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ARITHMETIC INTERSECTION ON A HILBERT MODULAR

SURFACE AND THE FALTINGS HEIGHT∗

TONGHAI YANG†

Abstract. In this paper, we prove an explicit arithmetic intersection formula between arithmetic
Hirzebruch-Zagier divisors and arithmetic CM cycles on a Hilbert modular surface over Z. As
applications, we obtain the first ‘non-abelian’ Chowla-Selberg formula, which is a special case of
Colmez’s conjecture; an explicit arithmetic intersection formula between arithmetic Humbert surfaces
and CM cycles in the arithmetic Siegel modular variety of genus two; Lauter’s conjecture about the
denominators of CM values of Igusa invariants; and a result about bad reduction of CM genus two
curves.
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1. Introduction. Intersection theory has played a central role not only in alge-
braic geometry but also in number theory and arithmetic geometry, such as Arakelov
theory, Faltings’s proof of Mordell conjecture, the Birch and Swinnerton-Dyer con-
jecture, and the Gross-Zagier formula, to name a few. In a lot of cases, explicit
intersection formulae are needed as in the Gross-Zagier formula ([GZ1]), its general-
ization to totally real number fields by Shou-Wu Zhang ([Zh1], [Zh2], [Zh3]), recent
work on arithmetic Siegel-Weil formula by Kudla, Rapoport, and the author (e.g.,
[Ku1], [KR1], [KR2], [KRY1], [KRY2]), and Bruinier, Burgos-Gil, and Kühn’s work
on arithmetic Hilbert modular surfaces. In other cases, the explicit formulae are sim-
ply beautiful as in the work of Gross and Zagier on singular moduli [GZ2], the work of
Gross and Keating on modular polynomials [GK](not to mention the really classical
Bézout’s theorem). In all these works, intersecting cycles are of the same type and
symmetric.

In this paper, we consider the arithmetic intersection of two natural families of
cycles of different type in a Hilbert modular surface over Z, arithmetic Hirzebruch-
Zagier divisors and arithmetic CM cycles associated to non-biquadratic quartic CM
fields. They intersect properly and have a conjectured arithmetic intersection formula
[BY]. The main purpose of this paper is to prove the conjectured formula under a
minor technical condition on the CM number field. As an application, we prove the
first non-abelian Chowla-Selberg formula [Co], which is also a special case of Colmez’s
conjecture on the Faltings height of CM abelian varieties. As another application, we
obtain an explicit intersection formula between (arithmetic) Humbert surfaces and
CM cycles in the (arithmetic) Siegel modular 3-fold, which has itself two applications:
confirming Lauter’s conjecture on the denominators of Igusa invariants valued at CM
points [La], [Ya5], and bad reduction of CM genus two curves. We also use the formula
to verify a variant of a conjecture of Kudla on arithmetic Siegel-Weil formula. We
now set up notation and describe this work in a little more detail.

Let D ≡ 1 mod 4 be a prime number, and let F = Q(
√
D) with the ring of

integers OF = Z[D+
√
D

2 ] and different ∂F =
√
DOF . Let M be the Hilbert moduli
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stack of assigning to a base scheme S over Z the set of the triples (A, ι, λ), where
([Go, Chapter 3] and [Vo, Section 3])

(1) A is a abelian surface over S.
(2) ι : OF →֒ EndS(A) is real multiplication of OF on A.
(3) λ : ∂−1

F → P (A) = HomOF (A,A
∨)sym is a ∂−1

F -polarization (in the sense
of Deligne-Papas) satisfying the condition:

∂−1
F ⊗A → A∨, r ⊗ a 7→ λ(r)(a)

is an isomorphism.
Next, for an integer m ≥ 1, let Tm be the integral Hirzebruch-Zagier divisor in M

defined in [BBK, Section 5], which is the flat closure of the classical Hirzebruch-Zagier
divisor Tm in M. We refer to Section 3 for the modular interpretation of Tm when m
is a prime split in F .

Finally, let K = F (
√
∆) be a quartic non-biquadratic CM number field with

real quadratic subfield F . Let CM(K) be the moduli stack over Z representing the
moduli problem which assigns to a base scheme S the set of the triples (A, ι, λ) where
ι : OK →֒ EndS(A) is an CM action of OK on A, and (A, ι|OF , λ) ∈ M(S) such
that the Rosati involution associated to λ induces the complex conjugation on OK .
The map (A, ι, λ) 7→ (A, ι|OF , λ) is a finite proper map from CM(K) into M, and
we denote its direct image in M still by CM(K) by abuse of notation. Since K is
non-biquadratic, Tm and CM(K) intersect properly. A basic question is to compute
their arithmetic intersection number (see Section 3 for definition). Let Φ be a CM
type of K and let K̃ be the reflex field of (K,Φ). It is also a quartic non-biquadratic
CM field with real quadratic field F̃ = Q(

√
NF/Q(dK/F )) where dK/F is the relative

discriminant of K/F .

Conjecture 1.1. (Bruinier and Yang) Let the notation be as above and let
D̃ = dF̃ be the discriminant of F̃ . Then

(1.1) Tm.CM(K) =
1

2
bm

or equivalently

(1.2) (Tm.CM(K))p =
1

2
bm(p)

for every prime p. Here

bm =
∑

p

bm(p) log p

is defined as follows:

(1.3) bm(p) log p =
∑

p|p

∑

t=n+m
√

D̃
2D ∈d−1

K̃/F̃

|n|<m
√

D̃

Bt(p)

where

(1.4) Bt(p) =

{
0 if p is split in K̃,

(ordp t+ 1)ρ(tdK̃/F̃ p
−1) log |p| if p is not split in K̃,
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|p| is the norm of the ideal p of F̃ , and

ρ(a) = #{A ⊂ OK̃ : NK̃/F̃A = a}.

Notice that the conjecture implies that (Tm.CM(K))p = 0 unless 4Dp | m2D̃−n2

for some integer 0 ≤ n < m
√
D̃. In particular, Tm.CM(K) = 0 if m2D̃ ≤ 4D.

Throughout this paper, we assume that K satisfies the following condition

(1.5) OK = OF +OF
w +

√
∆

2

is free over OF (w ∈ OF ) and that ∆∆′ is odd, where ∆′ is the Galois conjugate of
∆ in F . In such a case, one can show that D̃ = ∆∆′ is square-free and dK = D2D̃.
The main result of this paper is the following theorem.

Theorem 1.2. Assume (1.5) and that D̃ ≡ 1 mod 4 is a prime. Then Conjecture
1.1 holds.

The special case m = 1 is proved in [Ya4]. Now we describe its application to
the generalized Chowla-Selberg formula. In proving the famous Mordell conjecture,
Faltings introduces the so-called Faltings height hFal(A) of an Abelian variety A,
measuring the complexity of A as a point in a Siegel modular variety. When A
has complex multiplication, it only depends on the CM type of A and has a simple
description as follows. Assume that A is defined over a number field L with good
reduction everywhere, and let ωA ∈ ΛgΩA be a Néron differential of A over OL, non-
vanishing everywhere. Then the Faltings height of A is defined as (our normalization
is slightly different from that of [Co])
(1.6)

hFal(A) = − 1

2[L : Q]

∑

σ:L→֒C

log

∣∣∣∣∣(
1

2πi
)g
∫

σ(A)(C)

σ(ωA) ∧ σ(ωA)

∣∣∣∣∣+ log#ΛgΩA/OLωA.

Here g = dimA. Colmez gives a beautiful conjectural formula to compute the Faltings
height of a CM abelian variety in terms of the log derivative of certain Artin L-
series associated to the CM type [Co], which is a consequence of his product formula
conjecture of p-adic periods in the same paper. When A is a CM elliptic curve, the
height conjecture is a reformulation of the well-known Chowla-Selberg formula relating
the CM values of the usual Delta function ∆ with the values of the Gamma function at
rational numbers. Colmez proved his conjecture up to a multiple of log 2 when the CM
field (which acts on A) is abelian, refining Gross’s [Gr] and Anderson’s [An] work. A
key point is that such CM abelian varieties are isogenous to quotients of the Jacobians
of the Fermat curves, so one has explicit models to work with. Köhler and Roessler
gave a different proof of a weaker version of Colmez’s result using their Lefschetz
fixed point theorem in Arakelov geometry [KRo] without using explicit model of CM
abelian varieties. They still relied on the action of µn on product of copies of these
CM abelian varieties, and did not thus break the barrier of non-abelian CM number
fields. V. Maillot and Roessler gave a more general conjecture relating logarithmtic
derivatives of (virtual) Artin L-function with motives and provided some evidence in
[MR] (weaker than the Colmez conjecture when restricting to CM abelian varieties)
and Yoshida independently developed a conjecture about absolute CM periods which
is very close to Colmez’s conjecture and provided some non-trivial numerical evidence
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as well as partial results [Yo]. We should also mention that Kontsevich and Zagier
[KZ] put these conjectures in different perspective in the framework of periods, and for
example rephrased the Colmez conjecture (weaker form) as saying the log derivative
of Artin L-functions is a period.

When the CM number field is non-abelian, nothing is known about Colmez’s
conjecture. In this paper we consider the case that K is a non-biquadratic quartic
CM number field (with real quadratic subfield F ), in which case Colmez’s conjecture
can be stated precisely as follows. Let χ be the quadratic Hecke character of F
associated to K/F by global class field theory, and let

(1.7) Λ(s, χ) = C(χ)
s
2π−s−1Γ(

s+ 1

2
)2L(s, χ)

be the complete L-function of χ with C(χ) = DNF/QdK/F . Let

(1.8) β(K/F ) =
Γ′(1)

Γ(1)
− Λ′(0, χ)

Λ(0, χ)
− log 4π.

In this case, the conjectured formula of Colmez on the Faltings height of a CM abelian
variety A of type (K,Φ) does not even depend on the CM type Φ and is given by (see
[Ya3])

(1.9) hFal(A) =
1

2
β(K/F ).

In Section 8, we will prove the following result using Theorem 1.2, and [BY,
Theorem 1.4], which breaks the barrier of ‘non-abelian’ CM number fields. Our proof
is totally different.

Theorem 1.3. Assume that K satisfies the conditions in 1.2. Then Colmez’s
conjecture (1.9) holds.

Kudla initiated a program to relate the arithmetic intersections on Shimura vari-
eties over Z with the derivatives of Eisenstein series—arithmetic Siegel-Weil Formula
in 1990’s, see [Ku1], [Ku3], [KRY2] and references there for example. Roughly speak-
ing, let

(1.10) φ̂(τ) = −1

2
ω̂ +

∑

m>0

T̂mqm

be the modular form of weight 2, level D, and character (D ) with values in the
arithmetic Chow group defined by Bruinier, Burgos Gil, and Kühn [BBK] (see also
Section 8), where ω̂ is the metrized Hodge bundle on M̃ with Peterson metric defined
in Section 8 and can be viewed as an arithmetic Chow cycle, and T̂m is some arithmetic
Chow cycle related to Tm. Then we have the following result, which can be viewed
as a variant of Kudla’s conjecture in this case. We refer to Theorem 8.2 for a more
precise statement of the result.

Theorem 1.4. Let the notation and assumption be as in Theorem 1.2. Then
hφ̂(CM(K)) + 1

4Λ(0, χ)β(K/F )E+
2 (τ) is the holomorphic projection of the diagonal

restriction of the central derivative of some (incoherent) Hilbert Eisenstein series on
F̃ . Here E+

2 (τ) is an Eisenstein series of weight 2.

Let A2 be the moduli stack of principally polarized abelian surfaces [CF].
A2(C) = Sp2(Z)\H2 is the Siegel modular variety of genus 2. For each integer m, let
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Gm be the Humbert surface in A2(C) ([Ge, Chapter 9], see also Section 9), which is
actually defined over Q. Let Gm be the flat closure of Gm in A2. For a quartic CM
number field K, let CMS(K) be the moduli stack of principally polarized CM abelian
surfaces by OK . We use subscript S to indicate that it is a CM cycle A2. The stack
CMS(K) is isomorphic to CM(K) by (9.4). In Section 9, we will prove the following
theorem using Theorem 1.2 and a natural map from M to A2.

Theorem 1.5. Assume K satisfies the condition in Theorem 1.2, and that Dm
is not a square. Then CMS(K) and Gm intersect properly, and

(1.11) CMS(K).Gm =
1

2

∑

n>0,Dm−n2

4 ∈Z>0

bDm−n2

4

.

Since G1 is the moduli space of principally polarized abelian surfaces which are
not Jacobians of genus two curves, the above theorem, together with lifting theorem of
principally polarized CM abelian varieties by maximal order of a CM number field (see
for example, [Ho] or proof of [GL, Theorem 4.2.1]), has the following consequence. The
corollary also solves Goren and Lauter’s embedding problem in [GL, Section 3]. Our
approach is different in two senses. First we work on Hilbert modular surfaces instead
of Siegel modular 3-folds and reduce the ‘difficulty’ by ‘one dimension’. Second, we
count instead of proving existence.

Corollary 1.6. Let K be a quartic CM number field as in Theorem 1.2. Let C
be a genus two curve over a number field L such that its Jacobian J(C) has CM by
OK and has good reduction everywhere. Let l be a prime. If C has bad reduction at
a prime l|l of L, then

(1.12)
∑

0<n<
√
D,odd

bD−n2

4

(l) 6= 0

In particular, l ≤ DD̃
64 . Conversely, if (1.12) holds for a prime l, then there is a genus

two curve C over some number field L such that
(1) J(C) has CM by OK and has good reduction everywhere, and
(2) C has bad reduction at a prime l above l.

Finally we recall that Igusa defines 10 invariants which characterize genus two
curves over Z in [Ig2]. They are Siegel modular forms of genus 2 (level 1) [Ig1]. One
needs three of them, commonly called j1, j2, and j3, which determine genus two
curves over Q̄ and over F̄p when p > 5 and j1 6= 0. Recently, Cohn and Lauter ([CL]),
and Weng [Wen] among others started to use genus two curves over finite fields for
cryptosystems. For this purpose, they need to compute the CM values of the Igusa
invariants associated to a quartic non-biquadratic CM field. Similar to the classical
j-invariant, these CM values are algebraic numbers. However, they are in general not
algebraic integers. It is very desirable to at least bound the denominators of these
numbers for this purpose and also in theory. Lauter gives an inspiring conjecture
about the denominator in [La] based on her calculation and Gross and Zagier’s work
on singular moduli [GZ1]. In Section 9, we will prove the following refinement of her
conjecture subject to the condition in Theorem 1.2.

Theorem 1.7. (Lauter’s conjecture). Let j′i, i = 1, 2, 3 be the slightly renor-
malized Igusa invariants in Section 9, and let τ be a CM point in X2 such that the
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associated abelian surface Aτ has endomorphism ring OK , and let Hi(x) be the min-
imal polynomial of j′i(τ) over Q. Assume K satisfies the condition in Theorem 1.2.
Let Ai be positive integers given by

Ai =




e
3WK

∑
0<n<

√
D,odd bD−n2

4 if i = 1,

e
2WK

∑
0<n<

√
D,odd bD−n2

4 if i = 2, 3.

