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From the Editor-in-Chief The article below by Ivan Fesenko is an introduction to
inter-universal Teichmüller theory, as developed by Shinichi Mochizuki, and its appli-
cation to famous conjectures in Diophantine geometry. In a series of preprints released
several years ago, Mochizuki introduced a vast collection of new ideas and methods
related to arithmetic deformation. The level of novelty of the theory has made it chal-
lenging to study even for many experts in arithmetic geometry. The article surveys the
main features and objects of the work of Mochizuki and also provides an independent
perspective. We hope that the article will be of help in understanding the main concepts
and innovations of this important theory.

Abstract These notes survey the main ideas, concepts and objects of the work
by Shinichi Mochizuki on inter-universal Teichmüller theory (Inter-universal Teich-
müller theory I–IV, 2012–2015) which might also be called arithmetic deformation
theory, and its application to diophantine geometry. They provide an external perspec-
tive which complements the review texts of Mochizuki (Invitation to inter-universal
Teichmüller theory (lecture note version), 2015) and (Algebraic Number Theory and
Related Topics 2012. RIMSKôkyûroku Bessatsu, vol B51, pp. 301–346, 2014). Some
important developments which preceded (Inter-universal Teichmüller theory I–IV,
2012–2015) are presented in the first section. Several important aspects of arithmetic
deformation theory are discussed in the second section. Its main theorem gives an
inequality–bound on the size of volume deformation associated to a certain log-theta-
lattice. The application to several fundamental conjectures in number theory follows
from a further direct computation of the right hand side of the inequality. The third
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section considers additional related topics, including practical hints on how to study
the theory.
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Foreword. The aim of these notes is to present, in a relatively simple form, the key
ideas, concepts and objects of the work of Shinichi Mochizuki on inter-universal
Teichmüller theory (IUT), to as many potential readers as possible. The presentation
is based onmy own experience in studying IUT. This text is expected to help its readers
to gain a general overview of the theory and a certain orientation in it, as well as to
see various links between it and existing theories.

Reading these notes cannot replace or substitute a serious study of IUT. As men-
tioned in [42], there are currently no shortcuts in the study of IUT. Hence there are
probably two main options available at the time of writing of this text to learn about
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the essence of IUT. The first is to dedicate a significant amount of time1 to studying the
theory patiently and gradually reaching its main parts. I refer to Sect. 3 for my personal
advice on how to study the original texts of arithmetic deformation theory, which is
another name (due to the author of the present text) for the theory. The second option
is to read the review texts [39,40] and introductions of papers, etc. My experience and
the experience of several other mathematicians show that the review texts could be
hard to follow, and reading them before a serious study of IUT may be not the best
way, while reading them after some preliminary study or in the middle of it can be
more useful. We shall see to what extent this feature is shared by these notes.

In view of the declared aim of this text and the natural limitation on its size, it
is inevitable that several important mathematical objects and notions in Sect. 2 are
introduced in a vague form. One of the most important novel objects of IUT is a so-
called theta-link. A very large part of [35,37] defines the theta-link and develops its
enhanced versions.2

1 The origins

1.1 From class field theory to reconstructing number fields to coverings of P
1

minus three points

Abelian class field theory for one-dimensional global and local fields, in particular
for number fields and their completions, has played a central role in number theory
and stimulated many further developments. Inverse Galois theory, several versions of
the Langlands programme, anabelian geometry, (abelian) higher class field theory and
higher adelic geometry and analysis, and, to some extent, the arithmetic of abelian
varieties over global fields and their completions are among them.

Inverse Galois theory studies how to realise finite or infinite compact topological
groups as Galois groups of various fields including extensions of number fields and
their completions, see e.g. [21]. For abelian groups and local and global fields, the
answer follows from class field theory. A theorem of Shafarevich states that every
soluble group can be realised as a Galois group over a global field, see e.g. [47,
Section 6, Chapter IX].

Let K alg be an algebraic closure of a number field K . The Galois group G K =
G(K alg/K ) is called the absolute Galois group of K .

The Neukirch–Ikeda–Uchida theorem (proved by the end of 1970s; the proof used
global class field theory) asserts, see e.g. [47, Section 2, Chapter XII], the following:

For two number fields K1, K2 and any isomorphism of topological groups
ψ : G K1

∼−→ G K2 there is a unique field isomorphism σ : K alg
2

∼−→ K alg
1 such

that σ(K2) = K1 and ψ(g)(a) = σ−1(gσ(a)) for all a ∈ K alg
2 , g ∈ G K1 . In

1 In my opinion, at least 250–500h.
2 An appreciation of the general qualitative aspects of the theta-link may be obtained by studying the
simplest version of the theta-link. This version is discussed in [35, Section I1], while technical details
concerning the construction of this version may be found in approximately 30 pages of [35, Section 3].
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particular, the homomorphism GQ → Aut(GQ), g �→ (h �→ ghg−1), is an
isomorphism and every automorphism of GQ is inner.

The next theorem was included as [2, Theorem 4] in 1980, as part of Belyi’s study of
aspects of inverse Galois theory:

An irreducible smooth projective algebraic curve C defined over a field of char-
acteristic zero can be defined over an algebraic closureQ

alg of the field of rational
numbers Q if and only if there is a covering C → P

1 which ramifies over no
more than three points of P

1.

This theorem3 plays a key role in the study of Galois groups, including algebraic
and geometric fundamental groups of curves over number fields and local fields.4

Coverings of the type which appears in this theorem are often called Belyi maps.
Various versions of Belyi maps are used in arithmetic deformation theory and its
application to diophantine geometry.

1.2 A development in diophantine geometry

In 1983 Faltings proved the Mordell conjecture, a fundamental finiteness property in
diophantine geometry [7,9]. The Faltings–Mordell theorem asserts that

A curve C of genus > 1 defined over an algebraic number field K has only
finitely many rational points over K .

Several other proofs followed.5 Vojta found interesting linkswithNevanlinna theory in
complex analysis which led to one of his proofs. For textbook expositions of simplified
proofs see [5,15].

3 The first version of [2] and Belyi’s seminar talk inMoscow dealt with an elliptic curve, which was enough
for its subsequent application, see 1.5. After reading the first version of [2], Bogomolov noticed that the
original proof of the theorem in it works for arbitrary curves. He told Belyi how important this extended
version is and urged him to include the extended version in the paper. Belyi was reluctant to include the
extended version, on the grounds that over finite fields every irreducible smooth projective algebraic curve
may be exhibited as a covering of the projective line with at most one ramification point. Bogomolov then
talkedwith Shafarevich, who immediately appreciated the value of the extended version and insisted that the
author include it in [2]. Bogomolov further developed the theory of Belyi maps, in particular, in relation to
the use of coloured Riemann surfaces and delivered numerous talks on these further developments. Several
years later this theory appeared, independently, in Grothendieck’s text [13].
4 Grothendieck wrote about the “only if” part: “never, without a doubt, was such a deep and disconcerting
result proved in so few lines!”[13].
5 Here we are in the best possible situation when a conjecture is stated over an arbitrary algebraic number
field and is established over an arbitrary algebraic number field, and themethods of the proofs do not depend
on the specific features of the number field under consideration. This is not so in the case of the arithmetic
Langlands correspondence, even for elliptic curves over number fields. In the history of class field theory,
the initial period of developing special theories that work only over small number fields was followed by a
phase of general functorial class field theory over arbitrary global and local fields. The general theory was
eventually clarified and simplified, see [46], and it became easier than those initial theories. We are yet to
witness a similar phase which involves a general functorial theory that works over arbitrary number fields
in the case of the Langlands programme and hence, in particular, yields another proof of the Wiles–Fermat
theorem via the automorphic properties of elliptic curves over any number field.

123



Notes on the theory of Shinichi Mochizuki 409

The same year Grothendieck wrote a letter [14] to Faltings, which proposed ele-
ments of anabelian geometry. With hindsight, one of the issues raised in it was a
generalisation of theNeukirch–Ikeda–Uchida theorem6 to anabelian geometric objects
such as hyperbolic curves over number fields and possible applications of anabelian
geometry to provide new proofs and stronger versions, as well as a better understand-
ing, of such results in diophantine geometry as the Faltings–Mordell theorem, cf. 1.5.

1.3 Conjectural inequalities for the same property

There are several closely related conjectures, proposed in the period from 1978 to
1987, which extend further the property stated in the Mordell conjecture:

(a) the effective Mordell conjecture—a conjectural extension of the Faltings–Mordell
theorem which involves an effective bound on the height of rational points of the
curveC over the number field K in the Faltings theorem in terms of data associated
to C and K ,

(b) the Szpiro conjecture, see below,
(c) the Masser–Oesterlé conjecture, a.k.a. the abc conjecture (whose statement over

Q is well known,7 andwhich has an extension to arbitrary algebraic number fields,
see [5, Conjecture 14.4.12]),

(d) the Frey conjecture, see [15, Conjecture F.3.2 (b)],
(e) the Vojta conjecture on hyperbolic curves, see below,
(f) arithmetic Bogomolov–Miyaoka–Yau conjectures (there are several versions).

The Szpiro conjecture was stated several years before8 the work of Faltings, who
learnedmuch about the subject related to his proof from Szpiro. Using the Frey curve9,
it is not difficult to show that (c) and (d) are equivalent and that they imply (b), see
e.g. see [15, Section F3] and references therein. Using Belyi maps as in 1.1, one can
show the equivalence of (c) and (a). For the equivalence of (c) and (e) see e.g. [5,
Theorem 14.4.16] and [54]. For implications (e)⇒ (f) see [55].

Over the complex numbers the property analogous to the Szpiro conjecture is very
interesting. For a smooth projective surface equipped with a structure of non-split
minimal elliptic surface fibred over a smooth projective connected complex curve of
genus g, such that the fibration admits a global section, and, moreover, every singular
fibre of the fibration is of type In , i.e. its components are projective lineswhich intersect
transversally and form an n-gon, this property states that the sum of the number of
components of singular fibres does not exceed six times the sum of the number of

6 It appears that Grothendieck was not aware of this theorem.
7 For every ε > 0 there is a constant such that for all non-zero integers a, b, c such that (a, b, c) = 1
the equality a + b + c = 0 implies max(log |a|, log |b|, log |c|) � constant + (1 + ε)

∑
p|abc log p

where p runs through all positive primes dividing abc. While the statement of the abc conjecture does not
reveal immediately any underlying geometric structure, the other conjectures are more geometrical. For an
entertaining presentation of aspects of the abc conjecture and related properties, see e.g. [56].
8 In 1978 Szpiro talked about it with several mathematicians. He made the conjecture public at a meeting
of the German Mathematical Society (DMV) in 1982 where Frey, Oesterlé and Masser were present.
9 y2 = x(x + a)(x − b) where a, b, a + b are non-zero coprime integers.
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singular fibres and of 2g − 2. The property has several proofs, of which the first was
given by Szpiro. Shioda deduced the statement in two pages of computations from
arguments already known to Kodaira. These two proofs of the geometric version of the
inequality use the cotangent bundle and the Kodaira–Spencer map. A (full) arithmetic
version of the Kodaira–Spencer map could be quite useful for giving a proof of the
arithmetic Szpiro conjecture. However, such an arithmetic version of the Kodaira–
Spencer map is not yet known.

