", p$¬mq);

4.9.3 Laws of Immediate Inference

Before looking at the conversions there are some general rules which may be helpful for us though
these probably are not in Aristotle.

23 thm = 2 X ` 3 X

2� thm = 2 X ` � X

�3 thm = � X ` 3 X

3a3 thm = 3a X ` 3 X

3a¬2 thm = 3a X ` ¬ 2 X

3a¬m thm = ` 3a X ⇔ 3a (¬m X )

e conv thm = � (A e B) ` � (B e A)

i conv thm = � (A i B) ` � (B i A)

2e conv thm = 2 (A e B) ` 2 (B e A)

2i conv thm = 2 (A i B) ` 2 (B i A)

3e conv thm = 3 (A e B) ` 3 (B e A)

3i conv thm = 3 (A i B) ` 3 (B i A)

3a e conv thm = 3a (A e B) ` 3a (B e A)

3a i conv thm = 3a (A i B) ` 3a (B i A)

3a ao conv thm = ` 3a (A a B) ⇔ 3a (A o B)

3a ei conv thm = ` 3a (A e B) ⇔ 3a (A i B)

23e conv thm = 2 (A e B) ` 3 (B e A)

2�e conv thm = 2 (A e B) ` � (B e A)
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Simple Conversion In this version of the semantics, “a” and “o” conversion is neither provable
nor refutable. In the previous version (the one not admitting the u-p syllogisms), since the universe
is a HOL type there is at least one individual, and contradictory predicates are allowed, we can use
these two to disprove the two conversions. With this semantics there is no empty predicate, and we
cannot know that there are two distinct predicates.

�ai conv thm = � (A a B) ` � (B i A)

�eo conv thm = � (A e B) ` � (B o A)

23ai conv thm = 2 (A a B) ` 3 (B i A)

23eo conv thm = 2 (A e B) ` 3 (B o A)

Conversion Per Accidens

4.9.4 The Valid Modal Syllogisms

The valid syllogisms have been described in Section 4.2.1.

All nineteen syllogisms supposed valid by Aristotle are true under this semantics and have been
proven. A further five8 have also been proven, giving a total of 24. When combinations of modal
operators are added to this the number gets quite large, so, rather than proving all the valid cases I
will prove sufficient to enable the rest to be automatically proven.

This will involve some theorems which are not strictly syllogistic.

The actual theorems proved are shown in the theory listing in Appendix A.8.

Because of the modal operators the generation of the syllogisms is more complicated. The generation
functions are adapted to allow a single modal operator to be applied to each of the premises and the
conclusion.

SML

fun mk pred q s p = mk app(mk app (q , s), p);

fun mk syll vt (a,b,c,d) (q1 , q2 , q3 ) =

([mk pred q1 a b, mk pred q2 c d ],

mk pred q3 (mk var("S", vt)) (mk var("P", vt)));

fun mk relt t = mk ctype ("→", [t , mk ctype ("→", [t , p:BOOLq])]);

fun mk syllp vt (s, n) =

mk syll vt (nth (n−1 ) (figurest vt)) (optrip from text (mk relt vt) s);

8Which I got from Strawson [11].
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SML

fun syll prove msp suff tac (a,n) =

let val thm = tac proof (msp (a,n), tac) handle => t thm

in (concat [a, suff ], thm)

end ;

fun syll prove and store msp suff tac (a,n) =

let val res = syll prove msp suff tac (a,n);

val = save thm res

in res

end ;

SML

fun map goal f (st , t) = (map f st , f t);

fun mk modt vt = mk ctype ("→", [vt ,

mk ctype ("→", [vt , (mk ctype ("→", [p:W q, p:BOOLq]))])]);

fun mk modsyll vt (s, n) =

mk syll vt (nth (n−1 ) (figurest vt)) (optrip from text (mk modt vt) s);

fun modgoal (mo1 , mo2 , mo3 ) ([p1 ,p2 ], c) =

([mk app (mo1 , p1 ), mk app (mo2 , p2 )], mk app (mo3 , c));

fun mk modsyllp mot p = modgoal mot (mk modsyll p:MPROPq p);

This defines the function mk modsyllp whose type is shown:

val mk modsyllp = fn: TERM ∗ TERM ∗ TERM −> string ∗ int −> TERM list ∗ TERM

in which the TERM parameters are modal operators the next argument is a pair consisting of a
string which is the name of a syllogism and a number which is the number of the figure. The result
is a goal for proof.

An example of its use is:

SML

mk modsyllp (p2q,p�q,p3q) ("Barbara", 1 );

which yields:

val it = ([p2 (M a P)q, p2 (S a M )q], p2 (S a P)q) : TERM list ∗ TERM

4.9.5 General Results

The logic of the modal operators is completely independent of the logic of the syllogism. The relevant
results can be stated and proven in HOL concisely, but these statements are not in the language of
the syllogism.
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There are in effect just seven modal truths, each of which appears in 24 forms, one for each of the
valid non-modal syllogisms.

Rather than proving all 192 theorems (counting the non-modal truths in this modal model), I prove
the eight proformas expressed in HOL. From these eight all 192 theorems can be obtained by proving
(a special form of) one of the valid syllogisms and instantiating one of the general modal rules using
it.

I omit the details of the metalanguage scripts which automate all this.

The following lists the valid modal forms. In each tuple the three entries give the modalities of the
first and second premise and the conclusion respectively. Taking any valid syllogism and applying
modal operators using one of the patterns in this table will give a valid modal syllogism.

SML

val mod gen params =

[(p2q, p2q, p2q),

(p2q, p2q, p3q),

(p2q, p2q, p�q),

(p3q, p2q, p3q),

(p2q, p3q, p3q),

(p2q, p�q, p�q),

(p�q, p2q, p�q),

(p�q, p�q, p�q)];

The set of general HOL theorems which facilitate the proofs of these modal syllogisms is as follows:

ProofPower Theorems

val mod gen thms =

[` ∀ FP SP CS• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ 2 SP ⇒ 2 CS ,

` ∀ FP SP CS• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ 2 SP ⇒ 3 CS ,

` ∀ FP SP CS• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ 2 SP ⇒ � CS ,

` ∀ FP SP CS• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 3 FP ∧ 2 SP ⇒ 3 CS ,

` ∀ FP SP CS• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ 3 SP ⇒ 3 CS ,

` ∀ FP SP CS• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ � SP ⇒ � CS ,

` ∀ FP SP CS• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ � FP ∧ 2 SP ⇒ � CS ,

` ∀ FP SP CS• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ � FP ∧ � SP ⇒ � CS ]

: THM list

In the above theorems the variables FP, SP, CS, stand respectively for first premise, second premise,
conclusion of syllogism and range over modal propositions (which have type p :W → BOOLq).

4.9.6 Proving the Syllogisms

I then prove the 24 non-modal syllogisms in the required form and infer forward using the above 8
theorems to obtain a total of 192 theorems true in this model of the modal syllogism.

Details of scripts omitted.

The automated proof the yields the expected 192 modal syllogisms, of which we display only the
first few (and do not save them in the theory):
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val valid G modsylls =

[� (P a M ), � (M e S) ` � (S o P), � (P a M ), 2 (M e S) ` � (S o P),

2 (P a M ), � (M e S) ` � (S o P), 2 (P a M ), 3 (M e S) ` 3 (S o P),

3 (P a M ), 2 (M e S) ` 3 (S o P), 2 (P a M ), 2 (M e S) ` � (S o P),

2 (P a M ), 2 (M e S) ` 3 (S o P), 2 (P a M ), 2 (M e S) ` 2 (S o P),

� (P a M ), � (S e M ) ` � (S o P), � (P a M ), 2 (S e M ) ` � (S o P),

2 (P a M ), � (S e M ) ` � (S o P), 2 (P a M ), 3 (S e M ) ` 3 (S o P),

3 (P a M ), 2 (S e M ) ` 3 (S o P), 2 (P a M ), 2 (S e M ) ` � (S o P),

2 (P a M ), 2 (S e M ) ` 3 (S o P), 2 (P a M ), 2 (S e M ) ` 2 (S o P),

� (P e M ), � (S a M ) ` � (S o P), � (P e M ), 2 (S a M ) ` � (S o P),

2 (P e M ), � (S a M ) ` � (S o P), 2 (P e M ), 3 (S a M ) ` 3 (S o P),

...

SML

length valid G modsylls;

val it = 192 : int

4.10 Demonstrative Truth

An important part of Aristotle’s philosophy is his concept of demonstrative science.

A proof is demonstrative if it proceeds from first principles and is deductively sound. Truths estab-
lished in this way are necessary because the first principles must be essential and hence necessary
and sound deduction preserves necessity.

If we understand Hume’s “intuitively certain” as a reference to the criteria for Aristotle’s first prin-
ciples, and understand Hume as using the term ‘demonstrative’ in the same sense as Aristotle, then
it is plausible that Hume’s “truths of reason” are the same as Aristotle’s truths of demonstrative
science.

