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Arithmetic Fuzzy Models
Martin Štěpnička Member, IEEE,, Bernard De Baets, Lenka Nosková

Abstract—It is well known that a fuzzy rule base can be
interpreted in different ways. From a logical point of view, the
conjunctive interpretation is preferred, while from a practical
point of view, the disjunctive interpretation has been dominantly
present. Each of these interpretations results in a specific fuzzy
relation modelling the fuzzy rule base. Basic interpolation re-
quirements naturally suggest a corresponding inference mecha-
nism: the direct image for the conjunctive interpretation, and the
subdirect image for the disjunctive interpretation. Interpolation
then corresponds to solvability of some system of fuzzy relational
equations. In this paper, we show that other types of fuzzy
relations, closely related to Takagi–Sugeno models, are of major
interest as well. These fuzzy relations are based on addition and
multiplication only, whence the name arithmetic fuzzy models.
Under some mild requirements, these fuzzy relations turn out to
be solutions of the same systems of fuzzy relational equations.
The impact of these results is both theoretical and practical: there
exist simple solutions to systems of fuzzy relational equations,
other than the extremal solutions that have received all the
attention so far, that are moreover easy to implement.

Index Terms—Direct image, fuzzy relational equation, fuzzy
rule base, interpolation, subdirect image.

I. INTRODUCTION

On many occasions, fuzzy rule-based systems have been
demonstrated to be powerful tools in modelling, decision
making and automatic control. In essence, such a system
consists of two main components: a fuzzy rule and an infer-
ence mechanism. The choice of an appropriate fuzzy relation
modelling the fuzzy rule base and of a compatible inference
mechanism are crucial for the proper functioning of the whole
system.

Consider two arbitrary universes X and Y . The classes of
fuzzy sets in X and Y are denoted as F(X) and F(Y ). The
information present in a given fuzzy rule base is contained
in pairs of input-output fuzzy sets (A1,B1), . . ., (An,Bn),
expressing that fuzzy set Bi ∈ F(Y ) is assigned to fuzzy set
Ai ∈ F(X) [1].

There exist two standard approaches to modelling a given
fuzzy rule base by an appropriate fuzzy relation R ∈ F(X ×
Y ). Consider a left-continuous t-norm ∗ and its residual
operation →∗ (residual implication) defined by a →∗ b =
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sup{c ∈ [0, 1] | a ∗ c ≤ b} [2]. The first approach consists in
constructing the fuzzy relation R̂∗ ∈ F(X × Y ) defined by

R̂∗(x, y) =
n∧

i=1

(Ai(x) →∗ Bi(y)) . (1)

As stated by Dubois et al. [3]: “In the above view, each piece
of information (fuzzy rule) is viewed as a constraint. This view
naturally leads to a conjunctive way of merging the individual
pieces of information since the more information, the more
constraints and the less possible values to satisfy them.” This
fact together with the fact that the minimum operation as well
as other t-norms are appropriate interpretations of conjunction
(the logical connective AND) and residual operations are
appropriate interpretations of implication [4]–[8], the above
statement leads to the conclusion that the fuzzy relation R̂∗
defined by (1) is a proper model of the following set of fuzzy
rules

IF x is A1 THEN y is B1

. . .
AND
. . .

IF x is An THEN y is Bn

(2)

where Ai and Bi are membership predicates represented by
fuzzy sets Ai ∈ F(X) and Bi ∈ F(Y ).

The second approach to modelling a given fuzzy rule base,
initiated by a successful experimental application by Mamdani
and Assilian [9], consists in constructing the fuzzy relation
Ř∗ ∈ F(X × Y ) defined by

Ř∗(x, y) =
n∨

i=1

(Ai(x) ∗Bi(y)) . (3)

Obviously, the fuzzy relation Ř∗ can hardly be considered
as a model of fuzzy rule base (2). As mentioned above, a t-
norm is an appropriate interpretation of conjunction, not of
implication; moreover, the maximum operation disjunctively
aggregating all rules has nothing in common with the logical
connective AND.

We again recall the work of Dubois et al. [3]: “It seems
that fuzzy rules modelled by (3) are not viewed as constraints
but are considered as pieces of data. Then the maximum in
(3) expresses accumulation of data”. This fact together with
the known fact that the maximum operation as well as other
t-conorms are appropriate interpretations of disjunction (the
logical connective OR) [6], [7] leads to the conclusion that
the fuzzy relation Ř∗ defined by (3) is a proper model of the



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

following set of fuzzy rules

x is A1 AND y is B1

. . .
OR
. . .

x is An AND y is Bn

(4)

It is worth mentioning that distinguishing between the con-
ditional (IF–THEN) form of fuzzy rules (2) and the Cartesian
product (AND) form of fuzzy rules (4) at the syntactical level
is not commonly done, but it can be found e.g. in [10]–[12].
Usually only the form (2) is considered because of several,
mainly historical, reasons and the differences are taken into
account only at the semantical level. But the differences can
play a crucial role in further implementations and, therefore,
they should be kept in mind.

Remark 1.1: For a detailed discussion of both forms of
fuzzy rules, we refer to [6] in which the topic is elaborated
from the point of view of mathematical logic. We also refer
to [7] in which the authors investigate the problem from the
point of view of fuzzy logic in narrow sense (algebraic and
logical background) as well as from the point of view of fuzzy
logic in broader sense (extensions serving the modeling of
vagueness). The implicative and conjunctive approaches to
fuzzy rules are also jointly addressed in [11]–[13].

II. SYSTEMS OF FUZZY RELATIONAL EQUATIONS

Each fuzzy rule-based system adopts an inference mecha-
nism. It is a deduction rule determining an output B ∈ F(Y )
for a given input A ∈ F(X). In particular, this output is de-
fined as an image of A under the fuzzy relation R ∈ F(X×Y )
modelling the given fuzzy rule base. In most cases, one uses
the direct image (sup-∗ composition),

B = A ◦∗ R , (5)

which stems from the compositional rule of inference intro-
duced by Zadeh [14]. It is defined by

(A ◦∗ R)(y) =
∨

x∈X

(A(x) ∗R(x, y)) , (6)

and it is worth mentioning that its logical background coin-
cides with the generalized modus ponens [6].

A fuzzy rule base may be viewed as a partial function from
F(X) to F(Y ), i.e. as a mapping that assigns Bi ∈ F(Y )
to Ai ∈ F(X), for i = 1, . . . , n. The purpose of building a
fuzzy inference module on the basis of the fuzzy rule base
is to extend this partial function to a total function. It means
that, in some ‘reasonable manner’, we have to associate with
any A ∈ F(X) some B ∈ F(Y ). This should be done in
such a way that any input Ai is exactly mapped to Bi, for
i = 1, . . . , n. Otherwise, the total function would not be an
extension of the partial one. This requirement leads to the
following system of direct image equations

Ai ◦∗ R = Bi , i = 1, . . . , n . (7)

A fuzzy relation R ∈ F(X × Y ) which satisfies (7) is called
a solution of the system of direct image equations.