Among several other proofs of this property, a proof by Bogomolov uses mon-
odromy actions and the hyperbolic geometry of the upper half-plane and does not use
the cotangent bundle, see [1, Section 5.3]. His proof makes essential use of the fact
that the n-gons determined by the singular fibres may be equipped with a common
orientation, like windmills revolving in synchrony in the presence of wind. Synchro-
nisation of data plays an important role in arithmetic deformation theory as well, cf.
2.10. To develop an arithmetic analogue of the geometric proof of Bogomolov to apply
to proving the arithmetic Szpiro conjecture, one needs a kind of arithmetic analogue
of the hyperbolic geometry of the upper half-plane, and this is in some sense achieved
by IUT, see 2.10.

The conjectural (arithmetic) Szpiro inequality states in particular that if K is a
number field, then for every ε > 0 there is a real c (depending on K and ε) such
that for every elliptic curve EK over the number field K with split multiplicative
reduction at every bad reduction valuation, so all singular fibres of its minimal regular
proper model E → Spec OK are of type In , the weighted sum of the numbers nv of
components of singular fibres satisfies

∑
nv log |k(v)| � c + (6 + ε)

∑
log |k(v)|,

where v runs through the nonarchimedean valuations10 of K corresponding to singular
fibres, and k(v) denotes the finite residue field of K at v.11 For the curve EK as
above, the quantity exp

(∑
nv log |k(v)|) coincideswith the absolute norm N (DiscEK )

of the so-called minimal discriminant of EK , and exp(
∑

log |k(v)|) coincides with
the absolute norm N (CondEK ) of the conductor of EK .12 Using these notational
conventions, the Szpiro conjecture states that if K is a number field, then for every
ε > 0 there is a real c′ > 0 (depending on K and ε) such that for every elliptic curve
EK over K the inequality

N (DiscEK ) � c′N (CondEK )6+ε

holds, see e.g. [51, Chapter IV, 10.6].13

10 By abuse of some of the established terminology, valuations in this text include nonarchimedean and
archimedean ones.
11 The notation |J | stands for the cardinality of the set J .
12 There are two different objects in this text (and in this subsection) whose names involve the word
“discriminant”: the minimal discriminant DiscEK of an elliptic curve EK over a number field K and the
(absolute) discriminant DK/Q of a number field K .
13 Szpiro proved that over Q this inequality implies the abc conjecture over Q with constant 6/5 instead
of constant 1 in it, see e.g. [15, p. 598].
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The Vojta conjecture, as discussed in this text, deals with a smooth proper geomet-
rically connected curve C over a number field K and a reduced effective divisor D
on C such that the line bundle ωC (D), associated with the sum of the divisor D and a
canonical divisor of C , is of positive degree (i.e. C \ D is a hyperbolic curve, see 1.5).
It asserts the following: for every positive integer n and positive real number ε there
is a constant c (depending on C, D, n, ε but not on K ) such that the inequality

htωC (D)(x) � c + (1 + ε)
(
log-diffC (x) + log-condD(x)

)

holds for all x ∈ (C \ D)(K ′), for all number fields K ′ of degree � n. To define the
terms, let C be a regular proper model of C over Spec OK . For a point x ∈ C(Qalg)

denote by F the minimal subfield ofQ
alg over which x is defined. Let sx : Spec OF →

C be the section uniquely determined by x . Then the height of x associated to a line
bundle B on C can be explicitly defined in several equivalent ways (up to a bounded
function on C(Qalg)), for instance, by using the canonical height on some projective
space into which C is embedded, or as deg s∗

xB, where B is an extension to C of B
viewed as an arithmetic line bundle on C , cf. [31, Section 1] or [15, Part B]. Define
log-condD(x) = deg (s∗

xD)red, whereD denotes the closure in C of D, and red stands
for the reduced part. Define log-diffC (x) = deg δF/Q = |F : Q|−1 deg DF/Q, where
δF/Q and DF/Q are the different and discriminant of F/Q, and the normalised degree
deg is defined in 2.2.14 This conjecture is equivalent to [54, Conjecture 2.3] for curves
or [5, Conjecture 14.4.10].

Using the Belyi map, one reduces the Vojta conjecture for C, D, K as above to the
case of C = P

1 over Q and D = [0] + [1] + [∞].15
Note the difference between the Vojta conjecture and the Szpiro conjecture in

relation to allowing the algebraic number field to vary; this partially explains the
occurrence of the term involving log-diffC on the RHS of the inequality of the former
conjecture.16

There are also so-called explicit stronger versions of the abc conjecture, which
easily imply the Wiles–Fermat theorem, see e.g. [56], and which are not dealt with
in [35–38]. For a discussion of the relationship between [35–38] and solutions to the
Fermat equation see the final paragraph of 2.12.

14 For a field extension R/S the notation |R : S| stands for its degree.
15 Viewing P

1 as the λ-line in the Legendre representation y2 = x(x − 1)(x − λ) of an elliptic curve Eλ

yields a classifying morphism from P
1 \{0, 1, ∞} to the natural compactification Mell⊗Q of the moduli

Footnote 15 continued
stack of elliptic curves over Z tensored with Q. The height htωC (D)(λ) on the LHS of the Vojta conjecture

for C = P
1 and D = [0] + [1] + [∞], is closely related to 1/6 times the LHS of the inequality of the

Szpiro conjecture for Eλ, since the degree of the pull-back to P
1 of the divisor at infinity of the natural

compactification of Mell⊗Q is six times 1 = the degree of ωC (D), see [31].
16 One can formulate a stronger version of the Szpiro conjecture in which K varies: for every ε > 0 there
is a constant c′ such that the following inequality holds: N (DiscEK ) � c′N (CondEK )6+ε |DK/Q|6+ε for
all elliptic curves EK over number fields K . This stronger version is equivalent to the Vojta conjecture,
as we shall see when we meet it in 2.12, and it shows up in Abstract, the final sentence of Section 1 and
Corollary 4.2 of [40], and on [39, p. 17].
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1.4 A question posed to a student by his thesis advisor

In January 1991 ShinichiMochizuki, at that time a third year PhD student in Princeton,
21 years old, was asked by Faltings (his thesis advisor) to try to prove the effective
form of the Mordell conjecture.17

Not surprisingly, he was not able to prove it during his PhD years. As we know,
he took the request of his supervisor very seriously. In hindsight, it is astounding that
almost all his papers are related to the ultimate goal of establishing the conjectures
of 1.3. These efforts over the long term culminated twenty years later in [38], where
(a), (c), (d), (e) and hence (b) and (f) of 1.3 are established as one application of his
inter-universal Teichmüller theory [35,37].18

His earlierHodge–Arakelov theory [23,24],where a certainweak arithmetic version
of the Kodaira–Spencer map is studied, was already an innovative step forward. That
work shows that Galois groups may in some sense be regarded as arithmetic tangent
bundles.

1.5 On anabelian geometry

Algebraic (or étale) fundamental groups in general and anabelian geometry in partic-
ular are less familiar to number theorists than class field theory or parts of diophantine
geometry. On the other hand, geometers may feel more at home in this context. For
an introduction to many relevant issues starting with algebraic fundamental groups
and leading to discussions of several key results in anabelian geometry see [52, Chap-
ter 4]. See also [49] for a survey of several directions in anabelian geometry before
2010, including discussions of some results by Mochizuki which are prerequisites for
arithmetic deformation theory.

The fact that the author of this text is not directly working in anabelian geometry can
be encouraging for many readers of this text who would typically share this quality.

For any geometrically integral (quasi-compact) scheme X over a perfect field K ,
the following exact sequence is fundamental:

1 → π
geom
1 (X) → π1(X) → π1(Spec K ) = G K → 1.

Here π1(X) is the algebraic fundamental group of X , π
geom
1 (X) = π1(X ×K K alg),

K alg is an algebraic closure of K , see e.g. [52, Proposition 5.6.1]. Suppressed depen-
dence of the fundamental groups on basepoints actually means that objects are often
well-defined only up to conjugation by elements of π1(X). Algebraic fundamental
groups of schemes over number fields (or fields closely related to number fields, such
as local fields or finite fields) are also called arithmetic fundamental groups.

17 Neither the word “anabelian” nor the Grothendieck letter [14] was mentioned. The author of IUT heard
about anabelian geometry for the first time from Takayuki Oda in Kyoto in the summer of 1992.
18 The four parts [35–38] were ready by August 2011 and put on hold for one year. They were posted on
the author’s webpage in August 2012 and submitted to a mathematical journal.

123



Notes on the theory of Shinichi Mochizuki 413

If C is a complex irreducible smooth projective curve minus a finite collection of
its points, then π1(C) is isomorphic to the profinite completion of the topological
fundamental group of the Riemann surface associated to C .

If C is the result of base-changing a curve over a field K to the field of complex
numbers, then the analogue for such a curve over K of the displayed sequence (asso-
ciated to X ) discussed in the previous paragraph induces a homomorphism from G K

to the quotient group Out(πgeom
1 (C)) of the automorphism group of π

geom
1 (C) by its

normal subgroup of inner automorphisms. Belyi proved, using the theorem discussed
in 1.1 for elliptic curves, that this map gives an embedding of the absolute Galois
group GQ of Q into the Out group of the pro-finite completion of a free group with
two generators [2]. For readers with background outside number theory I recall that,
unlike the case with absolute Galois groups of local fields, we still know relatively
little about GQ; hence the Belyi result is of great value.

Recall that a hyperbolic curve C over a field K of characteristic zero is a smooth
projective geometrically connected curve of genus g minus r points such that the Euler
characteristic 2 − 2g − r is negative. Examples include a projective line minus three
points or an elliptic curve minus one point. The algebraic fundamental group of a
hyperbolic curve is nonabelian.

Anabelian geometry “yoga”for so-called anabelian schemes of finite type over a
ground field K (such as a number field, a field finitely generated over its prime subfield,
etc.) states that an anabelian scheme X can be recovered from the topological group
π1(X) and the surjective homomorphism of topological groups π1(X) → G K (up to
purely inseparable covers and Frobenius twists in positive characteristic). Thus, the
algebraic fundamental groups of anabelian schemes are rigid.19

In [14], Grothendieck proposed the following questions:

(a) Are hyperbolic curves over number fields or finitely generated fields anabelian?
(b) A point x in X (K ), i.e. a morphism Spec K → X , determines, in a functorial

way, a continuous section G K → π1(X) (well-defined up to composition with
an inner automorphism) of the surjective map π1(X) → G K . The section
conjecture asks if, for a geometrically connected smooth projective curve X
over K , of genus> 1, themap from rational points X (K ) to the set of conjugacy
classes of sections is surjective (injectivity was already known). There is also
the question of whether or not the section conjecture could be of use in deriving
finiteness results in diophantine geometry.