It is tempting to use the word demonstrative for ‘truths of reason’ though in Aristotle and Hume the
first principles do not count as demonstrable. This follows modern logic in using concepts such as
‘theorem’ and ‘valid sentence’ which apply to logical axioms as well as results deduced from them. It
is tempting also to identify these concepts with the concept of analyticity. This last point is aided by
the connection in Aristotle between essential truth (which must be posessed by the first principles)
and definition, which seems close, and which distinguishes his accidental predications from essential
predications. A weak point in this is the question of the first principles of the various sciences, and
the doubts one can reasonably have about whether Aristotle’s essential truth must be analytic.

However, we now expect deductive systems to be incomplete, and hence that not all analytic proposi-
tions are provable. However, the incompleteness may arise from adopting a fixed set of first principles,
rather from incompleteness of deduction. In this case, the availability of an open set of first princi-
ples makes completeness in principle possible. To sustain this principle in relation to set theory, for
example, we would have to regard ourselves as having some definition of the concept of set relative
to which the present axioms (say those of ZFC) are essential, and relative to which extensions as
necessary to prove progressively more difficult results can also be seen to be essential. This is not
entirely implausible. This is close to the rationale for large cardinal axioms. The informal description
of the cumulative hierarchy as the domain of set theory involves the idea that the construction of
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well-founded sets from other well-founded sets of lesser rank proceeds indefinitely, and hence any
axiom which states that a set of a certain rank exists must be true.

Does formal modelling contribute anything to this discussion?

The above discussion involves ideas which belong to Aristotle’s metaphysics rather than his logic.
So a fuller formal analysis of these ideas will have to wait until we get to the Metaphysics.

However some aspects may be considered here. For example, we need to know that from necessary
premises only necessary premises are derivable by syllogisms.

5 Metaphysics (II)

In this section I offer a single model integrating Modal Syllogisms with the distinction between
essential and accidental predication.

My interest is primarily in the extent to which may be found in Aristotle’s philosophy a precursor of
Hume’s fork or the modern distinctions between analytic and synthetic or necessary and contingent
propositions. I see three Aristotelian ideas which have some relevance.

• the distinction between necessary and contingent propositions

• the distinction between essential and accidental predication

• the notion of demonstrability

It is only when we combine the syllogism with the metaphyics that we can explore the relationship
between these various concepts.

I will give higher priority in this model to good structure while remaining faithful to Aristotle. It
is not the purpose of this model to further investigate the position in relation to Aristotle of Grice,
Codd or Speranza.

I have constructed this model to give a good correspondence between necessary truth and essential
predication. If the model is successful in that respect it remains to consider whether it is consistent
with the philosophy of Aristotle. I do not know whether Aristotle talked about the relationship
between essence and necessity.

I also hope that the model may help to explore the question of whether demonstrable truth, or rather
the truths which are either “intuitively or demonstrably certain” to use Hume’s words, coincides with
necessary truth.

SML

open theory "aristotle";

force new theory "syllmetap";

5.1 Semantics

In my first metaphysical model the main question in relations to subject matter was “what are
subjects and predicates”, to which a model of Aristotelian categories gives an answer. The intro-
duction of modality makes it necessary to consider something like possible worlds. These were left
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uninterpreted in the modal treatment of the syllogism, but now that we expose the distinction be-
tween essential and accidental predication is it desirable to identify possible worlds with that which
is accidental.

What is accidental is the extension of individual attributes, and this gives our concept of possible
world.

It is convenient at this point to consider the question of extensionality.

According to Grice/Codd/Speranza, essential predicates are extensional:

A izz B ∧ B izz A ⇒ A = B

but I know no reason to suppose that accidental predication is, and it seems counter-intuitive that it
should be. Consequently the modelling of an accidental predicate using a BOOLean valued function
in HOL (in which functions are extensional) is inappropriate. So I will separate out the extension
from the individual attribute.

Individuals belong to categories, and are collected together in groups which determine the nature of
essential predication within that category. The simplest way of getting the right structure is to use
some type of tags to differentiate individuals within a category, using the same collection of tags in
each category (with the unintended effect of ensuring that each category has the same number of
individuals, which I hope will have a significant effect on the resulting theory). The individuals are
then represented by an ordered pair consisting of a category and a tag.

For most purposes the number of categories is not important, though we must have a category of
substances, so a completely undifferentiated new type might have sufficed. However, it turns out
that some things don’t work, and its useful to have at least one non-substantial category in order to
prove that they don’t work. So I introduce a new type of non-substantial (attribute) categories (so
we get at least one) and then make the type of categories by adding one more.

SML

new type ("ACAT", 0 );

new type ("TAG", 0 );

SML

declare type abbrev("CAT", [], p:ONE+ACATq);

One of the categories will be the category of substance, it doesn’t matter which one but we might
as well use the odd One on the left of the sum (so you can test for substance using IsL).

HOL Constant

Category of Substance : CAT

Category of Substance = InL One

An individual will therefore be modelled as an ordered pair consisting of a tag and a category. This
is captured by the following type abbreviation.

SML

declare type abbrev ("I ", [], p:CAT × TAGq);

A possible world is then an assignment of extensions to individual attributes, where an extension is
a set of particulars. Since we only want individual attributes, we do not use type I for the domain.
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Particulars always belong to the category of substance, so we only need a set of tags in the result,
the category is implicit.

SML

declare type abbrev ("W ", [], p:ACAT × TAG → TAG SETq);

This does include an assignement of extensions to particulars, but this plays no role, only intefering
with the identity criteria for possible worlds, which do not feature in the theory.

I need to distinguish one possible world which is the actual world:

HOL Constant

actual world : W

T

Since the individuals are pairs it might be handy to have appropriately named projection funtions
which extract the two components:

HOL Constant

category : I → CAT ;

tag : I → TAG

∀ct• category ct = Fst ct

∧ tag ct = Snd ct

Finally the question of what subjects and predicates are can be determined. I will call them TermMs
and they are either a set of particulars or a set of attributes. To allow for complementation I add a
boolean component, which if true indicates a complement.

The sets in this case must be non-empty if we are to retain the u-p syllogisms (in default of a different
universal). The method used in my model of the modal syllogism in Section 4.9 will not do here,
because (at least according to Code) we need an extensionality result, so I have instead introduced
9 for this purpose a new type (NESET) of non-empty sets which will give us both the u-p syllogisms
and extensionality (for essential predication, not for accidental predication).

A term is therefore modelled as either a non-empty set of individual substances or a non-empty set
of individual attributes.
SML

declare type abbrev ("TermM", [], p:(CAT × TAG NESET )q);

HOL Constant

mk SubsTerm : TAG P → TermM

∀s• mk SubsTerm s = (Category of Substance, NeSet s)

HOL Constant

mk AttrTerm : CAT × TAG P → TermM

∀s• mk AttrTerm s = (Fst s, NeSet (Snd s))

9The definition has been placed in a separate document, [7].

58



It may be useful to have a name for the predicate encompassing all substance.

HOL Constant

Substance : TermM

Substance = mk SubsTerm Universe

5.2 Predication

The syllogism comes with four kinds of predication (a, e, i, o), and the metaphysics with three (izz,
hazz and izz or hazz). Combining these would give twelve combinations.

To simplify a bit I will separate out the quantifier but defining All and Some appropriately, and
provide a postfix negator for izz an hazz.

I will then treat the modal operators as operators over propositions, and introduce the syllogism as
a kind of judgement.

The type of the primitive copulas is:

SML

declare type abbrev("COPULA", [], p:I → TermM → (W → BOOL)q);

The first parameter is an individual substance or attribute rather than a TermM, the quantifying
operator will arrange for each of the relevant individuals or attributes to be supplied.

SML

declare type abbrev ("MPROP", [], p:W → BOOLq);

Propositions

Complementation The distinction between affirmative and negative is achieved by a postfix
negation so we can say “izz not”, “hazz not” or “are not”.

SML

declare postfix (100 , "not");

HOL Constant

$not : COPULA → COPULA

∀pred• pred not = λpa t w• ¬ pred pa t w

Quantifiers The following function is used by both quantifiers to check if something is in the range
of quantification.

Think of a TermM as denoting a set of individuals, this is a test for membership of that set. The
complications are because substances and attributes have different types in this model.