Here WK is the number of roots of unity in K. Then AiHi(x) is defined over Z. In
particular, Ai N(j

′
i(τ)) is a rational integer.

Now we describe briefly how to prove Theorem 1.2 and its consequences. The
major effort is to prove the following weaker version of the main theorem, which
covers Sections 3-7.

Theorem 1.8. Assume (1.5) and that D̃ ≡ 1 mod 4 is square free, and that
m = q is an odd prime split in F . Then

(1.13) Tq.CM(K) =
1

2
bq + cq log q

for some rational number cq. Equivalently, one has for any prime p 6= q,

(1.14) (Tq.CM(K))p =
1

2
bq(p).

The starting point is a proper map from the moduli stack Y0(q) of cyclic isogeny
(φ : E → E′) of degree q of elliptic curves to Tq constructed by Bruinier, Burgos-Gil,
and Kühn in [BBK], see also Section 3. Let (B, ι, λ) be the image of (φ : E → E′)
in Tq, we first compute the endomorphism ring of (B, ι) in terms of a pair of quasi-
endomorphisms α, β ∈ φ−1 Hom(E,E′) satisfying some local condition at q. This is
quite different from the special case q = 1 considered in [Ya4]: we can not describe
the endomorphism ring of (E, ι) globally. The upshot is the following: associated
to a geometric intersection point in Tq.CM(K)(F̄p) is a triple (φ, φα, φβ : E → E′)
satisfying certain local condition at q. Using a beautiful formula of Gross and Keating
[GK] on deformation of isogenies, we are able to compute the local intersection index
and prove the following theorem.

Theorem 1.9. (Theorem 3.6) For p 6= q, one has

(Tq.CM(K))p =
1

4

∑

0<n<q
√

D̃
q2D̃−n2

4D ∈pZ>0

(
ordp

q2D̃ − n2

4D
+ 1

)∑

µ

∑

[φ:E→E′]

R(φ, Tq(µn))

#Aut(φ)
.

Here µ = ±1, Tq(µn) is a positive definite 2 × 2 matrix with entries in 1
qZ de-

termined by n and µ as in Lemma 4.1. R(φ, Tq(µn)) is the number of pairs
(δ, β) ∈ (φ−1 Hom(E,E′))2 satisfying certain local conditions at q and 2 such that

T (δ, β) :=
1

2

(
(δ,δ) (δ,β)
(δ,β) (β,β)

)
= Tq(µn).

Finally, Aut(φ) is the set of automorphisms f ∈ Aut(E) such that φ◦f◦φ−1 ∈ Aut(E′),
and the summation is over the equivalence classes of all isogenies [φ : E → E′] of
degree q of supersingular elliptic curves over F̄p.
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The next step is to compute the summation

β(p, µn) =
∑

[φ:E→E′]

R(φ, Tq(µn))

#Aut(φ)

which counts the ‘number’ of geometric intersection points between CM(K) and Tq
at p. The sum can be written as a product of local Whittaker integrals and can be
viewed as a generalization of quadratic local density. In theory, the idea in [Ya1],
[Ya2] can be generalized to compute these local integrals, but it is very complicated.
In Section 5, we take advantage of the relation between supersingular elliptic curves
and maximal orders of the quaternion algebra B which ramifies only at p and ∞, and
known structure of quaternions, and transfer the summation into product of local
integral over B∗

l instead of usual local density integral as in [Ya1], [Ya2]:

(1.15) β(p, µn) =
1

2

∫

Q∗
f
\B∗

f
/K

Ψ(g−1.~x0)dg

if there is ~x0 = V (Af )
2 with T (~x0) = Tq(µn). Otherwise, β(p, µn) = 0. Here

g.~x = (g.X1, g.X2) = (gX1g
−1, gX2g

−1), ~x = t(X1, X2),

and Ψ =
∏

Ψl ∈ S(V (Af ))
2 and V is the quadratic space of trace zero elements in

B. In Section 6, we compute these local integrals which is quite technical at q due
to the local condition mentioned above, and obtain an explicit formula for β(p, µn)
(Theorems 6.1 and 6.2). In Section 7, we compute bm(p) and proves Theorem 1.8.
The computation also gives a more explicit formula for the intersection number.

In Section 8, we use the height pairing function and [BY, Theorem 1.4] to derive
the main theorem from the weaker version. we also derive Theorem 1.3 from Theorem
1.2 using the same idea. Theorem 1.4 is a consequence of the main theorem and [BY,
Theorem 8.1]. In Section 9, we briefly review the natural modular ‘embedding’ from
Hilbert modular surfaces to the Siegel modular 3-fold, and prove Theorems 1.5, 1.6,
and 1.7.
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2. A brief review of the case q = 1. For the convenience of the reader, we
briefly review the computation of the arithmetic intersection between CM(K) and Tq
in the very special case q = 1 to give a rough idea and motivation to the general case
considered in this paper. We also briefly describe how Gross and Zagier’s beautiful
factorization formula for singular moduli can be derived this way. We refer to [Ya4]
for detail, and to Section 3 for notation.

Let E be the moduli stack over Z of elliptic curves. Then there is a natural
isomorphism between E and T1 given by E 7→ (E ⊗ OF , ι, λ). A simple but critical
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fact is that EndOF (E ⊗OF ) ∼= End(E)⊗OF is easy to understand (it is much more
complicated even in the split prime q case considered in Section 3). So a geometric
intersection point in T1.CM(K)(F̄p) is determined by a pair (E, ι) where

ι : OK →֒ End(E)⊗OF

such that the main involution on OE = End(E) gives the complex conjugation on
OK , which implies in particular that E is supersingular and p is inert in F . Since we

assume that OK = OF +OF
w+

√
∆

2 , ι is determined by

ι(
w +

√
∆

2
) = α0 + β0

D +
√
D

2
, ι(

√
∆) = δ + β

D +
√
D

2
,

with α0, β0 ∈ OE , and

δ = 2α0 − w0, β = 2β0 − w1 ∈ LE = {x ∈ Z+ 2OE : tr x = 0}.

Here w = w0 + w1
D+

√
D

2 with wi ∈ Z. Set for δ, β ∈ LE

T (δ, β) =
1

2

(
(δ,δ) (δ,β)
(δ,β) (β,β)

)
∈ Sym2(Z).

One shows that T (δ, β) is a positive definite integral matrix of the form T1(µn) (in

the notation of Lemma 4.1) for a unique positive integer n with detT1(µn) =
D̃−n2

D ∈
4pZ>0 and a unique sign µ = ±1.

Applying a beautiful deformation result of Gross and Keating to 1, α0, and β0,
we show in [Ya4, Section 4] that the local intersection index of T1 and CM(K) at
(E, ι) is given by

ιp(E, ι) =
1

2
(ordp

D̃ − n2

4D
+ 1)

which depends only on n. So the intersection number of T1 and CM(K) at p is

(T1.CM(K))p =
1

2

∑

D̃−n2

4D ∈pZ>0

(ordp
D̃ − n2

4D
+ 1)

∑

µ

∑

Es.s.

R(LE , T1(µn))

#Aut(E)

where the sum is running over all supersingular elliptic curves over F̄p (up to iso-
morphism), and R(LE , T1(µn)) is the representation number of the ternary quadratic
form LE representing the matrix T1(µn).

Finally the last sum can be proved to be the product of local densities, and can be
computed using the formulae in [Ya1] and [Ya2]. However, the case p = 2 is extremely
complicated. In [Ya4], we used a trick together with a beautiful result in [GK] to deal
with this delicate issue. However, this trick only works in this special case. In this
paper, we use a new idea to deal with the case q 6= 1 in Sections 5 and 6. The upshot
is then the following formula:

(T1.CM(K))p =
1

2

∑

D̃−n2

4D ∈pZ>0

(ordp
D̃ − n2

4D
+ 1)

∑

µ

β(p, νn)

where

β(p, µn) =
∏

l| D̃−n2

4D

βl(p, µn)
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and βl(p, µn) is given by the right hand side of the formula in Theorem 6.1. This
finishes the computation at the geometric side. On the algebraic side, the computation
of b1(p) is similar to that of bm(p) in Section 7(of course simpler) and shows that b1(p)
is equal to the right hand side of the above formula without the factor 1

2 . That proves
the case q = 1.

If we further allow D = 1, i.e., F = Q⊕Q, and K = Q(
√
d1)⊕Q(

√
d2), one has

M = E × E and CM(K) = CM(d1)× CM(d2) where CM(di) is the moduli stack of
CM elliptic curves of (fundamental) discriminant di < 0. Furthermore, T1 is just the
diagonal embedding of E . From this, it is easy to see

T1.CM(K) = CM(K1).CM(K2) in M1

=
∑

disc[τi]=di

4

w1w2
log |j(τ1)− j(τ2)|(2.1)

where wi is number of roots of unity of imaginary quadratic field of discriminant di,
and τi are Heegner points inM1(C) of discriminant di. Now the beautiful factorization
of Gross-Zagier on singular moduli follows from the arithmetic intersection formula
for T1.CM(K). We refer to [Ya4, Section 3] for detail.

3. Modular Interpretation of Tq and Endomorphisms of Abelian va-

rieties. Let F = Q(
√
D) with D ≡ 1 mod 4 prime. Let M be the Hilbert mod-

ular stack defined in the introduction, and let M̃ be a fixed Toroidal compactifi-
cation. Let K = F (

√
∆) be a non-biquadratic quartic CM number field with real

quadratic subfield F , and let CM(K) be the CM cycle defined in the introduc-
tion. Notice that CM(K) is closed in M̃. K has four different CM types Φ1,
Φ2, ρΦ1 = {ρσ : σ ∈ Φ1}, and ρΦ2, where ρ is the complex conjugation in C. If
x = (A, ι, λ) ∈ CM(K)(C), then (A, ι, λ) is a CM abelian surface over C of exactly
one CM type Φi inM(C) = SL2(OF )\H2 as defined in [BY, Section 3]. Let CM(K,Φi)
be set of (isomorphism classes) of CM abelian surfaces of CM type (K,Φi) as in [BY],
viewed as a cycle in M(C). Then it was proved in [BY]

CM(K) = CM(K,Φ1) + CM(K,Φ2) = CM(K, ρΦ1) + CM(K, ρΦ2)

is defined over Q. So we have

Lemma 3.1. One has

CM(K)(C) = 2CM(K)

in M(C).

Next for an integer m > 0, let Tm be the Hirzebruch-Zagier divisor Tm is given
by [HZ]

Tm(C) = SL2(OF )\{(z1, z2) ∈ H2 : (z2, 1)A (z11 ) = 0 for some A ∈ Lm},

where

Lm = {A =
(

a λ
λ′ b

)
: a, b ∈ Z, λ ∈ ∂−1

F , ab− λλ′ =
m

D
}.

Tm is empty if (Dm ) = −1. Otherwise, it is a finite union of irreducible curves and is
actually defined over Q. Following [BBK], let Tm be the flat closure of Tm in M, and
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let T̃m be the closure of Tm in M̃. When m = q is a prime split in F , Tm has the
following modular interpretation, which is different from that given in in [KR1]. We
identify it with modular curves in this special case while Kudla and Rapoport define
it for all m. For the rest of this section, we assume m = q is a prime split in F .

Let q be a prime number split in F , and let q be a fixed prime of F over q. In
this paper, we will fix an identification F →֒ Fq

∼= Qq, and let
√
D ∈ Qq be the image

of
√
D ∈ F under the identification. Following [BBK], we write q = rc2 with some

r ∈ F ∗ of norm being a power of q and some fractional ideal c of F . For a cyclic
isogeny φ : E → E′ of elliptic curves of degree q over a scheme S over Z[ 1q ], Bruinier,

Burgos, and Kühn constructed a triple (B, ι, λ) as follows. First let A = E ⊗ c, and
B = A/H with H = (kerφ⊗ c) ∩A[q]. We have the following commutative diagram:

A = E ⊗ c
πq

//

φ⊗1

��

π

''NNNNNNNNNNN
A/A[q]

B = A/H

π2

99rrrrrrrrrr

π1
wwooooooooooo

A′ = E′ ⊗ c

(3.1)

The natural action of OF on A induces an action ι : OF →֒ End(B). It is clear

(3.2) P (A) = HomOF (A,A
∨)Sym = c−2∂−1

F

naturally. They proved that under the natural injection

P (B) →֒ P (A), g 7→ π∨gπ

the image of P (B) is ∂−1
F . This gives the Deligne-Pappas ∂−1-polarization map

λ : ∂−1
F → P (B)

satisfying the Deligne-Papas condition. Furthermore, they proved [BBK, Proposition
5.12] that

(3.3) Φ : (φ : E → E′) 7→ (B, ι, λ)

is a proper map from the moduli stack Y0(q) over Z[
1
q ] to M, and Tq = Φ∗Y0(q). The

map Φ is generically an isomorphism. This proper map extends to a proper map from
X0(q) to M̃, whose direct image is the closure T̃q of Tq in M̃.

Recall [Gi], [Ho, Section 1], [KRY2, Chapter 2], [Vi], and [Ya4, Section 2] that
two cycles Zi in a DM-stack X of codimension pi, p1+p2 = dimX , intersect properly
if Z1 ∩ Z1 = Z1 ×X Z2 is a DM-stack of dimension 0. In such a case, we define their
(arithmetic) intersection number as

Z1.Z2 =
∑

p

∑

x∈Z1∩Z2(F̄p)

1

#Aut(x)
log#ÕZ1∩Z2,x(3.4)

=
∑

p

∑

x∈Z1∩Z2(F̄p)

1

#Aut(x)
ip(Z1,Z2, x) log p
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where ÕZ1∩Z2,x is the strictly local henselian ring of Z1 ∩ Z2 at x,

ip(Z1,Z2, x) = Length ÕZ1∩Z2,x

is the local intersection index of Z1 and Z2 at x. If φ : Z → M is a finite proper and
flat map from stack Z to M, we will identify Z with its direct image φ∗Z as a cycle
of M, by abuse of notation.

Now come back to our special case. Let p 6= q be a fixed prime. consider the
diagram over Zp

CM(K)×M Y0(q) //

��

Y0(q)

��
CM(K) // M

(3.5)

One sees that a geometric point in CM(K)∩Tq is indexed by a pair x = (φ : E → E′, ι)
with φ ∈ Y0(F̄p) and ι : OK →֒ EndOF (B) is an OK-action on B such that the Rosati
involution associated to λ gives the complex conjugation on K. Since K is a quartic
non-biquadratic CM number field, one sees immediately that such a geometric point
does not exist unless p is nonsplit in F and E is supersingular. In such a case, write
I(φ) for all OK action ι satisfying the above condition. Then the intersection number
of CM(K) and Tq at p is given by

(3.6) (CM(K).Tq)p =
∑

φ∈Y0(q)(F̄p),ι∈I(φ)

1

#Aut(φ)
ip(CM(K), Tq, (φ, ι)) log p.