TheNeukirch–Ikeda–Uchida theorem is a birational version of (a) in the lowest dimen-
sion. A similar recovery property for fields finitely generated over Q was proved by
Pop. Later Mochizuki proved a similar recovery property for a subfield of a field

19 Compare with the following strong rigidity theorem (Mostow–Prasad–Gromov rigidity theorem) for
hyperbolic manifolds: the isometry class of a finite-volume hyperbolic manifold of dimension � 3 is
determinedby its topological fundamental group, see e.g. [12].Recall that in étale topologyopen subschemes
of spectra of rings of integers of number fields are, up to 2-torsion, of (l-adic) cohomological dimension 3,
see e.g. [22, Chapter II, Theorem 3.1].

123



414 Ivan Fesenko

finitely generated over Qp. Many more results are known over other types of ground
fields, for a survey see e.g. [49].

With respect to (a), important contributions were made by Nakamura and Tama-
gawa. Then Mochizuki proved that hyperbolic curves over finitely generated fields
of characteristic zero are indeed anabelian. Moreover, using nonarchimedean Hodge–
Tate theory (also called p-adic Hodge theory), Mochizuki proved that a hyperbolic
curve X over a subfield K of a field finitely generated over Qp can be recovered
functorially from the canonical projection π1(X) → G K .

The section conjecture in part (b) has not been established. A geometric pro-
p-version of the section conjecture fails, see [16] and its introduction for more
results. A combinatorial version of the section conjecture is established in [18]. It
is unclear to what extent the section conjecture may be useful in diophantine geom-
etry, but [19] proposes a method which may lead to such applications of the section
conjecture.

Arithmetic deformation theory, though related to the results in anabelian geometry
reviewed above, uses and applies a different set of concepts:mono-anabelian geometry,
the nonarchimedean theta-function, categories related to monoid-theoretic structures,
deconstruction and reconstruction of ring structures.

2 On arithmetic deformation theory

The task of presenting arithmetic deformation theory on several pages or in several
hours is an interesting challenge.20

In these notes I attempt to simplify as much as is sensible and to use as little new
terminology as is feasible (and to indicate relations with the original terminology of
IUT when I use different terminology). As explained in the foreword, I will have to
be vague when talking about some of the central concepts and objects of the theory.
Some more technical sentences have been moved to the footnotes.

2.1 Texts related to IUT

Inter-universal Teichmüller theory21 has many prerequisites and offers many innova-
tions.

	 Absolute mono-anabelian geometry, developed in [32–34], is an entralling new
theory in its own right. It enhances anabelian geometry and brings it to a new level.
It plays a pivotal role in IUT.

	 The theory of the nonarchimedean theta-function, cf. [30] and a review in [36,
Section 1], is of similar central importance in IUT.

20 In view of the overwhelming novelty of the theory, it is hardly possible to give an efficacious presentation
during a standard talk.
21 The reason for this name is well explained in [35, Introduction], as well as in the review papers [39,40].
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	 Categorical geometry papers discuss the theory of categories associated to monoid-
theoretic structures22, such as frobenioids23 [28,29], as well as the theory of
anabelioids [25,27].24

	 [35,37] introduce and study several versions of the theta-link. The keymain theorem
of the first three parts of IUT is stated in [37, Corollary 3.12].

	 Strengthened versions of notion of a Belyi map obtained in [26] are applied in [31]
to prove a new interesting equivalent form of the Vojta conjecture, which is studied
in [38].

	 Astraightforward computation of the objects that appear in themain theoremof [35,
37] is summarised in [38, Theorem 1.10]. In [38, Corollary 2.2], onemakes a choice
of a certain prime number l which appears in this computation. This leads to the
application to the new form of the Vojta conjecture and hence to the conjectures
in 1.3 over any number field.

See 3.2 for a suggestion of possible entries into the theory.

2.2 Initial data

There are several equivalent ways to define a normalised degree deg. I will use adeles.
Recall that there is a canonical surjective homomorphism from the group A

×
k of ideles

of a number field k to the group Divk of complete (i.e. involving archimedean data)
divisors associated to k. This group Divk may be described as the direct sum of value
groups associated to the nonarchimedean and archimedean valuations of k. Thus, such
a value group is isomorphic to Z if the valuation is nonarchimedean and to R if the
valuation is archimedean. Similarly, there are canonical surjective homomorphisms
from A

×
k to the group of complete divisor classes associated to k, to the group of

isomorphism classes of complete line bundles on Spec Ok and to the group Ik of
fractional ideals of k. For a number field k and an idele α ∈ A

×
k define its (non-

normalised) degree degk as − log |α|, where |α| is the canonical module associated to
the adelic ring as a locally compact ring by the standard formula |α| = μ(αA)/μ(A),
and A is anymeasurable subset ofAk of non-zeromeasurewith respect to anynontrivial
translation invariant measureμ on the underlying additive group ofAk . Then degk α =
degQ Nk/Qα, and the degree of the diagonal image of an element of k× in A

×
k is 0.

22 The term “monoid-theoretic” in this text corresponds to the term “frobenius-like” in [35–38]. In IUT,
the underlying abstract topological groups associated to étale fundamental groups are often referred to as
étale-like structures, see [28,34]. Étale-like structures are functorial, rigid and invariant with respect to the
links in IUT, while frobenius-like structures are used to construct the links. The situation which serves as
a sort of fundamental model for the terms frobenius-like and étale-like is the invariance of the étale site
with respect to the Frobenius morphism in positive characteristic, see [38, Example 3.6]. Relations between
these two types of structures are crucial. Such relations are presented further in these notes without using
the terminology of frobenius-like and étale-like.
23 The theory of frobenioids is motivated by the need to develop a geometry built up solely from Galois
theory and monoid-theoretic structures in which a kind of Frobenius morphism on number fields, which
does not exist in the usual sense, can be constructed. The availability of such Frobenius morphisms in
the theory of frobenioids leads to various analogies between IUT and p-adic Teichmüller theory. For two
examples of frobenioids see 2.10.
24 These papers contain much more material than is necessary for the purposes of IUT. If one understands
the philosophy that underlies these papers, it is possible to skip long technical proofs.
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Due to the minus sign in the definition of degk , it is minus the non-normalised
degree which can be viewed as the log-volume of αA, where A is, say, the product of
the closed balls of radius 1with centre at 0 for all completions of k, andμ is normalised
to give A log-volume 0.

Write lim−→ A
×
k for the inductive limit, with respect to the inclusions induced by field

embeddings, of the groups of ideles of all finite extensions k of Q in a fixed algebraic
closure Q

alg. For β ∈ lim−→ A
×
k , define its normalised degree degβ as |k :Q|−1 degk β,

where k is any algebraic number field such thatβ corresponds to an element ofA×
k . One

verifies immediately that this definition does not depend on k. Finally, for an element
γ of the perfection of lim−→ A

×
k define its normalised degree deg γ as n−1 deg γ n , where

n � 1 is any integer such that γ n ∈ lim−→ A
×
k . Given a fractional ideal in Ik , a complete

divisor in Divk , a complete divisor class, or a line bundle, the normalised degree of any
of its lifts to the group of ideles does not depend on the choice of lift (since the local
components of such lifts are completely determined up to unit multiples). Denote this
degree by the same notation deg.

Let EF be an elliptic curve over a number field F with split multiplicative reduction.
If v is a bad reduction valuation and Fv is the completion of F with respect to v, then
the Tate curve F×

v /〈qv〉, where qv is the q-parameter of EF at v and 〈qv〉 is the cyclic
group generated by qv , is isomorphic to EF (Fv), 〈qv〉 �→ the origin of EF , see [51,
Chapter V] and [50, Section 5, Chapter II].

Assume further that the 6-torsion points of EF are rational over F , and F contains
a 4th primitive root of unity.

One works with the hyperbolic curve X F = EF \{0} over F and the hyperbolic
orbicurve CF = X F/±1 over F obtained by forming the stack-theoretic quotient of
X F by the unique F-involution −1 of X F .

If k is a field extension of F , then denote Ek = EF ×F k, Xk = X F ×F k, Ck =
CF ×F k.25

Define an idele qEF ∈ AF : its components at archimedean and good reduction
valuations are taken to be 1; its components at bad valuations are taken to be qv , where
qv is the q-parameter of the Tate elliptic curve EF (Fv) = F×

v /〈qv〉. The number nv of
components of EF at a bad reduction valuation v is exactly the value of the surjective
discrete valuation v : F×

v → Z at qv . Thus, degF qEF is the LHS of the inequality of
the Szpiro conjecture in 1.3. The ultimate goal of the theory is to give a suitable bound
from above on deg qEF .

2.3 A brief outline of the proof and a list of some of the main concepts

Conventional scheme-theoretic geometry is insufficient for the purposes of arithmetic
deformation theory. This is one of the reasons why it was not developed earlier. IUT
goes beyond standard arithmetic geometry. Still, it remains quite geometric and cate-

25 For bad reduction valuations one also works with an infinite Z-(tempered) covering Yv of a modelXFv

of X Fv which corresponds to the kernel of the natural surjection from the tempered fundamental group to
Z associated to the universal graph-covering of the dual graph of the special fibre ofXFv . The special fibre
of Yv is an infinite chain of copies of P

1 joined at 0 and ∞.
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gorical. In its application to the conjectures of 1.3 it does not need to use more from
analytic number theory than the prime number theorem.

Fix a prime integer l > 3 which is relatively prime to the bad reduction valuations
of EF , as well as to the value nv of the local surjective discrete valuation of the
q-parameter qv for each bad reduction valuation v.

In 2.12, l will be chosen to be relatively large, so in IUT one often views Z/lZ as
a kind of approximation to Z, see [23, Section 1.3] for more on this.26

Assume that the extension K of F generated by the l-torsion points of EF hasGalois
group over F isomorphic to a subgroup of GL2(Z/lZ) which contains SL2(Z/lZ).27

Due to various reasons motivated by Hodge–Arakelov theory, cf. [39, Section 1],
[40, Section 1], it makes a lot of sense to look at the monoid-theoretic maps defined,
for bad reduction valuations v, on the submonoid of the multiplicative group F×

v

generated by units and qv as follows:

qv �→ q m2

v , u �→ u for all u ∈ O×
Fv

,

where OFv is the ringof integers of Fv, m is a fixed integer such that 1 � m � (l−1)/2.

The element q m2

v will be viewed as a special value of a certain nonarchimedean
theta-function.

Choose a 2lth root q of q. We are now led to the study of a monoid-theoretic map

which forms part of a so-called theta-link, and which at bad reduction valuations can
be viewed as the assignment

q �→
{


(√−q m

) = q m2
}

1�m�(l−1)/2
.

