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Abstract— The paper attempts to give a formal framework
to capture the entire process of scientific discovery including
hypothesis formation, reasoning, identifying contradictions,
peer reviewing, reformulating and so on. Data mining can
be seen as one step in this complex process of interactive
learning of an empirical theory This paper uses the terminol-
ogy from paraconsistent logic and paracomplete logic that
extends Aristotle square in a hypercube of oppositions which
defines or substantiates any step of the discovery process.

The central formal notions are validated on a mathemat-
ical scientific discovery game, and an industrial application
in the field of Drug Discovery illustrates how the presented
framework combines different learning processes to predict
pharmaco-kinetic properties (ADME-T) and adverse side
effects of therapeutic drug molecules.

Index Terms— Machine Learning, Scientific Method, Logical
Reasoning Framework, Aristotle’s Square of Oppositions

I. INTRODUCTION

Our objective is to propose a logical framework to assist

scientists in supervising the entire process of theories

formation while studying a phenomenon, as it is done

by chemists studying properties of a new molecule, such

as absorption or toxicity.

The first piece of the framework’s logical structure is

known since medieval logic as Aristotle’s square [1], and

has appeared in logical texts ever since: Aristotle defines

syllogistic reasoning by differentiating universal and par-

ticular statements, and linking them by deduction and

negation. The detection of contradictions then occupies

the diagonal of such a square and can warn the scientist

that a revision of knowledge is necessary (Figure 1).

The framework is formulated in a logical form such

that contradictions can occur: in logic, a contradiction is

produced by the conjunction of a formula and its negation.

Each logic defines its own negation by an axiomatic

schema expressing relations between universal and ex-

istential modalities, as ”‘Necessary”’ (positive universal)

and ”‘Contingent”’ (negative existential). In the case of

scientific discovery, events can be declared contingent

when they sometimes occur by chance, or can be declared

necessary if they have to exist. A theory then presents a

contradiction when it allows to deduce, for instance, that

a contingent event occurs by necessity.

Since Platon and Aristotle, logicians created different

logics by selecting axioms that impose for instance that a

necessary action is a possible action. But all these logics

exhibit paradoxes provoked by their axioms, which often

lead to their triviality. However, we admit that contradic-

tions occur during a causal reasoning, and they are used

in this framework to alert about problems concerning the

consistency or the completeness of the ongoing theory.

Let us sketch such a formation process (a definition of

unintuitive terms is provided in sections V-A and VI-A).

Since Popper, it is admitted that a scientific theory must

be refutable by experimentation and empirical data. A

scientific experimentation, designed to enable empirical

proof or refutation, requires the use of an accurate and

efficient instrumentation to determine the existence of

positive observations used to formulate postulates and

conjectures. This experimentation design is a tool to

ensure the progression of the ongoing theory by revealing

facts. A fact is a piece of information (data) having an

undeniable empirical evidence for scientists, and tech-

niques such as data mining consist in the induction of

a model from these facts. Such a model is built to

match with positive information describing facts and to

prevent the prediction of non observed facts. Predictions

are made using a theory completed by a model, and the

consideration of the overfitting and underfitting of these

predictions informs the scientists on the bias conditions

making it possible to decide correctly with the ongoing

theory.

The logical framework presented in this paper is de-

signed to take into account the two dynamics of scientific

discovery [2] [3]. The first dynamic, which we refer to as

the personal dynamic, embraces the supervision of a com-

puter assistant by a scientist. This dynamic is centered on

individual behaviors, and depends strongly on the research

strategy of each individual and on its use of computer

assistants. In fact, more and more learning techniques and

data mining tools are used to find correlations in data

and propose models to explain a studied phenomenon
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and make predictions. We will see how the framework

presented in this paper takes into account this personal

dynamic by giving logical modalities to the statements

occurring during the construction of a theory, and by

placing the interpretation of contradictions in the heart

of the interactive process leading to the construction of

a model which can be discussed, justified, and proven in

pure logic. The second dynamic we are concerned with,

which we refer to as the social dynamic, comes from the

collective behavior emerging from the social game during

which scientists publish their theories and confront them

to understand how models in a given domain match or

influence models concerning other domains. In fact, sci-

entists are experts in the different scientific fields involved

in the understanding of a phenomenon, and we suppose

that it is not always possible to merge all the scientific

domains in a only one. In other words, scientists can all

use their own models and data to compute and predict

(personal dynamic). But by confronting their works, they

may realize that a good solution for a given model can be

a bad one for another model, and therefore point out the

need to improve their understanding of the phenomenon.

For instance, when dealing with drug discovery, a model

of Absorption may not take into account the toxicity of

the molecule. To enable this dynamic, the framework

proposed in this paper takes into account the process

of crisis, conflict and transactions which continuously

rhythms Science and contributes to the formation of

theories admitted by the society of scientists as being

scientifically valid.