Let W be the Witt ring of F̄p. Let E and E′ be the universal deformations of E and
E′ to W [[t]] and W [[t′]] respectively. Let I be the minimal ideal of W [[t, t′]] such that

(1) φ can be lifted to an (unique) isogeny φI : EI → E′
I , where EI = E mod I

and E′
I = E′ mod I.

(2) Let (BI , ιI , λI) ∈ M(W [[t, t′]]/I) be associated to φI . The embedding ι can
be lifted to an embedding ιI : OK →֒ EndOF (BI).

By deformation theory, one can show that the local intersection index is equal to

(3.7) ip(φ, ι) := ip(CM(K), Tq, (φ, ι)) = LengthW [[t, t′]]/I.

To compute the local intersection index and to count the geometric intersection
points, let (φ : E → E′) ∈ Y0(q) and let (B, ι, λ) = Φ(φ) ∈ M. Then

EndOF B = {g ∈ EndS B : ι(r)g = gι(r), r ∈ OF }.

We first make the following identification
(3.8)

π∗ : End0OF
B = EndOF B⊗Q ∼= End0(A) = End0(E)⊗ZOF , g 7→ π−1◦g◦π =

1

q
π∨gπ.

Lemma 3.2. Under the identification (3.8), we have

End(φ) ⊗OF ⊂ π∗ EndOF (B) ⊂ φ−1 Hom(E,E′)⊗OF .

Here

End(φ) = {f ∈ End(E) : φfφ−1 ∈ End(E′)}.
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Proof. For f ∈ End(φ), and x ∈ H , let f ′ = φfφ−1 ∈ End(E′), one has

(φ⊗ 1)((f ⊗ 1)(x)) = (f ′ ⊗ 1)(φ⊗ 1)(x) = 0

and so (f⊗1)(x) ∈ ker(φ⊗1) = kerφ⊗c. Clearly, (f⊗1)(x) ∈ A[q]. So (f⊗1)(x) ∈ H ,
and thus f ⊗ 1 = π∗(b) for some b ∈ EndOF (B).

On the other hand, if b ∈ EndOF (B), then

(φ⊗ 1)π∗(b) = π1bπ ∈ HomOF (A,A
′) = Hom(E,E′)⊗OF .

Since φ is an isomorphism away from q, one sees from the lemma

EndOF (B)⊗ Zl
∼= (End(E)⊗ Zl)⊗Z OF

for all l 6= q via π∗. We now study

(3.9) OB,q = EndOF (B)⊗ Zq = EndOF⊗Zq Tq(B),

where Tq(B) is the Tate module of B at q. We identify

(3.10) F →֒ Fq = Fq ⊕ Fq′ ∼= Qq ⊕Qq,
√
D 7→ (

√
D,−

√
D)

as fixed at the beginning of this section. Let {e, f} be a φ-normal basis of Tq(E) ⊂
Vq(E) = Tq(E)⊗Qq in the sense

(3.11) Tq(E) = Zqe⊕ Zqf, Tq(E
′) = Zqφ(e)⊕ Zq−1φ(f).

To clear up notation, we view both Tq(E) and Tq(E
′) as submodule of Vq(E) =

Tq(E) ⊗ Qq so that φ(e) = e and φ(f) = f . Let cq = c ⊗ Zq = Zq(q
r, 0) + Zq(0, q

s).
It is easy to see that

Tq(A) = Tq(E)⊗Zq cq,

Tq(A/A[q]) = Tq(A)⊗Oq q
−1
q = Tq(E)⊗Zq cqq

−1
q ,

Tq(A
′) = Tq(E

′ ⊗ c) = Tq(E
′)⊗Zq cq.

and

Tq(B) = Tq(A/A[q]) ∩ Tq(A
′).

Now we use coordinates. Identify

Oq = Oq ⊕Oq′ = Zq ⊕ Zq,

Then cq is generated by (qr, qs) as an Oq-module, and qq is generated by (q, 1) as an
Oq-module. So

Tq(B) =
(
cq(q

−1, 1)e⊕ cq(q
−1, 1)f

)
∩
(
cqe⊕ (q−1, q−1)f

)

= cqe⊕ cq(q
−1, 1)f

= (Zqq
re+ Zqq

r−1f)⊕ (Zqq
se⊕ Zqq

sf),

and (x, y) ∈ Oq = Zq ⊕ Zq acts on Tq(B) via

(x, y)(a1q
re+ b1q

r−1f, a2q
se+ b2q

sf) = (xa1q
re+ xb1q

r−1f, ya2q
se+ yb2q

sf).
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So EndOq Tq(B) consists of (α, β) ∈ (EndVq(E))2 satisfying

(3.12) α(Zqq
re+Zqq

r−1f) ⊂ Zqq
re+Zqq

r−1f, β(Zqq
se⊕Zqq

sf) ⊂ Zqq
se⊕Zqq

sf.

Here Vq(E) = Tq(E) ⊗ Qq = Qqe ⊕ Qqf . This is the same as α ∈ End(Tq(E
′)) and

β ∈ End(Tq(E)). So we have proved that

Proposition 3.3. Under the identification Oq = Oq ⊕Oq′ = Zq ⊕ Zq, one has

π∗ EndOq (Tq(B)) = {(α, β) ∈ (φ−1 Hom(Tq(E), Tq(E
′)))2 : φαφ−1 ∈ EndTq(E

′),

β ∈ EndTq(E)}.
Equivalently, with respect to a φ-normal basis {e, f}, the matrices of α and β, still
denoted by α and β respectively, have the properties

(3.13) α ∈
(

Zq
1
qZq

qZq Zq

)
, β ∈ M2(Zq),

i.e.,

α (ef) =
(

x1
1
q y1

qz1 w1

)
(ef) , β (ef) = ( x2 y2

z2 w2 ) (
e
f) ,

with xi, yi, zi, wi ∈ Zq.

Corollary 3.4. One has
(3.14)

π∗ EndOF (B) = {α+ β ⊗ D +
√
D

2
: α, β ∈ φ−1 Hom(E,E′)) satisfies (∗q) below }.

Here the matrices of α and β with respect to a φ-normal basis of Tq(E), still denoted
by α and β respectively, have the following property (∗q)

(∗q) α+ β
D +

√
D

2
∈
(
Zq

1
qZq

qZq Zq

)
, α+ β

D −
√
D

2
∈ M2(Zq).

(∗q) is equivalent to the condition

(3.15) α+ β
D +

√
D

2
∈ End(Tq(E

′)), α+ β
D −

√
D

2
∈ End(Tq(E)).

4. Local Intersection index. Let the notation and assumption be as in Section
3. The purpose of this section is to compute the local intersection index ip(φ, ι) in
(3.7). We need a little preparation. Replacing ∆ by m∆ in [Ya4, Lemma 4.1], one
has

Lemma 4.1. Let m ≥ 1 be an integer and let 0 < n < m
√
D̃ be an integer with

m2D̃−n2

D ∈ Z>0.
(1) When D ∤ n, there is a unique sign µ = ±1 and a unique 2 × 2 positive

definite matrix Tm(µn) =
(
a b
b c

)
∈ 1

mSym2(Z) such that

detTm(µn) = ac− b2 =
m2D̃ − n2

Dm2
,(4.1)

∆ =
2µn1 −Dc− (2b+Dc)

√
D

2
,(4.2)

−µn1 = a+Db+
D2 −D

4
c.(4.3)
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Here n1 = n/m.
(2) When D|n, for every sign µ = ±1 there is a unique 2 × 2 integral positive

definite matrix Tm(µn) =
(
a b
b c

)
satisfying the above conditions.

Remark 4.2. Throughout this paper, the sum
∑

µ means either
∑

µ=±1 when
D|n or the unique term µ satisfying the condition in Lemma 4.1 when D ∤ n.

Notice that (4.2) implies

(4.4) 2µn1 −Dc, 2b+Dc ∈ Z.

Now let p 6= q be a prime, and let φ : E → E′ be a cyclic isogeny of degree q of
supersingular elliptic curves over F̄p, i.e., (φ : E → E′) ∈ Y0(q)(F̄p). We consider the
set I(φ) of OK-actions

ι : OK →֒ EndOF (B)

such that the Rosati involution associated to λ gives the complex conjugation on K
(as in Section 3). Set

π∗ι(
w +

√
∆

2
) = α0 + β0

D +
√
D

2
, α0, β0 ∈ φ−1 Hom(E,E′)(4.5)

π∗ι(
√
∆) = α+ β

D +
√
D

2
= x1 + x2

√
D,(4.6)

with

(4.7) α = 2α0 − w0, β = 2β0 − w1,

and

(4.8) x1 = α+
D

2
β, x2 =

1

2
β.

Let OE = End(E) and B = OE ⊗Q,

(4.9) V = {x ∈ B : tr x = 0}, Q(x) = −x2

and let

(4.10) L(φ) = (Z+ 2φ−1 Hom(E,E′)) ∩ V.

Then α, β ∈ L(φ).
Notice that (V,Q) is a quadratic subspace of the quadratic space (B, det) where

det(x) is the reduced norm of x. For ~x = (x1, x2, · · · , xn) ∈ Bn, we write

(4.11) T (~x) =
1

2
(~x, ~x) =

1

2
((xi, xj)).

Let T(φ) be the set of pairs (α, β) ∈ L(φ)2 which satisfies (∗q) and T (α, β) =

Tq(µn) for some integer (unique) 0 < n < q
√
D̃ with q2D̃−n2

4D ∈ pZ>0 and some sign
(unique) µ = ±1.
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Let T̃(φ) be the set of pairs (α0, β0) ∈ (φ−1 Hom(E,E′))2 which satisfies (∗q) and
T (1, α0, β0) = T̃q(µn) for some integer 0 < n < q

√
D̃ with q2D̃−n2

4D ∈ pZ>0 and some
sign µ = ±1. Here
(4.12)

T̃ =




1 0 0
w0

2
1
2 0

w1

2 0 1
2


diag(1, T )



1 w1

2
w1

2
0 1

2 0
0 0 1

2


 =




1 w1

2
w1

2
w0

2
1
4 (a+ w2

0)
1
4 (b+ w0w1)

w1

2
1
4 (b + w0w1)

1
4 (c+ w2

1)




and w = w0 + w1
D+

√
D

2 is given in (1.5).

Proposition 4.3. The correspondences

ι ∈ I(φ) ↔ (α, β) ∈ T(φ) ↔ (α0, β0) ∈ T̃(φ)

via (4.5)-(4.7) give bijections among I(φ), T(φ), and T̃(φ).

Proof. Given ι ∈ I(φ), and let α and β be given via (4.6). Then (α, β) ∈ L(φ)2

and satisfies (∗q). Write T (α, β) =
(
a b
b c

)
with a = 1

2 (α, α) = −α2, b = 1
2 (α, β), and

c = 1
2 (β, β) = −β2. First,

∆ = (π∗ι(
√
∆))2 = (α+

D

2
β)2 − (α+

D

2
β,

1

2
β)
√
D

= −a−Db− D2 +D

4
c− (b+

1

2
Dc)

√
D.

We define n = qn1 > 0 and µ = ±1 by

−µn1 = a+Db +
D2 −D

4
c.

Then

∆ =
2µn1 −Dc− (2b+Dc)

√
D

2

satisfying (4.2) in Lemma 4.1. Now a simple calculation using D̃ = ∆∆′ gives

detT (α, β) = ac− b2 =
q2D̃ − n2

q2D

satisfying (4.1). So T (α, β) = Tq(µn) for a unique integer n and a unique sign µ

satisfying the conditions in Lemma 4.1. To show p|q2 detTq(µn) =
q2D̃−n2

D , we work
over Zp to avoid the denominator q in detTq(µn). Write Lp = L(φ) ⊗ Zp, and
Op = OE ⊗ Zp, then

Lp = (Zp + 2Op) ∩ (V ⊗Qp)

has determinant 4p2. Let

γ = (α, β) + 2αβ ∈ Lp.

Then

(α, γ) = (β, γ) = 0, (γ, γ) = 2(α, α)(β, β) − 2(α, β)2 = 8detTq(µn).
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So the determinant of {α, β, γ} is

det T (α, β, γ) = det diag(Tq(µn), 4 detTq(µn)) = 4 detTq(µn)
2.

So we have thus p| detTq(µn) in Zp, i.e., p| q
2D̃−n2

D . Similarly, to show 4|q2 detTq(µn),

we work over Z2. It is easier to look at T̃q(µn) ∈ Sym3(Z2)
∨ (since α0, β0 ∈ OE⊗Z2).

It implies that

(4.13) a ≡ −w2
0 mod 4, b ≡ −w0w1 mod 2, c ≡ −w2

1 mod 4.

So detTq(µn) = ac − b2 ≡ 0 mod 4, and therefore (α, β) ∈ T(φ). A simple linear

algebra calculation shows that (α0, β0) ∈ T̃(φ).
Next, we assume that (α, β) ∈ T(φ). Define ι and (α0, β0) by (4.6) and (4.7).

The above calculation gives

(α+ β
D +

√
D

2
)2 = ∆,

so ι gives an embedding from K into End0OF
B such that ι(OF [

√
∆]) ∈ EndOF B. To

show that ι ∈ I(φ), it suffices to show α0, β0 ∈ φ−1 Hom(E,E′). Write by definition

α = −u0 + 2α1, β = −u1 + 2β1, u = u0 + u1
D +

√
D

2

with ui ∈ Z, α1, β1 ∈ φ−1 Hom(E,E′) . Then

π∗ι(
u +

√
∆

2
) = α1 + β1

D +
√
D

2

and (α1, β1) ∈ (φ−1(E,E′))2 satisfies the condition (∗q). So ι(u+
√
∆

2 ) ∈ EndOF B and

thus u+
√
∆

2 ∈ OK . On the other hand, w+
√
∆

2 ∈ OK . So u−w
2 ∈ OF , i.e.,

wi−ui

2 ∈ Z,
and

α0 = α1 +
w0 − u1

2
∈ φ−1(E,E′), β0 = β1 +

w1 − u1

2
∈ φ−1(E,E′)

as claimed. So (α0, β0) ∈ T̃(φ) and ι ∈ I(φ). Finally, if (α0, β0) ∈ T̃(φ), let (α, β) be
given by (4.7). Then it is easy to check that (α, β) ∈ T(φ).

Now we are ready to compute local intersection indices.

Proposition 4.4. Let φ : E → E′ be an isogeny of supersingular elliptic curves
over F̄p of degree q (p 6= q). Let (α, β) ∈ T(φ) be associated to ι ∈ I(φ), and let
Tq(µn) = T (α, β) be the associated matrix as in Proposition 4.3. Then

ip(φ, ι) =
1

2

(
ordp

q2D̃ − n2

4D
+ 1

)

depends only on n.