SML

declare infix (300 , "InTermM ");
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HOL Constant

$InTermM : I → TermM → BOOL

∀ c1t c2ts • c1t InTermM c2ts ⇔ Fst c1t = Fst c2ts ∧ Snd c1t ∈ PeSet (Snd c2ts)

interm ∃ lemma =

` ∀ t• ∃ j• j InTermM t

We then use that membership test in defining the quantifiers. The quantifiers expect to be supplied
with a copula and a term. The quantifier then predicates using the copula the term of everything
or something in the domain of quantification (which is the subject term). The copulas are defined
below.
HOL Constant

All : TermM → (I → TermM → MPROP) → TermM → MPROP

∀ s r p• All s r p = λw• ∀z• z InTermM s ⇒ r z p w

HOL Constant

Some : TermM → (I → TermM → MPROP) → TermM → MPROP

∀ s r p• Some s r p = λw• ∃z• z InTermM s ∧ r z p w

Predicators For essential predication it is necessary that the individual and the predicate are
both of the same category and then reduces under our model to set membership. In effect. since
the non-substantial individuals are tagged with their category, we need only deal separately with the
distinction between substantial and non-substantial and the set inclusion will ensure a match in the
non-substantial categories.

HOL Constant

izz : I → TermM → MPROP

∀ j t• izz j t = λw• j InTermM t

For accidental predication the subject term must be substantial and the predicate may not be. We
then need some member of the predicate to be attributable to the substance.

HOL Constant

hazz : I → TermM → MPROP

∀ c1t c2ts• hazz c1t c2ts = λw•
Fst c1t = Category of Substance

∧ ¬ Fst c2ts = Category of Substance

∧ (∃b• b ∈ PeSet (Snd c2ts) ∧ (Snd c1t) ∈ w (OutR(Fst c2ts), b))

not izz and hazz lemma1 =

` ∀ pa t w• ¬ (izz pa t w ∧ hazz pa t w)
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HOL Constant

are : I → TermM → MPROP

∀ pa t• are pa t = λw• izz pa t w ∨ hazz pa t w

are izz neq hazz lemma =

` ∀ pa t w• are pa t w ⇔ ¬ (izz pa t w ⇔ hazz pa t w)

All are izz or hazz lemma =

` ∀ A B w• All A are B w ⇔ All A izz B w ∨ All A hazz B w

Some are izz or hazz lemma =

` ∀ A B w• Some A are B w ⇔ Some A izz B w ∨ Some A hazz B w

All are not lemma =

` ∀ A B w • All A (are not) B w ⇔ All A (izz not) B w ∧ All A (hazz not) B w

Modal Operators In this model the model operators are operators over propositions.

HOL Constant

3 : MPROP → MPROP

∀p• 3 p = λw• ∃w ′• p w ′

HOL Constant

2 : MPROP → MPROP

∀p• 2 p = λw• ∀w ′• p w ′

5.3 Propositional Operators

Though the truth functional propositional operators do not feature in the syllogism it is nevertheless
useful to have them in giving a full account of Aristotle’s logic and they are therefore here defined.

That these propositional operators are “truth functional”, in a context in which propositions are not
regarded as denoting truth values requires a little explanation perhaps. Our propositions are families
of truth values indexed by possible worlds, i.e. functions from possible worlds to truth values, or
in the context of a two valued logic (which Aristotle’s seems to be), sets of possible worlds. In this
context the usual truth functional operators can be expressed by mapping the usual operator over
the set of possible worlds, i.e. the result in every possible world is the result of applying the truth
functional operator to the values of the propositions in that possible world. These also correspond
to the obvious set theoretic operation if the propositions are thought of as sets of possible worlds,
i.e. intersetion for conjunction, complementation for negation.

The symbols for the operators are already in use, so we define the operations using decorated variants
of the symbols and use an alias to allow the undecorated symbol to be used.
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HOL Constant

¬a : MPROP → MPROP

∀p• ¬a p = λw• ¬ (p w)

SML

declare alias ("¬", p¬aq);

SML

declare infix (220 , "∧a");

HOL Constant

$∧a : MPROP → MPROP → MPROP

∀p q• (p ∧a q) = λw• (p w) ∧ (q w)

SML

declare alias ("∧", p$∧aq);

SML

declare infix (210 , "⇒a");

HOL Constant

$⇒a : MPROP → MPROP → MPROP

∀p q• (p ⇒a q) = λw• p w ⇒ q w

SML

declare alias ("⇒", p$⇒aq);

SML

declare infix (200 , "⇔a");

HOL Constant

$⇔a : MPROP → MPROP → MPROP

∀p q• (p ⇔a q) = λw• p w ⇔ q w

SML

declare alias ("⇔", p$⇔aq);
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5.4 Quantification

The Grice/Code analysis makes use of quantifiers, particularly existential quantification. To verify
the formulae in this context we therefore need to define modal version of the quantifiers.

SML

declare binder "∀a";

HOL Constant

$∀a : (TermM → MPROP) → MPROP

∀mpf • $∀a mpf = λw• ∀t• mpf t w

SML

declare alias ("∀", p$∀aq);

SML

declare binder "∃a";

HOL Constant

$∃a : (TermM → MPROP) → MPROP

∀mpf • $∃a mpf = λw• ∃t• mpf t w

SML

declare alias ("∃", p$∃aq);

5.5 Judgements

I’m not yet clear what to offer here, so for the present I will define two kinds of sequent, which will
be displayed with the symbols � asnd  . the former being a kind of contingent material implication
and the latter a necessary implication.

Both form of judgement seem suitable for expressing the rules of the syllogism at first glance but
which can also be used for conversions.

The first expresses a contingent entailment, that if some arbitrary finite (possibly empty) collection
of premises are contingently true, then some conclusion will also be true. Since the consequence
is material, and the premisses might be contingent, the conclusion might also be contingent. One
might hope that if the rules of the syllogism are applied and the premises are necessary, then so will
be the conclusions.
SML

declare infix (100 , "�");

HOL Constant

$� : MPROP LIST → MPROP → BOOL

∀lp c• lp � c ⇔ Fold (λp t• p actual world ∧ t) lp T ⇒ c actual world
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This one says that in every possible world the premises entail the conclusion (still material).

SML

declare infix (100 , "");

HOL Constant

$ : MPROP LIST → MPROP → BOOL

∀lp c• lp  c ⇔ ∀w• Fold (λp t• p w ∧ t) lp T ⇒ c w

In the present context the choice between the two is probably immaterial, since we know no more
about the actual world than any other, so anything that we can prove to be true contingently, we
can also prove to be true necessarily.

5.6 Conversions

Premisses, their Modes and Conversions See: Prior Analytics Book 1 Part 2 Paragraph 2.

First then take a universal negative with the terms A and B.

If no B is A, neither can any A be B. For if some A (say C) were B, it would not be true
that no B is A; for C is a B.

But if every B is A then some A is B. For if no A were B, then no B could be A. But we
assumed that every B is A.

Similarly too, if the premiss is particular. For if some B is A, then some of the As must be
B. For if none were, then no B would be A. But if some B is not A, there is no necessity
that some of the As should not be B; e.g. let B stand for animal and A for man. Not
every animal is a man; but every man is an animal.

These work out fine for izz, so I will do those first, and then show that they fail for hazz and is.

The first and third conversions are most useful when expressed as an equation, since our proof system
is based primarily on rewriting using equations.

izz not lemma =

` All B (izz not) A = All A (izz not) B

some izz lemma =

` Some B izz A = Some A izz B

These we also supply as our Aristotelian judgements, together with the second which does not give
an equation. The second conversion embodies the u-p syllogisms.

izz conv1 = `
[All B (izz not) A]  All A (izz not) B

izz conv2 = `
[All B izz A]  Some A izz B

izz conv3 = `
[Some B izz A]  Some A izz B
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Now we look at hazz.

The following theorems state that the two equational conversions are both false for hazz.

not hazz not lemma =

` ¬ (∀ A B• All B (hazz not) A = All A (hazz not) B)

not some hazz lemma =

` ¬ (∀ A B• Some B hazz A = Some A hazz B)

Aristotle’s second conversion also fails for hazz, because in incorporates an application of the third
in effect. If we simplify by removing the final flip we get:

hazz conv2 =

` [All A hazz B ]  Some A hazz B

Since is is the conjunction of izz and hazz it is likely that it would yeild similar results to hazz.

5.7 Modal Conversions

Prior Analytics Book 1 Part 3 See: Universal and Possible Premisses and their Conversions.

These are the conversions in relation to necessity and possibility described by Aristotle:

1. If it is necessary that no B is A, it is necessary also that no A is B.

2. If all or some B is A of necessity, it is necessary also that some A is B.

3. If it is possible that all or some B is A, it will be possible that some A is B.

4. and so on

So in this section Aristotle only offers variants of the previous conversions with either “possible” or
“necessary” attached to both premiss and conclusion.