II. OUTLINE OF THE PAPER

We illustrate in section III the recurrent problems

posed by the personal and social dynamics, by describ-

ing the domain of Drug discovery and the prediction

of ADME-T properties. The pharmaceutical industry is

indeed confronted to a pressing need to analyze ever

growing quantities of collected data and convert them into

relevant decisions, using cheminformatics methods. Most

often, reliable predictions are only possible on molecules

very similar to the learning set, and these predictions

use descriptions which are not easy to be translated

in better molecular structures. This domain concentrates

many challenges for inductive learning : the bias problem,

the underfitting/overfitting problem, the constraint satis-

faction problem, the multiparametric decision problem,

the empirical testing and the interactive problem solving

by scientists assisted by machine learning. As there are

hundreds of descriptors used to describe the surface of

the molecules and thousands related to the computation

of properties for a single molecule, the risk of overfitting

is permanent. When we try to limit the number of descrip-

tors to reduce this overfitting, we create a risk of falling in

the adverse case of underfitting. So the balance between

completeness and consistency corresponds to the balance

between underfitting and overfitting. As learned rules in

drug design can conjugate more than three terms, the

constraint satisfaction problem is divided in two domains:

the domain where deciding with learned rules is easy but

produce errors, and the domain where finding rules to

decide is so difficult that the system learns by heart and

can only decide for molecules which are very similar

to the examples used during learning. Finally the mul-

tiparametric decision, required to deal with a distributed

set of constraints that is not convex, often leads to an

antagonism between optimized decisions. Furthermore,

examples from disparate domains such as medical, chem-

ical, legal, . . . have different theoretical basis. Therefore,

the regularities learned from these examples cannot be

justified only by causal arguments.

After this introductory example, we present step by step

the four levels of our formalism. Section IV describes

Aristotle’s square of oppositions, which defines the op-

positions between universal and particular modalities,

therefore enabling mathematical and logical reasoning

on simple problems. In section V, this square is used

to formalize the notions of postulate and conjecture,

which are necessary to define a theory. The cubic struc-

ture presented in this section is obtained by linking the

various squares together. section V-B offers an intuitive

illustration of these notions. Section VI then presents

a hypercubic structure obtained by linking the cube of

oppositions to two new Aristotle’s squares introduced to

define the modalities of model, experimentation, predic-

tion and facts. We emphasize the fact that the cube of

oppositions lacked of temporality, and that this hyper-

cubic structure links reasoning on facts and postulates

to decision making and action, which are sufficient to

define an agent. Finally, section VII establishes a link to

deontic, autoepistemic, and defeasible modalities which

are produced when agents using this hypercube to reason

interact by implementing a conversational process of

discovery and learning from each other. In conclusion we

discuss how the objective to capture the entire process of

scientific discovery is achieved starting from Aristotle’s

square to frame computer agents assisting humans during

a problem resolution.

III. THE PROBLEM OF DRUG DISCOVERY, ADME-T

Schematically, the pharmaceutical activity can be di-

vided into three sectors: drug discovery (i.e. going from

a target to a molecule that is ready to be tested in man),

drug development (i.e. the proof of concept in man and the

clinical trials) and finally the marketing and monitoring

of the product.

It is widely accepted that out of one hundred drug

discovery projects that are started, less than one would

eventually reach the market ten to fifteen years later.

Despite over a decade of massive investment by the

pharmaceutical industry into high throughput methods

(Genomics, High Throughput Screening and combinato-

rial chemistry), efficient identification and optimization of

potent and quality lead molecules is still the highest and

riskiest hurdle in current drug discovery and development.

The only clear outcome of high throughput methods has
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been an unparalleled production of large quantities of data

that need to be analyzed.

In order to reduce risks in the clinical stages of devel-

opment, in a typical lead optimization process, 40 to 60

assays are run in parallel or in a cascade to evaluate the

potential of each candidate molecule, its specificity, its

good Absorption and Distribution, good Metabolism and

Excretion profiles and limited Toxicity (ADME-T). In this

multi-parametric space, identifying “quality” molecules

which display desirable properties is a true challenge.

The use of computational tools (data mining, predictive

modeling etc) has been seen as the potential solution to

this dramatic inefficiency.

QSAR (Quantitative Structure Activity Relation) equa-

tions are standard examples in predictive modeling for

drug discovery where an overall fitness score is de-

veloped as a weighted sum of numerous descriptors.

In Docking, the score includes ligand internal energy,

interaction energy and entropic considerations in the form

of a weighted sum of terms [4]. Typically the score is

developed empirically by analyzing a set of examples

and deriving a weighted sum. The weights are fitted to

the learning set and may not necessarily be relevant or

precise for other complexes.

QSAR attempts to relate a numerical description of a

molecular structure to a known biological activity. Large

numbers of readily computable descriptors are available,

in combination to sophisticated techniques that improve

the initial linear regression analysis methods used in de-

riving QSAR equations (PCA, PLS, NN, GA, SVM etc).

In general, QSAR equations relate one objective (such as

activity for example) with a number of descriptors. QSAR

equations are constructed by the combination of a number

of weighted terms (descriptors).

These methods rely on the choices of (1) the descriptors

for “generalization” and (2) the examples in the learning

set to avoid overfitting.

An inadequate choice of either parameters will gen-

erally lead to useless models that do not generalize or

are not interpretable. This is also true for initial ILP

approaches [5]. In addition, search strategies can be com-

promised when confronted to non-convex solution fronts,

i.e. when a solution “between” two valid solutions might

be invalid. Furthermore scale invariance is not always

true, i.e. even for a continuous property such as molecular

weight, its use and therefore significance is distinct for

different ranges (for example 200-600 range correspond

to small molecules, a molecular weight greater than 2000

does not). This is to say that some relations are sensitive

to scale. More generally, qualities can be converted into

quantities (binning) but the reverse is not always true. This

requires defining domains of validity for all parameters,

in both the search and the objective spaces. In turn the

notion of domain is linked to boundaries and hence allows

characterization of paradoxical combinations or conflicts.

Here, conflicts are real mutual exclusions rather than a

competition between several continuous parameters.

All in all, it is fair to say that the current state of

the art in cheminformatics is insufficient: “In general,

reliable predictions are only possible for molecules similar

to those in the training set” [6] hence undermining their

predictive use, and “most models [. . . ] use descriptors that

are not easily understood by the chemist and not easy to

translate into better molecular structures”, and hence have

little impact in drug discovery.