Proof. This is a local question at p. ι ∈ I(φ) can be lifted to an embed-
ding ιI : OK →֒ EndOF (BI) if and only if α0 and β0 can be lifted to α0,I , β0,I ∈
φ−1
I Hom(EI , E

′
E), which is equivalent to that φ, φα0 and φβ0 can be lifted to
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isogenies from EI to E′
I . So ιp(φ, ι) = ip(φ, φα0, φβ0) is the local intersection

index of φ, φα0, φβ0 computed by Gross and Keating [GK]. It depends only on
T (φ, φα0, φβ0) = qTq(µn). The same calculation as in [Ya4, Theorem 3.1] (using
Gross and Keating ’s formula) gives (recall n1 = n/q, p 6= q)

ip(φ, ι) =
1

2

(
ordp

D̃ − n2
1

4D
+ 1

)
=

1

2

(
ordp

q2D̃ − n2

4D
+ 1

)

So we have by (3.6) and Proposition 4.4

Theorem 4.5. For p 6= q, one has

(Tq.CM(K))p =
1

2

∑

0<n<q
√

D̃
q2D̃−n2

4D ∈pZ>0

(
ordp

q2D̃ − n2

4D
+ 1

)∑

µ

∑

φ

R(φ, Tq(µn))

#Aut(φ)
.

Here R(φ, Tq(µn)) is the number of pairs (α, β) ∈ L(φ)2 such that T (α, β) = Tq(µn)
and (α, β) satisfies the condition (∗q), and

∑
φ is over all isogenies (up to equivalence)

φ : E → E′ of supersingular elliptic curves over F̄p of degree q up to equivalence.
Two isogenies φi : Ei → E′

i are equivalent if there isomorphisms f : E1
∼= E2 and

f ′ : E′
1
∼= E′

2 such φ2f = f ′φ1.

5. Local densities. We write [φ : E → E′] for the equivalence class of φ and

(5.1) β(p, µn) =
∑

[φ:E→E′]

R(φ, Tq(µn))

#Aut(φ)
.

One can show that β(p, µn) is the Tq(µn)-th Fourier coefficient of some Siegel-
Eisenstein series of genus two and weight 3/2, and is thus product of local Whittaker
functions, which are slight generalization of local densities computed in [Ya1] and
[Ya2]. In principle, the idea in [Ya1] and [Ya2] can be extended to handle the general
case. However, the actual computation is already complicated in [Ya1] and [Ya2].
In this section, we use a different way to write β(p, µn) directly as product of local
integrals over quaternions. In next section, we take advantage of known structure of
quaternions to compute the involved local integrals.

Fix a cyclic isogeny φ0 : E0 → E′
0 of supersingular elliptic curves (over F̄p) of

degree q. and a φ0-normal basis {e0, f0} of the Tate module Tq(E0). LetO = End(E0)
and B = O⊗Q be the unique quaternion algebra over Q ramified exactly at p and ∞.
Let (B0, ι0, λ0) ∈ M(F̄p) be the abelian surface with real multiplication associated to
φ0. Let V and L(φ0) be the ternary quadratic space and lattice defined in (4.9) and
(4.10) with φ replaced by φ0. For l 6= q, let

(5.2) Ll = L(φ0)⊗ Zl, Ψl = char(L2
l ).

For l = q, view Bq = B⊗Qq as the endomorphism ring of Vq(E0) = Tq(E0)⊗Qq and
identify it with M2(Qq) using the φ-normal basis {e0, f0}. Under this identification,
Oq = M2(Zq). Let

(5.3) L′
q = {X =

(
x 1

q y

z −x

)
∈ Vq : x, y, z ∈ Zq}
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and

Ωq ={~x = t(X1, X2) ∈ (L′
q)

2 : z1 + z2
D +

√
D

2
≡ 0 mod q,(5.4)

y1 + y2
D −

√
D

2
≡ 0 mod q}

where Xi =
(

xi
1
q yi

zi −xi

)
∈ L′

q. Let

(5.5) Ψq = char(Ωq), Ψ = ⊗l<∞Ψl ∈ S(V (Af )
2).

Next, let K =
∏

l<∞ Kl ⊂ B∗
f be the compact subgroup of B∗

f defined by

(5.6) Kl =

{
O∗

l if l 6= q,

K0(q) = {
(
a b
c d

)
∈ M2(Zq) : c ≡ 0 mod q} if l = q.

Clearly, Ψ is K-invariant. The main purpose of this section is to prove

Theorem 5.1. Let the notation be as above. Then

(5.7) β(p, µn) =
1

2

∫

Q∗
f\B∗

f/K
Ψ(g−1.~x0)dg

if there is ~x0 = V (Af )
2 with T (~x0) = Tq(µn). Otherwise, β(p, µn) = 0. Here

g.~x = (g.X1, g.X2) = (gX1g
−1, gX2g

−1), ~x = t(X1, X2),

and dg is the Tamagawa measure on B∗
f .

We first recall a close relation between B∗
f and cyclic isogenies φ : E → E′ of

degree q. Let Tl(E) be the l-Tate module of E for l 6= p and let Tp(E) be the covariant

Dieúdonne module of E over the Witt ring W = W (F̄p), and let T̂ (E) = ⊗Tl(E).
A homomorphism from Tp(E) to Tp(E

′) means a W -linear map on the Dieudonné
modules which commute with the Frobenius map. Then for b ∈ B∗

f , there is an quasi-

isogeny f : E → E0 such that T̂ (f)T̂ (E) = bT̂ (E0). Moreover, the equivalence class of
f : E → E0 is determined by b mod Ô∗ [We1, Section 2.4]. Choose an integer n > 0
such that nf is an isogeny. Let E′ be the fiber product as shown in the following
diagram.

(5.8) E
φ

//___

nf

��

E′ φ1
//

nf ′

��

E

nf

��
E0

φ0
// E′

0

φ′
0 // E0

Then there is a unique φ : E → E′ making the above diagram commute. Let
S0(q) be the set of equivalence classes [φ : E → E′, f, f ′] of the diagrams:

(5.9) E
φ

//

f

��
�O
�O
�O

E′

f ′

��
�O
�O
�O

E0
φ0

// E′
0
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where E  E0 stands for quasi-isogeny. Here two such diagrams are equivalent if
there are isomorphisms g : E1 → E2 and g′ : E′

1 → E′
2 such that the following

diagram commutes:

(5.10) E1
φ1

//

f1

��
�O
�O
�O
�O
�O
�O
�O
�O
�O

g

  @
@

@

@
E′

1

g′

  @
@

@
@

f ′
1

�� �O
�O
�O
�O
�O
�O
�O
�O
�O

E2
φ2

//

f2
~~ ~>

~>
~>

~>
~>

E′
2

f ′
2~~

~>
~>

~>
~>

E0
φ0

// E′
0

.

Let S0(q) be the set of equivalence classes [φ : E → E′] of degree q isogenies of
supersingular curves over F̄p. Then one has

Proposition 5.2. The map b ∈ B∗
f 7→ [φ : E → E′, f, f ′] gives rise to a bijection

between B∗
f/K and S0(q). The map b ∈ B∗

f 7→ [φ : E → E′] gives rise to a bijection
between B∗\B∗

f/K and the set S0(q). Moreover, for α0, β0 ∈ B = End(E0) ⊗ Q, let

α = f−1α0f, β = f−1β0f ∈ End(E)⊗Q. Then

(1) α ∈ End(E) if and only if b−1α0b ∈ Ô = O ⊗ Ẑ.

(2) φαφ−1 ∈ End(E′) if and only if φ0b
−1α0bφ

−1
0 ∈ End(E′

0)⊗ Ẑ.

(3) α ∈ End(φ) if and only if b−1α0b ∈ End(φ0)⊗ Ẑ.

(4) α + βD+
√
D

2 ∈ π∗ EndOF (B) if and only if b−1(α0 + β0
D+

√
D

2 )b ∈
π∗
0(EndOF (B0)⊗ Ẑ).

Proof. The same argument as in [We1, Section 2.4] gives the bijections.

(1) Clearly, α ∈ End(E) if and only if T̂ (α)T̂ (E) ⊂ T̂ (E). If b−1α0b ∈ Ô, then

T̂ (α)T̂ (E) = T̂ (f)−1T̂ (α0)T̂ (f)T̂ (E) = T̂ (f)−1bb−1α0bT̂ (E0)

⊂ T̂ (f)−1bT̂0(E0) = T̂ (f)−1T̂ (f)T̂ (E) = T̂ (E),

and thus α ∈ End(E). Here we identify α0 with T̂ (α0) ∈ End0(T̂ (E)). Reversing the
procedure with α0 = fαf−1, one sees that b−1α0b ∈ Ô if α ∈ End(E).

(2) Since

T̂ (φαφ−1) = T̂ (φf−1)T̂ (α0)T̂ (fφ
−1) = T̂ (f ′)−1T̂ (φ0α0φ

−1
0 )T̂ (f ′),

the equivalence class of E′
 E′

0 is associated to b′ = φ0bφ
−1
0 when E  E0 is

associated to b. Now (2) follows from (1). (3) follows from (1) and (2) since α ∈
End(φ) if and only if α ∈ End(E) and φαφ−1 ∈ End(E′).

(4) Since

T̂ (φα) = T̂ (f ′)(φ0bφ
−1
0 )φ0(b

−1α0b),

α ∈ φ−1 Hom(E,E′) if and only if b−1α0b ∈ φ−1
0 Hom(T̂ (E), T̂ (E′)). So by (1) and
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(2) (more precisely their local analogue at q) and Corollary 3.4, one has

α+ β
D +

√
D

2
∈ π∗ EndOF (B)

⇔ α, β ∈ φ−1 Hom(E,E′) and (3.15)

⇔ b−1α0b, b
−1β0b ∈ φ−1

0 Hom(T̂ (E), T̂ (E′)), and (3.15) for (b−1α0b, b
−1β0b)

⇔ b−1(α0 + β0
D +

√
D

2
)b ∈ π∗

0(EndOF (B0)⊗ Ẑ)

as claimed.

Proof of Theorem 5.1. Let

(5.11) fµn(g) =
∑

~x∈V 2

T (~x)=Tq(µn)

Ψ(g−1.~x).

Then fµn is left B∗-invariant and right K-invariant. We claim

(5.12) β(p, µn) =

∫

B∗\B∗
f/K

fµn(g)dg.

Indeed, write B∗
f =

⊔
j B

∗bjK with bj ∈ B∗
f , and let [φi : Ei → E′

i] ∈ S0(q) be the
associated equivalence class of cyclic isogenies as given in Proposition 5.2. Since the
map

B∗ ×K → B∗bjK, (b, k) 7→ bbjk

has fiber B∗ ∩ bjKb−1
j at bj , one has

∫

B∗\B∗
f/K

fµn(g)dg =
∑

j

f(bj)

∫

B\BbjK/K
dg =

∑

j

1

#B∗ ∩ bjKb−1
j

fµn(bj).

Let [φj : Ej → E′
j ] ∈ S0(q) be associated to bj , and choose fj : Ej  E0 and f ′

j  E′
0

so that [φj : Ej → E′
j , fj, f

′
j ] ∈ S0(q) is associated to bj by Proposition 5.2. For

~x = t(δ0, β0) ∈ V 2 with T (~x) = Tq(µn), one has by definition Ψ(~x) = 1 if and only

if δ0 + β0
D+

√
D

2 ∈ π∗
0(EndOF (B0)), and for ~x = t(δ0, β0) ∈ V (Af )

2, Ψ(~x) = 1 if and

only if δ0 + β0
D+

√
D

2 ∈ π∗
0(EndOF (B0)⊗ Ẑ). So one has by Proposition 5.2

Ψ(b−1
j .~x) = 1 ⇔ δj + βj

D +
√
D

2
∈ π∗ EndOF (Bj)

where δj = f−1δ0fj and βj = f−1
j δ0fj. So

fµn(bj) = R(φj , Tq(µn)).

Next for δ0 ∈ B∗, one has by Proposition 5.2

δ0 ∈ B∗ ∩ bjKb−1
j ⇔ b−1

j δ0bj ∈ K = (End(φ0)⊗ Ẑ)∗

⇔ δ = f−1
j δ0fj ∈ Aut(φj).
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So #B∗ ∩ bjKb−1
j = #Aut(φj), and thus

∫

B∗\B∗
f/K

fµn(g)dg =
∑

j

1

#B∗ ∩ bjKb−1
j

fµn(bj)

=
∑

j

1

#Aut(φj)
R(φj , Tq(µn))

= β(p, µn)

by Proposition 5.2. This proves claim (5.12). If there is no ~x ∈ V 2 such that T (~x) =
Tq(µn), one has clearly β(p, µn) = 0 by (5.12). At the same time, the Hasse principle
asserts that there is no ~x ∈ V (Af )

2 with T (~x) = Tq(µn), and thus the right hand side
of (5.7) is zero too, Theorem 5.1 holds trivially in this case. Now assume there is a
~x ∈ V 2 such that T (~x) = Tq(µn), and choose such a vector ~x0. By Witt’s theorem,
for any ~x ∈ V 2 with T (~x) = Tq(µn), there is b ∈ B∗ such that b−1.~x0 = ~x. It is easy
to check that the stabilizer of ~x0 in B∗ is Q∗. So we have

∫

B∗\B∗
f/K

fµn(g)dg =

∫

B∗\B∗
f/K

∑

b∈Q∗\B∗

Ψ((bg)−1.~x0)dg

=

∫

Q∗\B∗
f/K

Ψ(g−1.~x0)dg

=

∫

Q∗\Q∗
f

d∗x ·
∫

Q∗
f\B∗

f/K
Ψ(g−1.~x0)dg.

Here d∗x is the Haar measure on Q∗
f = A∗

f such that Ẑ∗ has Haar measure 1. Now
Theorem 5.1 follows from the well-known fact

∫

Q∗\Q∗
f

d∗x =
1

2
,

since Q∗
f = Q∗Ẑ∗ and Q∗ ∩ Ẑ∗ = {±1}.

6. Local computation. Let the notation be as in Section 5. The main purpose
of this section is to compute the local integrals

(6.1) βl(Tq(µn),Ψl) =

∫

Q∗
l \B∗

l /Kl

Ψl(h
−1.~x0)dh

where ~x0 ∈ V 2
l with T (~x0) = Tq(µn), and dh is a Haar measure on B∗

l . It is a
long calculation for l = q and is quite technical. We summarize the result as two
separate theorems for the convenience of the reader. Theorem 6.1 will be restated as
Propositions 6.5 and 6.6, while Theorem 6.2 will be restated as Propositions 6.7, 6.11,
and 6.12

Theorem 6.1. For l 6= q, Tq(µn) is Zl-equivalent to diag(αl, α
−1
l detTq(µn))

with αl ∈ Z∗
l . Let tl = ordl

q2D̃−n2

4Dq2 . Then

βl(Tq(µn),Ψl) =





1− (−αp, p)
tp
p if l = p,

1+(−1)tl

2 if l 6= p, (−αl, l)l = −1,

tl + 1 if l 6= p, (−αl, l)l = 1.
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Theorem 6.2.

(1) If q ∤ n, then βq(Tq(µn),Ψq) = 1.