This map is not scheme-theoretic. Its application may be viewed as a deconstruction
of the ring structure.28 To reconstruct the ring structure, one uses generalised Kummer
theory (cf. 2.6), two types of symmetry (cf. 2.7), rigidities (cf. 2.9) and splittings
(cf. 2.7), all of which are closely related to the theta-link (cf. 2.7).

In order to reconstruct portions of the ring structure related to the theta-link, it
is necessary to make use of (archimedean and nonarchimedean) logarithms, in the
form of a so-called log-link, cf. 2.8. The theory of the log-link also involves the
mono-anabelian geometry, cf. 2.4, developed in [34]. Moreover, one must make use
of infinitely many log-links.

Various copies of the theta-link will form horizontal arrows between two vertical
lines formed by the log-links of a log-theta-lattice.

26 When the prime number l is chosen in [38, Corollary 2.2], some of these conditions on l may be slightly
weakened, by treating certain bad reduction valuations of EF as if they are good reduction valuations.
27 One also assumes that CK is a terminal object in the category whose objects are generically scheme-
like algebraic stacks Z that admit a finite étale morphism to CK , and whose morphisms are finite étale
morphisms of stacks Z1 → Z2 defined over K (that do not necessarily lie over CK ), this assumption
implies that CF has a unique model over the field Fmod defined in 2.6, c.f. [35, Remark 3.1.7 (i)].
28 This map will be discussed further in 2.7.
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The main theorem of IUT is a bound on log-volumes of the form

− deg qE � − degE ,

which is subject to the condition that the term on the RHS, which by definition is the
log-volume of the union of possible images of theta-data after applying the theta-link,
subject to certain indeterminacies, is not equal to+∞. This bound has a lot of meaning
from the point of view of IUT: it is a bound on deformation size of theta-data with
respect to the indeterminacies associated to the theta- and log-links. Such a bound is
obtained in the final portion of the first three parts of [35–38] as the main theorem of
IUT in [37]. Note the minus sign on the LHS of this bound in comparison to the goal
stated at the end of the previous subsection.

A further relatively straightforward computation in [38] of the RHS of this inequal-
ity, which follows essentially from its definition in [37], will show that

− degE � a(l) − b(l) deg qE

with real numbers a(l), b(l) > 1 depending on l > 3. Hence, combining this with the
previous bound, one obtains a bound deg qE � a(l)(b(l) − 1)−1, see 2.12.

Then a suitable choice of the prime number l will lead to a bound on deg qE of the
right form which, after a bit more work, implies the diophantine inequalities (a)–(e)
of 1.3.

The notation − deg · in this text corresponds to the notation −| log( ·)| in [37,38].
Thus, the following list of some of the main concepts and methods of IUT which

will be discussed in the following subsections comes very naturally. For a continuation
of the list see 2.13.

 Mono-anabelian geometry uses hyperbolic curves, which in IUT will always be
related to a fixed, given elliptic curve, to recover the ring structure of number fields
and their completions, [34]. Mono-anabelian geometry plays an important role in
the construction of multiradial algorithms in [36,37].

 One chooses a prime number l and works with the ring Z/ lZ, which can also be
viewed as an approximation to the ringZ, andwith the l-torsion points of the elliptic
curve. There are two types of symmetry associated to the choice of l, which play a
key role in IUT, cf. [35,37].

 The nonarchimedean theta-function and its values at torsion points, generalised
Kummer (and log-Kummer) theory and the two types of symmetry are used in
the construction of the central object of IUT, the theta-link, and closely related to
associated rigidities and synchronisations, cf. [30,35,37].

 One has to involve the nonarchimedean logarithm map as well, in the form of the
log-link, cf. [37].

 Application of the theta-link and log-link deconstructs the ring structures, in the
sense that it treats the underlying additive and multiplicative structures of the
rings involved as separate monoid-theoretic structures. The ring structures are
reconstructed via a series of algorithms by using deep results from anabelian
geometry and generalised Kummer theory and working with the log-theta-lattice,
cf. [34,35,37].
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 Bounding the size of the deformation arising from the theta-link by taking into
account three associated indeterminacies, and then making a further (easier) com-
putation of the RHS of the bound, which is ultimately applied for a suitable choice
of the prime number l, leads to a bound of the type needed for the conjectured
inequalities in diophantine geometry.

2.4 Mono-anabelian geometry and multiradiality

A more powerful version of anabelian geometry is developed in [32–34]. It is called
absolute mono-anabelian geometry. The classical approach to anabelian geometry
centers around a comparison between two geometric anabelian objects via their
algebraic fundamental groups. Mono-anabelian geometry centers around the task of
establishing topological group-theoretic algorithms which require only the following
input datum: a topological group which just happens to be isomorphic to the algebraic
fundamental group of a scheme (satisfying certain conditions). Thus, mono-anabelian
geometry recovers the ring structure of an object from the topological group structure
of a group of symmetries such as the Galois group or algebraic fundamental group.

For example, compare the statement of the Neukirch–Ikeda–Uchida theorem in 1.1
with the theorem proved by Mochizuki, cf. [34, Theorem 1.9].

The number field F can be reconstructed via an algorithmic procedure from the
arithmetic fundamental group π1(X F ) (which surjects onto the absolute Galois
group G F ).

Unlike the case with the Neukirch–Ikeda–Uchida theorem, the mono-anabelian algo-
rithms of [34, Theorem 1.9] are functorial with respect to change of the base field and
compatible with localisation.29 These properties are crucial for applications in IUT.

Working with hyperbolic curves over number fields adds a geometric dimension.
Certain aspects of IUT relate the two ring-theoretic dimensions of the function field
of such a hyperbolic curve (one of which is arithmetic, the other geometric) to the two
combinatorial dimensions (constituted by the additive and multiplicative structures)
of a ring.30

In IUT, one works with hyperbolic (orbi)curves such as Xk, Ck , as well as related
objects, see 2.2, over number fields k and their completions. The arithmetic funda-
mental groups of such geometric objects are used to reconstruct the ring structure of
the base field, by applying the theory of [34]. 31

29 For more on mono-anabelian reconstruction for number fields see a recent preprint [17].
30 See [37, Remark 2.3.3 (ii)] for more details.
31 In this context, observe that for local fields, unlike number fields, there is a description of the associated
absolute Galois group (in odd residue characteristic) given by the Yakovlev–Jannsen–Wingberg theorem,
Footnote 31 continued
see e.g. [47, Section 5, Chapter VII]. However, unlike the number field case, to recover an isomorphism
of local fields from an isomorphism of topological groups between the respective absolute Galois groups
without using hyperbolic curves, one needs to know in addition that this isomorphism is compatible with
the respective upper ramification group filtrations. This is a theorem proved independently by Mochizuki
and Abrashkin, see e.g. [11, Chapter IV, 8.2] and the references therein. The proof by Mochizuki is very
short and uses p-adic Hodge theory. For more details see [32, Section 3].
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When working with fundamental groups, the issue of basepoints has to be carefully
addressed. The existence of different basepoints in the domain and range of the theta-
link and log-link implies that one must consider two different universes associated
to two distinct ring theories which in general cannot be related by means of a ring
homomorphism, cf. [35, Section I3]. This inter-universal aspect gives rise to the name
of IUT. The main type of mathematical object which makes sense simultaneously in
both the universes is a topological group.

IUT applies mono-anabelian reconstruction algorithms to arithmetic fundamental
groups that appear in one universe in order to obtain descriptions of objects constructed
from such arithmetic fundamental groups that make sense in another universe. [35–38]
uses the terminology of a wheel and spokes.

One can think of reconstruction algorithms as functorial algorithms from a radial
category to the centre (core) category, say, as a wheel with a centre (core) and spokes,
that satisfies the property that descriptions of objects which arise on one spoke make
sense from the point of view of another spoke. The principal example of this sort
of situation arises by considering the data in the domain and codomain of the theta-
link. Using the same analogy, an algorithm is called multiradial if it expresses objects
constructed from a given spoke in terms of objects that make sense from the point
of view of other spokes. Multiradial algorithms are compatible with simultaneous
execution at multiple spokes, which is important for IUT.

To obtain multiradial algorithms, it is sometimes necessary to allow for some sort
of indeterminacy in the descriptions that appear in the algorithms of the objects con-
structed from the given spoke. See 2.9 for three indeterminacies which play a key role
in the computation of volume deformation, and whose effects result in the ε term in
the conjectures of 1.3.

For more examples of multiradiality see [40, Section 2] and [36, Introduc-
tion, Examples 1.8, 1.9].

2.5 Nonarchimedean theta-functions

Let L be a local field of characteristic zero with finite residue field. Denote by CL the
completion of an algebraic closure of L . A holomorphic function on C

×
L defined over

L is a function C
×
L → CL which is represented by an everywhere convergent element

of L((X)). A meromorphic function on C
×
L defined over L is an element of the field

of fractions of the ring of holomorphic functions on C
×
L defined over L .

Let q ∈ L be a non-zero element of the maximal ideal of the ring of integers
of L (this q will eventually be taken to be the q-parameter qv of the Tate curve
EF (Fv) � F×

v /〈qv〉, where L = Fv , for bad reduction primes v of E , see [51,
Chapter 5]). An elliptic function with period q on L is a meromorphic function on C

×
L

defined over L and invariant with respect to the map u �→ qu, so it yields a function
on C

×
L /〈q〉. A theta-function on C

×
L defined over L , of type aum , a ∈ C

×
L , m ∈ Z,

is a holomorphic function on C
×
L defined over L which satisfies a functional equation

f (u) = aum f (qu). Every elliptic function can be written as the quotient of two
theta-functions of the same type, see [53, pp. 14–15].
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The following choice of nonarchimedean theta-function of type −u is convenient,
[53, p. 15], in view of the location of its zeros and poles

θ(u) =
∑

n∈Z

(−1)nqn(n−1)/2un = (1 − u)
∏

n�1

(
(1 − qn)(1 − qnu)(1 − qnu−1)

)
,

u ∈ CL , where the last equality follows from the Jacobi triple product formula.
It is easy to see that if ai ∈ L×, mi ∈ Z and

∑n
i=1 mi = 0, then the function∏n

i=1 θ(ai u)mi is of type
∏n

i=1 ami
i ∈ L×. This property, which is used in Tate’s

formula for the local height pairing, cf. [7, p. 338], yields an interesting relationship
between the multiplicative properties of the nonarchimedean theta-function and the
underlying multiplicative structure of a local field. In this sense, it is reminiscent of
the theta-link, which plays a central role in IUT.

Just as in the classical complex theory, elliptic functions on L with period q can be
expressed in terms of θ , a propertywhich highlights the central role of nonarchimedean
theta-functions in the theory of functions on the Tate curve. For more information
see [50, Section 2, Chapter I and Section 5, Chapter II] and [45, pp. 306–307].