This discussion about the limits of QSAR shows how

contradictions occur each time a numerical description of

a molecular structure is related to biological activities.

These contradictions are logical events and have to be

framed in such a context by a logical framework placing

them at the core of the user/assistant interaction in order

to enable their understanding and to control the proof

process of conjectures generated by learning from exam-

ples. Section IV recalls some definitions about Aristotle’s

square, the building brick of this logical framework. This

article presents how this classical logical structure is

extended to frame all the facets of scientific discovery

illustrated by the ADME-T problem.

IV. ARISTOTLE’S SQUARE OF OPPOSITIONS

In this section, we recall what the classical square of

oppositions is, and we provide a common sense interpre-

tation to introduce the modalities which take sense in the

context of theory formation and scientific discovery.

A. Classical square of oppositions

The doctrine of the square of opposition originated with

Aristotle in the fourth century B.C. and has occurred

in logic texts ever since. It connects various quantified

propositions and their negations by introducing various

notions of oppositions: contradiction, contrariety and sub-

contrariety (Figure 1).

Definition 1 (Contradiction): Contradiction for two

terms is defined as the impossibility for them to be both

true or both false at the same time.

Definition 2 (Contrariety): Contrariety is defined as

the impossibility for two terms to be both true, but the

possibility to be both false.

Definition 3 (Sub-contrariety): Sub-contrariety is de-

fined as the impossibility for two terms to be both false,

but the possibility for them to be both true.

According to these definitions, opposition is based on

various degrees of truth difference. A last useful notion

is sub-alternation between two terms, also better known

as implication:

Definition 4 (Sub-alternation / Implication): Sub-

alternation is defined as the impossibility of having the

first term true without having also the second true.

The square of oppositions is represented by the follow-

ing geometrical relations (Figure 1).

The column with A and I corresponds to affirmative

propositions, while the column with E and O corresponds

to negative propositions. The line with A and E corre-

sponds to universal propositions, while the line with I and

O corresponds to existential (also called particular) propo-

sitions. Several extensions have been proposed in order to
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A ...............................................
contrariety

E

I

implication

❄
...............................................

sub-contrariety
O

implication

❄

contradiction

Figure 1. Aristotle’s square of oppositions

palliate the logical drawbacks and develop the inference

capabilities of the traditional Aristotelian square. Various

modal decorations on the vertices can be found in [7].

To express our formalism, we need to define, starting

from this square, a closed set of modalities to distinguish

the logical status of the statements occurring during the

process of theory formation.

B. An interpretation of Aristotle’s square

It is very important to understand that the modalities are

the key of the communication between the scientist and

his computer assistant: they are used by the assistant to

reason logically, and therefore must be interpretable easily

by the human to enable a control and a supervision of the

theory formation. Several interpretations may be possible,

and the ones presented here were chosen because their

definitions as found in the dictionary are related in the

same way as the modalities they represent.

Definition 5 (Proof: �α): A proof is a process which

enables the verification of a computation’s exactitude, or

of the pertinence of problem’s solution. To prove α is to

establish with reasoning the truth of α, and �α denotes

the fact that α has been demonstrated as being necessarily

true (or necessary).

Definition 6 (Refutation: �¬α): A refutation is a pro-

cess which enables to demonstrate the falsity of an affir-

mation by contrary proofs. �¬α denotes the fact that α

has been demonstrated as being impossible, or necessarily

false.

Definition 7 (Contingent: ¬�α): Contingent denotes

the fact that α has not been proven. α may then occur,

without any explanation or ”by chance”.

Definition 8 (Possible: ¬�¬α): Possible denotes the

fact that the formula has not been refuted.

If we gave a probabilist interpretation of these four

modalities, we would say that α has a high risk of

occurring, whereas ¬�α will most likely not occur. Of

course, �α has 100% chances of happening, and �¬α

has none.

Figure 2 represents Aristotle’s square decorated with

these modalities.

Aristotle’s square is the building block of our logical

structure. This formalism closes the set of modalities

used to type statements treated during logical reasoning,

instead of closing the world on which one has to reason.

In the following sections, we explain why at least three

of these squares are needed to formalize the formation

necessary : �α .............................
contrariety

impossible : �¬α

possible : ¬�¬α

implication

❄
............................

sub-contrariety
contingent : ¬�α

implication

❄

contradiction

Figure 2. A modal interpretation of Aristotle’s square of oppositions

of theories in the context of incomplete and inconsistent

knowledge (section V), and five of them to take into

account the scientific aspect of the discovery process

(section VI).

V. THE CUBE OF OPPOSITIONS

The process which supplies evidence for the validity,

or for the invalidity, of certain inferences and conversions

(of a proposition into its negative) is based on the square

presented on Figure 2, which opposes Proof (�) and

its negation (¬�). Therefore the square of opposition

appears as a geometrization of the inference process. But

as we mentioned in the introduction, each logic defines

its own negation, and this square actually corresponds

to the definition of proof in classical logic, which could

be sufficient to help solving problems in a closed and

perfectly described world. But to deal with scientific

discovery, learning, and theory formation, we need to take

into account the inconsistency and the incompleteness of

the knowledge used to reason, which justifies the use of

paraconsistent logic (in a paraconsistent logic there can

exist a proposition which is true and the negation of which

is true, without implying the triviality of the theory, i.e.

the truth of any proposition) and paracomplete logic (in a

paracomplete logic there can exist a proposition which is

false and the negation of which is false, without implying

triviality of the theory, i.e. the truth of any proposition).