We can prove generally that modal operators can be introduced into a conversion:

3 conv =

` [P ]  Q ⇒ [3 P ]  3 Q

2 conv =

` [P ]  Q ⇒ [2 P ]  2 Q

2 izz thm = ` [2 (All A izz B)] � All A izz B

2 hazz thm = ` [2 (All A hazz B)] � All A izz B

izz 2 thm = ` [All A izz B ] � 2 (All A izz B)

not 2 hazz thm = ` [] � (¬ 2 (All A hazz B))

2 izz thm2 = ` [2 (All A izz B)]  All A izz B

2 hazz thm2 = ` [2 (All A hazz B)]  All A izz B

izz 2 thm2 = ` [All A izz B ]  2 (All A izz B)

not 2 hazz thm2 = ` []  (¬ 2 (All A hazz B))
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2 hazz thm is a bit odd. Really what I wanted to prove was that no accidental predication is
necessary, but I have no negation in the syllogism, so I just proved that if an accidental predication
were necessary then it would be essential. Then I went back and defined negation so permitting a
direct denial that any accidental predication is necessary.

There are many theorems which one would naturally prove at this point, to facilitate further proofs
and proof automation, which are not expressible syllogistically. Proof automation depends heavily
on the demonstration of equations, so that proof may proceed by rewriting. But syllogisms are not
suitable for this.

The natural way to proceed in such a case is to continue in this theory doing things which support
proofs of syllogisms without being restrained to syllogisms, and then to have a separate theory in
which the syllogistic claims are presented. Some reflection is desirable on what the philosophical
objectives are and what course will best contribute to those purposes.

Here are some general modal results which I have not noticed in Aristotle as yet.

2 elim thm =

` [2 P ] � P

3 intro thm =

` [P ] � 3 P

2 3 thm =

` [2 P ] � 3 P

5.8 Other Conversions

The following conversions relate to the square of opposition, but I have not yet discovered where
they appear in Aristotle. They work for all the copulas, so I have used a free variable for the copulas.

¬ All conv thm =

` (¬ All A cop B) = Some A (cop not) B

¬ All not conv thm2 =

` (¬ All A (cop not) B) = Some A cop B

¬ Some conv thm =

` (¬ Some A cop B) = All A (cop not) B

¬ Some not conv thm =

` (¬ Some A (cop not) B) = All A cop B

They are contraries out of Aristotles square of opposition

Normally theorems like this would be proved closed, but it looks more Aristotelian without the
quantifiers and we can imagine that they are schemata. To use them it will usually be desirable to
close them, which is easily done, e.g.:

SML

all ∀ intro ¬ Some not conv thm;

ProofPower output

val it = ` ∀ A cop B• (¬ Some A (cop not) B) = All A cop B : THM
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5.9 Syllogisms for Essential Predication

Though the usual syllogisms are not valid for predication in general, the problems are confined to
accidental predication. We can, by methods similar to those used above obtain automatic proofs of
the 24 valid syllogisms restricted to essential predication.

The details are omitted, but the 24 izz syllogisms have been proven and stored in the theory, see:
Appendix A.9.

5.10 Some Accidental Syllogisms

5.11 Grice and Code

I now review the Grice/Code analysis under the revised interpretation of izz and hazz.

On my first attempt I did not notice till rather late that the material covered both Aristotle’s and
Plato’s metaphysics, which are not wholly compatible. To do this using only conservative extension
we have to use a different context for the parts of the treatment which might be incompatible. Three
new theories will therefore be introduced, respectively covering:

gccom material common to Aristotle and Plato

gcaris material specific to Aristotle

gcplato material specific to Plato

All three theories are in the context of theory syllmetap which is an integrated model of both the
modal syllogism and the metaphysics, incorporating the u-p syllogisms, which makes slightly more
sense in the context of the metaphysics than otherwise.

5.11.1 Common Material

SML

force new theory "gccon";

The following results are now provable:

FP1 = ` []  All A izz A

FP2 = ` [All A izz B ; All B izz C ]  All A izz C

FP3 = ` [All A hazz B ]  ¬ (All A izz B)

FP4a = ` [All A hazz B ; All B izz C ]  All A hazz C

FP4 = ` []  All A hazz B ⇔ (∃a C• All A hazz C ∧ All C izz B)

These are not very Aristotelian. It would seem more Aristotelian to have:

FP3b =

` [All A hazz B ]  Some A (izz not) B

The above rendition of FP4 may not be true to the intention of Code. I possibly he might have
intended that C be an individual.
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To prove that more interesting result I need to define “individual”.

HOL Constant

individual : TermM → BOOL

∀A• individual A ⇔ ∃b• Snd A = NeSet{b}

Since the above is a regular predicate, we need something to convert an ordinary proposition into a
modal proposition to use it in the context of modal syllogisms.

HOL Constant

Mp : BOOL → MPROP

∀p• Mp p = λw• p

The revised principle is then:

FP4b = ?` []  (All A hazz B ⇔ ∃ C• Mp(individual C ) ∧ (All A hazz C ) ∧ (All C izz B))

However, this is false in our model, since there need be no single attribute which is posessed by every
substance which izz A. Consider the claim that all paints have colour. This may be true even if there
is no individual colour which every paint hazz. However, if this stronger claim is not what Code
intended, then what did he mean? Surely not the theorem I actually proved as FP4, since that is
too trivial to be worth mentioning.

If we require A to be an individual we get a result:

FP4c =

` [Mp (individual A)]

 (All A hazz B

⇔ (∃ C• Mp (individual C ) ∧ All A hazz C ∧ All C izz B))

HOL Constant

Individual : TermM → MPROP

∀A• Individual A = 2 ∀a B• All B izz A ⇒a All A izz B

Now on the face of it, in the context of our present model, the modal operator in this definition is
irrelevant. This because all essential predication is necessary.

The following theorem confirms that intuition.

individual lemma1 =

` ∀ A• Individual A = (∀ B• All B izz A ⇒ All A izz B)

We can also show that the Code definition is equivalent to our own:

individual lemma2 =

` Individual A = Mp (individual A)
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In addition to the apparently spurious invocation of necessity, the Code definition depends upon the
u-p syllogisms.

Our own primitive definition is couched in terms of the underlying model, and so in terms of that
model we would have to regard as a primitive rather than a defined concept (this may be the best
way to think of it).

Now we come to the Code definition of particular:

HOL Constant

particular : TermM → MPROP

∀A• particular A = 2 ∀a B• All B are A ⇒a All A izz B ∧a All B izz A

A particular is an individual substance and one would have thought that a definition closer to saying
that directly might have been a good idea. In this case in our model the modal operator is not
redundant, because without it the definiens would be true if A were an individual attribute which
contingently has an empty extension (i.e. is true of no substance), which is possible in this model.
However, this cannot be true of necessity unless A is substantial.

Code might have used a similar device to define substantial:

HOL Constant

substantial : TermM → MPROP

∀A• substantial A = 2 ∀a B• All B are A ⇒a All B izz A

and then defined a particular as a substantial individual. Alternatively substantial might be taken as
primitive to avoid the use of a modal operator. Again, Code’s definition relies on the u-p syllogisms.

Code’s definition of universal is:

HOL Constant

universal : TermM → MPROP

∀A• universal A = 3 ∃a B• All B are A ∧a ¬a (All A izz B ∧a All B izz A)

I think the intension is that a universal is anything except a particular, in which case that would be
a better way to define it. However, in this model, this definition will be true of any non-individual,
unless the p3 q is changed to p2 q .

Ontological Theorems T1-T3 are essentially redundant definitions so I will omit them and not
use the additional vocabulary on this pass.

6 Conclusions

7 Postscript

These are the kinds of thing which might happen in future issues of this document:
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• If I get constructive feedback (pointing out errors counts, telling me its a waste of time doesn’t,
explaining bits of Aristotle I’m getting wrong would be great) then I will probably do something
about it.

• There is a good chance I will get to know something about what Aristotle really said and make
improvements arising from this. In that case I would like to put some hyperlinks into my online
hypertext of Aristotle’s relevant works, connecting the specific features of the model with the
passages in Aristotle which they reflect.

• I am interested in the methods, and I may spend more time trying to describe them in a way
which might be intelligible to philosophers.

• If this ever becomes a good approximation to Aristotle’s position there would then be some
philosophical analysis of the metaphysics (by contrast with a purely logical analysis), and
somewhere there are points to be made about the kind of analysis which I am aiming for.