The nonarchimedean theta-function is of course related to the complex theta-
function

θ(z, τ ) =
∑

n∈Z

exp(π in2τ + 2π inz), z, τ ∈ C, Im τ > 0,

which is equal to
∑

n∈Z
qn2/2un = θ(−q1/2u), u ∈ C, via the change of variables

q = exp(2π iτ), u = exp(2π i z).
The theta-function

̈(u) = −u−1θ(u2) =
∑

n∈Z

(−1)nqn(n+1)/2u2n+1

in [30, Proposition 1.4] where u equals Ü defined there and q equals qX defined
there, is of type q2u4. The function ̈(u) extends to a meromorphic function32 and
satisfies the following unusual property among meromorphic functions: its divisor of
poles is contained in the special fibre, while its divisor of zeroes does not contain any
irreducible component of the special fibre.

Let l > 3 be as in 2.3. [35, Example 3.2 (ii)] introduces a function

(u) = v(u) = (
̈(i)/̈(u)

)1/ l
,

which is well-defined up to multiplication by roots of unity of order dividing 2l (with
q equal to qv defined there).

One further assumes that the residue characteristic of the local field L is odd. The
functional equation for θ implies that

32 On a certain finite covering Ÿv of the covering Yv discussed in footnote 25.
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q m2/2 ̈
(
i
√

q m
) = ̈(i).

Choose a 2lth root q of q. Then

q m2 = 
(√−q m

)

up to multiplication by roots of unity of order dividing 2l.
These special values of the theta-function for 1 � m � (l − 1)/2, i.e. the values

at points separated by periods qm/2 from the point ±i , are very distinguished from
several points of view.33 They are of central importance for IUT.

2.6 Generalised Kummer theory

For an open subgroup H of a Galois or arithmetic fundamental group acting on an
abelian group M , Kummer theory deals with the natural homomorphism

M H → H1(H,Hom(Q/Z, M))

obtained by considering the divisibility of elements of the abelian group M . Injectivity
of the Kummer map, when available, is very useful.

Kummer theory (more precisely, truncated Kummer theory) of the line bundles
associated to nonarchimedean theta-functions is developed in [30]. Note that the naive
theory of theta functions is not sufficient for the purposes of IUT, for more details and
interesting discussions of aspects of the étale theta function see recently added [37,
Remark 2.3.4].

Kummer theory provides a bridge between monoid-theoretic structures and arith-
metic fundamental group structures associated to the theta-function and theta-values
(see [30], [36, Figure I.1]), as well as to a number field and its completions (see [35,
Example 5.1], where the mono-anabelian geometry of [34] is applied to reconstruct
a number field and its completions from the arithmetic fundamental groups of hyper-
bolic orbicurves that arise as finite étale coverings of CF ).34 One important aspect of
the Kummer theory applied in IUT is the issue of cyclotomic rigidity, i.e. of estab-
lishing algorithms for reconstructing natural isomorphisms between cyclotomes that
arise from the geometric fundamental group and cyclotomes that arise from monoid-
theoretic data (see [36, Definition 1.1 (ii)] in the theta-function case, [35, Example 5.1]
in the number field case).

Denote by Fmod the field of moduli of the curve EF . Assume that F is Galois over
Fmod. Choose subsets VF , VK of valuations of F, K such that the inclusion of fields
Fmod ⊂ F ⊂ K induces a bijection between VK , VF , and the set Vmod of all valuations

33 See [36, Remark 2.5.1] and [37, Remark 2.2.2] for more on this.
34 Using the terminology of IUT,Kummer theory relates certain étale-like structures with certain frobenius-
like structures, see also footnote 22.
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of Fmod.35 For a valuation v of Fmod denote by Kv the completion of K with respect
to the element of VK corresponding to v.

This data determines, up to K -isomorphism, a finite étale covering C K → CK

of degree l which satisfies the following property: the natural covering EK → EK

determined by multiplication by l factors as a composite EK → E K → EK , where
the covering E K → EK is the covering determined by the base-changed covering
X K = C K ×CF X F → X K and corresponds to a quotient isomorphic to Z/lZ of
the l-torsion submodule of EK (K ) that restricts at bad reduction valuations of VK

of odd residue degree to the quotient arising from coverings of the dual graph of the
special fibre. In addition, at bad reduction valuations v ∈ VK of odd residue degree one
considers a natural finite étale covering X v → X K ×K Kv of degree l by extracting lth
roots of the theta-function. These coverings play an important role in the generalised
Kummer theory employed in IUT.

2.7 The theta-link and two types of symmetry

The setting up of several versions of the theta-link is technical, and a large part of
the three papers [35,37] is dedicated to it, see also the foreword.36 In the following, I
discuss aspects of IUT that are related to various versions of the theta-link.

At bad reduction valuations of EF of odd residue characteristic, a simplified ver-
sion of the theta-link, cf. [35], uses the theta-function and revolves around a certain
morphism of local monoid-theoretic structures

q �→ ,

while themain version of the theta-link dealtwith in this text, cf. [36,37], uses the theta-
values and revolves around a certain morphism of local monoid-theoretic structures

q �→
{


(√−q m
) = q m2

}

1�m�(l−1)/2
,

with the identity map on units (in an algebraic closure of Fv) or units modulo roots
of unity, acted upon by the absolute Galois group of Fv . One then extends these local
theta-links to other valuations (actually valuations in the set VK , see 2.6), in such a
way as to satisfy the product formula.

For bad reduction valuations of odd residue characteristic, the latter version of the
theta-link amounts to an arithmetic deformation of the local structure of the local field
associated to the valuation, sending units of the ring of integers via the identity map
to the units and sending qn to qm2n , n � 1, where the integer m runs between 1 and

35 It is assumed that the set of bad reduction valuations in VK of odd residue degree is nonempty. There
are further technical conditions that must be imposed on VK ; these conditions are discussed in detail in [35,
Definition 3.1] (where VK corresponds to V).
36 Each theta-link consists of the collection of all isomorphisms between certain data associated to the
respective theatres of type 1 in the domain and codomain of the theta-link, see footnote 38. The main
distinctive feature of each of the two types of theta-link discussed in this subsection is represented by the
monoid-theoretic map in the corresponding display.
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(l − 1)/2. This monoid-theoretic morphism is not compatible with the ring structure,
i.e. the theta-link is not scheme-theoretic.

The monoid-theoretic structures that appear in this theta-link consist of two local
structures

◦ units modulo torsion O×
L /Tor(O×

L ) and

◦ theta-values such as
(√−qm

) = q m2
, which arewell-defined up tomultiplication

by roots of order dividing 2l,

and one global structure, namely,

◦ the global realified frobenioid37 associated to the number field in the product of all
the local data.

Monoid-theoretic structures are of essential importance in IUT, since they allow one
to construct various gluing isomorphisms. The use of Galois and arithmetic funda-
mental groups gives rise to canonical splittings of objects arising from such gluing
isomorphisms by applying various tautological Galois-equivariance properties of such
gluing isomorphisms.

The computation of the theta-link can be viewed as a sort of passage from monoid-
theoretic data to such canonical splittings involving arithmetic fundamental groups,
by applying generalised Kummer theory, together with various multiradial algorithms
which make essential use of mono-anabelian geometry.

Two types of symmetry are closely related to the setting up of the theta-link and,
very importantly, of a central object in IUT not discussed in these notes, namely,
a (theta-number field-Hodge-) theatre.38 They are denoted F

�±
l = Fl �{±1} and

F
�

l = F
×
l /{±1} where Fl � Z/lZ arises from the l-torsion points of E , cf. [35,37].

Elements of of Fl (in the case of F
�±
l ) or F

�

l (in the case of F
�

l ) are called labels.
The F

�±
l -symmetry arises from the action of π

geom
1 and is closely related to

the Kummer theory surrounding the theta-values. There is a natural isomorphism
AutK (X K ) ∼−→ F

�±
l , cf. [35, Definition 6.1 (v)]. This symmetry is

◦ of an essentially geometric nature, i.e. corresponds to the geometric portion of the
arithmetic fundamental groups involved,

◦ additive z �→ ±z + a, a ∈ Fl ,
◦ compatible with and applied to establish conjugate synchronisation (i.e. permuting
copies of local absolute Galois groups associated to distinct labels without inducing
conjugacy indeterminacies),

37 See footnote 23.
38 There is a theatre of type 1, denoted HT±ell NF in [35], which is a certain system of categories
obtained by gluing together various types of frobenioids (cf. [28,29] and see also footnote 23 and 2.10),
taking into account theta-data and number field-data. To every theatre of type 1 one associates a theatre of

type 2, denotedHTD−±ell NF in [35], which is a certain system of categories obtained by gluing together
various types of base categories. Many of these base categories are isomorphic to full subcategories of
finite étale covers of appropriate hyperbolic curves. Each theatre consists of two portions, corresponding to
the two types of symmetry discussed in this subsection; these two portions are glued together in a fashion
that is compatible with the gluing of labels discussed in this subsection. For complete definitions see [35,
Sections 3–6]. Each lattice point of the log-theta-lattice discussed in the following subsection denotes a
theatre of type 1.
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◦ compatible with the nonarchimedean logarithm and the (closely related) construc-
tion of the log-shell,

◦ of a somewhat non-multiradial nature.39

TheF
�

l -symmetry arises from the action of the absoluteGalois group of certain number
fields and is closely related to theKummer theory surrounding these number fields. The
group F

�

l is isomorphic to a subquotient of Aut(C K ) induced via the natural inclusion
Aut(C K ) ↪→ Aut(K ) (cf. [30, Remark 2.6.1]) by a subquotient of Gal(K/F), see
also [35, Example 4.3]. This symmetry is

◦ of an essentially arithmetic nature, i.e. it corresponds to the global arithmetic portion
of the arithmetic fundamental groups involved,

◦ multiplicative (by definition),
◦ used in label bookkeeping to separate the label 0 from the nonzero labels,
◦ closely related to the operation of for descending from K to the field of definition

Fmod of EF (cf. [35, Remark 6.12.6 (iii), (iv)]),
◦ of an essentially multiradial nature.

Each type of symmetry includes a global portion.40

The various labels associated to the two types of symmetry are glued together in
the following way: ±a ∈ {−(l −1)/2, . . . ,−1, 0, 1, . . . , (l −1)/2} is identified with
a ∈ {1, . . . , (l − 1)/2}.41

The issue of basepoints of fundamental groups is closely related to the impor-
tance of synchronising conjugacy indeterminacies of local Galois groups. Conjugate
synchronisation is a specific system of isomorphisms, free from conjugacy indetermi-
nacies, between local absolute Galois groups (as topological groups) at the l-torsion
points of the elliptic curve where the values of the nonarchimedean theta-function are
computed.

Once one has established conjugate synchronisation, Kummer theory is applied to
a collection of several special values of the theta-function, by considering the action
of a single Galois group that acts simultaneously on the N th roots of all of them in a
fashion compatible with the Kummer theory of the ground field.