We recall some basic results concerning systems of direct
image equations (see e.g. [15]–[17]).

Theorem 2.1: System (7) is solvable if and only if R̂∗ is
a solution of this system. In case of solvability, R̂∗ is the
greatest solution of (7).

Theorem 2.1 is a crucial theorem in the study of direct
image equations. Beside the fact that it provides a necessary
and sufficient condition for the solvability of system (7), it
determines a particular solution which turns out to be the
greatest solution. This means that if there exists a solution
R to the given system, then necessarily R(x, y) ≤ R̂∗(x, y),
for any (x, y) ∈ X × Y .

Its particular importance is as follows. Whenever we deal
with fuzzy rule base (2) modelled by R̂∗, the direct image is
the first choice for an inference mechanism, since R̂∗ holds
a unique position in the set of all possible solutions of the
corresponding system of direct image equations. First, there
are no other solutions when R̂∗ is not a solution. Second, if
R̂∗ is a solution, it is the greatest one.

Let us recall a theorem specifying conditions under which
even Ř∗ is a solution of system (7) [16], [18]. Hence, it can
also be used as a solvability criterion (sufficient condition)
for this system. Note that a fuzzy set is called normal if it
has at least one element with membership degree equal to
one. The following theorem uses the biresidual operation ↔∗
corresponding to ∗, defined by a ↔∗ b = (a →∗ b)∧(b →∗ a).

Theorem 2.2: Let all Ai, i = 1, . . . , n, be normal. Then
Ř∗ is a solution of (7) if and only if the condition∨

x∈X

(Ai(x) ∗Aj(x)) ≤
∧

y∈Y

(Bi(y) ↔∗ Bj(y)) (8)

holds for any i, j ∈ {1, . . . , n}.
Theorem 2.2 specifies a condition under which Ř∗, con-

nected to the direct image inference mechanism, is an appro-
priate model of a fuzzy rule base. On the other hand, whenever
Ř∗ is an appropriate model, the fuzzy relation R̂∗ is an
appropriate model too. So, Ř∗ does not hold a unique position
among all possible solutions as does R̂∗. However, it is not
a common approach to fix an inference mechanism first and
then search for an appropriate model of a given fuzzy rule base
which would be a solution of a corresponding system of fuzzy
relational equations. On the contrary, usually a fuzzy relation
is selected first based on certain arguments. It is therefore
natural to adopt another inference mechanism which yields a
system of fuzzy relational equations for which Ř∗ holds an
analogous position among all possible solutions.

Let us recall the subdirect image (inf-→∗ composition)

B = A C∗ R (9)

which is related to the triangular subcomposition introduced
by Bandler and Kohout [19], [20]. It is defined by

(A C∗ R)(y) =
∧

x∈X

(A(x) →∗ R(x, y)) . (10)

The subdirect image, in contrast to the direct image, has
no connection to the generalized modus ponens deduction
rule and its motivation was quite different [19]. On the other
hand, as mentioned in [21], the inference mechanism need not
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necessarily be logical, but simply a mapping from F(X) to
F(Y ) fulfilling certain properties.

Next, we recall some basic facts [15], [17] about systems
of subdirect image equations formulated as follows

Ai C∗ R = Bi , i = 1, . . . , n . (11)

They should justify our further use of the subdirect image as
an inference mechanism.

Theorem 2.3: System (11) is solvable if and only if Ř∗ is
a solution of this system. In case of solvability, Ř∗ is the
smallest solution of (11).

Let us recall the following theorem [22].
Theorem 2.4: Let all Ai, i = 1, . . . , n, be normal. Then

R̂∗ is a solution of (11) if and only if the condition∨
x∈X

(Ai(x) ∗Aj(x)) ≤
∧

y∈Y

(Bi(y) ↔∗ Bj(y))

holds for any i, j ∈ {1, . . . , n}.
We observe that Ř∗ holds precisely the same position

among all solutions of system (11) as the fuzzy relation R̂∗
holds in the case of the system of direct image equations. So,
if we adopt the idea of [21] that the inference mechanism can
be understood as some mapping, without deeper connection
to a logical deduction rule, nothing prevents us from treating
the subdirect image as a special kind of inference mechanism.

Based on the facts and theorems above, we claim that fuzzy
relation Ř∗ should be treated together with the subdirect im-
age, no matter that Theorem 2.4 determines conditions under
which even R̂∗ “would work” together with the subdirect
image (from the interpolation point of view). The reason
is that, in practice, we first determine an interpretation of
the fuzzy rule base and then select an inference mechanism.
Consequently, we claim that the set of fuzzy rules (2) prede-
termines the direct image inference mechanism, while the set
of fuzzy rules (4) predetermines the subdirect image inference
mechanism.

On the other hand, it should be stressed that considering
the subdirect image inference mechanism together with R̂∗
or the direct image inference mechanism together with Ř∗
might lead to significant computational savings. However, in
these cases, the interpolation property is not ensured, which
might lead to unsatisfactory results. This issue is not related
to the present investigation and we refer the reader to [23],
[24].

Remark 2.5: It is worth mentioning that condition (8)
appearing in Theorems 2.2 and 2.4 is from the practical
point of view not very convenient. On the other hand, if the
antecedent fuzzy sets form a so-called ∗-semi-partition [25],
condition (8) is fulfilled automatically [26].

III. ADDITIVE FUZZY MODELS

A lot of work has been done in the field of fuzzy relational
equations [15], [27]-[31], mainly aiming at the identification
of the greatest and smallest solutions, maximal and minimal
solutions, solvability conditions, etc. Unfortunately, this work
has rarely attracted the attention of practitioners. One of the
reasons is the popularity of neuro-fuzzy models [32] and
Takagi–Sugeno models [33].

Recall that Takagi and Sugeno proposed fuzzy rules of the
following form

IF x is Ai THEN y is fi(x), i = 1, . . . , n , (12)

where the conditional relationship is determined by a so-called
fuzzy implication [33]. However, they model this implication
by the weighted arithmetic mean

y =
∑n

i=1 Ai(x)fi(x)∑n
i=1 Ai(x)

, (13)

which obviously has nothing in common with logical im-
plication and so, does not correspond to fuzzy rules in the
conditional form (2). However, because of their powerful
approximation capabilities, Takagi–Sugeno models became
very popular in the fuzzy community. The consequent parts
fi(x) of the rules (12) are usually polynomial functions, so
that we can talk about k-th order Takagi–Sugeno models,
where k ∈ N denotes the degree of the consequent polynomial
functions.

Remark 3.1: Takagi–Sugeno models are basically data-
driven, i.e. determined on the basis of a finite input-output
data set. Beside this standard approach to the identification of
a fuzzy model, there exists an integral (continuous) version
of the 0-th order Takagi–Sugeno model (minimizing a mod-
ified criterion) and developed based on the theory of fuzzy
transforms [34].