Extending the classical square by introducing conjunc-

tions and disjunctions of the terms, and working on

the geometrical aspects of the so formed hexagons as

well as on its various modal decorations, [7] introduces

new modalities with two other hexagons corresponding

to a paraconsistent and to a paracomplete definition of

negation (Figure 3).

Each of these hexagons shows how the bottom modality

is opposed to the top modality. Looking at the three

hexagons, we have thus the most general sub-alternation

(or implication) relation between these various negative

terms: �¬α −→ ¬α −→ ¬�α [8]. This is no surprise,

since these terms are known as expressing various kinds

of negation in classical and modal proposition logics with

the corresponding weakening relations: [9], [10] show that

�¬ is an intuitionistic paracomplete negation, and [11]

shows that ¬� is a paraconsistent negation.
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1) �α ∨ �¬α 2) �α ∨ ¬α

�α

✲
�¬α

✛

�α

✲
¬α

✛

¬�¬α
❄

¬�α
❄

α
❄

¬�α
❄

¬�¬α ∧ ¬�α

✲✛

α ∧ ¬�α

✲
✛

3) α ∨ �¬α

α

✲
�¬α

✛

¬�¬α
❄

¬α
❄

¬�¬α ∧ ¬α

✲✛

Figure 3. 1) “classical” negation, 2) “paraconsistent” negation , and
“paracomplete” negation

A. Modalities attached to a theory formation

We derive from these negations the formal definitions

of a Postulate (α ∧ ¬�α) and Conjecture (¬α ∧ ¬�¬α)

(Figure 4), introduced to deal respectively with the in-

consistency and the incompleteness of knowledge during

the formation of a theory. An ongoing theory is then

determined by a set of postulates and conjectures that

should finally be instituted as being its principles and its

theorems to be demonstrated.

1) �α .................... �¬α 2) �α ............ α ∧ ¬�α

¬�¬α
❄

................ ¬�α
❄

¬α ∨ �α
❄

.......... ¬�α
❄

3) �α ............ ¬α ∧ ¬�¬α

α ∨ �¬α
❄

.............. ¬�α
❄

Figure 4. 1) classical definition of a refutation (as on Figure 2), 2)
paraconsistent definition of a conjecture, and 3) paracomplete definition
of a postulate

Definition 9 (Observed: α): α is often interpreted as

“true” (and ¬α as “false”), but here, the interpretation

of α as “is observed” (and ¬α as “not observed”) is

preferred. This notion of observation is refined in section

VI in which observations are related to experimentation in

a context of modeling: there is a glimpse of temporality

under this notion, which should be also refined by the

process of prediction and factualisation. In the cubic

structure presented in the current section, the notion of

observation “forgets”, in a certain sense, all the meanings

required to design the modeling actions of an agent.

We introduce the use of postulates to fix some limits

to what is arguable or not, and conjectures to restrain the

objectives, to fix some limits to what is provable or not

(for example, one could state that the conjecture P = NP

is not to be proven)

Definition 10 (Postulate: α ∧ ¬�α): A postulate is a

primary principle, indemonstrable or undemonstrated.

�α ✲ α ∨ �¬α

¬�¬α ✛
✲

✻

α ∧ ¬�α

✛

¬α ∨ �α
❄

✛ �¬α

¬α ∧ ¬�¬α

✻

✲

✛

¬�α
❄

✲

Figure 5. The cube of oppositions

Formally, a postulate is a statement supposed on the basis

of incomplete observation;

(¬α ∨ �α: the formula is not a postulate).

Definition 11 (Conjecture: ¬α ∧ ¬�¬α): A

conjecture is a simple supposition founded on apparent

possibility or probabilities, a hypothesis which has not

received any confirmation. Formally, a conjecture is a

statement which existence is assumed without being

observed, since it is not refuted. For instance, tomorrow

is a new day is a conjecture.

(α ∨ �¬α: the formula is not a conjecture)

Definition 12 (Theory): A theory includes a set of pos-

tulates and a set of conjectures: an ongoing theory is not

supposed to be complete and consistent. The use of para-

consistent and paracomplete logics to formulate theories

simply comes from the fact that postulates and conjectures

are expressing contradictions when using respectively a

paraconsistent and a paracomplete negation.

As [12] and [13], we combine the three squares

presented on Figure 4 to form a higher order cubic

structure, the Cube of Oppositions (Figure 5), relating all

the modalities presented so far.

The squares are not visible on the faces, but on the

diagonals of the cube. Indeed, since the relations of

contradiction are visible on the diagonals of Aristotle’s

square, it is natural that the different squares form the

diagonal planes of the cube of oppositions.

The latter is built from two distinct tetrahedrons. The

one of contrariety, which vertices are those from which

the implication arrows start, opposes the proof � to the

modalities that can imply its contrary ¬�, and the one

of sub-contrariety which vertices are those to which the

implication arrows lead. The latter opposes the contradic-

tion of a proof ¬� to the modalities that can be derived

from a proof. Any vertex of the cube is then contradictory

to the furthest lying opposite vertex (easily obtained by

central symmetry).

A proof is the result of a dynamic process of constant

revision: a new proof is interesting when it proves some

conjectures or eliminate surnumerous postulates, and is

reciprocally suspected when it proves some conjecture

that are reputed unsolvable or false. Logicians appreciate

that solvers reason with consistent and complete theories,

this is why theories which take into account inconsistency
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and incompleteness model them by believes, intentions,

and defaults. However, during the interactive phases of

learning, it is illusory to try being consistent and complete

by considering that errors are the defaults of some known

consistent and complete theories, which would lead to

making a theory of the whole. A discovery is triggered

by the resolution of a contradiction. For instance, it is

contradictory to consider a statement as a proof and

as a postulate, since proof is related to postulate by a

contrariety relation. So when a postulate is proven then

either it has to be removed, either the proof is false. This

shows how this set of modalities is closed by negation,

and why paracomplete and paraconsistant contradictions

are needed to reason with incomplete and inconsistent

knowledge.