In IUT it is necessary to isolate the two types of symmetry fromeach other in order to
establish conjugate synchronisation using the F

�±
l -symmetry (note that conjugation

by elements of absolute Galois groups of number fields is incompatible with this
objective), and in order to work with global base fields from an anabelian point of
view using the F

�

l -symmetry.
Conjugate synchronisation yields isomorphisms of monoids associated to different

labels in Fl , diagonal submonoids inside the product of the monoids associated to the
various labels in Fl and in F

�

l and an isomorphism between the monoid associated to
the label 0 ∈ Fl and the diagonal submonoid in the latter product.

39 This additive symmetry is, unlike the multiplicative symmetry, non-multiradial at an a priori level. On
the other hand, ultimately it is nevertheless used in various multiradial algorithms, cf. the discussion of [37,
Remark 3.11.2 (ii)].
40 The global F

�±
l -symmetry of X K only extends to a ±1-symmetry of the local coverings X v , while

the global F
�

l -symmetry of C K only extends to the identity-symmetry of the local coverings X v defined
in 2.6.
41 For more on this see [37, Remark 3.11.2 (ii)].
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2.8 Nonarchimedean logarithm, log-link, log-theta-lattice, log-shell

The nonarchimedean logarithm map

log : O×
L → L

is defined on units of the ring of integers of a local field L as the map which sends 1−
α �→ −∑

n�1 αn/n for α in the maximal ideal of OL , and which sends multiplicative
representatives of the finite residue field in OL to 0. The logarithm is compatible with
arbitrary automorphisms, such as Galois automorphisms, of the topological field L .

The theta-link requires the use of logarithms, since the logarithm transforms mul-
tiplication into addition (and thus allows one to reconstruct certain additive structures
from certain multiplicative structures). In other words, there is no natural action of the
theta-values on themultiplicativemonoid of units modulo torsion, but there is a natural
action of the theta-values on the logarithmic image of this multiplicative monoid.

The multiplicative structures on either side of the theta-link are related by means
of the value group portions; the additive structures on either side of the theta-link are
related by means of the unit group portions, shifted once via the log-link, in order
to transform the multiplicative structure of these unit group portions into an additive
structure.

Locally the log-link can be thought of as associating to the multiplicative monoid
O \{0} of non-zero elements of the ring of integers O of CL (see 2.5) acted upon by
an arithmetic fundamental group the copy of this multiplicative monoid that arises
from the copy of the ring O whose underlying additive module is a submodule of
log(O×⊗Q).

Thus, one obtains a two-dimensional lattice, which is referred to as the log-theta-
lattice, each of whose upward-pointing vertical arrows corresponds to an application
of the log-link, and each of whose rightward-pointing horizontal arrows (n, m) →
(n+1, m) corresponds to an application of a certain theta-link whose construction
depends, in an essential way, on the log-link (n, m −1) → (n, m). The main results
of IUT require the use of just two infinite neighbouring vertical lines of arrows of the
lattice, i.e. corresponding to the lattice points (n, m), where n equals 0 or 1, together
with the horizontal arrow between the lattice points (0, 0) and (1, 0).

One of the main aims of [35–38] is the study of mathematical structures associated
with the log-theta-lattice.

The theta-link involves two distinct ring/scheme theories, two theatres (see footnote
38) in the domain and codomain of the theta-link, with their multiplicative structures
related via nonarchimedean theta values (monoids that appear in the domain of the
theta-link and in its codomain are subjects to quite different Kummer theories). The
task to understand howmuch their additive structures differ from each other is accom-
plished via the use of Kummer correspondence and mono-anabelian reconstruction
algorithms. It is a highly interesting question if the concept of the theta-link and its
realisation may have more applications, with appropriate modifications, elsewhere in
arithmetic geometry.

The log-link does not commute with the theta-link. This non-commutativity diffi-
culty is resolved in IUT via the use of log-shells and applications of the log-Kummer
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correspondence. A log-shell is a very useful common structure for the log-links in one
vertical line. Its nonarchimedean part is a slightly adjusted form of the image of the
local units via the nonarchimedean logarithm. Namely, by definition it is the compact
subgroup

(p∗)−1 log(O×
L )

where p∗ = p if p is odd and 2∗ = 4, see [34,37] for more details. The log-shell
associated to a complex archimedean field is the closed ball of radius π .

Relevant Kummer isomorphisms are not compatible with the log-link at the level
of elements; however, the log-shell contains the images of the Kummer isomorphisms
associated to both the domain and the codomain of the log-link, cf. [34,37].

2.9 Rigidities and indeterminacies

The paper [30] establishes several rigidity properties of the theta-function, which
can be interpreted as multiradiality properties in the context of IUT. The following
rigidities, which may be formulated in terms of suitable algorithms, are very useful in
IUT:

◦ (discrete rigidity) one can work with Z-powers instead of Ẑ-powers of q;
◦ (constant multiple rigidity) the monoid generated by O×

L and non-negative powers
of  has a canonical splitting (up to multiplication by 2lth roots of unity) via
evaluation at a 2-torsion point;

◦ (cyclotomic rigidity) an isomorphismbetween two copies of Ẑ endowedwithGalois
actions, one of which arises from the roots of unity of the base field, the other of
which is a certain subquotient of a fundamental group.

Note that in IUT, the copies of Ẑ (or quotients of Ẑ) which appear in discussions of
cyclotomic rigidity are referred to as cyclotomes. For more see [36, Introduction] and
[37, Remarks 2.1.1, 2.3.3].

When relating monoid-theoretic structures with Galois structures via generalised
Kummermaps and the use of the theta-function, onemust contendwith three associated
indeterminacies which can be viewed as effects of arithmetic deformation:

(Ind1) is closely related to the action of Aut(GL) and arises from the requirement of
compatibility with the permutation symmetries of the Galois and arithmetic
fundamental groups associated with vertical lines of the log-theta-lattice;

(Ind2) is closely related to the action of a certain compact group,42 which includes
Ẑ

×, on log(O×
L ) and arises from the requirement of compatibility with the

horizontal theta-link;

42 The group of GL -isometries of the units of the ring of integers of an algebraic closure of L modulo roots
of unity.
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(Ind3) arises from a certain (upper semi-) compatibility of the Kummer isomorphism
with the log-links associated to a single vertical line of the log-theta-lattice.43

2.10 The role of global data

Global data is used

◦ for synchronizing ±-indeterminacies associated to special fibres,44

◦ in the product formula for monoids,
◦ to conclude that global elements integral everywhere are roots of unity, hence belong
to the kernel of log,

◦ when one applies the prime number theorem in [38],
◦ when one reconstructs, via mono-anabelian algorithms applied to the arithmetic
fundamental groups of hyperbolic curves over number fields, the global and local
ring structures and the ring homomorphism from the ring of global elements to the
adelic ring.

Compare the first item with the Bogomolov proof 45 of the Szpiro inequality over C

discussed in 1.3.46

It is a good time to give two examples of categories related to structures used in
IUT. These two examplesmay be thought of as isomorphicmonoid-theoretic structures
(which, nevertheless, are defined slightly differently) arising from the number field
Fmod (together with the set of valuations VK discussed above) that are associated
to the collection of complete arithmetic line bundles or, alternatively, to the adeles,
equipped with the action of the non-zero global elements. These categories are defined
as follows (see [37, Example 3.6] for more details):

(i) rational function torsion version: an object of this category is an F×
mod-torsor T

equipped with a collection of trivialisations tv , for each v ∈ VK , of the torsor
Tv associated to T by changing the structure group via the natural map F×

mod →
K ×

v /O×
Kv

determined by v; an elementary morphism between {T, tv} and {T ′, t ′v}
is an isomorphism T → T ′ of F×

mod-torsors which maps the trivialisation tv to
an element of the OKv \{0}-orbit of t ′v; a morphism is given by an integer n > 0
and an elementary morphism from the nth tensor power of the first object to the
second object;

(ii) local fractional ideal version: an object of this category is a collection of closed
balls centred at 0 in the completions of K at the valuations of VK such that all
but finitely many of these closed balls coincide with the respective local rings of

43 This compatibility may be thought of as a weakened version of the usual notion of commutativity of a
diagram of morphisms: instead of considering compatibility at the level of individual elements of objects
of the diagram, one considers compatibility of inclusions of certain subsets of these objects.
44 See [35, Remark 6.12.4 (iii)].
45 Relative to the analogy with p-adic Teichmuller theory, see 2.14 and the references therein, IUT corre-
sponds to considering the derivative of the canonical Frobenius lifting, which, in turn, corresponds, relative
to the analogy with the classical complex case, to the hyperbolic geometry of the upper half-plane used in
the Bogomolov proof. See also [38, Remark 2.3.4] and [43] for more on this.
46 When working on IUT, its author was not familiar with the Bogomolov proof.
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integers; an elementary morphism between two such objects is given by multipli-
cation by an element of F×

mod which maps the local closed balls of the first object
into the local closed balls of the second object; a morphism is an integer n > 0
and an elementary morphism from the nth tensor power of the first object to the
second object.

These two categories are examples of frobenioids [28,29], see also footnotes 23 and
38. They are quite different from each other from the point of view of multiradiality
issues. It is the second category which is subject to distortion when Kummer theory
is applied in the context of the log-links. This distortion is closely related to the upper
semi-compatibility mentioned in (Ind3) above, as well as to the fact that the second
category, unlike the first, is well suited to making explicit estimates.

A natural isomorphism between the two monoid-theoretic structures is applied to
relate

◦ the multiplicative structure of Fmod to the additive structure of Fmod,
◦ the multiplicative structure of Fmod to the quotient monoid O×/(roots of unity)
equipped with the action of the local absolute Galois group,

◦ the monoid generated by the formal collection
{

qm2}
1�m�(l−1)/2 of theta-values

to the quotient monoid O×/(roots of unity) equipped with the action of the local
absolute Galois group.

2.11 The main theorem of IUT

Define an idele qE ∈ AF : its components at the nonarchimedean elements of VF of
odd residue characteristic47 where EF has bad reduction are taken to be the local
q-parameters; its components at the other valuations of F are taken to be 1. Compare
with the definition of the idele qEF in 2.2.

Consider any idele condE ∈ AF whose components at the nonarchimedean ele-
ments of VF of odd residue characteristic where EF has bad reduction are (arbitrary)
prime elements of the completion of F at v, and whose components at the other valua-
tions of F are equal to 1. The degree deg condE is well-defined and does not depend on
the choice of prime elements. Compare degF condE with log of N (CondEF ) discussed
in 1.3.

The main theorem48 is stated in [37, Corollary 3.12]:

− deg qE � − degE ,

if the RHS is not +∞. Here − degE is by definition the maximum log-volume of
deformations for the theta-data, i.e. the maximum of log-volumes of all images with
respect to the indeterminacies (Ind1), (Ind2), (Ind3), where one takes the average over
m ranging from 1 to (l − 1)/2 as a consequence of the F

�

l -symmetry.