There are three stages I envisage in the process of getting philosophical insights from this kind of
work:

formal modelling I now have a series of models. Of the Aristotelian Syllogism the final model
(Sections 4.8, A.7) may well be good enough, but the subsequent models (modal syllogisms
and the metaphysics) still follow the same approach as earlier models of the syllogism which I
no longer consider ideal, notably the presumption against empty predicates. I therefore have
in mind that Sections 4.9, and 5 will be brought into line with the treatment in Section 4.8.
I also regret in my treatment of the modal syllogisms treating the modal operators as forms
of judgement, so I might recant on that and make them propositional operators. When those
changes are done a closer scrutiny of the model of the metaphysics will be needed, after which
I can re-examine the Grice/Code material and see whether I can now make any better sense of
it, as well as considering the real current target of my investigation, which is the comparative
analysis of Plato and Aristotle on the nature of key concepts such as necessity and contingency,
essential and accidental predication, and demonstrative truth.

model verification The models need checking against Aristotle’s writings.

formal analysis Further formal work is needed to come to an understanding of these models.

philosophical analysis After the models are formulated and verified, and formal analysis has deep-
ened our undertanding of these models, we may then be in a position to obtain some interesting
philosophical insights.
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A.1 The Theory ariscat

Parents

aristotle

Constants

CatSubs CAT
Cat CATM → CAT
IndvSet CATM → ISUB P
AttrSet CATM → (ISUB → BOOL) P
CatSet CATM → (ISUB + (ISUB → BOOL)) P
$izz (CATM , BOOL) BR
$hazz (CATM , BOOL) BR
$essentially predicable of

(CATM , BOOL) BR
$accidentally predicable of

(CATM , BOOL) BR
$predicable of

(CATM , BOOL) BR
individual CATM → BOOL
particular CATM → BOOL
universal CATM → BOOL
SomeThing CATM → BOOL
form CATM → BOOL

Types

ACAT
ISUB

Type Abbreviations

CATM CATM
CAT CAT

Fixity

Right Infix 300 :
accidentally predicable of izz
essentially predicable ofpredicable of
hazz
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Definitions

CatSubs ` CatSubs = InL One
Cat ` ∀ x

• Cat x
= (if IsL x then CatSubs else InR (Fst (OutR x )))

IndvSet ` ∀ x• IndvSet x = OutL x
AttrSet ` ∀ x• AttrSet x = Snd (OutR x )
CatSet ` ∀ x

• CatSet x
= (if Cat x = CatSubs

then {y |∃ z• z ∈ IndvSet x ∧ y = InL z}
else {y |∃ z• z ∈ AttrSet x ∧ y = InR z})

izz ` ∀ A B• A izz B ⇔ Cat A = Cat B ∧ CatSet A ⊆ CatSet B
hazz ` ∀ A B

• A hazz B
⇔ Cat A = CatSubs
∧ ¬ Cat B = CatSubs
∧ (∃ a
• a ∈ AttrSet B ∧ (∀ s• s ∈ IndvSet A ⇒ a s))

essentially predicable of
` ∀ A B• A essentially predicable of B ⇔ B izz A

accidentally predicable of
` ∀ A B• A accidentally predicable of B ⇔ B hazz A

predicable of
` ∀ A B
• A predicable of B
⇔ A essentially predicable of B
∨ A accidentally predicable of B

individual ` ∀ A• individual A ⇔ (∃ a• CatSet A = {a})
particular ` ∀ A• particular A ⇔ individual A ∧ Cat A = CatSubs
universal ` ∀ A• universal A ⇔ ¬ particular A
SomeThing ` ∀ x• SomeThing x ⇒ individual x
form ` ∀ x• form x ⇒ SomeThing x ∧ universal x

Theorems

catm eq lemma
` ∀ A B• A = B ⇔ Cat A = Cat B ∧ CatSet A = CatSet B

izz lemma1 ` ∀ A B
• Cat A = CatSubs
⇒ (A izz B
⇔ Cat B = CatSubs ∧ IndvSet A ⊆ IndvSet B)

izz lemma2 ` ∀ A B
• Cat B = CatSubs
⇒ (A izz B
⇔ Cat A = CatSubs ∧ IndvSet A ⊆ IndvSet B)

izz lemma3 ` ∀ A B
• ¬ Cat A = CatSubs
⇒ (A izz B
⇔ Cat B = Cat A ∧ AttrSet A ⊆ AttrSet B)
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izz lemma4 ` ∀ A B
• ¬ Cat B = CatSubs
⇒ (A izz B
⇔ Cat B = Cat A ∧ AttrSet A ⊆ AttrSet B)

l01 ` ∀ A• A izz A
l01b ` ∀ A• ¬ A hazz A
l02 ` ∀ A B C• A izz B ∧ B izz C ⇒ A izz C
l03 ` ∀ A B• A hazz B ⇒ ¬ A izz B
l03b ` ∀ A B• A izz B ⇒ ¬ A hazz B
l03c ` ∀ A B• A hazz B ⇒ ¬ A = B
l04a ` ∀ A B C• A hazz B ∧ B izz C ⇒ A hazz C
l04 ` ∀ A B• A hazz B ⇔ (∃ C• A hazz C ∧ C izz B)
l04b ` ∀ A B C• A izz B ∧ B hazz C ⇒ A hazz C
l06n ` ¬ (∀ A B

• A hazz B ∧ particular A ⇒ (∃ C• C 6= A ∧ A izz B))
l07 ` ∀ A B

• A predicable of B
⇔ B izz A ∨ (∃ C• B hazz C ∧ C izz A)

l08 ` ∀ A• A essentially predicable of B ⇔ B izz A
l09 ` ∀ A

• A accidentally predicable of B
⇔ (∃ C• B hazz C ∧ C izz A)

l10 ` ∀ A B• A = B ⇔ A izz B ∧ B izz A
l16 ` ∀ A B

• A predicable of B
⇔ B izz A ∨ (∃ C• B hazz C ∧ C izz A)

l17 ` ∀ A• A essentially predicable of A
l18 ` ∀ A• A accidentally predicable of B ⇒ A 6= B
l19 ` ∀ A• ¬ A accidentally predicable of A
l20 ` ∀ A• particular A ⇒ individual A
l22 ` ¬ (∃ A• particular A ∧ form A)
l23b ` ∀ A• form A ⇒ individual A
l24a ` ∀ A B

• particular A ∧ individual B ∧ A izz B
⇒ particular B

l24 ` ∀ A• particular A ⇒ ¬ (∃ B• form B ∧ A izz B)
l26 ` ∀ A B

• form A ∧ particular B
⇒ (A predicable of B ⇔ B hazz A)

l05b ` ∀ x• form x ⇒ universal x
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A.2 The Theory syllog1

Parents

aristotle

Type Abbreviations

TermS TermS

Theorems

Barbara M ⊆ P , S ⊆ M ` S ⊆ P
Celarent M ⊆ ∼ P , S ⊆ M ` S ⊆ ∼ P
Darii M ⊆ P , ¬ S ⊆ ∼ M ` ¬ S ⊆ ∼ P
Ferio M ⊆ ∼ P , ¬ S ⊆ ∼ M ` ¬ S ⊆ P
Cesare P ⊆ ∼ M , S ⊆ M ` S ⊆ ∼ P
Camestres P ⊆ M , S ⊆ ∼ M ` S ⊆ ∼ P
Festino P ⊆ ∼ M , ¬ S ⊆ ∼ M ` ¬ S ⊆ P
Baroco P ⊆ M , ¬ S ⊆ M ` ¬ S ⊆ P
Disamis ¬ M ⊆ ∼ P , M ⊆ S ` ¬ S ⊆ ∼ P
Datisi M ⊆ P , ¬ M ⊆ ∼ S ` ¬ S ⊆ ∼ P
Bocardo ¬ M ⊆ P , M ⊆ S ` ¬ S ⊆ P
Ferison M ⊆ ∼ P , ¬ M ⊆ ∼ S ` ¬ S ⊆ P
Camenes P ⊆ M , M ⊆ ∼ S ` S ⊆ ∼ P
Dimaris ¬ P ⊆ ∼ M , M ⊆ S ` ¬ S ⊆ ∼ P
Fresison P ⊆ ∼ M , ¬ M ⊆ ∼ S ` ¬ S ⊆ P
Darapti ¬ {} ∈ {M ; S; P}, M ⊆ P , M ⊆ S ` ¬ S ⊆ ∼ P
Felapton ¬ {} ∈ {M ; S; P}, M ⊆ ∼ P , M ⊆ S ` ¬ S ⊆ P
Bramantip ¬ {} ∈ {M ; S; P}, P ⊆ M , M ⊆ S ` ¬ S ⊆ ∼ P
Fesapo ¬ {} ∈ {M ; S; P}, P ⊆ ∼ M , M ⊆ S ` ¬ S ⊆ P
Barbari ¬ {} ∈ {M ; S; P}, M ⊆ P , S ⊆ M ` ¬ S ⊆ ∼ P
Celaront ¬ {} ∈ {M ; S; P}, M ⊆ ∼ P , S ⊆ M ` ¬ S ⊆ P
Cesaro ¬ {} ∈ {M ; S; P}, P ⊆ ∼ M , S ⊆ M ` ¬ S ⊆ P
Camestrop ¬ {} ∈ {M ; S; P}, P ⊆ M , S ⊆ ∼ M ` ¬ S ⊆ P
Camenop ¬ {} ∈ {M ; S; P}, P ⊆ M , M ⊆ ∼ S ` ¬ S ⊆ P