By chance, this cube of oppositions is not an exotic

logical structure, but simply a fragment of a classical logic

which is used to raise an alert when a theory needs to be

revised, i.e. when a postulate or a conjecture is proven.

How can a postulate or a conjecture be empirically

proven? This question shows the limits of this formalism,

as illustrated in section V-B, and leads to the hypercubic

structure presented in section VI.

B. E+N, a game of scientific discovery

The application chosen to illustrate this first part of

the formalism is E+N, a toy game inspired from Abott’s

mathematical game “Eleusis” [14], and an interaction

protocol “Nobel” designed by cognitive scientists to study

collective behaviors in a controlled and parametrized

environment [15]. As described in [2], E+N game was

designed to simulate the discovery phenomenon and the

formation of theories by implementing an Angluin like

machine learning interaction protocol [16]. It is currently

experimented in with PhD students, to gather enough data

to enable the comparison with their results with those

of computer assisted players, but also with children to

validate the didactic impact of the game on their learning

dialectics.

E+N is a card game in which players have to discover

hidden rules determining the valid card sequences that

can be formed during the game. Players have access

to personal experimentation spaces in which they test

sequences to observe their validity for the selected hidden

rule. They also have access to a public environment in

which they can publish their own theory explaining a

hidden rule, read the ones submitted by other players, and

possibly refute them when they find a sequence which

is irrelevant with what was published. The game ends

when the flow between published and refuted theories

stops, and the winner is the player with the higher score.

A player scores by publishing and refuting theories, and

loses points when his own theories are refuted.

The choice to use cards was made to make this

game accessible to the largest backgrounds as possible

(including children), but this simple game is actually a

constructive and collective process of theory construction

during which players have to observe the sequences at

their disposal, and formulate postulates and conjectures to

build a publishable theory. The social game confronting

players who do not have tested the same sequences

create cases of contingency: when publishing a theory

without testing sequences to prove or refute possible and

contingent statements, there is a risk that another player

has tested them. We insist on the fact that this game has

been simplified for experimentation reasons: the length of

the sequences is fixed to two cards, and the description

of the cards is also fixed and known by every player, we

will discuss in section V-B.2 the consequences of these

simplifications, after illustrating with the game’s concepts

the definitions given so far.

1) Illustration of Definitions:

• Observed (α): By creating a new card sequence, one

can observe if it is accepted or not. On the contrary,

¬α denotes that a sequence has not been played.

For instance, the sequence S=[King of hearts][Ace

of spades] is either played, or not.

• Proof (�α): When a sequence is valid, then the

statement describing it is proven. Considering that

the way to describe cards is fixed and known, and

supposing that the card sequence S given above

is valid (accepted by the hidden rule), then the

following statement St, is proven: A card which form

is “hearts”, which color is “red”, which strength is

“King”, and which is a court card, can be followed

by a card which form is “spades”, which color is

“black”, which strength is “Ace”, and which is not

a court card.

• Refutation (�¬α): Supposing that the card sequence

S given above is not valid (rejected by the hidden

rule), then the St is refuted. If the statement in

question, or part of it, has been published, then the

player who observes the counter example can refute

it and score points. For instance, a theory as “A red

card is followed by a black card” can be refuted if

S is not valid.

• Possible (¬�¬α): Possible denotes the fact that

a sequence has not been played, and therefore a

statement describing it is not refuted or contradicted.

• Contingent (¬�α): Contingent denotes the fact that

a sequence has not been played, so a statement

describing it is not proven. Surely, there is a temporal

notion underlying these two last modalities, since

what is possible or contingent has not been played

yet. Contingency is strongly linked to the notion of

action, and in this game, every card sequence is

contingent, as the result of the player’s choice. It is

not as if cards were played continuously, following

a specific rule, as Earth turning around the sun in

a bit less than 365 days, which is a phenomenon

strictly observed, and which cannot be influenced by

the observer. Moreover a sequence, until it is played,

can be at the same time possible and contingent since

these modalities are linked by a contrariety relation.

• Postulate (α ∧ ¬�α) A postulate can be seen as a

statement describing only partially an observed and
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Figure 6. Eleusis + Nobel Game display

contingent card sequence. Indeed, the description

may not be accurate or really relevant. Since the

language to describe cards is given in this simplified

version of the game, there can be no postulates, these

statements are already proven.

• Conjecture (¬α ∧ ¬�¬α): A conjecture is a set of

logical rules that produce predictions (statements)

which are not observed and possible. For instance, if

there is at least one sequence of a red card followed

by a black card which has not been observed as valid,

then the statement “a black card will be accepted

after a red one” is a conjecture, but can be used to

predict, associated to a risk of producing an error.

The dynamic of the interactive process is given by

the “Nobel” part of the game during which each player,

motivated by the acquisition of credits, publishes his own

theories: each player has his own bias, and individual

theories are improved by being confronted to others.

2) Discussion: As it was emphasized in the presen-

tation of this game, some simplifications were made to

make this game accessible to the children who experi-

mented it at first: hidden rules are consistent and complete

on the set of sequences of two cards, and the cards

description is also fixed and known by each players. As

we mentioned in the illustration of postulates (section

V-B.1), the first consequence of these simplifications is

to eliminate the use of postulates. A harder game could

make players doubt about the most pertinent vocabulary

to describe the properties of cards involved in the hidden

rule, as well as about the relations between cards (hidden

rule concerning n consecutive cards, or a card could be

related to the one placed in the nth position after it).