47 The main reason for this restriction comes from the use of theta-functions, see [38, Remark 1.10.6].
48 − deg qE equals −2l| log(q)|, while − degE equals −2l| log()| in [37].
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The log-volume on the LHS, i.e., the negative degree − deg qE , is computed in two
equivalent ways, using the log-theta-lattice and its data at (1, 0) and (0, 0), see [37,
Figure I.8]. This is achieved in steps (x), (xi) of the proof of [37, Corollary 3.12],
the second of which takes into account the indeterminacies (Ind1), (Ind2), (Ind3) and
produces the bound.

One can view this bound as a consequence of a certain hyperbolicity of a number
field equipped with an elliptic curve.

One of the main themes of [35–38] is the issue of deconstructing and reconstructing
the two underlying dimensions of a number field. Examples of deconstructing include

◦ splittings of various local monoids into unit and value group portions, see [34,
Section I3],

◦ separating the Z/lZ arising from the l-torsion points of the elliptic curve into the
additive F

�±
l -symmetry and the multiplicative F

�

l -symmetry, cf. 2.7,
◦ separating the ring structures of global number fields into their respective under-
lying additive structures, which may be related directly to log-shells, and their
respective underlying multiplicative structures, which may be related directly to
monoid-theoretic structures.

The reconstruction procedure uses multiradial algorithms involving log-shells and
exhibits the extent to which the two dismantled combinatorial dimensions cannot be
separated from one another by describing the intertwining structure between the two
dimensions prior to their separation. This procedure allows one to estimate the value
group portions of various monoids of arithmetic interest in terms of their unit group
portions and underlies the proof of the inequality in the main theorem.49

While local class field theory is used in IUT, global class field theory is not. It is
crucial for IUT to use the full Galois and arithmetic fundamental groups.50

2.12 The application of IUT

In [38] a further (rather straightforward) computation of − degE is made in [38,
Theorem 1.10] (assuming, in addition, that the 15-torsion points of EF are defined
over F). It shows that

− degE � a(l) − b(l) deg qE

where a(l) > 1 depends on l, |Fmod :Q|, deg condE + deg δF/Q, while b(l) > 1 is a
function of l which does not depend on EF and F .51

In the proof one uses the previous theory and the important fact that all the inde-
terminacies (Ind1), (Ind2), (Ind3) have their range inside the log-shell. Modulo this,

49 For more on this one can read [37, Remark 3.12.2].
50 Compare with the situation in Bogomolov’s birational anabelian geometry program for higher dimen-
sional varieties over an algebraic closure of finite field where the use of G/[G, [G, G]] is enough, cf. [4].
51 [37, Corollary 3.12] supplies the double inequality − deg qE � − degE � C deg qE , provided
− degE is finite. The constant C is explicitly computed in [38, Theorem 1.10]. Substituting its value
gives the displayed inequality.
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the computation of − degE in [38, Theorem 1.10] is essentially completely local,
and the local computations are only nontrivial at the nonarchimedean places; the only
global aspect of the computation consists of a certain density computation involving
the prime number theorem.

Thus, together with the main theorem of IUT, this gives the bound deg qE �
a(l)(b(l) − 1)−1. In precise terms,

1

6
deg qE ≤

(

1 + 245|Fmod :Q|
l

)

· (
deg condE + deg δF/Q

)

+ 2143352|Fmod :Q|l + c◦,

where c◦ > 0 comes from the prime number theorem (over Q) and does not depend
on E and F, δF/Q is the (absolute) different of F .

These computations in the proof of [38, Theorem 1.10] were already essentially
known to Mochizuki around the year 2000, and an appropriate framework to justify
them is provided by IUT, cf. [38, Remark 1.10.1].

Then in [38, Corollary 2.2] one chooses the prime l in the interval
(√

deg qE , 5c∗√
deg qE log(c∗ deg qE )

)
where c∗ = 213335|Fmod :Q|, to derive the required bound

on (deg qE )/6. So, to some degree we already get close to the proof of the Szpiro
inequality. Note that here the ε-term in the Szpiro inequality is given an essentially
non-archimedean interpretation, modulo various global data and an application of the
archimedean estimate given by the prime number theorem.

Using a generalisation of the Belyi map obtained in [26], the Vojta conjecture in 1.3
over any number field is proved in [31] to be equivalent to the Vojta conjecture on
compactly bounded subsets of P

1(Qalg) for P
1 over Q minus three points 0, 1,∞.52

The use of noncritical Belyi maps in [38, Section 2] involves, via the application
of [31], the product formula.

Using all this, finally, one deduces the Vojta conjecture (e) of 1.3 (and therefore the
conjectures (a), (b), (c), (d) of 1.3 as well), which correspond to [38, Corollary 2.3],
from [38, Corollary 2.2].

Among potential developments and further applications of IUT I will mention
one which is asked about by many mathematicians. It is well known that the abc
inequality implies that there exists a positive integer n0 such that the Fermat equation
with exponent n does not have positive integer solutions for any n � n0. In order
to make n0 explicit and hence ideally derive a very different alternative proof of the
Wiles–Fermat theorem, one needs to make explicit the constants in the proof of [38,
Corollary 2.2] and to explicitly compute the noncritical Belyi maps which show up
in [31]. The latter is currently out of reach. Alternatively, one can try to work with the
Frey curve and the Szpiro inequality. Here the main problem is that over Q one needs
bounds on the numbers nv (see 2.2) associated to all the valuations v of the number

52 See also footnote 15. This reduction allows one to care relatively less about the archimedean data. I
think that one can say, to some extent, that in IUT, instead of dealing with the archimedean data aspects of
the Szpiro conjectured inequality, by using, say, analytic number theory, which is typically non-scheme-
theoretic, one, in effect, moves the centre of activity to the nonarchimedean data, by applying the product
formula; the resulting theory is necessarily non-scheme-theoretic.
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field Q except at most one (so that one can apply the product formula). However, at
the present time, the bounds on these numbers nv that one obtains from IUT (i.e.,
from [38, Theorem 1.10]) are not available for two valuations of Q, namely, the prime
2 and the archimedean valuation.

2.13 More theorems, objects and concepts of IUT

Somemathematicians are interested in seeing statements of a large number of theorems
in survey texts. As far as IUT and these notes are concerned, this wish is difficult to
satisfy, since many central theorems of IUT are of an algorithmic nature, and their
statements occupy a lot of space. For example, statements of key theorems in the
introductions of IUT papers, i.e. [35, Theorem A], [36, Theorems A, B] and [37,
Theorem A], occupy 60 lines on average.

My recommendation to readers of these notes who are interested in seeingmore the-
orems is to read the introductions of [30,34,35,37], which contain detailed statements
of the main theorems and related definitions.

The description of IUT in the previous subsections is a quite simplified one. In par-
ticular, I have not written much about the categorical geometric framework developed
in IUT and related papers, which underlies the proof of the main theorem of IUT.
Further concepts and methods used in IUT and not discussed above include

 the concept and theory of frobenioids, cf. [28,29] (see footnotes 23 and 38, and the
examples in 2.10),

 the concept of arithmetical holomorphy immune to the logarithm, cf. [34],
 the concept of a global multiplicative subspace, cf. [35],
 ±ellNF-Hodge-theatres, cf. [35] (see footnote 38),
 profinite conjugacy and tempered conjugacy, cf. [27,35],
 Belyi cuspidalisation, elliptic cuspidalisation, cf. [32–34].

2.14 Analogies and relations between IUT and other theories

There are many analogies between IUT and p-adic Teichmüller theory (and some
analogies with complex Teichmüller theory) which are well described in [39,40] and
in [35, Section I4].

There are certain analogies between IUT and p-adicHodge theory (which is applied
in the proofs of mono-anabelian geometry). For example, the local and global func-
toriality of absolute anabelian algorithms corresponds to some degree to compatible
local isomorphisms between Galois cohomologymodules in p-adic Hodge theory, see
e.g. [40, Figure 4.2]. The main ingredients of a frobenioid [28,29] are reminiscent of
the theory of the ring Bcrys in p-adic Hodge theory.

Hodge–Arakelov theory [23,24] is not formally used in [35–38], but some of its
ideas and expectations motivate key concepts and objects of [35–38]; for more on this
see [39,40]. IUT can be viewed as a mathematical justification and background for the
realisation of a key idea from [23,24] concerning a possible approach to establishing
the Vojta conjecture, see 2.12.
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A number of aspects of the theory of [9] can be viewed as abelian ancestors of
certain aspects of IUT, see [38, Remark 2.3.3].

Relations with class field theory, inverse Galois theory and anabelian geometry
have already been discussed.

The following relations and analogies between IUT and other theories are not used
in [35–38].

IUTworkswith elliptic curves and related hyperbolic curves over number fields, and
it is crucial that they are treated as two-dimensional objects. Of course, elliptic curves
over number fields can be studied by many methods. In particular, two-dimensional
class field theory and adelic geometry and analysis also treat them as two-dimensional
objects, cf. [10]. The latter theory studies the zeta function of a surface, geometric
or arithmetic. It provides an efficient tool to study three fundamental problems con-
cerning elliptic curves over number fields, which are different from the arithmetic
conjectures addressed by IUT. While IUT works with the full Galois and arithmetic
fundamental groups, [10] is a commutative theory that is closely connected to abelian
Galois groups of two-dimensional fields. Similarly to the two types of symmetry in
IUT, geometric-additive and arithmetic-multiplicative, see 2.7, there are two types of
symmetry, one additive for geometric two-dimensional adeles and another symmetry
is used for a computation of a two-dimensional zeta integral on multiplicative analytic
two-dimensional adeles on surfaces. These two types of adelic symmetry play a funda-
mental role in [10]. The analytic adelic structure is highly non-scheme-theoretical. In
fact, a version if the morphism of local monoid-theoretic structures mentioned at the
beginning of 2.7 already showed up in first papers of two-dimensional adelic analysis
in 2001.

There are other analogies betweenHodge–Arakelov theory of [10,23,24] which led
me in May 2012 to the study of the former. The nonarchimedean theta-functions are
related to the complex theta-function θ(z, τ ), as mentioned in 2.5. The Green function
for a proper regular model E of an elliptic curve over a number field is closely related
with θ(z, τ ). On the other hand, the real variable function θ(0, i x) in x has an adelic
interpretation as the integral over Q of the eigenfunction ⊗charZp (x)⊗ exp(−x2/2)
of an adelic Fourier transform with eigenvalue 1 (char is the characteristic func-
tion), and the Fourier transform, which in this case is called the Mellin transform,
of θ(0, i x) − 1 is the completed zeta function. Generalisations of these properties
play a crucial role in two-dimensional adelic analysis and geometry on E; there is a
two-dimensional analogue of charZp on each singular fibre that takes into account the
number of components in the singular fibre, and the zeta integral computation gives a
two-dimensional formula for the norm of the minimal discriminant and conductor of
the elliptic curve, [10]. The texts [39,40] and papers of IUT present certain analogies
between IUT and the computation of the classical Gaussian integral, and similar analo-
gies exist also between the computation of the Gaussian integral and the computation
of the zeta integral in [10].