Often the so-called Ruspini condition [35] is imposed,
requiring that

n∑
i=1

Ai(x) = 1 , for all x ∈ X , (14)

and therefore, the interpretation of a 0-th order Takagi–Sugeno
model is given by

y =
n∑

i=1

Ai(x)bi , (15)

where bi ∈ R are the right-hand sides of the Takagi–Sugeno
rules.

Considering the crisp values bi as singletons Bi, i.e. special
fuzzy sets in Y , and having in mind that the product is
a particular t-norm [2] and the fact that we impose the
Ruspini condition, leads to the following natural fuzzy relation
modelling Takagi–Sugeno rules with fuzzy consequents

R⊕
∗ (x, y) =

n⊕
i=1

(Ai(x) ∗Bi(y)) , (16)

where ⊕ is the Łukasiewicz t-conorm and ∗ is an arbitrary
t-norm. Moreover, it coincides with standard fuzzy relations
appearing in the neuro-fuzzy literature [32].

The fuzzy relation R⊕
∗ is related to the disjunctive fuzzy

model Ř∗, where the disjunction is now modelled by the
Łukasiewicz t-conorm. Therefore, R⊕

∗ given by (16) can be
considered as a model of fuzzy rule base (4). For obvious
reasons, this model is called additive [36].

Remark 3.2: Modelling fuzzy rule base (2) by the fuzzy
relation R̂∗ can be viewed in the light of “conjunctive normal
forms” (CNF), while modelling fuzzy rule base (4) by Ř∗
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can be viewed in the “disjunctive normal forms” (DNF) [37].
These normal forms were proposed to investigate fuzzy models
from an approximation point of view. The additive fuzzy
models R⊕

∗ correspond to the “additive normal forms” (ANF),
which were motivated by one particular additive normal form
in [37] and then further studied in [38], [39]. The relationship
between additive normal forms and the fuzzy transform (and
hence also Takagi–Sugeno rules) has been discussed in [38].

IV. ADDITIVE FUZZY MODELS AND SYSTEMS OF FUZZY
RELATIONAL EQUATIONS

We start by stating the definition of generalized orthogo-
nality [37], which has proven crucial in the study of additive
normal forms [37], [39].

Definition 4.1: We say that a collection of fuzzy sets Ai ∈
F(X), i = 1, . . . , n, fulfills the orthogonality condition if

n⊕
i=1
i6=j

Ai(x) = 1−Aj(x) (17)

for any j ∈ {1, . . . , n}.
As shown above, the Ruspini condition seems to be pivotal

for the additive fuzzy models given by (16). The following
lemma shows that both conditions are equivalent.

Lemma 4.2: A collection of fuzzy sets Ai ∈ F(X), i =
1, . . . , n, fulfills the orthogonality condition if and only if (14)
holds.

Proof: Suppose that the orthogonality condition is ful-
filled. Consider arbitrary j ∈ {1, . . . , n}. First, let x ∈ X be
such that Aj(x) ∈ ]0, 1], then

1 >1−Aj(x) =
n⊕

i=1
i6=j

Ai(x)

1 >min

 n∑
i=1
i6=j

Ai(x), 1


1 >

n∑
i=1
i6=j

Ai(x)

and therefore (14) is fulfilled.
Second, let x ∈ X be such that Aj(x) = 0. Then (17)

implies that there necessarily exists an index k 6= j such that
either Ak(x) ∈ ]0, 1[ or Ak(x) = 1. The rest goes as above.

The converse part of the proof, showing that (14) im-
plies (17) is trivial.

A. Subdirect image equations

Since the additive fuzzy model (16) can be considered as
a model of fuzzy rule base (4), it is expected to be related
to the subdirect image inference mechanism. This subsection
investigates this relationship via subdirect image equations.

Theorem 4.3: Let all Ai, i = 1, . . . , n, be normal and fulfill
the Ruspini condition. Then system (11) is solvable and R⊕

∗
is a solution.

Proof: Consider arbitrary j ∈ {1, . . . , n} and

B(y) =
∧

x∈X

(
Aj(x) →∗

n⊕
i=1

(Ai(x) ∗Bi(y))

)
.

Since the supremum is the smallest t-conorm and →∗ is
increasing in its second argument, it holds that

B(y) ≥
∧

x∈X

(
Aj(x) →∗

n∨
i=1

(Ai(x) ∗Bi(y))

)

≥
∧

x∈X

(Aj(x) →∗ (Aj(x) ∗Bj(y))) .

Since (a →∗ (a ∗ b)) ≥ b, it follows that B ⊇ Bj .
On the other hand, since →∗ is increasing in its second

argument, it holds that

B(y)

=
∧

x∈X

Aj(x) →∗ (
n⊕

i=1
i6=j

(Ai(x) ∗Bi(y)))⊕ (Aj(x) ∗Bj(y))


≤
∧

x∈X

Aj(x) →∗ (
n⊕

i=1
i6=j

(Ai(x) ∗ 1))⊕ (1 ∗Bj(y))


=
∧

x∈X

Aj(x) →∗

 n⊕
i=1
i6=j

(Ai(x))⊕Bj(y)


 .

The Ruspini condition yields

B(y) ≤
∧

x∈X

(Aj(x) →∗ ((1−Aj(x))⊕Bj(y))) .

Let x′ ∈ X be such that Aj(x′) = 1. Since 1 →∗ b = b, it
holds that

B(y) ≤ (Aj(x′) →∗ ((1−Aj(x′))⊕Bj(y)))

= (1 →∗ Bj(y)) = Bj(y) ,

which yields B ⊆ Bj .
Due to Theorem 2.3 we can state the following corollary of

Theorem 4.3.
Corollary 4.4: Let all Ai, i = 1, . . . , n, be normal and

fulfill the Ruspini condition. Then Ř∗ is a solution of sys-
tem (11).

Moreover, it can be demonstrated on the basis of the proof
of Theorem 4.3, that R⊕

∗ is not the only additive fuzzy model
which is a solution of system (11).

Proposition 4.5: Let all Ai, i = 1, . . . , n, be normal and
fulfill the Ruspini condition. Furthermore, let N be a t-norm
such that ∗ ≤ N. Then the fuzzy relation R⊕

N is a solution of
system (11).

Proof: Let B be defined as in the proof of Theorem 4.3.
Consider arbitrary j ∈ {1, . . . , n} and

BN(y) =
∧

x∈X

(
Aj(x) →∗

n⊕
i=1

(Ai(x)NBi(y))

)
.
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Since →∗ is increasing in its second argument, it holds that
BN(y) ≥ B(y) ≥ Bj(y). The proof of the opposite inequality
is identical to that in the proof of Theorem 4.3 as N has neutral
element 1 as well.