(2) If q|n and tq = ordq
q2D̃−n2

4Dq2 = 0, then

βq(Tq(µn,Ψq) =





4 if q split completely in K̃,

2 if q inert in F̃ , qOF̃ split in K̃,

0 otherwise.

(3) If q|n and tq = ordq
q2D̃−n2

4Dq2 > 0, then Tq(µn) is Zq-equivalent to

diag(αq, α
−1
q detTq(µn)) with αq ∈ Z∗

q, and

βq(Tq(µn),Ψq) =

{
0 if (−αq, q)q = −1,

2(tq + 2) if (−αq, q)q = 1.

For any locally constant function with compact support f ∈ S(V 2
l ) and a non-

degenerate symmetric 2× 2 matrix T over Ql, let

(6.2) γl(T, f) =

∫

Q∗
l \B∗

l

f(h−1.~x0)dh

with T (~x0) = T . Then

(6.3) βl(Tq(µn),Ψl) =
1

vol(Kl)
γl(Tq(µn),Ψl).

Notice that βl is independent of the choice of the Haar measure while γl gives freedom
of the choice of f ∈ S(V 2

l ). We first give some general comments and lemmas.
When l 6= p, B∗

l = GL2(Ql) has two actions on V 2
l , the orthogonal action (by

conjugation)

h.t(X1, X2) =
t(hX1h

−1, hX2h
−1)

and the natural linear action
(
g1 g2
g3 g4

)(
X1

X2

)
=

(
g1X1 + g2X2

g3X1 + g4X2

)

To distinguish them, we write the orthogonal action as h.x. We also have the linear
action of GL2(Qp) on V 2

p while B∗
p acts on V 2

p orthogonally (by conjugation). These
two actions commute. This commutativity implies the following lemma easily.

Lemma 6.3. Let T = gT̃ tg with g ∈ GL2(Ql). Then for any f ∈ S(V 2
l )

γl(T, f) = γl(T̃ , fg−1)

where fg(~x) = f(g−1~x).

The following lemma is well-known.

Lemma 6.4. Write h(r, u) =
(
lr u
0 1

)
and h′(r, u) = h(r, u) ( 0 1

1 0 ) for r ∈ Z and
u ∈ Ql. Then
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Q∗
l \GL2(Ql) =

⋃

r∈Z,umod lr

h(r, u)GL2(Zl),

Q∗
q\GL2(Qq) =

⋃

r∈Z,umod lr

h(r, u)K0(q)
⋃

(
⋃

r∈Z,umod lr+1

h′(r, u)K0(q)),

and

Q∗
p\B∗

p = O∗
p ∪ πO∗

p

where π ∈ B∗
p with π2 = p.

6.1. The case l ∤ pq.

Proposition 6.5. For l ∤ pq, Tq(µn) is Zl-equivalent to diag(αl, α
−1
l detTq(µn))

with αl ∈ Z∗
l . Let tl = ordl detTq(µn) = ordl

q2D̃−n2

4Dq2 . Then

βl(Tq(µn),Ψl) =

{
1+(−1)tl

2 if (−αl, l)l = −1,

tl + 1 if (−αl, l)l = 1.

Proof. Write Tq(µn) = gdiag(αl, α
−1
l detTq(µn))

tg with some g ∈ GL2(Zl). Since
Ψl is GL2(Zl)-invariant under the linear action, (Ψl)g = Ψl. So Lemma 6.3 implies

βl(Tq(µn),Ψl) = βl(diag(αl, α
−1
l detTq(µn)),Ψl).

In general, for T = diag(ǫ1, ǫ2l
t) with ǫi ∈ Z∗

l , t ∈ Z≥0, and (−ǫ1,−ǫ2)l = 1 (it is only
a condition for l = 2 and is true in our case (αl, α

−1
l detTq(µn)) [Ya4, Lemma 4.1]),

let

(6.4) X1 =
(

0 1
−ǫ1 0

)
∈ Ll, Q(X1) = ǫ1,

Then

(6.5) (QlX1)
⊥ = {

( x y
ǫ1y −x

)
∈ Vl : x, y ∈ Ql}.

So there is ~x = t(X1, X2) ∈ V 2
l with T (~x) = T if and only if there are x, y ∈ Ql such

that

(6.6) x2 + ǫ1y
2 = −ǫ2l

t,

which is equivalent to (−ǫ1,−ǫ2l
t)l = 1, i.e.,

(6.7) (−ǫ1, l)
t
l = 1.

Assume (6.7) and l 6= 2. When (−ǫ1, l)l = −1 and t even, (6.6) has a solution
x0, y0 ∈ l

t
2Z∗

l . When (−ǫ1, l)l = 1, (6.6) has a solution x0, y0 ∈ Z∗
l . Fix such a

solution, and let

(6.8) X2 =
( x0 y0

ǫ1y0 −x0

)
, ~x0 = t(X1, X2) ∈ L2

l ,
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with T (~x0) = T . A simple calculation gives

h(r, u)−1.X1 =
(

ǫ1u l−r(1+ǫ1u
2)

−ǫ1l
r −ǫ1u

)
(6.9)

h(r, u)−1.X2 =
(

x0−ǫ1y0u l−r(y0+2x0u−ǫ1y0u
2)

ǫ1y0l
r −x0+ǫ1y0u

)
(6.10)

So h(r, u)−1.~x0 ∈ L2
l if and only if

r ≥ 0, u ∈ Zl, 1 + ǫ1u
2 ≡ 0 mod lr, y0 + 2x0u− ǫ1y0u

2 ≡ 0 mod lr,

or equivalently,

(6.11) r ≥ 0, b ∈ Zl, x0u+ y0 ≡ 0 mod lr, 1 + ǫ1u
2 ≡ 0 mod lr.

Case 1: First we assume (−ǫ1, l)l = −1 and t is even. In this case one has always
1 + ǫ1u

2 ∈ Z∗
l , and thus r = 0 and u ∈ Zl, i.e., h(0, u) ∈ Kl = GL2(Zl) is the only

coset with h(r, u)−1.~x0 ∈ L2
l , i.e., Ψl(h(r, u).~x0) 6= 0. So βl(T,Ψl) = 1 in this case.

Case 2: Now we assume (ǫ1, l)l = 1. Using (6.11), one has

x2
0(1 + ǫ1u

2) ≡ x2
0 + ǫ1y

2
0 = −ǫ2l

t mod lr

and so 0 ≤ r ≤ t. Moreover, for 0 ≤ r ≤ t, the above condition also shows that
1 + ǫ1u

2 ≡ 0 mod lr follows from u ≡ − y0

x0
mod lr. This implies

βl(T,Ψl) =
∑

r∈Z,umod lr

Ψ(h(r, u)−1.~x0)

=
∑

0≤r≤t,u=−y0/x0mod lr

1 = t+ 1.

This proves the proposition for l 6= 2. This case l = 2 is similar with some modifica-
tion, including

L2 = {A ∈ Z2 + 2M2(Z2) : trA = 0} = {
(

x 2y
2z −x

)
: x, y, z ∈ Z2}.

We leave the detail to the reader.

6.2. The case l = p.

Proposition 6.6. For l = p, Tp(µn) is Zp-equivalent to diag(αp, α
−1
p detTq(µn))

with αp ∈ Z∗
p, and

βp(Tq(µn),Ψp) = 1− (−αp, p)
tp
p .

Proof. We first assume that p 6= 2. Recall that Op is the maximal order of Bp

and is consisting of elements of integral reduced norm. So

Lp = (Zp + 2Op) ∩ Vp = {x ∈ Vp : Q(x) = −x2 ∈ Zp}

has a basis {e, π, πe} with e2 = a ∈ Z∗
p, π

2 = p, and πe = −eπ with (a, p)p = −1.
Since Ψp is GL2(Zp)-invariant (linearly), Lemma 6.3 implies that

βp(Tq(µn),Ψp) = βp(diag(αp, α
−1
p detTq(µn)),Ψp).
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For T = diag(ǫ1, ǫ2p
t) with ǫi ∈ Z∗

p and t ∈ Z≥0 and (−ǫ1,−ǫ2)p = 1, the above
comment implies that if T (~x) = T for some ~x ∈ V 2

p , then ~x ∈ L2
p. If X = x1e+ x2π+

x3πe satisfies

Q(X) = −ax2
1 − px2

2 + apx2
3 = ǫ1,

then (−ǫ1, p)p = (a, p)p = −1. In this case, we choose X1 = x1e such that Q(X1) =
−ax2

1 = ǫ1. Since (ZpX1)
⊥ = Zpπ + Zpπe, finding T (~x) = T with ~x = t(X1, X2) is

the same as finding X2 = y2π + y3πe with

Q(X2) = −py22 + pay23 = ǫ2p
t,

that is

y22 − ay23 = −ǫ2p
t−1.

Since (a, p)p = (−ǫ1, p)p = −1 and (a,−ǫ2)p = (−ǫ1,−ǫ2)p = 1, it is equivalent to
t− 1 being even. So there is ~x ∈ L2

p such that T (~x) = T if and only if

(−ǫ1, p)
t
p = −1.

Assuming this condition, choose one ~x0 ∈ L2
p with T (~x0) = T . Notice that

Q∗
p\B∗

p = O∗
p ∪ πO∗

p

and π.L2
p = L2

p. So in this case,

βp(diag(ǫ1, ǫ2p
t,Ψp) =

∫

Q∗
p\B∗

p/O∗
p

Ψp(h
−1.~x0)dh = 2.

In summary, we have

βp(Tq(µn),Ψp) = 1− (−αp, p)
tp
p .

Now we assume p = 2. In this case,

O2 = Z2 + Z2i+ Z2j + Z2
1 + i+ j + k

2
, i2 = j2 = k2 = −1, ij = −ji = k,

and so

L2 = (Z2 + 2O2) ∩ Vp = Z22i+ Z22j + Z2(i+ j + k)

is isomorphic to L̃ = Z3
2 with quadratic form

(6.12) Q(x, y, z) = 3x2 + 8(y2 + yz + z2).

In order for it to represent T = diag(ǫ1, ǫ22
t) with ǫi ∈ Z∗

2 and t ∈ Z≥0, one has to
have

ǫ1 = 3x2 + 8(y2 + yz + z2) ≡ 3 mod 8.

In such a case, we may choose x0 ∈ Z∗
2 such that x2

0 = ǫ1/3. Let e = (x0, 0, 0) ∈ L̃,
then Q(e) = ǫ1. It is easy to see that L̃ represents T if and only if e⊥ represents ǫ22

t,
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i.e., y2 + yz+ z2 represents ǫ22
t−3, which is equivalent to that t− 3 ≥ 0 is even. Now

the argument as above gives that

β2(diag(ǫ1, ǫ22
t),Ψ2) =

{
2 if ǫ1 ≡ 3 mod 8, t ≥ 3 odd,

0 otherwise.

For Tq(µn) = diag(α2, α
−1
2 detTq(µn)) one has ǫ1 = α2 ≡ 3 mod 4 and t = t2 + 2 =

ord2 detTq(µn) = ord2
q2D̃−n2

q2D ≥ 3 since q2D̃−n2

q2D ∈ 8Z2. So we still have

β2(Tq(µn),Ψ2) = 1− (−α2, 2)
t2
2 .

6.3. The case l = q. Now we come to the tricky case l = q. Recall

L′
q = {X =

(
x 1

q y

z −x

)
: x, y, z ∈ Zq}.

Let

(6.13) Ω′
q = {x = t(X1, X2) ∈ (L′

q)
2 : z1 + z2

√
D ≡ y1 − y2

√
D ≡ 0 mod q}

and Ψ′
q = charΩ′

q. Let

T ′
q(µn) =

(
1 D

2

0 1
2

)
Tq(µn)

(
1 0
D
2

1
2

)
=
(
a b
b c

)
.

Then

ac− b2 = detT ′
q(µn) =

q2D̃ − n2

4Dq2
,

∆ = −(a+Dc)− 2b
√
D,(6.14)

a−Dc = −µ
n

D
.

Lemma 6.3 implies that

(6.15) βq(Tq(µn),Ψq) = βq(T
′
q(µn),Ψ

′
q).

Proposition 6.7. When q ∤ n, one has

βq(Tq(µn),Ψq) = 1.

Proof. When q ∤ n, (6.14) implies that a, c ∈ 1
qZ

∗
q , and so

T ′
q(µn) =

(
1 0

a−1b 1

)
( a 0
0 ã )

(
1 a−1b
0 1

)

with ã = 1
q detT

′
q(µn) ∈ 1

qZ
∗
q . Since b ∈ Zq,

(
1 0

a−1b 1

)
∈ K0(q), and Ψ′

q is K0(q)-

invariant (with respect to the linear action), one has

βq(T
′
q(µn),Ψ

′
q) = βq(diag(a, ã),Ψ

′
q).
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Since

− ã

a
= −

detT ′
q(µn)

a2
=

n2 − q2D̃

4D(qa)2
≡ n2

4D(qa)2
mod q

there is z0 ∈ Z∗
q with z20 = − ã

a . Set ~x0 = t(X1, X2) ∈ (L′
q)

2 with

X1 =
(
0 −a
1 0

)
, X2 =

(
0 az0
z0 0

)
.

Then T (~x0) = diag(a, ã). It is easy to check that h(r, u)−1.~x0 ∈ (L′
q)

2 if and only if
r = 0 and u ∈ Zq, i.e., h(r, u) = 1 mod K0(q). In this case, ~x0 ∈ Ω′

q if and only if

1 + z0
√
D = 0 mod q.

On the other hand, it is easy to check h′(r, u)−1.~x0 ∈ (L′
q)

2 if and only if r = −1
and u ∈ Zq, i.e., h(r, u) = ( 0 1

1 0 ) mod K0(q). In this case, h′(−1, 0)−1.~x0 ∈ Ω′
q if and

only if 1− z0
√
D ≡ 0 mod q.

Since

1− z20D = 1 +
ã

a
D =

q(qa)(a+Dc)− q2b2

(qa)2
≡ 0 mod q,

exactly one of the following holds: 1 + z0
√
D = 0 mod q or 1 − z0

√
D ≡ 0

mod q. So there is exactly one coset Q∗
qhK0(q) such that h−1.~x0 ∈ Ω′

q. This proves
βq(diag(a, ã),Ψ

′
q) = 1, and thus the lemma.

Next, we assume that q|n. In this case T ′
q(µn) ∈ Sym2(Zq). Actually, Tq(µn) =

T (µn
q ) in the notation of [Ya4]. So there is g = ( g1 g2

g3 g4 ) ∈ SL2(Zq) such that

(6.16) T ′
q(µn) = gT tg, T = diag(ǫ1, ǫ2q

t)

with ǫi ∈ Z∗
q , and t = ordq detT

′
q(µn) = ordq

q2D̃−n2

4Dq2 .

For v1, v2 ∈ Z/qZ, we set

Ωv1,v2 = {~x = t(X1, X2) ∈ L2
q : v1z1 + v2z2 = 0 mod q}(6.17)

= {~x = t(X1, X2) ∈ L2
q : v1X1 + v2X2 ∈ L0(q)}

where Lq = M2(Zq) and

(6.18) L0(q) = {X = {
( x y
qz −x

)
∈ Vq : x, y, z ∈ Zq}.