75



A.3 The Theory syllog2

Parents

aristotle

Type Abbreviations

TermP TermP

Theorems

Barbara M ⇒ P , S ⇒ M ` S ⇒ P
Celarent M ⇒ ¬ P , S ⇒ M ` S ⇒ ¬ P
Darii M ⇒ P , ¬ (S ⇒ ¬ M ) ` ¬ (S ⇒ ¬ P)
Ferio M ⇒ ¬ P , ¬ (S ⇒ ¬ M ) ` ¬ (S ⇒ P)
Cesare P ⇒ ¬ M , S ⇒ M ` S ⇒ ¬ P
Camestres P ⇒ M , S ⇒ ¬ M ` S ⇒ ¬ P
Festino P ⇒ ¬ M , ¬ (S ⇒ ¬ M ) ` ¬ (S ⇒ P)
Baroco P ⇒ M , ¬ (S ⇒ M ) ` ¬ (S ⇒ P)
Disamis ¬ (M ⇒ ¬ P), M ⇒ S ` ¬ (S ⇒ ¬ P)
Datisi M ⇒ P , ¬ (M ⇒ ¬ S) ` ¬ (S ⇒ ¬ P)
Bocardo ¬ (M ⇒ P), M ⇒ S ` ¬ (S ⇒ P)
Ferison M ⇒ ¬ P , ¬ (M ⇒ ¬ S) ` ¬ (S ⇒ P)
Camenes P ⇒ M , M ⇒ ¬ S ` S ⇒ ¬ P
Dimaris ¬ (P ⇒ ¬ M ), M ⇒ S ` ¬ (S ⇒ ¬ P)
Fresison P ⇒ ¬ M , ¬ (M ⇒ ¬ S) ` ¬ (S ⇒ P)
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A.4 The Theory syllog3

Parents

aristotle

Constants

$a (Term2 , BOOL) BR
$e (Term2 , BOOL) BR
$i (Term2 , BOOL) BR
$u (Term2 , BOOL) BR
Complement Term2 → Term2

Aliases

o $u : (Term2 , BOOL) BR
∼ Complement : Term2 → Term2

Type Abbreviations

Term2 Term2

Fixity

Right Infix 300 :
a e i u

Definitions

a ` ∀ A B• A a B ⇔ (∀ x• A x ⇒ B x )
e ` ∀ A B• A e B ⇔ (∀ x• A x ⇒ ¬ B x )
i ` ∀ A B• A i B ⇔ (∃ x• A x ∧ B x )
u ` ∀ A B• A o B ⇔ (∃ x• A x ∧ ¬ B x )
Complement ` ∀ A α• ∼ A α ⇔ ¬ A α
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Theorems

e conv thm A e B ` B e A
i conv thm A i B ` B i A
a not conv thm

` ∃ A B• A a B ∧ ¬ B a A
o not conv thm

` ∃ A B• A o B ∧ ¬ B o A
ae obv thm A a B ` A e ∼ B
ea obv thm A e B ` A a ∼ B
io obv thm A i B ` A o ∼ B
oi obv thm A o B ` A i ∼ B
ao contrad thm

` A a B ⇔ ¬ A o B
ei contrad thm

` A e B ⇔ ¬ A i B
¬ae contrar thm

` ¬ (∀ A B• ¬ (A a B ∧ A e B))
¬IU thm ` ¬ (∀ A B• A i B ∨ A o B)
¬ai subalt thm

` ¬ (∀ A B• A a B ⇒ A i B)
¬eo subalt thm

` ¬ (∀ A B• A e B ⇒ A o B)
Barbara M a P , S a M ` S a P
Celarent M e P , S a M ` S e P
Darii M a P , S i M ` S i P
Ferio M e P , S i M ` S o P
Cesare P e M , S a M ` S e P
Camestres P a M , S e M ` S e P
Festino P e M , S i M ` S o P
Baroco P a M , S o M ` S o P
Disamis M i P , M a S ` S i P
Datisi M a P , M i S ` S i P
Bocardo M o P , M a S ` S o P
Ferison M e P , M i S ` S o P
Camenes P a M , M e S ` S e P
Dimaris P i M , M a S ` S i P
Fresison P e M , M i S ` S o P
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A.5 The Theory syllog4

Parents

aristotle

Constants

p Term3 → ′a → BOOL
$a (Term3 , BOOL) BR
$e (Term3 , BOOL) BR
$i (Term3 , BOOL) BR
$u (Term3 , BOOL) BR

Aliases

o $u : (Term3 , BOOL) BR

Type Abbreviations

Term3 Term3

Fixity

Right Infix 300 :
a e i u

Definitions

p ` ∀ A• p A = (λ x• (let (v , f ) = A in x = v ∨ f x ))
a ` ∀ A B• A a B ⇔ (∀ x• p A x ⇒ p B x )
e ` ∀ A B• A e B ⇔ (∀ x• p A x ⇒ ¬ p B x )
i ` ∀ A B• A i B ⇔ (∃ x• p A x ∧ p B x )
u ` ∀ A B• A o B ⇔ (∃ x• p A x ∧ ¬ p B x )
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Theorems

p ∃ lemma ` ∀ A• ∃ v• p A v
e conv thm A e B ` B e A
i conv thm A i B ` B i A
ai conv thm A a B ` B i A
eo conv thm A e B ` B o A
sg 09 thm ` A a B ⇔ ¬ A o B
sg 10 thm ` A e B ⇔ ¬ A i B
sg 11 thm ` ¬ (A a B ∧ A e B)
sg 12 thm ` A i B ∨ A o B
sg 13 thm A a B ` A i B
sg 14 thm A e B ` A o B
Barbara M a P , S a M ` S a P
Celarent M e P , S a M ` S e P
Darii M a P , S i M ` S i P
Ferio M e P , S i M ` S o P
Cesare P e M , S a M ` S e P
Camestres P a M , S e M ` S e P
Festino P e M , S i M ` S o P
Baroco P a M , S o M ` S o P
Disamis M i P , M a S ` S i P
Datisi M a P , M i S ` S i P
Bocardo M o P , M a S ` S o P
Ferison M e P , M i S ` S o P
Camenes P a M , M e S ` S e P
Dimaris P i M , M a S ` S i P
Fresison P e M , M i S ` S o P
Darapti M a P , M a S ` S i P
Felapton M e P , M a S ` S o P
Bramantip P a M , M a S ` S i P
Fesapo P e M , M a S ` S o P
Barbari M a P , S a M ` S i P
Celaront M e P , S a M ` S o P
Cesaro P e M , S a M ` S o P
Camestrop P a M , S e M ` S o P
Camenop P a M , M e S ` S o P
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A.6 The Theory syllog5

Parents

aristotle

Constants

$a (Term2 , BOOL) BR
$e (Term2 , BOOL) BR
$i (Term2 , BOOL) BR
$u (Term2 , BOOL) BR
Complement Term2 → Term2

Aliases

o $u : (Term2 , BOOL) BR
∼ Complement : Term2 → Term2

Type Abbreviations

Term2 Term2

Fixity

Right Infix 300 :
a e i u

Definitions

a ` ∀ A B
• A a B
⇔ (∀ x• A x ⇒ B x ) ∧ (∃ x• A x ) ∧ (∃ x• ¬ B x )

e ` ∀ A B
• A e B
⇔ (∀ x• A x ⇒ ¬ B x ) ∧ (∃ x• A x ) ∧ (∃ x• B x )

i ` ∀ A B
• A i B
⇔ (∃ x• A x ∧ B x ) ∨ ¬ (∃ x• A x ) ∨ ¬ (∃ x• B x )

u ` ∀ A B
• A o B
⇔ (∃ x• A x ∧ ¬ B x )
∨ ¬ (∃ x• A x )
∨ ¬ (∃ x• ¬ B x )

Complement ` ∀ A α• ∼ A α ⇔ ¬ A α
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Theorems

e conv thm A e B ` B e A
i conv thm A i B ` B i A
¬a conv thm ` ∃ A B• A a B ∧ ¬ B a A
¬o conv thm ` ∃ A B• A o B ∧ ¬ B o A
ai conv thm A a B ` B i A
eo conv thm A e B ` B o A
ae obv thm A a B ` A e ∼ B
ea obv thm A e B ` A a ∼ B
io obv thm A i B ` A o ∼ B
oi obv thm A o B ` A i ∼ B
ao contrad thm