Let us briefly summarize results of this subsection. Theo-
rem 4.3 yields an easy-to-check condition guaranteeing the
proper performance of an additive fuzzy model connected
to the subdirect image inference mechanism. Moreover, the
assumptions refer to the antecedent fuzzy sets only, and its
fulfillment can be ensured prior to an identification process.
Since no solvability is assumed, this theorem also has a theo-
retical impact, as it specifies a sufficient solvability condition,
which then implies that Ř∗ is a solution as well. Finally, due
to Proposition 4.5, a wide variety of t-norms can be used in the
additive fuzzy models. Indeed, we can use an additive fuzzy
model based on any t-norm stronger than the t-norm ∗ used
in the direct image inference mechanism.

B. Direct image equations

This subsection focuses on systems of direct image equa-
tions. Theorem 2.2 states that, under certain conditions, the
disjunctive fuzzy model Ř∗ is a solution of system (7). Here,
we examine the suitability of the additive fuzzy model for this
system.

Theorem 4.6: Let all Ai, i = 1, . . . , n, be normal and
fulfill the Ruspini condition, and let ∗ ≤ ⊗, where ⊗ is the
Łukasiewicz t-norm. Then system (7) is solvable and R⊕

∗ is a
solution.

Proof: Consider arbitrary j ∈ {1, . . . , n} and

B(y) =
∨

x∈X

(
Aj(x) ∗

n⊕
i=1

(Ai(x) ∗Bi(y))

)
.

Let x ∈ X be such that Aj(x′) = 1. Since the supremum is
the smallest t-conorm and 1 →∗ b = b, it holds that

B(y) ≥
∨

x∈X

(
Aj(x) ∗

n∨
i=1

(Ai(x) ∗Bi(y))

)

≥ (Aj(x′) ∗ (Aj(x′) ∗Bj(y)))

= 1 ∗ (1 ∗Bj(y)) = Bj(y) ,

which yields B ⊇ Bj .
On the other hand, similarly as in the proof of Theorem 4.3,

it holds that

B(y) ≤
∨

x∈X

Aj(x) ∗

 n⊕
i=1
i6=j

(Ai(x))⊕Bj(y)


 .

The Ruspini condition yields

B(y) ≤
∨

x∈X

(Aj(x) ∗ ((1−Aj(x))⊕Bj(y))) .

Since (1− a)⊕ b = a →⊗ b and ∗ ≤ ⊗, it follows that

B(y) ≤
∨

x∈X

(Aj(x)⊗ (Aj(x) →⊗ Bj(y))) .

Finally, since a⊗ (a →⊗ b) ≤ b, we obtain B ⊆ Bj .

Due to Theorem 2.1 we can state the following corollary of
Theorem 4.6.

Corollary 4.7: Let all Ai, i = 1, . . . , n, be normal and
fulfill the Ruspini condition, and let ∗ ≤ ⊗. Then R̂∗ is a
solution of system (7).

Theorem 4.6 requires to use a t-norm that is even weaker
than the Łukasiewicz t-norm, which already is a very weak t-
norm. Hence, for practical applications, perhaps only the case
∗ = ⊗ is of interest. In this case, the Łukasiewicz t-norm is
used both in the sup-⊗ composition as inference mechanism,
as well as for connecting antecedent and consequent fuzzy sets
in the corresponding fuzzy model R⊕

⊗.
This result can again be strengthened in the following

proposition.
Proposition 4.8: Let all Ai, i = 1, . . . , n, be normal and

fulfill the Ruspini condition. Furthermore, let N be an arbitrary
t-norm and let ∗ ≤ ⊗. Then the fuzzy relation R⊕

N is a solution
of (7).

Proof: The proof is a variation on the proof of Theo-
rem 4.6 and is therefore omitted.

The above proposition forces us to use a t-norm weaker than
the Łukasiewicz t-norm in the inference mechanism, while
the interpretation of the fuzzy rule base can be built w.r.t.
an arbitrary t-norm N. Similarly as for the subdirect image
equations, only normality of the antecedents and the Ruspini
condition are assumed.

V. MULTIPLICATIVE FUZZY MODELS

The additive fuzzy models with as t-norm the product,
which we primarily focus on because of our initial motivation,
could be called arithmetic fuzzy models since they use arith-
metic operations only. They were motivated by a variety of
fuzzy methods such as neuro-fuzzy systems or Takagi-Sugeno
rules using weighted average approaches rather than logical
operations.

As we have shown in Section IV, the investigation of
arithmetic fuzzy models does not only yield results concerning
the proper usage of such models, but also points out new
solutions to well-known systems of fuzzy relational equations.
An important observation is the fact that the fulfillment of
two, in practice very often required, conditions leads to the
solvability of the corresponding system of fuzzy relational
equations. These results are relevant for practice as these
conditions only relate to the antecedent fuzzy sets. This
enables us to identify a fuzzy rule base in such a way that
it ensures the solvability of a corresponding system of fuzzy
relational equations, even with arbitrary consequent fuzzy sets,
e.g. identified from data using some algorithm.

The impact of these results is obviously more significant
in the case of systems of subdirect image equations, because
in that case we assumed a weak t-norm in the inference
mechanism.

In view of the two different inference mechanisms, it seems
quite natural to introduce also multiplicative fuzzy models:

R⊗
∗ (x, y) =

n⊗
i=1

(Ai(x) →∗ Bi(y)) . (18)
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The multiplicative fuzzy model R⊗
∗ is related to the conjunc-

tive fuzzy model R̂∗, where the conjunction is now modelled
by the Łukasiewicz t-norm. When using as t-norm the product,
we obtain a second arithmetic fuzzy model.

VI. MULTIPLICATIVE FUZZY MODELS AND SYSTEMS OF
FUZZY RELATIONAL EQUATIONS

This section investigates under which conditions the multi-
plicative fuzzy model is a solution of a system of direct image
equations or a system of subdirect image equations.

A. Direct image iquations

Theorem 6.1: Let all Ai, i = 1, . . . , n, be normal and fulfill
the Ruspini condition. Then system (7) is solvable and R⊗

∗ is
a solution.

Proof: Consider arbitrary j ∈ {1, . . . , n} and

B(y) =
∨

x∈X

(
Aj(x) ∗

n⊗
i=1

(Ai(x) →∗ Bi(y))

)
.

Since the minimum operation is the greatest t-norm, it holds
that

B(y) ≤
∨

x∈X

(
Aj(x) ∗

n∧
i=1

(Ai(x) →∗ Bi(y))

)

≤
∨

x∈X

(Aj(x) ∗ (Aj(x) →∗ Bj(y))) .

Since a ∗ (a →∗ b) ≤ b, it follows that B ⊆ Bj .
On the other hand, let x′ ∈ X be such that Aj(x′) = 1,

then the Ruspini condition implies Ai(x′) = 0 for all i 6= j.
It then holds that

B(y) ≥

(
Aj(x′) ∗

n⊗
i=1

(Ai(x′) →∗ Bj(y))

)

=
n⊗

i=1

(Ai(x′) →∗ Bj(y))

= (1 →∗ Bj(y))⊗

 n⊗
i=1
i6=j

(0 →∗ Bj(y))


Since 1 →∗ b = b and 0 →∗ b = 1, it follows that B ⊇ Bj .