Two-dimensional adelic analysis and geometry in its current form [10] deals with
abelian aspects and does not directly use one-dimensional nonabelian aspects of the
Langlands programme. There are many relations between the two theories and also
nonabelian versions of [10], to be developed, are related to two-dimensional versions
of the programme. At the moment we know little about relations between IUT and
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nonabelian representation-theoretic aspects of the Langlands programme and their
applications to diophantine geometry, see the final portion of [35, Section I5]. I expect
that more links between the two theories will eventually be found, and, in particular,
that the two-dimensional adelic theory of [10] and its nonabelian extensions can serve
as a bridge between them.

The algorithmic feature of many theorems of IUT is an interesting aspect. See
also 3.2 for the need for a new language to possibly better describe the objects, concepts
and results of IUT.

[38, Section 3] deals with the language of species, naturally associated to IUT. The
material of this section has a certain affinity with model theory; for a textbook on
the latter see e.g. [48]. In applications of model theory one observes or establishes
the same model-theoretic-geometric pattern, typically for stable theories, between a
theory T and a distinct theory T ′; this common type thus allows one to verify difficult
results concerning T ′ by means of some relatively easy verification concerning T , i.e.,
to transfer aspects of T to T ′. The existing applications of model theory, at least when
one deals with formal (first-order) theories, do not involve situations where T = T ′.53
IUT studies the case where T = T ′; this corresponds to the two equivalent ways for
computing − deg qE mentioned in 2.11, see also [37, Figure I.8]. In this respect, IUT
is an interesting object of study from the point of view of model theory.

The use of Galois groups and arithmetic fundamental groups makes IUT very dis-
tinct from any other ongoing work on such fundamental issues in mathematics as
geometry over F1, a nontrivial product with itself of an enhanced version of SpecZ,
analytic geometry overZ, etc., and thepossible applications of suchnotions to the deep-
est open problems. For two analogies between aspects of IUT and geometry over F1,
see [34, Remark 5.10.2 (iii)] and [37, Remark 3.12.4 (iii)]. Even though it is too early
to say, it is natural to expect many connections between IUT and such ongoing work.

There are several well known conjectural approaches to deep properties of arith-
metic objectswhere onewishes to have an arithmetic analogue of a theorywhichworks
well in the geometric setting. IUT provides such an arithmetic analogue in the special
circumstances related to the arithmetic conjectures of 1.3. A very interesting question
is whether some of the mechanisms of IUT could be generalised and extended in order
to help to produce new instances of such arithmetic analogues of geometric theories.

One may ask about possible illustrations for arithmetic deformation theory. In my
personal opinion, this one54 is interesting from the point of view of depicting such
important aspects of IUT as symmetry, synchronisation, discrete approximation and
the role of the number 6.55

53 More generally, in some applications of model theory, e.g. to generalised integration theories, one proves
that the same pattern holds for fields of any characteristic.
54 The illustration of https://www.maths.nottingham.ac.uk/personal/ibf/graphene-lattice.pptx was pre-
sented during a talk of L.Eaves at the Opening Event of the new Molecular Beam Epitaxy Facility for
the growth of graphene and boron nitride layers, University of Nottingham, January 2015.
55 In IUT, the two combinatorial dimensions of a ring, which are often related to two ring-theoretic dimen-
sions (one of which is geometric, the other arithmetic), play a central role. These two dimensions are
reminiscent of the two parameters (one of which is related to electricity, the other to magnetism) which are
employed in a subtle fashion in the study of graphene to establish a certain important synchronisation for
hexagonal lattices.
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3 Studying IUT and related aspects

3.1 On the verification of IUT

Updated versions and the history of changes of papers related to IUT are available on
Mochizuki’s homepage. Some of the changes apply available resources of IUT in a
stronger form, in particular addressing analytic number theory remarks made in the
autumn of 2012 by Dimitrov and Venkatesh.

G. Yamashita56 was the first to study IUT and the related papers intensively. He
was followed by M.Saïdi and Yu. Hoshi. The changes in the papers of IUT and the
prerequisites take into account hundreds of comments fromYamashita, over a hundred
comments from Saïdi and several dozens of comments from Hoshi. None of these
changes is of a major character.

There are two issues. One is an issue of verification of absence of logical problems
in the texts of IUT. As of the time of writing of this text, [35,37] and the prerequisites
have been checked by mathematicians different from the author 12 times, and [38]
has been checked 7 times.57 Two reports on the verification of IUT, [41] and [42],
present impressively vast efforts on the verification of IUT and include many more
details.

The second issue is of digestion of the theory and its potential simplification. This
is likely to takemore time, since IUT goes substantially outside the realm of arithmetic
geometry.

Numerous activities have been organised at RIMS and elsewhere; participants of
cycles of lectures included many mathematicians. A two week workshop on IUT and
its developments was held at RIMS in March 2015.58 A CMI workshop59 on IUT will
be held in December 2015 in Oxford, and an international conference on IUT and
further developments will be organised in Kyoto in July 2016.

Aswith every innovative theory and evenmore in this case, whatever is the previous
experience of a mathematician, she or he is a student with regard to IUT, and the only
way to gain a knowledge of it is to work with its texts. See the foreword of this paper,
and the next subsection for some advice on how to study and an estimate of associated
time investment.

56 Several months prior to my planned visit to RIMS in the middle of September 2012, I arranged a meeting
withMochizuki.My interest at that timewas to discuss his theory [23,24]. AftermymeetingwithMochizuki
at RIMS, which concentrated on IUT, in September 2012 I encouraged Yamashita, who was a postdoctoral
researcher in Nottingham in 2008–2010, to learn and scrutinise arithmetic deformation theory.
57 G.Hardy: “I have myself always thought of a mathematician as in the first instance an observer, a man
who gazes at a distant range of mountains and notes down his observations.…If he wishes someone else to
see it, he points to it…. When his pupil also sees it, the proof is finished”, [6, p. 598].
58 RIMS Joint Research Workshop: On the Verification and Further Development of Inter-
Universal Teichmüller Theory, March 2015, http://www.kurims.kyoto-u.ac.jp/~motizuki/2015-03%20IU
Teich\%20Program\%20(English).pdf.
59 https://www.maths.nottingham.ac.uk/personal/ibf/symcor.conf.html.
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3.2 Entrances to IUT

The number of pages to read and the complexity of this fascinating theory are vast.
This may be partially related to the absence of a new language best suited to describing
the novel mathematics of IUT.

Initially I found even the review papers [39,40] and introductions of IUT papers
difficult to understand. The situation improved after a list of themain ideas andmethods
of IUT revealed the central place of [30,34]. Reading [34]was very useful formy study.
Following this single paper helped me to gradually see and appreciate the need for
approximately half of the new mathematical concepts and structures in IUT.

Now I will describe possible entries to the theory. For classical anabelian geometry,
if needed, first read [52, Chapter 4] and [14] and also have a look at [49]. The following
papers and theories can be read prior to the study of IUT:

◦ the Bogomolov proof of the geometric version of the Szpiro inequality (see 1.3
and footnote 45), which involves geometric considerations that are substantially
reminiscent of the geometry that underlies the Hodge theatres of [35], cf. [1, Sec-
tion 5.3], [3,57], see also footnote 45,

◦ the classical theory of the functional equation of the theta-function, as discussed,
for instance in [8, Section 1.7.5], which was one important motivation for the
development of the theory of [36,37], see also [44] for more on the archimedean
theta-function,

◦ the classical theory of moduli of ordinary elliptic curves in positive characteristic
and the related structure of the Hecke correspondence (i.e. Tp) in positive charac-
teristic, which is also substantially reminiscent of the geometry that underlies the
Hodge theatres of [35].

For IUT: first read [34, Sections 1–2] (and any previous relevant papers) and [30], and
then the papers of [35], consulting [28,29] when necessary, as well as [26,31], which
are used in [38].

Category theorists and algebraists may prefer to start with a reading of [25,28,29].

3.3 The work of Shinichi Mochizuki

The mathematical vision and perseverance of the author of IUT during 20 years of
work on it is most admirable and is a sample to follow.

Avaluable addition to this is his investment of time and effort in answering questions
about his work and explaining and discussing its parts, via email communication or
skype talks and during numerous meetings and seminars at RIMS.

This theory is so radically different from anything that came before it that it is
natural to ask whether it will induce a paradigm shift, and also how it may change the
way one can approach mathematical research. The reconstruction algorithm-theoretic
approach of [35,37], aswell as of [30,34], contains elements that are radically different
from the usual approach to proving theorems, and hence from the usual approach to
writingmathematical papers. To some degree, IUTmay be thought of as a sort ofmeta-
structure which acts on appropriate parts of conventional scheme-theoretic arithmetic
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geometry. In doing so, it allows one to explicate, with relative ease, phenomena (such
as the Vojta conjecture) that seemed inaccessible via existing mathematical theories.

Knowing what one can achieve if one works persistently on a long-term goal pro-
vides one with an optimistic hope that other difficult challenges might be solved as
the result of long-term resolute innovative work.

3.4 Related issues

It is clear how crucial long-term work is for real breakthroughs in mathematics. Ques-
tions arise such as how to increase the number of researchers able to work for a long
time on fundamental problems so sedulously and successfully and what should be the
amount of support to this strategically important type of research work.

An opinion of R. Langlands on current trends about supporting long-term funda-
mental research work can be heard during the 52nd minute of his video lecture [20].

Some roots of the decline of support to long-term fundamental work, such as the
shortsighted race to higher number of publications and higher citation index, which
often results in pressure to produce short-term work that consists essentially of minor
improvements to known results, originate from causes external to the mathematical
community. To do well in their academic career, young researchers are very often
pushed to go along this path which typically implies a very narrow specialisation.
The latter leads to the emphasis on technical perfection as opposite to innovation and
on presentation rather than substance of work. Following this path eventually makes
it more difficult to think in broader terms, to learn new concepts, to develop in new
directions. Lack of inventiveness, more widely spread imitation, a very pragmatic
attitude to what and when to study in mathematics, lack of genuine enthusiasm to
study new theories, fear to stand alone in scientific endeavour, fear to look too far
away are associated issues. Some roots, such as the unnecessarily strong emphasis on
concrete applications,60 originate from within the mathematical community.

There is an issue about attitudes of number theorists towards the study of IUT and
their unusually sluggish response. Reasons for this are related to the topics discussed
in the third paragraph of 3.3 and in the previous paragraph. It seems that the number
theory community is suffering from the problems listed there even more than other
mathematical communities.
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