` A a B ⇔ ¬ A o B
ei contrad thm

` A e B ⇔ ¬ A i B
ae contrar thm

` ¬ (A a B ∧ A e B)
io subcont thm

` A i B ∨ A o B
ai subalt thm

` A a B ⇒ A i B
eo subalt thm

` A e B ⇒ A o B
Barbara M a P , S a M ` S a P
Celarent M e P , S a M ` S e P
Darii M a P , S i M ` S i P
Ferio M e P , S i M ` S o P
Cesare P e M , S a M ` S e P
Camestres P a M , S e M ` S e P
Festino P e M , S i M ` S o P
Baroco P a M , S o M ` S o P
Disamis M i P , M a S ` S i P
Datisi M a P , M i S ` S i P
Bocardo M o P , M a S ` S o P
Ferison M e P , M i S ` S o P
Camenes P a M , M e S ` S e P
Dimaris P i M , M a S ` S i P
Fresison P e M , M i S ` S o P
Darapti M a P , M a S ` S i P
Felapton M e P , M a S ` S o P
Bramantip P a M , M a S ` S i P
Fesapo P e M , M a S ` S o P
Barbari M a P , S a M ` S i P
Celaront M e P , S a M ` S o P
Cesaro P e M , S a M ` S o P
Camestrop P a M , S e M ` S o P
Camenop P a M , M e S ` S o P
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A.7 The Theory syllog6

Parents

aristotle

Constants

$a (Term2 , BOOL) BR
$e (Term2 , BOOL) BR
$i (Term2 , BOOL) BR
$u (Term2 , BOOL) BR
Complement Term2 → Term2

Aliases

o $u : (Term2 , BOOL) BR
∼ Complement : Term2 → Term2

Type Abbreviations

Term2 Term2

Fixity

Right Infix 300 :
a e i u

Definitions

a ` ∀ A B• A a B ⇔ (∀ x• A x ⇒ B x ) ∧ (∃ x• A x )
e ` ∀ A B• A e B ⇔ (∀ x• A x ⇒ ¬ B x )
i ` ∀ A B• A i B ⇔ (∃ x• A x ∧ B x )
u ` ∀ A B• A o B ⇔ (∃ x• A x ∧ ¬ B x ) ∨ ¬ (∃ x• A x )
Complement ` ∀ A α• ∼ A α ⇔ ¬ A α
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Theorems

e conv thm A e B ` B e A
i conv thm A i B ` B i A
ai conv thm A a B ` B i A
eo conv thm A e B ` B o A
ae obv thm A a B ` A e ∼ B
iu obv thm A i B ` A o ∼ B
ao contrad thm

` A a B ⇔ ¬ A o B
ei contrad thm

` A e B ⇔ ¬ A i B
ae contrar thm

` ¬ (A a B ∧ A e B)
io subcont thm

` A i B ∨ A o B
ai subalt thm

` A a B ⇒ A i B
eo subalt thm

` A e B ⇒ A o B
Barbara M a P , S a M ` S a P
Celarent M e P , S a M ` S e P
Darii M a P , S i M ` S i P
Ferio M e P , S i M ` S o P
Cesare P e M , S a M ` S e P
Camestres P a M , S e M ` S e P
Festino P e M , S i M ` S o P
Baroco P a M , S o M ` S o P
Disamis M i P , M a S ` S i P
Datisi M a P , M i S ` S i P
Bocardo M o P , M a S ` S o P
Ferison M e P , M i S ` S o P
Camenes P a M , M e S ` S e P
Dimaris P i M , M a S ` S i P
Fresison P e M , M i S ` S o P
Darapti M a P , M a S ` S i P
Felapton M e P , M a S ` S o P
Bramantip P a M , M a S ` S i P
Fesapo P e M , M a S ` S o P
Barbari M a P , S a M ` S i P
Celaront M e P , S a M ` S o P
Cesaro P e M , S a M ` S o P
Camestrop P a M , S e M ` S o P
Camenop P a M , M e S ` S o P
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A.8 The Theory modsyllog

Parents

aristotle

Constants

p MPROP → W → I → BOOL
$a (MPROP , W → BOOL) BR
$e (MPROP , W → BOOL) BR
$i (MPROP , W → BOOL) BR
$u (MPROP , W → BOOL) BR
actual world W
3 (W → BOOL) → BOOL
2 (W → BOOL) → BOOL
3a (W → BOOL) → BOOL
� (W → BOOL) → BOOL
$¬m (W → BOOL) → W → BOOL

Aliases

o $u : (MPROP , W → BOOL) BR
¬ $¬m : (W → BOOL) → W → BOOL

Types

I
W

Type Abbreviations

MPROP MPROP

Fixity

Right Infix 300 :
a e i u

Prefix 350 : ¬m

Definitions

p ` ∀ A• p A = (λ w x• (let (v , f ) = A w in x = v ∨ f x ))
a ` ∀ A B w• (A a B) w ⇔ (∀ x• p A w x ⇒ p B w x )
e ` ∀ A B w• (A e B) w ⇔ (∀ x• p A w x ⇒ ¬ p B w x )
i ` ∀ A B w• (A i B) w ⇔ (∃ x• p A w x ∧ p B w x )
u ` ∀ A B w• (A o B) w ⇔ (∃ x• p A w x ∧ ¬ p B w x )
actual world ` T
3 ` ∀ s• 3 s ⇔ (∃ w• s w)
2 ` ∀ s• 2 s ⇔ (∀ w• s w)
3a ` ∀ s• 3a s ⇔ ¬ (∀ w• s w) ∧ ¬ (∀ w• ¬ s w)
� ` ∀ s• � s ⇔ s actual world
¬m ` ∀ x• (¬ x ) = (λ w• ¬ x w)
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Theorems

p ∃ lemma ` ∀ A w• ∃ v• p A w v
23 thm 2 X ` 3 X
2� thm 2 X ` � X
�3 thm � X ` 3 X
3a3 thm 3a X ` 3 X
3a¬2 thm 3a X ` ¬ 2 X
3a¬m thm ` 3a X ⇔ 3a (¬ X )
e conv thm � (A e B) ` � (B e A)
i conv thm � (A i B) ` � (B i A)
2e conv thm 2 (A e B) ` 2 (B e A)
2i conv thm 2 (A i B) ` 2 (B i A)
3e conv thm 3 (A e B) ` 3 (B e A)
3i conv thm 3 (A i B) ` 3 (B i A)
3a e conv thm

3a (A e B) ` 3a (B e A)
3a i conv thm

3a (A i B) ` 3a (B i A)
3a ao conv thm

` 3a (A a B) ⇔ 3a (A o B)
3a ei conv thm

` 3a (A e B) ⇔ 3a (A i B)
23e conv thm 2 (A e B) ` 3 (B e A)
2�e conv thm 2 (A e B) ` � (B e A)
�ai conv thm � (A a B) ` � (B i A)
�eo conv thm � (A e B) ` � (B o A)
23ai conv thm

2 (A a B) ` 3 (B i A)
23eo conv thm

2 (A e B) ` 3 (B o A)
mod gen 222 ` ∀ FP SP CS

• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ 2 SP ⇒ 2 CS
mod gen 223 ` ∀ FP SP CS

• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ 2 SP ⇒ 3 CS
mod gen 22� ` ∀ FP SP CS

• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ 2 SP ⇒ � CS
mod gen 323 ` ∀ FP SP CS

• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 3 FP ∧ 2 SP ⇒ 3 CS
mod gen 233 ` ∀ FP SP CS

• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ 3 SP ⇒ 3 CS
mod gen 2�� ` ∀ FP SP CS

• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ 2 FP ∧ � SP ⇒ � CS
mod gen �2� ` ∀ FP SP CS

• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ � FP ∧ 2 SP ⇒ � CS
mod gen ��� ` ∀ FP SP CS

• (∀ w• FP w ∧ SP w ⇒ CS w) ⇒ � FP ∧ � SP ⇒ � CS
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A.9 The Theory syllmetap

Parents

aristotle

Children

gccon

Constants

Category of Substance
CAT

actual world W
tag I → TAG
category I → CAT
mk SubsTerm TAG P → TermM
mk AttrTerm CAT × TAG P → TermM
Substance TermM
$not COPULA → COPULA
$InTermM I → TermM → BOOL
All TermM → COPULA → TermM → MPROP
Some TermM → COPULA → TermM → MPROP
izz COPULA
hazz COPULA
are COPULA
3 MPROP → MPROP
2 MPROP → MPROP
¬a MPROP → MPROP
$∧a (MPROP , MPROP) BR
$⇒a (MPROP , MPROP) BR
$⇔a (MPROP , MPROP) BR
$∀a (TermM → MPROP) → MPROP
$∃a (TermM → MPROP) → MPROP
$� MPROP LIST → MPROP → BOOL
$ MPROP LIST → MPROP → BOOL

Aliases

¬ ¬a : MPROP → MPROP
∧ $∧a : (MPROP , MPROP) BR
⇒ $⇒a : (MPROP , MPROP) BR
⇔ $⇔a : (MPROP , MPROP) BR
∀ $∀a : (TermM → MPROP) → MPROP
∃ $∃a : (TermM → MPROP) → MPROP

Types

ACAT
TAG
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Type Abbreviations

CAT CAT
I I
W W
TermM TermM
COPULA COPULA
MPROP MPROP

Fixity

Binder : ∀a ∃a
Right Infix 100 :

 �
Right Infix 200 :