Due to Theorem 2.1 we can state the following corollary of
Theorem 6.1.

Corollary 6.2: Let all Ai, i = 1, . . . , n, be normal and ful-
fill the Ruspini condition. Then R̂∗ is a solution of system (7).

Similar to the case of additive fuzzy models and systems
of subdirect image equations, we can use a wide variety of
residuation operations in the multiplicative fuzzy models.

Proposition 6.3: Let all Ai, i = 1, . . . , n, be normal and
fulfill the Ruspini condition. Furthermore, let N be a t-norm
such that ∗ ≤ N. Then R⊗

N is a solution of system (7).
Proof: Similar to that of Theorem 6.1.

Propositions 4.5 and 6.3 both relate to the direct image
inference mechanism and ensure that we may use a wide

variety of models based on any t-norm stronger than the t-norm
∗ used in the inference mechanism. While Proposition 4.5
applies to additive fuzzy models, Proposition 6.3 does so for
multiplicative fuzzy models.

B. Subdirect image equations

Theorem 6.4: Let all Ai, i = 1, . . . , n, be normal and
fulfill the Ruspini condition, and let ∗ ≤ ⊗, where ⊗ is the
Łukasiewicz t-norm. Then system (11) is solvable and R⊗

∗ is
a solution.

Proof: Consider arbitrary j ∈ {1, . . . , n} and

B(y) =
∧

x∈X

(Aj(x) →∗

n⊗
i=1

(Ai(x) →∗ Bi(y))) .

Let x ∈ X be such that Aj(x′) = 1. Since →∗ is increasing
in its second argument and 1 →∗ b = b, it holds that

B(y) ≤
∧

x∈X

(Aj(x) →∗ (Aj(x) →∗ Bj(y)))

≤ Aj(x′) →∗ (Aj(x′) →∗ Bj(y))

= 1 →∗ (1 →∗ Bj(y)) = Bj(y) ,

which proves that B ⊆ Bj .

Let us define Bx ∈ F(Y ) as follows

Bx(y) = Aj(x) →∗

n⊗
i=1

(Ai(x) →∗ Bi(y)) .

Obviously, B(y) =
∧

x∈X Bx(y).

To prove the converse inclusion B ⊇ Bj , it suffices to show
that Bx ⊇ Bj for any x ∈ X . Let us consider the following
three cases.

(a) First, let x ∈ X be such that Aj(x) = 0. Since 0 →∗
b = 1, it holds that

Bx(y) = 0 →∗

n⊗
i=1

(Ai(x) →∗ Bi(y)) = 1 ,

which implies that Bx(y) = 1 for any y ∈ Y , and thus
Bx ⊇ Bj .

(b) Second, let x ∈ X be such that Aj(x) = 1, then the
Ruspini condition implies that Ai(x) = 0 for all i 6= j.
Therefore 0 →∗ b = 1 and 1 →∗ b = b lead to

Bx(y) = 1 →∗

 n⊗
i=1
i6=j

(0 →∗ Bi(y))⊗ (1 →∗ Bj(y))


= (

n⊗
i=1
i6=j

1)⊗Bj(y) = Bj(y) .

(c) Finally, let x ∈ X be such that Aj(x) ∈ ]0, 1[. From
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∗ ≤ ⊗ it follows that →∗≥→⊗, and thus

Bx(y) ≥ Aj(x) →∗ n⊗
i=1
i6=j

(Ai(x) →⊗ Bi(y))⊗ (Aj(x) →⊗ Bj(y))

 .

Since a →⊕ b ≥ 1− a, it follows that

Bx(y) ≥ Aj(x) →∗ n⊗
i=1
i6=j

(1−Ai(x))⊗ (Aj(x) →⊗ Bj(y))

 .

Since a →⊗ b = (1− a)⊕ b, we

Bx(y) ≥ Aj(x) →∗ n⊗
i=1
i6=j

(1−Ai(x))⊗ ((1−Aj(x))⊕Bj(y))

 .

Using the expression for the n-ary version of the
Łukasiewicz t-norm, we obtain

n⊗
i=1
i6=j

(1−Ai(x))

= 0 ∨


 n∑

i=1
i6=j

1−Ai(x)

− (n− 2)


= 0 ∨

1−
n∑

i=1
i6=j

Ai(x)

 .

Since Aj(x) ∈ ]0, 1[, the Ruspini condition yields
n⊗

i=1
i6=j

(1−Ai(x)) = 0 ∨Aj(x) = Aj(x) .

Hence, we can proceed as follows

Bx(y) ≥ Aj(x) →∗ (Aj(x)⊗ ((1−Aj(x))⊕Bj(y))) .

(i) Consider y ∈ Y such that (1−Aj(x))+Bj(y) ≥ 1.
Since 0 →∗ a = 1, it holds that

Bx(y) ≥ Aj(x) →∗ (Aj(x)⊗ 1) = 1 ,

which implies that Bx(y) = 1 for any y ∈ Y , and
thus Bx ⊇ Bj .

(ii) Consider y ∈ Y such that (1−Aj(x))+Bj(y) < 1.
Then

Bx(y) ≥ Aj(x) →∗ Bj(y) .

Since a →∗ b ≥ b, it follows that Bx(y) ≥ B(y),
and thus Bx ⊇ Bj .

Similar to the case of additive fuzzy models and systems of
direct image equations, the Łukasiewicz t-norm is too weak
in the case of multiplicative fuzzy models and systems of

(a) Antecedent fuzzy sets (b) Consequent fuzzy sets

(c) Conjunctive fuzzy model R̂⊗ (d) Multiplicative fuzzy model R⊗
⊗

(e) Conjunctive fuzzy model R̂⊗ -
view from above

(f) Multiplicative fuzzy model R⊗
⊗ -

view from above

Fig. 1. Comparison of R̂⊗ and R⊗
⊗.

subdirect image equations. Hence, only the case R⊗
⊗ is of

practical importance. Again, Theorem 6.4 can be strengthened.
Proposition 6.5: Let all Ai, i = 1, . . . , n, be normal and

fulfill the Ruspini condition. Furthermore, let N be a t-norm
such that N ≤ ⊗. Then the fuzzy relation R⊗

N is a solution
of (11).

Proposition 6.5 forces us to use a residual operation →N

adjoint to a t-norm N weaker than the Łukasiewicz t-norm in
the fuzzy relation interpreting a given fuzzy rule base, while
the corresponding inference mechanism can be based on an
arbitrary residual operation →∗.