Let

(6.19) Ψv1,v2 = char(Ωv1,v2), Ψ0 = char(L0(q)
2).

Lemma 6.8. Let T ′
q(µn) = gT tg be as in (6.16), and let

( v1 v2
v3 v4 ) =

(
g1+g3

√
D g2+g4

√
D

g1−g3
√
D g2−g4

√
D

)
=
(

1
√
D

1 −
√
D

)
( g1 g2
g3 g4 ) .

Then

βq(T
′
q(µn),Ψ

′
q) = βq(T,Ψv1,v2) + βq(T,Ψv3,−v4)− βq(T,Ψ0).
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Proof. Lemma 6.3 implies that

βq(T
′
q(µn),Ψ

′
q) = βq(T, f)

with f(~x) = Ψ′
q(g~x). So f(~x) 6= 0 if and only if g~x ∈ Ω′

q, i.e., ~x = t(X1, X2) ∈ (L′
q)

2

with Xi =
(

xi
1
q yi

zi −xi

)
and

v1z1 + v2z2 ≡ 0 mod q,(6.20)

v3y1 − v3y2 ≡ 0 mod q.(6.21)

Since T ∈ Sym2(Zq), to have T (~x) = T for ~x ∈ (L′
q)

2, one has to have

y1z1, y2z2, y1z2 + y2z1 ∈ qZq

and so either y1, y2 ≡ 0 mod q, i.e., ~x ∈ L2
q, or z1, z2 ≡ 0 mod q, i.e.,

(
0 q−1

1 0

)
.~x ∈

L2
q.

When y1, y2 ≡ 0 mod q, (6.20) is automatic and thus g~x ∈ Ω′
q if ~x ∈ Ωv1,v2 .

When z1, z2 ≡ 0 mod q, (6.21) is automatic, and g~x ∈ Ω′
q if and only if ~x ∈(

0 1
q 0

)
.Ωv3,−v4 . When y1, y2, z1, z2 ≡ 0 mod 4, g~x ∈ Ω′

q automatically and ~x ∈ L0(q)
2.

So we have

βq(T
′
q(µn),Ψ

′
q) = βq(T,Ψv1,v2) + βq(T, char

((
0 1
q 0

)
.Ωv3,−v4

)
)− βq(T,Ψ0)

= βq(T,Ψv1,v2) + βq(T,Ψv3,−v4)− βq(T,Ψ0)

as claimed.

As in Section 5.2, there exists ~x = t(X1, X2) ∈ V 2
q with T (~x) = T if and only if

(−ǫ1, q)
t
q = 1. Choose ~x0 = t(X1, X2) as in (6.8) (with l replaced by q). The following

lemma is contained in the proof of Proposition 6.5.

Lemma 6.9. (1) When (−ǫ1, q)q = −1 and t is even,

h(r, u)−1.~x0 ∈ L2
q ⇔ h′(r, u)−1.~x0 ∈ L2

q ⇔ r = 0, u ∈ Zq.

(2) When (−ǫ1, q)q = 1,

h(r, u)−1.~x0 ∈ L2
q ⇔ h′(r, u)−1.~x0 ∈ L2

q ⇔ 0 ≤ r ≤ t, u = − y0
x0

mod qr.

We first consider a special case t = 0 which is different from the case t > 0.

Lemma 6.10. Let v1, v2 ∈ Z/q with at least one being nonzero. One has

βq(diag(ǫ1, ǫ2),Ψv1,v2) =

{
2 if − (ǫ1v

2
1 + ǫ2v

2
2) ≡ � mod q,

0 otherwise.

Proof. By the above lemma, we only need to check whether ~x0 and h′(0, u).~x0

belong to Ωv1,v2 with u ∈ Z/q. ~x0 ∈ Ωv1,v2 if and only if v1 − v2y0 ≡ 0 mod q. Since

h′(0, u)−1.X1 =

(
−ǫ1u −ǫ1

1 + ǫ1u
2 ǫ1u

)
,

h′(0, u)−1.X2 =

(
−x0 + ǫ1y0u ǫ1y0

y0 + 2x0u− ǫ1y0u
2 x0 − ǫ1y0u

)
,



ARITHMETIC INTERSECTION AND THE FALTINGS HEIGHT 363

h′(0, u)−1.~x0 ∈ Ωv1,v2 if and only if

(6.22) ǫ1(v1 − v2y0)u
2 + 2x0v2u+ (v1 + v2y0) ≡ 0 mod q.

When v1−v2y0 ≡ 0 mod q, v2 6≡ 0 mod q, and thus (6.22) has one solution mod q.
When v1 − v2y0 6≡ 0 mod q, (6.22) has either two or zero solutions mod q depending
on whether its discriminant

(2x0v2)
2 − 4ǫ0(v1 − v2y0)(v1 + v2y0) = −4(ǫ1v

2
1 + ǫ2v

2
2)

is a square or not mod q (recall x2
0 + ǫ1y

2
0 = −ǫqt). Notice that when v1 − v2y0 ≡ 0

mod q, −(ǫ1v
2
1 + ǫ2v

2
2) = x2

0v
2
2 is a square. This proves the lemma.

Proposition 6.11. When q|n and det Tq(µ) =
q2D̃−n2

Dq2 ∈ Z∗
q, one has

βq(Tq(µn),Ψq) =





4 if q split completely in K̃,

2 if q inert in F̃ , qOF̃ split in K̃,

0 otherwise.

Proof. Write T ′
q(µn) = gT tg with g ∈ GL2(Zq) and T = diag(1, ǫ), ǫ =

detT ′
q(µn) =

q2D̃−n2

4Dq2 ∈ Z∗
q as above. Then

g21 + g22ǫ = a, g1g3 + g2g4ǫ = b, g23 + g24ǫ = c.

So Lemmas 6.8 and (6.14) imply

v21 + ǫv22 = (g1 + g3
√
D)2 + ǫ(g2 + g4

√
D)2 = a+Dc+ 2b

√
D = −∆

and

v23 + ǫv24 = −∆′.

Now applying Lemma 6.10, one obtains

βq(T,Ψv1,v2) =

{
2 if ∆ ∈ (Z∗

q)
2,

0 if ∆ /∈ (Z∗
q)

2,

and

βq(T,Ψv3,−v4) =

{
2 if ∆′ ∈ (Z∗

q)
2,

0 if ∆′ /∈ (Z∗
q)

2,

Since ǫi ∈ Z∗
q , it is easy to see that βq(T,Ψ0) = 0. So Lemma 6.8 and (6.15) imply

βq(Tq(µn),Ψq) =





4 if ∆,∆′ ∈ (Z∗
q)

2,

2 if exactly one of ∆ or ∆′ ∈ (Z∗
q)

2,

0 otherwise.

Recall that q = qq′ is split in F , and under the identification F →֒ Fq
∼= Qq,

√
D goes

to
√
D. So ∆ ∈ (Z∗

q)
2 if and only if q splits in K. ∆′ ∈ (Z∗

q)
2 if and only if q′ splits

in K.
Consider the diagram of fields:
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Q�
��

@
@@

FA
AA

F̃�
��

K
�
�
�
�

K̃
Q

Q
Q

Q
M

When q = q̃q̃′ is split in F̃ , (∆∆′, q)q = (D̃, q)q = 1. So either q splits completely

in K and thus in M = KK̃ or both q and q′ are inert in K. Similarly, since q is split
in F , either q splits completely in K̃ and thus in M or both q̃ and q̃′ are inert in K̃.
Therefore, under the condition that q is split in F̃ , we have

βq(Tq(µn),Ψq) =

{
4 if q split completely in K̃,

0 otherwise.

When q is inert in F̃ , (∆∆′, q)q = (D̃, q)q = −1, exactly one of ∆ or ∆′ is a square
in Z∗

q . This implies that there are at least three primes of M above q, and thus that

qOF̃ has to be split in K̃. This finishes the proof of the proposition.

Finally we consider the case t ≥ 1 and prove

Proposition 6.12. Assume that q|n and tq = ordq
q2D̃−n2

4Dq2 > 0, and let Tq(µn)

is Zq-equivalent to diag(αq, α
−1
q detTq(µn)) with αq ∈ Z∗

q. Then

βq(Tq(µn),Ψq) =

{
0 if (−αq, q)q = −1,

2(tq + 2) if (−αq, q)q = 1.

Proof. Since T ′
q(µn) is Zq-equivalent to Tq(µn), it is also Zq equivalent to

diag(αq, α
−1
q detTq(µn)), which we now shorten as T = diag(ǫ1, ǫ2q

t) with ǫ1 =
αq, ǫ2 ∈ Z∗

q and t = tq. As in the proof of Proposition 6.11, we write T ′
q(µn) = gT tg

so that

βq(T
′
q(µn),Ψ

′
q) = βq(T,Ψv1,v2) + βq(T,Ψv3,−v4)− βq(T,Ψ0).

Here vi are given as in Lemma 6.9.
Case 1: We first assume that (−ǫ1, q)q = −1, so t = 2t0 is even. In this case

x0, y0 ∈ qt0Zq and thus x0, y0 ≡ 0 mod q. In order to compute βq(T,Ψv1,v2), we only
need to consider whether ~x0 and h′(0, u)−1.~x0 belong to Ωv1,v2 by Lemma 6.8. It is
easy to check as before that ~x0 ∈ Ωv1,v2 if and only if v1 − v2y0 ≡ v1 ≡ 0 mod q, and
h′(0, u)−1.~x0 ∈ Ωv1,v2 if and only if

v1(1 + ǫ1u
2) + v2(y0 + x0u− ǫ1y0u

2) ≡ 0 mod q

i.e., v1 ≡ 0 mod q. On the other hand, the same calculation as in the proof of
Proposition 6.11 gives

−(ǫ1v
2
1 + ǫ2q

tv22) = ∆ 6= 0 mod q

and thus v1 6≡ 0 mod q. So βq(T,Ψv1,v2) = 0. For the same reason, βq(T,Ψv3,−v4) =
0, and thus βq(Tq(µn),Ψq) = βq(T

′
q(µn),Ψ

′
q) = 0.
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Case 2: Now we assume (−ǫ1, q)q = 1. By Lemma 6.8, we need to consider
how many h(r, u)−1.~x0 and h′(r, u)−1.~x0 are in Ωv1,v2 , with 0 ≤ r ≤ t and u ≡ − y0

x0

mod qr. In the case h(r, u) we count the number of u mod qr classes, and in the case
h′(r, u) we count the number of u mod qr+1 classes.

When r = 0, the same argument as in the proof of Proposition 6.11 shows that
there are two classes of h among h(0, u) and h′(0, u) satisfying h−1.~x0 ∈ Lv1,v2 , since

q splits completely in K̃. Indeed, let n1 = n/q ∈ Z. Then t = tq > 0 means q| D̃−n2
1

4D

and thus q splits in F̃ . Now [Ya4, Lemma 6.2] implies that one prime of F̃ above q
splits in K̃. Since q is split in F , this implies that both primes of F̃ above q split in
K̃, i.e., q splits completely in K̃.

When r > 0, h(r, u)−1.~x0 ∈ Ωv1,v2 automatically. On the other hand, the same
calculation as in the proof of Lemma 6.10 shows that h(r, u)−1.~x0 ∈ Ωv1,v2 if and only
if

(6.23) ǫ1(v1 − v2y0)u
2 + 2x0v2u+ (v1 + v2y0) ≡ 0 mod qr+1.

Since u ≡ − y0

x0
mod qr, we write u = − y0

x0
+ qrũ. Now (6.23) becomes

2ǫ1y0v1
x0

qrũ+ (v1 − v2y0)
−ǫ2q

t

x2
0

≡ 0 mod qr+1.

Since ǫ1v
2
1 + ǫ2q

tǫ22 = −∆ 6≡ 0 mod q, one has v1 6≡ 0 mod q. So the above equation
has a unique solution ũ mod q, and there is a unique u mod qr+1 for 1 ≤ r ≤ t such
that h′(r, u)−1.~x0 ∈ Ωv1,v2 . In summary, we have proved

βq(T,Ψv1,v2) = 2t+ 2.

For the same reason, βq(T,Ψv3,−v4) = 2t+2. A similar argument gives βq(T,Ψ0) = 2t.
Therefore,

βq(Tq(µn),Ψq) = βq(T,Ψv1,v2) + βq(T,Ψv3,−v4)− βq(T,Ψ0) = 2t+ 4.

7. Computing bm(p) and Proof of Theorem 1.8 . In this section, we com-
pute bm(p) assuming (m, 2DD̃p) = 1 and prove the following theorem. A little more
work could remove the restriction. At the end of this section, we prove Theorem 1.8,
which is clear after all these preparations.

Theorem 7.1. Assume (1.5) and that D̃ = ∆∆′ ≡ 1 mod 4 is square free, and

that m > 0 is square-free with (m, 2DD̃p) = 1. Let tl = ordl
m2D̃−n2

4Dm2 . Then

(7.1) bm(p) =
∑

0<n<m
√

D̃
m2D̃−n2

4D ∈pZ>0

(ordp
m2D̃ − n2

4D
+ 1)

∑

µ

b(p, µn,m)

where

(7.2) b(p, µn,m) =
∏

l|m2D̃−n2

4D

bl(p, µn,m)

is given as follows.
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(1) When l ∤ m and l|m2D̃−n2

4D , Tm(µn) is Zl-equivalent to

diag(αl, α
−1
l det Tm(µn)) with αl ∈ Z∗

l , and

(7.3) bl(p, µn,m) =





1−(−αp,p)
tp
p

2 if l = p,

tl + 1 if l ∤ mp, (−αl, l)l = 1,
1+(−1)tl

2 if l ∤ mp, (−αl, l)l = −1.

(2) When l|m, and tl = 0, one has

(7.4) bl(p, µn,m) =





4 if l split completely in M,

2 if l inert in OF̃ , lOF̃ split in K̃,

0 otherwise.

Here M = KK̃ is the Galois closure of K (and K̃) over Q.
(3) When l|m is split in F and tl > 0, Tm(µn) is Zl-equivalent to

diag(αl, α
−1
l det Tm(µn)) with αl ∈ Z∗

l , and

(7.5) bl(p, µn,m) =

{
0 if (−αl, l)l = −1,

2(tl + 2) if (−αl, l)l = 1.

(4) When l|m is inert in F and tl > 0, Tm(µn) is Zl-equivalent to
diag(αl, α

−1
l det Tm(µn)) with αl ∈ Z∗

l , and

(7.6) bl(p, µn,m) =

{
1− (−1)tl if (−αl, l)l = −1,

0 if (−αl, l)l = 1.

Proof. Recall

(7.7) bm(p) =
∑

p|p

∑

0<n<m
√

D̃
m2D̃−n2

4D ∈pZ>0

∑

µ

ρ(tndK̃/F̃ p
−1),

with (µ = ±1)

tµn =
µn+m

√
D̃

2D
∈ d−1

K̃/F̃
.