⇔a

Right Infix 210 :
⇒a

Right Infix 220 :
∧a

Right Infix 300 :
InTermM

Postfix 100 : not

Definitions

Category of Substance
` Category of Substance = InL One

actual world ` T
category
tag ` ∀ ct• category ct = Fst ct ∧ tag ct = Snd ct
mk SubsTerm ` ∀ s• mk SubsTerm s = (Category of Substance, NeSet s)
mk AttrTerm ` ∀ s• mk AttrTerm s = (Fst s, NeSet (Snd s))
Substance ` Substance = mk SubsTerm Universe
not ` ∀ pred• (pred not) = (λ pa t w• ¬ pred pa t w)
InTermM ` ∀ c1t c2ts

• c1t InTermM c2ts
⇔ Fst c1t = Fst c2ts ∧ Snd c1t ∈ PeSet (Snd c2ts)

All ` ∀ s r p
• All s r p = (λ w• ∀ z• z InTermM s ⇒ r z p w)

Some ` ∀ s r p
• Some s r p = (λ w• ∃ z• z InTermM s ∧ r z p w)

izz ` ∀ j t• izz j t = (λ w• j InTermM t)
hazz ` ∀ c1t c2ts

• hazz c1t c2ts
= (λ w
• Fst c1t = Category of Substance
∧ ¬ Fst c2ts = Category of Substance
∧ (∃ b
• b ∈ PeSet (Snd c2ts)
∧ Snd c1t ∈ w (OutR (Fst c2ts), b)))
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are ` ∀ pa t• are pa t = (λ w• izz pa t w ∨ hazz pa t w)
3 ` ∀ p• 3 p = (λ w• ∃ w ′• p w ′)
2 ` ∀ p• 2 p = (λ w• ∀ w ′• p w ′)
¬a ` ∀ p• (¬ p) = (λ w• ¬ p w)
∧a ` ∀ p q• (p ∧ q) = (λ w• p w ∧ q w)
⇒a ` ∀ p q• (p ⇒ q) = (λ w• p w ⇒ q w)
⇔a ` ∀ p q• (p ⇔ q) = (λ w• p w ⇔ q w)
∀a ` ∀ mpf • $∀ mpf = (λ w• ∀ t• mpf t w)
∃a ` ∀ mpf • $∃ mpf = (λ w• ∃ t• mpf t w)
� ` ∀ lp c

• lp � c
⇔ Fold (λ p t• p actual world ∧ t) lp T
⇒ c actual world

 ` ∀ lp c
• lp  c ⇔ (∀ w• Fold (λ p t• p w ∧ t) lp T ⇒ c w)

Theorems

interm ∃ lemma
` ∀ t• ∃ j• j InTermM t

not izz and hazz lemma1
` ∀ pa t w• ¬ (izz pa t w ∧ hazz pa t w)

are izz neq hazz lemma
` ∀ pa t w• are pa t w ⇔ ¬ (izz pa t w ⇔ hazz pa t w)

All are izz or hazz lemma
` ∀ A B w
• All A are B w ⇔ All A izz B w ∨ All A hazz B w

Some are izz or hazz lemma
` ∀ A B w
• Some A are B w ⇔ Some A izz B w ∨ Some A hazz B w

All are not lemma
` ∀ A B w
• All A (are not) B w
⇔ All A (izz not) B w ∧ All A (hazz not) B w

izz not lemma
` All B (izz not) A = All A (izz not) B

some izz lemma
` Some B izz A = Some A izz B

izz conv1 ` [All B (izz not) A]  All A (izz not) B
izz conv2 ` [All B izz A]  Some A izz B
izz conv3 ` [Some B izz A]  Some A izz B
not hazz not lemma

` ¬ (∀ A B• All B (hazz not) A = All A (hazz not) B)
not some hazz lemma

` ¬ (∀ A B• Some B hazz A = Some A hazz B)
hazz conv2 ` [All A hazz B ]  Some A hazz B
3 conv ` [P ]  Q ⇒ [3 P ]  3 Q
2 conv ` [P ]  Q ⇒ [2 P ]  2 Q
2 izz thm ` [2 (All A izz B)] � All A izz B
2 hazz thm ` [2 (All A hazz B)] � All A izz B
izz 2 thm ` [All A izz B ] � 2 (All A izz B)
not 2 hazz thm
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` [] � (¬ 2 (All A hazz B))
2 izz thm2 ` [2 (All A izz B)]  All A izz B
2 hazz thm2 ` [2 (All A hazz B)]  All A izz B
izz 2 thm2 ` [All A izz B ]  2 (All A izz B)
not 2 hazz thm2

` []  (¬ 2 (All A hazz B))
2 elim thm ` [2 P ] � P
2 intro thm ` [P ] � 3 P
2 3 thm ` [2 P ] � 3 P
¬ All conv thm

` (¬ All A cop B) = Some A (cop not) B
¬ All not conv thm2

` (¬ All A (cop not) B) = Some A cop B
¬ Some conv thm

` (¬ Some A cop B) = All A (cop not) B
¬ Some not conv thm

` (¬ Some A (cop not) B) = All A cop B
Barbara izz ` [All M izz P ; All S izz M ]  All S izz P
Celarent izz ` [All M (izz not) P ; All S izz M ]  All S (izz not) P
Darii izz ` [All M izz P ; Some S izz M ]  Some S izz P
Ferio izz ` [All M (izz not) P ; Some S izz M ]

 Some S (izz not) P
Cesare izz ` [All P (izz not) M ; All S izz M ]  All S (izz not) P
Camestres izz

` [All P izz M ; All S (izz not) M ]  All S (izz not) P
Festino izz ` [All P (izz not) M ; Some S izz M ]

 Some S (izz not) P
Baroco izz ` [All P izz M ; Some S (izz not) M ]

 Some S (izz not) P
Disamis izz ` [Some M izz P ; All M izz S]  Some S izz P
Datisi izz ` [All M izz P ; Some M izz S]  Some S izz P
Bocardo izz ` [Some M (izz not) P ; All M izz S]

 Some S (izz not) P
Ferison izz ` [All M (izz not) P ; Some M izz S]

 Some S (izz not) P
Camenes izz ` [All P izz M ; All M (izz not) S]  All S (izz not) P
Dimaris izz ` [Some P izz M ; All M izz S]  Some S izz P
Fresison izz ` [All P (izz not) M ; Some M izz S]

 Some S (izz not) P
Darapti izz ` [All M izz P ; All M izz S]  Some S izz P
Felapton izz ` [All M (izz not) P ; All M izz S]  Some S (izz not) P
Bramantip izz

` [All P izz M ; All M izz S]  Some S izz P
Fesapo izz ` [All P (izz not) M ; All M izz S]  Some S (izz not) P
Barbari izz ` [All M izz P ; All S izz M ]  Some S izz P
Celaront izz ` [All M (izz not) P ; All S izz M ]  Some S (izz not) P
Cesaro izz ` [All P (izz not) M ; All S izz M ]  Some S (izz not) P
Camestrop izz

` [All P izz M ; All S (izz not) M ]  Some S (izz not) P
Camenop izz ` [All P izz M ; All M (izz not) S]  Some S (izz not) P
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A.10 The Theory gccon

Parents

syllmetap

Constants

individual TermM → BOOL
Mp BOOL → MPROP
Individual TermM → MPROP
particular TermM → MPROP
substantial TermM → MPROP
universal TermM → MPROP

Definitions

individual ` ∀ A• individual A ⇔ (∃ b• Snd A = NeSet {b})
Mp ` ∀ p• Mp p = (λ w• p)
Individual ` ∀ A

• Individual A = 2 (∀ B• All B izz A ⇒ All A izz B)
particular ` ∀ A

• particular A
= 2

(∀ B• All B are A ⇒ All A izz B ∧ All B izz A)
substantial ` ∀ A

• substantial A = 2 (∀ B• All B are A ⇒ All B izz A)
universal ` ∀ A

• universal A
= 3

(∃ B
• All B are A
∧ ¬ (All A izz B ∧ All B izz A))

Theorems

FP1 ` []  All A izz A
FP2 ` [All A izz B ; All B izz C ]  All A izz C
FP3 ` [All A hazz B ]  (¬ All A izz B)
FP3b ` [All A hazz B ]  Some A (izz not) B
FP4a ` [All A hazz B ; All B izz C ]  All A hazz C
FP4 ` []

 (All A hazz B
⇔ (∃ C• All A hazz C ∧ All C izz B))

FP4c ` [Mp (individual A)]
 (All A hazz B
⇔ (∃ C
• Mp (individual C )
∧ All A hazz C
∧ All C izz B))

individual lemma1
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` ∀ A• Individual A = (∀ B• All B izz A ⇒ All A izz B)
individual lemma2

` Individual A = Mp (individual A)
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vii io obv
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ix ao contrad contradiction

x ei contrad

xi ae contrar contrary

xii io subcontrar subcontrary
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