Example 6.6: To visually demonstrate the difference be-
tween the standard conjunctive fuzzy model and the multi-
plicative one, let us consider the following example. Consider
the pairs of input-output fuzzy sets (Ai,Bi), i = 1, . . . , 9,
in F([0, 1]) × F([0, 1]) approximating the quadratic function
y = x2. The fuzzy sets Ai are triangular and form a uniform
fuzzy partition of X = [0, 1], and thus fulfill the Ruspini
condition. Also the fuzzy sets Bi are triangular, with kernel
points equal to x2 and x the kernel point of the corresponding
Ai. In Figure 1, the conjunctive and multiplicative fuzzy
models are displayed, both using the Łukasiewicz t-norm (or
its residual operation) between antecedent and consequent
fuzzy sets.

VII. DEMONSTRATION

A. Additive fuzzy models

Let us recapitulate the results of Section IV. Let all Ai ∈
F(X), i = 1, . . . , n, be normal and fulfill the Ruspini condi-
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tion. Consider a fuzzy rule base (4) where the antecedents are
represented by the given fuzzy sets Ai and the consequents
are represented by arbitrary fuzzy sets Bi ∈ F(Y ). Due to
Theorem 4.3, the fuzzy relation

R⊕
⊗(x, y) =

n⊕
i=1

(Ai(x)⊗Bi(y))

is a solution of the system of fuzzy relational equations

Ai C⊗ R = Bi , i = 1, . . . , n .

Moreover, due to Corollary 4.4 and Proposition 4.5, the fuzzy
relations

Ř⊗(x, y) =
n∨

i=1

(Ai(x)⊗Bi(y))

R⊕
�(x, y) =

n⊕
i=1

(Ai(x)�Bi(y)) =
n∑

i=1

Ai(x)Bi(y) ,

with � the product t-norm, are solutions of this system as
well. Furthermore, due to Theorem 4.6, the fuzzy relation R⊕

⊗
is also a solution of the following system of fuzzy relational
equations

Ai ◦⊗ R = Bi , i = 1, . . . , n ,

and due to Proposition 4.8, another solution of the latter system
is the fuzzy relation R⊕

�.
This means that the fuzzy models Ř⊗, R⊕

⊗ and R⊕
� are safe

models [40] of fuzzy rule base (4) from the fuzzy interpolation
point of view, when adopting the subdirect image with the
Łukasiewicz t-norm as the corresponding inference mecha-
nism. The two latter arithmetic fuzzy models R⊕

⊗ and R⊕
� are

even safe in the case of the direct image with the Łukasiewicz
t-norm as the corresponding inference mechanism.

B. Multiplicative fuzzy models

Similarly, we discuss the results of Section VI. Let all Ai ∈
F(X), i = 1, . . . , n be normal and fulfill the Ruspini condi-
tion. Consider a fuzzy rule base (2) where the antecedents are
represented by the given fuzzy sets Ai and the consequents
are represented by arbitrary fuzzy sets Bi ∈ F(Y ). Due to
Theorem 6.1, the fuzzy relation

R⊗
⊗(x, y) =

n⊗
i=1

(Ai(x) →⊗ Bi(y))

is a solution of the system of fuzzy relational equations

Ai ◦⊗ R = Bi , i = 1, . . . , n .

Moreover, due to Corollary 6.2 and Proposition 6.3, the fuzzy
relations

R̂⊗(x, y) =
n∧

i=1

(Ai(x) →⊗ Bi(y))

R⊗
�(x, y) =

n⊗
i=1

(Ai(x) →� Bi(y)) ,

(a) Model R′⊕
� (b) Model R′⊗

�

(c) Model R′′⊕
� (d) Model R′′⊗

�

(e) Model R⊕
� (f) Model R⊗

�

Fig. 2. Examples of arithmetic fuzzy models.

with � the product t-norm, are solutions of this system as
well. Furthermore, due to Theorem 6.4, the fuzzy relation R⊗

⊗
is also a solution of the following system of fuzzy relational
equations

Ai C⊗ R = Bi , i = 1, . . . , n,

and due to Proposition 6.5, even of the system

Ai C� R = Bi , i = 1, . . . , n .

This means that the fuzzy models R̂⊗, R⊗
� and R⊗

⊗ are
safe models [40] of the fuzzy rule base (2) from the fuzzy
interpolation point of view, when adopting the direct image
with the Łukasiewicz t-norm as the corresponding inference
mechanism. The latter arithmetic fuzzy model R⊗

⊗ is even
safe in the case of the subdirect image with the Łukasiewicz
t-norm or the subdirect image with the product t-norm as the
corresponding inference mechanism.

C. Example

In this subsection, we present several figures of the proposed
arithmetic fuzzy models.

Consider again the 9 pairs of input-output fuzzy sets from
Example 6.6. We consider the additive and multiplicative fuzzy
models, both with respect to the product t-norm, taking into
account two, five or all of these pairs. The fuzzy models
R′⊕
� and R′⊗

� are based on the pairs (A3,B3) and (A7,B7),
the fuzzy models R′′⊕

� and R′′⊗
� are additionally based on

(A1,B1), (A5,B5) and (A9,B9). Finally, the fuzzy models
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R⊕
� and R⊗

� are based on all pairs. These fuzzy models are
depicted in Figure 2.

In principle, fuzzy rule base (4) is understood as a collection
of data points, and is predetermined to be modelled by a
disjunctive fuzzy model (in general, so even by an additive
one). Similarly, fuzzy rule base (2) is meant as a set of
conditional constraints valid at once, and is predetermined to
be modelled by a conjunctive fuzzy model (in general, so even
by a multiplicative one). Figure 2 shows how these originally
absolutely incompatible fuzzy models converge to each other
when the corresponding antecedent fuzzy sets approach a
Ruspini partition.

VIII. APPROXIMATION ABILITIES

So far, we have provided an in-depth study of the interpo-
lation properties of additive and multiplicative fuzzy models.
However, approximation abilities of these fuzzy models might
be of interest as well. The universal approximation abilities of
disjunctive and conjunctive fuzzy models are well known. In
this section, we investigate whether this crucial property also
holds for arithmetic fuzzy models.

A. Additive fuzzy models

First of all, let us focus on additive fuzzy models and their
approximation abilities.

Theorem 8.1: Let X , Y be two closed real intervals and
let f : X → Y be an arbitrary continuous function. Then
for arbitrary ε > 0, there exist n ∈ N and Ai ∈ F(X),
Bi ∈ F(Y ), i = 1, . . . , n, such that

if R⊕
∗ (x, y) > 0 , then |y − f(x)| < ε ,

where x ∈ X , y ∈ Y and R⊕
∗ is the additive fuzzy model

given by (16).
Proof: Let X = [a, b]. The continuity of f on X implies

that f is uniformly continuous, i.e., for arbitrary ε > 0, there
exists δ > 0 such that for any x, x′ ∈ X it holds that

if |x− x′| < δ , then |f(x)− f(x′)| < ε/2 . (19)

Let us fix an arbitrary ε > 0 and a related δ > 0 according to
(19). Let us choose n > 2 such that

h =
|b− a|
n− 1

<
δ

2
.