Clearly, bm(p) = 0 unless there is an integer 0 < n < m
√
D̃ such that m2D̃−n2

4D ∈ pZ>0.
Fix such an integer n and recall Tm(µn) from Lemma 4.1.

The condition m2D̃−n2

4D ∈ pZ>0 implies that either p is split in F̃ or p|gcd(D,n)

is ramified in F̃ . In the ramified case, we have pOF̃ = p2. In the split case, we choose
the splitting pOF̃ = pp′ so that

(7.8) tµn =
µn+m

√
D̃

2D
∈ pd−1

K̃/F̃

satisfies

(7.9) ordp tµn = ordp
m2D̃ − n2

4D
, ordp′(tµn) = 0 or − 1.
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With this notation, we have by definition

(7.10) bm(p) =
∑

0<n<m
√

D̃
m2D̃−n2

4D ∈pZ>0

(ordp
m2D̃ − n2

4D
+ 1)

∑

µ

b(p, µn,m)

where

(7.11) b(p, µn,m) =

{
0 if p is split in K̃,

ρ(tµndK̃/F̃ p
−1) if p is not split in K̃.

Assume now that p is not split in K̃. Notice that

ρ(tµndK̃/F̃ p
−1) =

∏

l

ρl(tµndK̃/F̃ p
−1)

where the product runs over all prime ideals l of F̃ , and

(7.12) ρl(tµndK̃/F̃ p
−1) =





1 if l is ramified in K̃,

1+(−1)
ordl(tµnd

K̃/F̃
p−1)

2 if l is inert in K̃,

1 + ordl(tµndK̃/F̃ p
−1) if l is split in K̃.

We write (assuming that p is not split in F̃ )

(7.13) b(p, µn,m) =
∏

l

bl(p, µn,m)

with

(7.14) bl(b, µn,m) =
∏

l|l
ρl(tµndK̃/F̃ p

−1).

Clearly bl(b, µn,m) = 1 if l ∤ m2D̃−n2

4Dp . When l|m2D̃−n2

4Dp , there are three cases:

(a) l|m,
(b) l ∤ m and l|gcd(D̃, n) is ramified in F̃ , or
(c) l ∤ m, and lOF̃ = ll′ is split in F̃ .
In case (c), we choose the ideal l so that

ordl(tµndK̃/F̃ p
−1) = ordl

m2D̃ − n2

4Dp
=ordl ordl

m2D̃ − n2

4Dpm2
,(7.15)

ordl′(tµndK̃/F̃ p
−1) =0.

Since m does not affect local calculation in cases (b) and (c), the same proof as
in [Ya4, Lemma 6.2] gives

Lemma 7.2. Let the notation be as above. Assume l|m2D̃−n2

4D , l ∤ m and l 6= dK̃/F̃ .

Then Tm(µn) is GL2(Zl)-equivalent to diag(αl, α
−1
l Tm(µn)) with αl ∈ Z∗

l . Moreover,

K̃/F̃ is split (inert) at l if and only if (−αl, l)l = 1 (resp. −1).
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Proposition 7.3. One has always

b(p, µn,m) =
∏

l|m2D̃−n2

4D

bl(p, µn,m)

with

bl(p, µn,m) =





1−(−αp,p)
tp
p

2 if l = p,

tl + 1 if l ∤ mp, (−αl, l)l = 1,
1+(−1)tl

2 if l ∤ mp, (−αl, l)l = −1.

Here Tm(µn) is GL2(Zl)-equivalent to diag(αl, α
−1
l detTm(µn)) with αl ∈ Z∗

l , and

tl = ordl Tm(µn) = ordl
m2D̃−n2

4Dm2 .

Proof. First notice that the formula is true even when p is split in K̃. Indeed,

bp(p, µn,m) =
1− (−αp, p)

tp
p

2
= 0

since (−αp, p)p = 1 by Lemma 7.2. When p is non-split in K̃, the formulae follows
from Lemma 7.2 and (7.12)-(7.15).

Proof of Theorem 7.1 (cont.). Proposition 7.3 settles Formulae (7.1), (7.2) and

Case (1) in the theorem. Now we assume l|m and l|m2D̃−n2

4D . This implies l|n. In this
case we have

(7.16) Tm(µn) = lTm
l
(µ

n

l
).

Write m1 = m
l and n1 = n

l .

(2) Now we deal with case (2): i.e., l|m and tl =
m2D̃−n2

4Dm2 = ordl
m2

1D̃−n2
1

4D = 0.

Case 1: If l is inert in F̃ , then ordl tµn = 1. So

bl(p, µn,m) =

{
2 if lOF̃ is split in K̃,

0 if lOF̃ is inert in K̃.

Case 2: If l = ll′ is split in F̃ , then ordl tµn = ordl′ tµn = 1, and so

bl(p, µn,m) =

{
4 if l split completely in K̃,

0 otherwise.

On the other hand, ∆∆′ = Dv2 for some integer v 6= 0. So l is split completely in K̃
implies that (D, l)l = 1, i.e., l is split in F too, and thus l is split completely in M .
This proves (2)

(3) Now we assume l|m, tl > 0 and that l is split in F . in this case, l|m
2
1D̃−n2

1

4D .

Since (m, 2DD̃p) = 1, l = ll′ is split in F̃ . Choose the splitting in F̃ so that

(7.17) ordl tµn = tl + 1, ordl′ tµn = 1.
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Since l is split in F , (D, l)l = 1. So ∆̃∆̃′ = Dv2 implies that either both l and l′

are inert in K̃ or both are split in K̃. So

(7.18) bl(p, µn,m) =

{
2(tl + 2) if l split completely in K̃,

0 otherwise.

Since tl > 0, applying Lemma 7.2 to the pair (m1, n1), we see that K̃/F̃ is split at l
if and only if (−αl, l)l = 1. So we have

(7.19) bl(p, µn,m) =

{
0 if (−αl, l)l = −1,

2(tl + 2) if (−αl, l)l = 1

as claimed.
(4) Finally, we assume l|m, tl > 0, and l is inert in F . Just as in (3), l = ll′

is split in F̃ and we can again choose the splitting as in (7.17). Since (D, l)l = −1,
∆̃∆̃′ = Dv2 implies that exactly one of l and l′ is split in K̃, and the other one is
inert in K̃. So

(7.20) bl(p, µn,m) =

{
0 if l is split in K̃,

1− (−1)tl if l is inert in K̃.

Applying Lemma 7.2 to (m1, n1) again, we obtain (4). This finishes the proof of
Theorem 7.1.

Proof of Theorem 1.8. By Theorems 4.5 and 5.1, one has for p 6= q

(Tq .CM(K))p =
1

2

∑

0<n<q
√

D̃
q2D̃−n2

4D ∈pZ>0

(
ordp

q2D̃ − n2

4D
+ 1

)∑

µ

β(p, µn)

where

β(p, µn) =
1

2

∏

l

βl(Tq(µn),Ψl)

is computed in Section 6. By Theorems 6.1 and 6.2, one has βl(Tq(µn),Ψl) = 1 for

l ∤ q2D̃−n2

4D , and so

β(p, µn) =
1

2

∏

l| q2D̃−n2

4D

βl(Tq(µn),Ψl)

Now comparing Theorems 6.1 and 6.2 with Theorem 7.1, one sees that for l| q2D̃−n2

4D
(recall q is a prime split in F )

βl(Tq(µn),Ψl) =

{
2bp(p, µn, q) if l = p,

bl(p, µn, q) if l 6= p.

and thus

β(p, µn) = b(p, µn, q).

Now applying Theorem 7.1, one sees

(Tq.CM(K))p =
1

2
bq(p)

as claimed in Theorem 1.8.
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8. Faltings height and Proofs of Theorems 1.2, 1.3 and 1.4 . Let M̃ be
a toroidal compactification of M and let C = M̃ −M be the boundary. We need
the Faltings height pairing in a slightly more general setting as written in literature,
i.e., on DM-stacks where Green functions have pre-log-log growth along the boundary
C in the sense of [BKK]. We restrict to our special case to avoid introducing more
complicated concept ‘pre-log-log Green object’, and refer to [BKK] for detailed study
in this subject, and to [BBK, Section 1] for a brief summary.

Let N ≥ 3, and let X be the moduli scheme over C of abelian surfaces with real
multiplication by OF and with full N -level structure [Pa], and let X̃ be a toroidal
compactification of X . Then M = M(C) = [Γ\X ] and M̃ = M̃(C) = [Γ\X̃] are
quotient stacks, where Γ = Γ(N)\ SL2(OF ). Let π be the natural map from X̃ to
M̃ . Let Z be a divisor of M̃ , and let ZN = π−1(Z) be its preimage in X̃. Following
[KRY2, Chapter 2], the Dirac current δZ on M̃ is given by

〈δZ , f〉M̃ =
1

#Γ
〈δZN , f〉X̃

for every C∞ function on M̃ with compact support, which is defined as a Γ-invariant
C∞ functions on X with compact support. A pre-log-log Green function for Z is
defined to be a Γ-invariant pre-log-log Green function g for ZN , i.e., g is Γ-invariant,
has log singularity along ZN and pre-log-log growth along C in the sense of [BKK],
see also [BBK, Section 1] such that

ddcg + δZN = [ω]X̃

as currents for a Γ-invariant C∞ (log-log growth along with C and C∞ everywhere
else) (1, 1)-form ω. When viewed as currents on M̃ , one has also

ddcg + δZ = [ω]M̃ .

Let Ẑ
1
(M̃,Dpre) be the abelian group of the pairs (Z, g) where Z is a divisor of M̃

and g is a pre-log-log Green function for Z = Z(C). For a rational function f on M,

d̂iv(f) = (div f,− log |f |2) ∈ Ẑ
1
(M̃,Dpre)

and let ĈH
1
(M̃,Dpre) be the quotient group of Ẑ

1
(M̃,Dpre) by the subgroup gener-

ated by all d̂iv(f). Let Z be a prime cycle in M (not intersecting with the boundary
C) of dimension 1, and let j : Z → M̃ be the natural embedding. Then j induces a
natural map

(8.1) j∗ : ĈH
1
(M̃,Dpre)Q → ĈH

1
(Z)Q,

which is given by

j∗(T , g) = (j∗T , j∗g), j∗(g)(z) = g(j(z))

when T and Z intersect properly. Here for an abelian group A, we write AQ for the
Q-vector space A⊗Q. Since Z(C) does not intersect with the boundary C, j∗g well-

defined over Z(C). Here arithmetic Chow group ĈH
1
(Z) is defined the same way as

above except that the Green function g is C∞ (actually in special case, just constants
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at points of Z(C)). In [KRY2, Chapter 2], it is shown that there is a linear map—the
arithmetic degree

d̂eg : ĈH
1
(Z)Q → R, d̂eg(T , g) =

∑

p

∑

z∈T (F̄p)

1

#Autz
ip(T , z) log p(8.2)

+
1

2

∑

z∈Z(C)

1

#Aut(z)
g(z).

Here ip(T ) = Length(ÔT ,z) and ÔT ,z is the strictly local henselian ring of T at z.
This way, we obtain a bilinear map—the Faltings height function

(8.3) h : ĈH
1
(M̃,Dpre)Q × Z2(M)Q → R, (T̂ ,Z) 7→ hT̂ (Z) = d̂eg(j∗T̂ ),

which is given by

(8.4) hT̂ (Z) = Z.T +
1

2

∑

z∈Z(C)

1

#Aut(z)
g(z)

when Z and T intersect properly.
Finally, if L̂ = (L, ‖ ‖) is a metrized line bundle on M̃ with a pre-log growth

metric along the boundary in the sense of [BBK, Section 1], let s be a rational section

of L, and d̂ivs = (div s,− log ‖s‖2) ∈ ĈH
1
(M̃,Dpre) is independent of the choice of s,

and is denoted by ĉ1(L̂). Actually, it only depends on the equivalence class of L̂. We
define the Faltings height of Z with respect to L̂ by

(8.5) hL̂(Z) = h
d̂ivs

(Z)

which depends only on the equivalence class of L̂.
Let T̃m be the closure of the arithmetic Hirzebruch-Zagier divisor Tm in M̃. It is

also the flat closure of T̃m where T̃m is the closure of the classical Hirzebruch-Zagier
divisor Tm in M̃(C). Bruinier, Burgos-Gil, and Kühn defined in [BBK] a pre-log-log

Green function Gm for T̃m so that T̂m = (T̃m, Gm) ∈ ĈH
1
(M̃,Dpre).

Let ω be the Hodge bundle on M̃. Then the rational sections of ωk can be
identified with meromorphic Hilbert modular forms for SL2(OF ) of weight k. We give
it the following Petersson metric

‖F (z1, z2)‖Pet = |F (z1, z2)|
(
16π2y1y2

)k/2
(8.6)

for a Hilbert modular form F (z) of weight k. This gives a metrized Hodge bundle
ω̂ = (ω, ‖ ‖Pet). This metric is shown in [BBK, Section 2] to have pre-log growth along

the boundary, and so ĉ1(ω̂) ∈ ĈH
1
(M̃,Dpre). It is proved in [Ya3, Corollary 2.4] that

(8.7) hω̂(CM(K)) =
2#CM(K)

WK
hFal(A)

for any CM abelian surface (A, ι, λ) ∈ CM(K)(C). The following theorem is proved
in [BBK].

Theorem 8.1. (1) The generating function

φ̂(τ) = −1

2
ĉ1(ω̂) +

∑

m>0

T̂me(mτ)
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is a modular form of weight 2, level D, and Nebentypus character (D ) with values in

ĈH
1
(M̃,Dpre)Q.

(2) Let HZ be the subspace of ĈH
1
(M̃,Dpre)Q generated by T̂m. Then HZ is

a finite dimensional vector space over Q.
(3) Let S be the set of primes split in F , and let S0 be a finite subset of S.

Then HZ is generated by T̂q with q ∈ S − S0.

Proof of Theorem 1.2. Now we are ready to prove the main result of this paper.
We first show that Theorem 1.2 holds for a prime q split in F , strengthening Theorem
1.8. By Theorem 8.1, there are non-zero integers c, ci and primes qi (6= q) split in F
such that

cT̂q =
∑

ciT̂qi .

This means that there is a (normalized integral in the sense of [BY, Page 3]) mero-
morphic function Ψ such that

divΨ = cT̃q −
∑

ciT̃qi .

So one has by (8.4) and Lemma 3.1

0 = h
d̂iv(Ψ)

(CM(K))

= cCM(K).T̃q −
∑

ciCM(K).T̃qi −
2

WK

∑

z∈CM(K)

log |Ψ(z)|

= cCM(K).Tq −
∑

ciCM(K).Tqi −
2

WK

∑

z∈CM(K)

log |Ψ(z)|.