In this harder game using postulates would make sense,

since the observation of a sequence would only proof its

existence. Moreover, in the context of scientific discovery,

a publication not only contains postulates and conjectures,

but also a model together with a device for experimental

validation and facts confirming or invalidating the model’s

predictions, which are not taken into account in the Cube.

The state of the art and the credibility of an author (credit)

are not dealt with neither. However, some of these are

already present in E+N and visible on Figure 6: the state

of the art, for instance, is represented by a journal of

publications, listing every theory published, as well as

the eventual refutations (left hand side). On the right hand

side is shown information as personal credits (score), the

credits of the best player, the average number of cards

played before publishing . . . The main frame shows the

private environment in which each player can freely play

cards to form sequences, and this whole experimentation

environment could be published as a device for empirical

validation or refutation.

Section VI fills the gaps mentioned earlier, and presents

how the cube is extended into a hypercubic structure by

absorbing two other squares of oppositions defining the

relations between modeling and proof or refutation on the
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one hand, facts and predictions on the other.

VI. THE HYPERCUBE OF OPPOSITIONS

In this section, we suppose that each scientist publishes

his own model and the experimental protocol to validate

it, together with the postulates and conjectures defining

the theory as mentioned in section V. A scientist also

produces experimentable facts, as well as possible and

contingent statements making factual some predictions

coming from others scientists’ model. Section V presents

a set of modalities closed by negation and used to describe

the formation of a theory, in a mathematical way, in a

purely theoretic manner. But as Popper [17], we believe

that science is pragmatic and must empirically rely on

experimentation and be validated by the confrontation

of a theory to reality. Every formal element has to be

experimentally refutable by a scientific society, and proof

and refutation must form the social accreditation process

of a formalism.

In other words, the role of the computer assistant is

to build, starting from facts, a model which is used to

simulate a phenomenon and predict the behavior of a

system, in an almost scientific manner. The modalities

representing these notions are introduced in section VI-A

and are based on a higher-order modal extension of the

previous cube of oppositions [12], [18]. An illustration

in drug design is provided in section VI-B. Section

VII then present informally how agents using such a

logical framework can interact to agree on a consensual

vocabulary to describe a phenomenon.

A. Modalities in empirical Theory formation

Definition 13 (Model: ∼): Modeling is a method of

study and measurement consisting in replacing a studied

system by a model supposed to have an analogous be-

havior. ∼ is the universal modality associated to a formal

statement representing a model.

Definition 14 (Experimentation: ¬∼): An experimen-

tation is an effective test realized to study a phenomenon.

¬∼ is the existential modality associated to a statement

expressing an experimentation.

Definition 15 (Prediction: � ∨ ∼ ∨ �¬): A

prediction is the result of a computation, or a principle.

� ∨ ∼ ∨ �¬ is the existential modality associated to a

statement implied by a proof or a refutation or a model.

Definition 16 (Fact: ¬� ∧ ¬∼ ∧¬�¬): A Fact is the

concrete result of an action, and has an unquestionable

empirical evidence for scientists. ¬� ∧ ¬∼ ∧¬�¬ is the

universal modality attached to a statement from which

may be implied an experimental, possible and contingent

result.

The two opposition squares relating these new modali-

ties are visible on Figure 7 (only modalities are shown to

simplify the diagrams). They can be linked to the previous

cube to build a hypercubic construction of higher-order

geometrical figures of oppositions as suggested by [12]

(Figure 8 shows only a part of this hypercube for clarity

reasons).

� ............ ∼ ∼ .......... �¬

¬∼
❄

........ ¬�

❄
¬�¬

❄
....... ¬∼

❄

Figure 7. the squares defining simulation and experimention towards
proof and refutation

� ✲ � ∨ ∼ ∨ �¬

¬�¬ ✛
✲

✻

∼

✛

¬∼
❄

✛ �¬

¬� ∧ ¬∼ ∧¬�¬

✻

✲

✛

¬�

❄✲

Figure 8. One facet of the hypercube of oppositions

Both experimentation and modeling produce results,

and it is the confrontation between them that puts forward

an eventual contradiction between a phenomenon and

the model used to simulate it, which leads to put into

question proofs, conjectures, and postulates to localize the

theoretical error.

More generally, each face opposes two universal

modalities by confronting the two particular modalities

which can be derived from both of them. For instance,

different models create different points of view, and

modify postultes and conjectures. A first result of this

methodology is to reveal the facets of different learning

techniques. On the front face, the adequacy of “fact” and

“model” is related to the production of possible and con-

tingent statements which are linked by a subcontrariety

relation. The corresponding learning method are version

space or Galois lattice techniques. The left face as the

bottom face links respectively the “fact” to the “proof”

or to the “refutation” of the model. The three other faces

are related to the analysis of the prediction. The back face

is used to compare a prediction, i.e. a “theoretical result”

given by a “simulation”, to an “experimentation” which

concretizes some “experimental results” (the fact that an

object falls when it is released on earth is observable

by experimenting it on a particular object in particular

conditions).

In the following section, we illustrate the different

facets of this supervision strategy of a learning process

on an industrial application in Drug Discovery. The form

of the “hidden rules” is not known anymore, but several

models can exist.

B. Application to the prediction of Absorption

In this section, we present an application of the hyper-

cube in scientific discovery, on the absorption problem.

In the example E+N presented in section V-B, the objects
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Figure 9. KEMTM

were described using a fixed and known ontology and

the hidden rules an error free answer to each query

concerning a card sequence.

In this new problem a scientist is using a learning

machine to learn a model from facts. This model is

formulated as a constraint network, and each constraint

concerns properties of the molecular graph’s description.