Denote x1 = a and xi = xi−1 + h, for i = 2, . . . , n. Let
Ui = [xi−1, xi+1], then f(Ui) = [ai, bi]. Denote the midpoint
of the interval [ai, bi] by yi and construct the interval Vi ⊆ Y
as follows

Vi = ]yi − ε/2, yi + ε/2[ .

Since |xi−1 − xi+1| < δ and because of the continuity of f ,
it holds that |bi − ai| < ε/2 and thus f(Ui) ⊂ Vi.

Let Ai ∈ F(X), i = 1, . . . , n, be such that Ai(xi) = 1
and Ai(x) > 0 if and only if x ∈ ]xi−1, xi+1[ where x0 = x1,
xn+1 = xn. Let Bi ∈ F(Y ), i = 1, . . . , n, be such that
Bi(y) > 0 if and only if y ∈ Vi. Take an arbitrary x′ ∈ X
such that x′ /∈ {xi | i = 1, . . . , n}. Then there exist Ui, Ui+1

such that x′ ∈ Ui and x′ ∈ Ui+1. In this case Ai(x′) > 0 as

well as Ai+1(x′) > 0, while Aj(x′) = 0 for j /∈ {i, i + 1}.
Furthermore, f(x′) ∈ Vi as well as f(x′) ∈ Vi+1.

Take an arbitrary y ∈ Y such that R⊕
∗ (x′, y) > 0. Then

R⊕
∗ (x′, y) = ((Ai(x′) ∗Bi(y))⊕ (Ai+1(x′) ∗Bi+1(y)))

and hence, R⊕
∗ (x′, y) > 0 occurs if and only if Bi(y) > 0 or

Bi+1(y) > 0. Without loss of generality, let Bi(y) > 0 then
y ∈ Vi. Finally,

|y−f(x′)| = |y−yi+yi−f(x′)| ≤ |y−yi|+ |yi−f(x′)| ≤ ε.

In case x′ ∈ {xi | i = 1, . . . , n}, the proof uses the same
technique and is therefore omitted.

As mentioned before, additive fuzzy models are closely
related to the disjunctive ones. Hence, the Center Of Gravity
(COG) defuzzification method standardly used in connection
with the disjunctive fuzzy models seems to be appropriate for
the additive fuzzy models as well. Let us recall that the COG
defuzzification of a fuzzy set B ∈ F(Y ) is given as follows

COG(B) =

∫
Y

y ·B(y) dy∫
Y

B(y) dy
(20)

assuming that (20) is a well-defined formula. Since the center
of gravity formula averages non-zero values, Theorem 8.1
yields the following direct corollary.

Corollary 8.2: Let X , Y be two closed real intervals and
let f : X → Y be an arbitrary continuous function. Then for
arbitrary ε > 0, there exists an additive fuzzy model R⊕

∗ given
by (16) such that for every x ∈ X

|COG(R⊕
∗ (x, ·))− f(x)| < ε .

Corollary 8.2 states the universal approximation property
of additive fuzzy models connected to an appropriate defuzzi-
fication method, the standard COG. Obviously, even other
defuzzification methods would fit into the whole concept based
on non-zero values of the model in an ε-neighborhood of the
approximated function.

B. Multiplicative fuzzy models

Similarly as for the additive fuzzy models, we discuss the
approximation abilities of the multiplicative ones.

Theorem 8.3: Let X , Y be two closed real intervals and
let f : X → Y be an arbitrary continuous function. Then
for arbitrary ε > 0, there exist n ∈ N and Ai ∈ F(X),
Bi ∈ F(Y ), i = 1, . . . , n, such that

if R⊗
∗ (x, y) = 1 , then |y − f(x)| < ε ,

where x ∈ X , y ∈ Y and R⊗
∗ is the multiplicative fuzzy

model given by (18).
Proof: The first part of the proof only repeats the proof of

Theorem 8.1, i.e., we assume the continuity of f on X = [a, b]
and similarly we fix ε, δ and choose n > 2 to keep h < δ

2 .
Let also xi be given as above as well as Ui, Vi and yi.

Let Ai ∈ F(X), for i = 1, . . . , n, be such that Ai(xi) = 1
if and only if x ∈ ]xi−1, xi+1[. Let Bi ∈ F(Y ), for i =
1, . . . , n, be such that Bi(y) = 1 if and only if y ∈ Vi. Take
an arbitrary x′ ∈ X such that x′ /∈ {xi | i = 1, . . . , n}.
Then there exist Ui, Ui+1 such that x′ ∈ Ui and x′ ∈ Ui+1.
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In this case Ai(x′) = 1 as well as Ai+1(x′) = 1, while
Aj(x′) < 1 for j /∈ {i, i + 1}. Furthermore, f(x′) ∈ Vi as
well as f(x′) ∈ Vi+1.

Take an arbitrary y ∈ Y such that R⊗
∗ (x′, y) = 1. Then

R⊗
∗ (x′, y) = ((Ai(x′) ∗Bi(y))⊗ (Ai+1(x′) ∗Bi+1(y)))

and hence, R⊗
∗ (x′, y) = 1 occurs if and only if Bi(y) = 1

and Bi+1(y) = 1. Then y ∈ Vi and also y ∈ Vi+1. So, we
can write

|y−f(x′)| = |y−yi+yi−f(x′)| ≤ |y−yi|+|yi−f(x′)| ≤ ε .

In case x′ ∈ {xi | i = 1, . . . , n}, the proof uses the same
technique and is therefore omitted.

Theorem 8.1 assumes R⊕
∗ (x, y) > 0, while Theorem 8.3

assumes R⊗
∗ (x, y) = 1. However, this distinction fully fits

into the different points of view on both types of fuzzy rules
as discussed in Section I. Also the approximation ability of
the defuzzified output causes no problem at all, since the
multiplicative fuzzy models are closely related to the con-
junctive ones. Hence, COG defuzzification is not appropriate,
while the Mean Of Maxima (MOM) defuzzification method is
preferred [41]. Let us recall that the MOM defuzzification of
a fuzzy set B ∈ F(Y ) is given as follows

MOM(B) =


P

y∈Ceil(B) y

|Ceil(B)| , if |Ceil(B)| < ∞,
R
Ceil(B) y dy
R
Ceil(B) 1 dy

, if
∫
Ceil(B)

1 dy 6= 0,
(21)

where Ceil(B) = {y | B(y) = Height(B)} and Height(B) =
sup{B(y) | y ∈ Y }.

From formula (21) it is easy to see that MOM takes
into account only Ceil points. In case of coherence (non-
emptiness of the Core of the output fuzzy set for any crisp
input x′ ∈ X [3]), Ceil and Core are identical. Hence, the
MOM defuzzification focuses only on Core points, which fully
explains why Theorem 8.3 assumed R⊗

∗ (x, y) = 1.
Remark 8.4: Let us remark that the coherence is not only

a technical assumption, but it is a very powerful and highly
desirable property certifying the non-existence of conflicting
rules in a fuzzy rule base [3]. Furthermore, this condition may
be very useful for further investigations [41].