Here we used the fact that CM(K) never meets with the boundary of M̃ and thus
CM(K).T̃m = CM(K).Tm. By [BY, Theorem 1.1] (this is the place we need the
condition that D̃ is prime), and the fact

(8.8) WK = WK̃ =

{
10 if K = Q(ζ5),

2 otherwise,

one has

2

WK

∑

z∈CM(K)

log |Ψ(z)| = 1

2
cbq −

1

2

∑
cibqi .

Now applying Theorem 1.8, one has

0 = c(Tq.CM(K)− 1

2
bq)−

∑
ci(Tqi .CM(K)− 1

2
bqi) = ccq log q −

∑
cicqi log qi

for some rational numbers cq, ci ∈ Q. Since log q and log qi areQ-linearly independent,
we have cq = cqi = 0, and thus

(8.9) Tq.CM(K) =
1

2
bq.
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Now we turn to the general case. Using again Theorem 8.1, there are non-zero
integers c and ci and primes qi split in F such that

cT̂m =
∑

ciT̂qi .

So there is a (normalized integral) Hilbert meromorphic function Ψ such that

div(Ψ) = cT̃m −
∑

ciT̃qi .

So one has by (8.4), (8.9) and [BY, Theorem 1.1]

0 = h
d̂iv(Ψ)

(CM(K))

= cCM(K).Tm −
∑

ciCM(K).Tqi −
2

WK

∑

z∈CM(K)

log |Ψ(z)|

= cCM(K).Tm − 1

2
cbm.

Therefore Tm.CM(K) = 1
2bm. This proves Theorem 1.2.

Proof of Theorem 1.3. By [BBK, Theorems 4.15, 5.7], there is a normalized
integral meromorphic Hilbert modular form Ψ of weight c(0) > 0 such that

divΨ =
∑

m>0

cmT̃m.

Now the same argument as in the proof of [Ya4, Theorem 1.5] gives

(8.10) hω̂(CM(K)) =
#CM(K)

WK
β(K/F ).

Combining this with (8.7), one proves the theorem.
To state Theorem 1.4 more precisely and prove it, we need some preparation. Let

(8.11) E+
2 (τ) = 1 +

∑

m>0

C(m, 0)e(nτ), C(m, 0) =
2
∑

d|m d

L(−1, (D ))

be the Eisenstein series of weight 2, level D, and Nebentypus character (D ) given in
[BY, Corollary 2.3].

Let χK̃/F̃ be the quadratic Hecke character of F̃ associated to K̃/F̃ , and let

I(s, χK̃/F̃ ) be the induced representation of SL2(AF̃ ). In [BY, Section 6], we choose

a specific section Φ ∈ I(s, χK̃/F̃ ) and constructed an (incoherent) Eisenstein series of
weight 1

E∗(τ1, τ2, s,Φ) = (v1v2)
− 1

2E(gτ1gτ2, s,Φ)Λ(s+ 1, χK̃/F̃ ).

Here τj = uj + ivj ∈ H. The Eisenstein series is automatically zero at s = 0. So its
diagonal restriction of H is a modular form of weight 2, level D, Nebentypus character
(D ) which is zero at s = 0. Let

f̃(τ) =
1√
D
E∗,′(τ, τ, 0,Φ)|2WD
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be the modular form defined in [BY, (7.2)]) (with K in [BY, Sections 7 and 8] replaced
by K̃). Here WD =

(
0 −1
D 0

)
. Finally let f be the holomorphic projection of f̃ .

According to [BY, Theorem 8.1], one has the Fourier expansion

(8.12) f(τ) = −4
∑

m>0

(bm + cm + dm)e(mτ)

where bm is the number in Conjecture 1.1,

(8.13) dm =
1

2
C(m, 0)Λ(0, χK̃/F̃ )β(K̃/F̃ )

and cm is some complicated constant defined in [BY, Theorem 8.1]. Notice that the
Green function Gm in T̂m is also the Green function used in [BY]. So [BY, (9.3)] gives
(CM(K) in [BY] is our CM(K))

(8.14) cm =
4

WK̃

Gm(CM(K)) =
4

WK
Gm(CM(K)).

As explained in the proof of [Ya4, Theorem 1.5], one has

Λ(s, χK̃/F̃ ) = Λ(s, χK/F ).

So β(K̃/F̃ ) = β(K/F ). One has also by [BY, (9.2)] and (8.8)

(8.15) Λ(0, χK̃/F̃ ) =
2#CM(K)

WK
.

So (8.10) implies

(8.16) dm = hω̂(CM(K))C(m, 0).

So we have
(8.17)

f(τ) = −4
∑

m>0

(bm +
4

WK
Gm(CM(K)))e(mτ)− 4hω̂(CM(K))

∑

m>0

C(m, 0)e(mτ).

Now we can restate Theorem 1.4 more precisely:

Theorem 8.2. Let the notation be as above. Assuming (1.5) and that D̃ =
∆∆′ ≡ 1 mod 4 is a prime. Then

hφ̂(CM(K)) +
1

2
hω̂(CM(K))E+

2 (τ) = −1

8
f(τ).

Proof. By Theorem 1.2, (8.4), and (8.10), we have

hφ̂(CM(K)) = −1

2
hω̂(CM(K)) +

∑

m>0

hT̂ (CM(K))e(mτ)

= −1

2
hω̂(CM(K)) +

∑

m>0

(CM(K).Tm +
2

WK
Gm(CM(K)))e(mτ)

= −1

2
hω̂(CM(K)) +

1

2

∑

m>0

(bm +
4

WK
Gm(CM(K)))e(mτ).

Combining this with (8.11) and (8.17), one proves the theorem.
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9. Siegel modular variety of genus 2 and Lauter’s conjecture. Following
[CF], let A2 be the moduli stack over Z representing the principally polarized abelian
surfaces (A, λ). Then A2(C) = Sp2(Z)\H2 is the Siegel modular surface of genus 2.
Here H2 = {Z ∈ Mat2(C); Z = tZ, Im(Z) > 0} is the Siegel upper half plane of
genus two. Let ǫ be a fixed fundamental unit if F = Q(

√
D) with ǫ > 0 and ǫ′ < 0.

Then

(9.1) φD : M → A2, (A, ι, λ) 7→ (A, λ(
ǫ√
D
))

is a natural map from M to A2, which is proper and generically 2 to 1. For an integer
m ≥ 1, let Gm be the Humbert surface in A2(Q) [Ge, Chapter IX], defined as follows
(over C). Let L = Z5 be the lattice with the quadratic form

Q(a, b, c, d, e) = b2 − 4ac− 4de.

We remark that there is an isomorphism between Sp2(Q)/{±1} and SO(L⊗Q). For
x ∈ L with Q(x) > 0, we define

Hx = {τ = ( τ1 τ2
τ2 τ3 ) ∈ H2 : aτ1 + bτ2 + cτ3 + d(τ22 − τ1τ3) + e = 0}.

Then Hx is a copy of H2 embedded into H2. The Humbert surface Gm is then defined
by

(9.2) Gm = Sp2(Z)\{Hx : x ∈ L,Q(x) = m}.

Let Gm be the flat closure of Gm in A2. Then (φD)∗M = 2GD, and

(9.3) φ∗
DGm =

∑

n>0,Dm−n2

4 ∈Z>0

TDm−n2

4

when mD is a not a square. Indeed, it is known [Fr, Theorem 3.3.5], [Ge, Proposition
IX 2.8] that

φ∗
DGm =

∑

n>0,Dm−n2

4 ∈Z>0

TDm−n2

4

.

So their flat closures in M are equal too, which is (9.4).

Let K be a quartic CM number field with real quadratic subfield F , and let
CMS(K) be the moduli stack over Z representing the moduli problem which assigns
a scheme S the set of triples (A, ι, λ) where (A, λ) ∈ A2(S) and ι is an OK-action on
A such that the Rosati involution associated to λ gives complex conjugation on K.
Notice that the map

(9.4) CM(K) → CMS(K), (A, ι, λ) 7→ (A, ι, λ(
ǫ√
D
))

is an isomorphism of stacks. We also denote CMS(K) for the direct image of CMS(K)
in A2 under the forgetful map (forgetting the OK action). Then the above isomor-
phism implies that (φD)∗(CM(K)) = CMS(K). Now the proof of Theorem 1.5 is
easy.
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Proof of Theorem 1.5. By the projection formula, Theorem 1.2, and remarks
above, one has

CMS(K).Gm = (φD)∗(CM(K)).Gm

= CM(K).φ∗
D(Gm)

=
∑

n>0,Dm−n2

4 ∈Z>0

CM(K).TDm−n2

4

=
1

2

∑

n>0,Dm−n2

4 ∈Z>0

bDm−n2

4

as claimed.
To describe and prove Lauter’s conjecture on Igusa invariants, we need more

notation. Let

(9.5) θa,b(τ, z) =
∑

n∈Z2

eπi
t(n+ 1

2a)τ(n+
1
2a)+2t(n+ 1

2a)(z+
1
2 b)

be the theta functions on H2 × C2 with characters a, b ∈ (Z/2)2. It is zero at z = 0
unless tab ≡ 0 mod 2. In such a case, we call θa,b(τ, 0) an even theta constants.
There are exactly ten of them, we renumber them as θi, 1 ≤ i ≤ 10. They are Siegel
modular forms of weight 1/2 and some level.

h10 =
∏

i

θ2i

is a cusp form of weight 10 and level 1 and is the famous Igusa cusp form χ10.
Igusa also defines in [Ig1] three other Siegel modular forms h4 =

∑
i θ

8
i , h12, and h16

for Sp2(Z) of weight 4, 12, and 16 respectively as polynomials of these even theta
constants. We refer to [Wen] for the precise definition of h12 and h16 since they are
complicated and not essential to us. The so-called 3 Igusa invariants are defined as
([Wen, Section 5]

(9.6) j1 =
h5
12

h6
10

, j2 =
h4h

3
12

h4
10

, j3 =
h16h

2
12

h4
10

.

It is known that hi have integral Fourier coefficients. Since four of ten theta
constants have constant term 1 and the other six are multiples of 2, one can check
([GN])

h10 = 212Ψ1,S

where Ψ1,S is an integral Siegel modular form for Sp2(Z) with constant term 1 and
divΨ1,S = 2G1. One can also check

h4 = 24h̃4, h12 = 215h̃12, h16 = 215h̃16

with h̃4, h̃12, and h̃16 still having integral coefficients. So

(9.7) j1 = 23
h̃5
12

Ψ6
1,S

, j2 = 2
h̃4h̃12

Ψ4
1,S

, j3 = 2−3 h̃12h̃16

Ψ4
1,S

.
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We renormalize

(9.8) j1 = 23B1j
′
1, j2 = 2B2j

′
2, j3 = 2−3B3j

′
3

for some positive integers Bi so that j′i can be written as

j′i =
fi

Ψni

1,S

with n1 = 6, n2 = n3 = 4 such that fi are integral Siegel modular forms whose Fourier
coefficients have greatest common divisor 1.

Let K be a quartic non-biquadratic CM number field with real quadratic subfield
F = Q(

√
D). For a CM type Φ of K, let CMS(K,Φ) be the formal sum of principally

polarized abelian surfaces over C of CM type (OK ,Φ) (up to isomorphism). It is the
image of CM(K,Φ) under φD. So CMS(K) = CMS(K,Φ1) + CMS(K,Φ2) is defined
over Q and

CMS(K)(C) = 2CMS(K).

Here Φ1 and Φ2 are two CM types of K such that Φi and ρΦi give all CM types of
K (ρ is the complex conjugation). By the theory of complex multiplication [Sh, Main
Theorem 1, page 112],

j′i(CMS(K)) :=
∏

z∈CMS(K)

j′i(z)

is a power of N(j′i(z)) for any CM point z ∈ CMS(K).

Proof of Theorem 1.7. We prove the theorem for j′1. The proof for j′2 and j′3 is
the same. We first prove A1 N(j′1(τ)) ∈ Z. By the theory of complex multiplication
[Sh, Main Theorem 1, page 112],

j′i(CMS(K)) :=
∏

τ∈CMS(K)

j′i(τ)

is a power of N(j′i(τ)) for any CM point τ ∈ CMS(K). Since CL0(K) ∼= CL0(K̃) in
our case by [BY, Lemma 5.3], we have actually j′i(CMS(K)) = N(j′1(τ)).

Notice that

div j′1 = div f1 − 12G1.

If CM(K) and div f1 intersect improperly, they have a common point over C (since
both are horizontal). So f1(CM(K) = 0 and j′1(CMS(K)) = 0, there is nothing
to prove. So we may assume CM(K) and div f1 intersect properly. Since both are
effective cycles, one has

CM(K). div f1 = a logC

for some positive integer C > 0 and a rational number a > 0. Now

0 = h
d̂ivj′1

(CM(K))

= CM(K). div f1 − 12CM(K).G1 −
2

WK
log |j′1(CMS(K))|

= CM(K). div f1 − 6
∑

0<n<
√
D,odd

bD−n2

4

− 2

WK
log |j′1(CMS(K)|.
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Write N(j′1(τ)) = M1/N1 with (M1, N1) = 1. Then

log |M1| − logN1 = log |j′1(CMS(K)| = aWK

2
logC − 3WK

∑

0<n<
√
D,odd

bD−n2

4

,

and so

logN1 = 3WK

∑

0<n<
√
D,odd

bD−n2

4

+ log |M1| −
aWk

2
logC

= logA1 + log |M1| −
aWk

2
logC.

So N1C
aWK

2 = A1|M1|, and thus N1|A1. A1 N(j
′
1(τ)) ∈ Z.

We now derive A1H1(x) ∈ Z. The k-th coefficient of H1(x) is

ak =
∑

i1≤i2≤···≤ik

j′1(τi1 ) · · · j′1(τik )

where τj ∈ CMS(K). Write

j′1(τj)OL =
aj

bj

uniquely with aj, bj being integral ideals of OL, where L is a Galois extension of Q
containing all j′1(τj). Then N1Z =

∏
bj . So

akZ = c/N1

where

c =
∑ k∏

l=1

ail

∏

j 6=il

bj

is an integral ideal of L. So c = cZ for some integer c, and thus ak = ±c/N1. That is
Aak ∈ Z. This proves Theorem 1.7

Update. After the paper was first written in 2007, there were quite a few devel-
opments. Here are a couple that I know of. Ben Howard and the author looked at the
problem again in 2009 and developed a direct approach using Kudla and Rapoport’s
moduli interpretation of the arithmetic Hirzeburch-Zagier divisors. Actually we dis-
covered a finer moduli problem and proved a new arithmetic Siegel-Weil formula
under some technical local condition [HY]. The result is more general and works for
more general real quadratic fields. Bruinier, Kudla, and the author [BKY] general-
ized the work in [BY] to more general CM number fields too. Both are a little more
complicated than the statement we have here and [BY]. It seems very reasonable to
prove Colmez’s conjecture for a general CM quartic field now using results in [HY]
and [BKY]. I hope to get back to it in the near future. The computational work of
[GJLLSVW] confirms the main theorem in this paper in cases we dealt with and the
abnormality they pointed out should be explainable by the new work in [BKY] and
[HY].
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