As the model is learned from examples, since predictions

may be done in a context of overfitting and underfitting,

contradictions are the events which allow the supervision,

by the expert, of the learning assistant modeled as a

hypercube.

This real application of learning in scientific discovery

results from collaboration with Ariana Pharmaceuticals in

Drug design [19]. KEMTM can suggest specific molecular

modifications to achieve multiple objectives, after analyz-

ing a multi-parametric database.

In this example we focus on the prediction of ab-

sorption, a key issue in drug design since this is one

of the important and early causes of failure in the drug

discovery process. Indeed molecules need to be absorbed

before they can perform any desired activity. Absorption

is a complex process involving both passive (diffusion)

and active (through transporter proteins) across cellular

membranes. For passive transport, molecules need to be

soluble (hydrophilic) in water and at the same time they

need to be greasy (hydrophobic) to penetrate cellular

membranes that are formed of lipids. This contradict-

ing requirement is modulated by active transport, where

molecules need to be recognized (i.e. complementarity of

shape and charge) by another molecule (transporter) that

helps them through membranes. Although no one can for

sure predict the absorption of a new molecule, a number

of empirical rules are known. This is an interesting

context for applying our IA since our key requirement is

to capture knowledge from the experimental data and then

evolve and improve this model in a consistent manner.

To illustrate our approach we focus on a set of 169

molecules for which the absorption in human tissues has

been experimentally evaluated (4 classes. 0 not absorbed,

3 highly absorbed) [20]. These molecules are described

using a set of physico-chemical properties such as molec-

ular radius, different calculated measures of their total

polar surface accessible to water (TPSA and VSA POL),

their hydrophobicity (SLOGP), presence of halogens etc.

To learn, KEM acts according the facet of the hyper-

cube of oppositions visible on Figure 8: 1)(left face)A

decision tree is used to find a good segmentation of
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Figure 10. Predictions A and B

the numerical descriptors. 2)(front face) A Galois lattice

method works on these binary descriptors in order to

construct a lattice of regularities. 3)(upper face) sup-

irreducible nodes are translated into logical constraints

for prediction. 4)(back face) the prediction is confronted

to the experimentation. 5)(right face) the study of the ex-

perimental error is done by a refutation of the simulation.

Initially, the system learns from the data set a set

of rules linking the structure of the molecule to the

absorption. The quality of the prediction is tested in

a subsequent stage on a novel set of molecules. The

results are shown on prediction A in Figure 10. Ideally

the predictions should be on the diagonal. An error of

one class is tolerated. However, it is clear that for one

molecule, the error is larger (i.e. experimental: class

1 vs predicted: class 3). This confrontation between a

theoretical result and an experimental result puts forward

a contradiction in the model.

Let us sketch this dialog: the molecule (Ranitidine)

has been predicted with fraction absorbed in human

3 i.e. highly absorbed. However, if the user makes a

postulate and forces fraction absorbed in human 3 to

be false, the system localizes the error that induced the

contradiction by showing that the postulate contradicts the

conjectural learned rule VSA pol 2 → fraction absorbed

in human 3. At this stage the user realizes that indeed this

conjecture was true for the learning set, however this is

not generally true and it can be eliminated. The user then

goes back to simulating once more the test and results

are shown in Figure 10, prediction B. As expected, the

results have been improved. The important point is that

the improvement has been done in a controlled way under

the user’s supervision, and this was only possible because

the user and KEMTM shared a common vocabulary to

type statements.

In scientific discovery, there are in general no Oracles

who can say a priori whether a prediction is correct or not.

Experimentalists formulate a conjecture that is consistent

with existing empirical data and then set about to test it.

We believe that the key for a computational system is to

adhere to the same process i.e. build up an explanation /

reasons for predicting an outcome. If the system is able

to provide enough arguments, the user will ”trust” it and

try the experience. This implies that the arguments are

annotated with modalities which are meaningful both for

the user and the machine.

VII. THE INSTITUTION AGENT SOCIAL GAME

This section is the final step of the formalism and links

the classical formalisms used to express the individual

and collective behaviors of agents. Our contribution is to

describe the dynamic process of conventional formation

of theories by agents (human as well as artificial agents)

in respect with social norms regulating a community,

in order to describe a community of agents interacting

with each other to understand their environment and

organize themselves to fix common objectives and chose

the best actions to achieve them. The objective is then to

give the intuitive idea about mathematical developments,

which are our ongoing research, and to show that this

is a constructive approach to build agents comparable

to classical BDI agents, which use Beliefs, Desires, and

Intentions to reason and decide.

The only constraint fixed on agents is to reason using

a hypercube (section VI) and a normative system NS,

which is a logical language using the cube modalities to

communicate.

Definition 17 (Normative System): We call a Norma-

tive System (NS) the couple (L, Cube) formed by:

• L: a language formed by a hierarchy of concepts and

the relations between them,

• Cube: a cube of oppositions.

Definition 18 (IA): An IA is an agent using an

Hypercube framework to reason and judge statements.

As we emphasized, the Hypercube is a formalization of

dialectic as it is practiced by humans, and an IA can

then be either an artificial agent, or a human agent. The

interaction protocol is compliant with both of them since

the definitions of the modalities are shared by both of

them.