Due to the properties of the MOM formula, Theorem 8.3
yields the following corollary.

Corollary 8.5: Let X , Y be two closed real intervals and
let f : X → Y be an arbitrary continuous function. Then for
arbitrary ε > 0, there exists a multiplicative fuzzy model R⊗

∗
given by (18) such that for every x ∈ X

|MOM(R⊗
∗ (x, ·))− f(x)| < ε .

Although Corollary 8.5 states the universal approximation
property of multiplicative fuzzy models connected to the
MOM method, even other defuzzification methods focusing
on Core points (First of Maxima, Last of Maxima) would
also guarantee the universal approximation property.

C. Fuzzy control benchmark

Due to the universal approximation ability of both types of
arithmetic fuzzy models, they have a very wide application

TABLE I
CONTROL FUZZY RULES IN A LOOK-UP TABLE. ABBREVIATIONS B, M, S,
Z DENOTE LABELS “BIG”, “MEDIUM”, “SMALL”, “ZERO”; THE PREFIX N

STANDS FOR “NEGATIVE”, WHILE P STANDS FOR “POSITIVE”.

Rules NM NS Z PS PM
NM NB NB NM NS Z
NS NB NM NS Z PS
Z NM NS Z PS PM

PS NS Z PS PM PB
PM Z PS PM PB PB

potential, just as for the more established disjunctive and
implicative fuzzy models. Since fuzzy control is among the
most frequent fields of application, we have chosen a fuzzy
control benchmark for our demonstration. The chosen bench-
mark consists of controlling a simplified inverted pendulum-
like process described by the second order differential equation

y′′ − 10 sin(y) = u(t) , (22)

where y is the output function, t denotes the time variable and
u denotes a control action. The inverted pendulum is a very
frequently chosen benchmark, see e.g. [42], [43].

In every field of application including fuzzy control, the
overall quality of a given model is highly dependent on many
aspects, including the fuzzy rule base, the defuzzification
method, the sampling period, etc. To avoid a change in scope
of this paper, we do not focus on all these aspects and select
a simple fuzzy rule base, simple (triangular) shapes of an-
tecedent and consequent fuzzy sets, a standard defuzzification
method (COG) and we build disjunctive as well as additive
fuzzy models, which are even in such a simplified setting
supposed to be able to control the given system.

The process control was simulated using the LFLCsim
software, a dedicated software tool for the simulation of
ODE process control in a closed loop. It directly uses fuzzy
inference schemes and defuzzification methods implemented
in the LFLC2000 software package [44] which also allows
users to edit fuzzy rule bases.

A fuzzy PD controller has been designed, i.e. the error E
(the distance to the stable position y = 0) and its change dE
in a sampling period have been used as antecedent variables,
while the control action U has been used as consequent
variable. Triangular antecedent fuzzy sets were uniformly dis-
tributed on both antecedent axes in order to fulfill the Ruspini
condition. Consequent fuzzy sets meet the same properties on
the output axis. The sampling period has been set to 0.020
seconds.

A fuzzy rule base consisting of 25 fuzzy rules was de-
termined, see Table I. It is a simple version of a fuzzy PD
controller stemming from a similar one published in [45].
Both a disjunctive and an additive fuzzy model using the
Łukasiwicz t-norm (i.e. Ř⊗ and R⊕

⊗) were constructed. Both
models were combined with the COG defuzzification method,
which is appropriate for these models.
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Fig. 3. Additive fuzzy model process control - system output y versus time.
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Fig. 4. Disjunctive fuzzy model process control - system output y versus
time.

The process stable point was set to 0, i.e., zero corresponds
to the upright direction of the inverted pendulum. The initial
position was set to 0.79 (approx. π/4).

The additive fuzzy model of the fuzzy rule base in Table I
together with the COG defuzzification method reached the
stable point in 44 control actions, i.e. in 0.88 seconds, see
Figure 3. The disjunctive fuzzy model of the same fuzzy rule
base with the COG defuzzification method also reached the
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Fig. 5. Difference of both process control graphs.

stable point in 44 control actions, see Figure 4.
Figure 5 displays the difference between both control

graphs. The disjunctive fuzzy model Ř⊗ converged faster to
the stable point during the first part of the process control
(positive difference), while in the second part the additive
fuzzy model R⊕

⊗ took the advantage (negative difference).
Overall, the additive fuzzy model performed slightly better
since the system position y was 0.001 closer to the desired
stable position on average. Since the benchmark differences
are negligible, it can be stated that the newly suggested
arithmetic fuzzy models perform at least as good as the more
established standard fuzzy models.

From the applicability point of view, we may conclude that
the arithmetic fuzzy models behave similarly to the standard
ones and may serve as alternative — especially in cases where
the standard fuzzy models do not meet the fundamental fuzzy
interpolation property. In such cases, it is highly desirable to
replace the standard fuzzy models by other fuzzy models that
do meet this condition and that have the same application
potential.

IX. CONCLUSIONS

We have discussed two interpretations of a fuzzy rule base
together with the corresponding inference mechanisms. From
the fuzzy interpolation point of view, we have explained that
the disjunctive fuzzy model should be treated together with the
subdirect image, while the conjunctive fuzzy model should be
preferably treated together with the direct image.

Motivated by widely known practical methods, we have
introduced additive fuzzy models and have shown that they are
closely related to the disjunctive ones. Analogously, we have
proposed multiplicative fuzzy models being closely related to
the conjunctive fuzzy models. We have investigated both newly
defined arithmetic fuzzy models from the fuzzy interpolation
point of view w.r.t. both images, i.e. as possible solutions of
the corresponding systems of fuzzy relational equations.

Similarly as for disjunctive and conjunctive fuzzy models,
stronger results are obtained when additive fuzzy models are
combined with the subdirect image, and when multiplicative
fuzzy models are combined with the direct image.

The crucial role of the Ruspini condition for the four types
of fuzzy models has been underlined and visually demon-
strated. It is shown that this standard property together with
the normality of antecedent fuzzy sets assures the solvability
of related systems of fuzzy relation equations. In other words,
by an appropriate setting of antecedent fuzzy sets (partitioning
the input space), the solvability may be guaranteed beforehand
with no further restrictions on consequent fuzzy sets.

Finally, the universal approximation property of the newly
proposed fuzzy models has been discussed. It has been shown
that both types of arithmetic fuzzy models, combined with
appropriate standard defuzzification methods, preserve this
crucial property. Hence, they are suitable models of fuzzy rule
bases, not only from the fuzzy interpolation point of view, but
also from the approximation point of view. The applicability
of the arithmetic fuzzy models has been justified on a fuzzy
control benchmark as well.
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