Scientific discovery is a collective process, and needs

interaction between researchers to exchange their points

of view and judgments. This is how IAs interact (Figure

12): by exchanging judgments about statements, more

exactly, by asking another IA if it agrees with a particular

judgment: ”this statement is a conjecture, is it not?”, to

which the answer is ”yes” or ”no, it is a result”, or if a the-

ory seems relevant or not. This type of interaction is well

described in Machine Learning theories and these queries

are known respectively as Membership and Equivalence

queries. [16], [21] shows that the use of at least these

two types of queries is required for an effective learn-

ing. Exchanging judgments creates the negation in the

common frame of reference (language), and the revision

of the normative system associated with one IA or the

other. Two judgments are especially important: judging

one’s conjecture as being a paradox, and judging one’s

postulate as already being a result. KEMTM , presented

in section VI-B, illustrates this control by a scientist over

the artificial IA assisting him.

We suppose that each IA can be represented by a

particular normative system resulting from its own ex-

perience and adaptation during an interaction with other

IAs, and we assume that the logic used during a decision

process is the same for every IA. We then focus on
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adaptation and interaction of IAs sharing a vocabulary

and trying to build a common language or frame of

reference with this vocabulary to describe a phenomenon

and provide consensual definitions, expressed logically or

by constraint networks.

Three logical properties, presented in the following, are

needed to qualify this interaction protocol and to add a

logical control to the adaptation process:

• deontic: an IA must be able to attribute credits to

another IA, to interact, and to teach another IA,

• defeasible: Lower IAs must be able to adapt their

behavior to the norms imposed by the higher ones,

• autoepistemic: an IA can be seen as composed by

at least two interacting IAs and can therefore learn

its own hierarchy of norms and auto-adapt.

section VII-A presents how a deontic and defeasible

logic can be used to frame the collective dynamic during

which IAs build a common NS, and section VII-B

suggests how an IA can be itself composed by several

IAs to form an autoepistemic agent performing an inner

dialog while reasoning.

A. Collective dynamic

1) Deontic logic: Often used in multi-agent systems to

constrain an agent’s behavior, annotable deontic logic uses

modalities expressing obligation, interdiction, advice, and

warning. According to Frege’s definition, these statements

express a judgment, i.e. the recognition of the type of

truth of the statement [22]. Imputations (gains or losses,

risk estimation) are used to estimate the risk incurred in

a given situation to decide what action to take or what

behavior to adopt. A modality and an imputation have

to be used to express statements of the following form:

”The obligation to respect the speed limit is attached to a

imputation of x”. A credit value can also be associated to

IAs, ordering them hierarchically, to define which one is

the most qualified to rule in a given context, for example

by defining a social organization as a government with a

parliament, a senate...

2) Defeasible logic: It is possible to link two IAs

by respecting a defeasible logic to take into account a

hierarchy of Institution Agents. The resulting hierarchy

of IAs has to be brought together with the transitivity

axiom, that stands as follows: ”What is necessary in an

upper NS of is also necessary in a lower NS”. In other

words, no one should be unaware of the law, no one

should go against a superior law. [23] gives a concrete

usage of defeasible logic, that allows us to order rules

and to supervise an IA, for example with another higher

IA, as illustrated on Figure 13.

• Every Obligation of a lower IA belongs to the

superior IA’s advice.

• Every Interdiction of a lower IA belongs to the

superior IA’s warnings.

The middle line shows the conditions according to which

an IA can be supervised by another one. The violation

of this constraint (O2 = �2 ⊂ I1 = �1¬ or I2 =

Figure 11. IA’s credit

Figure 12. Exchanging judgments

�2¬ ⊂ O1 = �1) can put forward contradictions between

the two IA’s normative system. Finding a contradiction,

and trying to eliminate it, leads to the initiation of a

transaction between the two IAs, during which they adapt

their theory. When no contradiction remains, a new IA can

be created, formed by the association of the two precedent

IAs, and this process ensures the traceability of all the

events leading to an IA’s creation.

B. Personal dynamic

Figure 14. Autoepistemic dialog

Figure 15. IA formation

1) Autoepistemic logic: Aristotle distinguishes en-

dophasy as an inner dialog (”to think is to speak with

oneself”). This is a constructive manner to build an

intelligent agent as the result of an self learning. The inner

IAs can be interpreted as managing believes, desires or

intentions (BDI), for example. By applying the dialectic

and deontic interaction we have presented in section VII-

A.1, an IA is able to acquire its own NS, which prepares
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Figure 13. Normative system hierarchy

an efficient learning, and even enable self learning from

examples.

In this section, we presented how an interaction process

and a hierarchical control can be used to define an agent

able to adapt its defeasible deontic and autoepistemic

Normative System.

VIII. CONCLUSION

We presented a logical framework in order to capture

the entire process of scientific discovery as it is per-

formed in scientific comunity. This framework is based

on Aristotle’s square, a conventional logical structure, and

recent related works in logic. In this context, we focused

on a geometrical representation of the notion of logical

contradiction.

Our approach is progressive. We first presented with

a cubic structure the formation of a theory as driven by

the proof of its postulates and conjectures by scientists.

Then we presented a hypercubic extension to capture the

empirical modeling processes, to make the predictions of

a model and the experimentations explicit. We showed

how this theory construction can be done by human and

by machines taught by humans in a formal and in a

practical way. Finally we presented in an informal way

how the institution agents (agents using this hypercubic

structure to build theories), educated by human, can be

constrained to respect normative systems and how this

approach is only a constructive alternative to BDI agents.

We illustrated on an example coming from Drug Dis-

covery how these annotations of common sense, which are

now logically defined, are used by a learning machine and

a scientist to interactively build a model which is coherent

and complete with observations and experimental results.

We prone that this hypercube describes in a universal

way a rational agent and enables the supervision of its

computing process.

In perspective, to complete our experimentation, we

plan on experimenting this constructive approach to teach

a humanoid robot and make him gain more autonomy. A

mathematical formalism of agents based on this vision is

currently developed in category theory.
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