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This paper explores a refinement of homological mirror symmetry which relates

exact symplectic topology to arithmetic algebraic geometry. We establish a derived

equivalence of the Fukaya category of the 2torus, relative to a basepoint, with

the category of perfect complexes of coherent sheaves on the Tate curve over

the formal disc SpecZ [[q]]. It specializes to a derived equivalence, over Z , of

the Fukaya category of the punctured torus with perfect complexes on the curve

y2 + xy = x3 over SpecZ , the central fibre of the Tate curve; and, over the

‘punctured disc’ SpecZ ((q)), to an integral refinement of the known statement of

homological mirror symmetry for the 2torus. We also prove that the wrapped

Fukaya category of the punctured torus is derivedequivalent over Z to coherent

sheaves on the central fiber of the Tate curve.

1 Introduction

This paper explores a basic case of what we believe is a general connection between

exact Lagrangian submanifolds in the complement to an ample divisor D in a com

plex Calabi–Yau manifold X—we view X \ D as an exact symplectic manifold—and

coherent sheaves on a scheme defined over SpecZ, the ‘mirror’ to X \ D. We take X

to be an elliptic curve; its complex structure is irrelevant, so it is really a 2torus T .

We take D to be a point z. The mirror is the Weierstrass cubic Y2Z + XYZ = X3 , the

restriction to q = 0 of the Tate curve T → SpecZ [[q]].

Kontsevich’s 1994 homological mirror symmetry (HMS) conjecture [31] claims that the

Fukaya A∞ category F(X) of a polarized Calabi–Yau manifold should have a formal

enlargement—precisely formulated a little later as the closure twπ F(X) under taking

mapping cones and passing to idempotent summands—which is A∞ quasiequivalent

to a dg enhancement for the derived category of coherent sheaves on the ‘mirror’ X̌ , a

Calabi–Yau variety over the field of complex Novikov series.1 The HMS conjecture

has inspired a great deal of work in symplectic geometry, algebraic geometry and

mathematical physics; the HMS paradigm has been adapted so as to apply not only to

varieties whose canonical bundle K is trivial, but also to those where either K−1 or

1Beware: the circumstances under which one expects to find such an X̌ are more subtle than

those claimed by our onesentence précis of Kontsevich’s conjecture.
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K is ample, with such varieties playing either symplectic or algebrogeometric roles.

Meanwhile, progress on the original case of Calabi–Yau manifolds has been slow.

There are currently complete mirrorsymmetric descriptions of the Fukaya category

only for the 2torus R2/Z2 and of the square 4torus R4/Z4 [6]. The case of Calabi–

Yau hypersurfaces in projective space has been solved up to a certain ambiguity in

identifying the mirror variety [46, 53]. There are significant partial results for linear

symplectic tori of arbitrary dimension [33].

Our contention is that even in the solved cases, there is more to be said about HMS.

The Fukaya category for the 2torus has a natural model which is defined over Z [[q]], a

subring of the complex Novikov field. This model has a mirrorsymmetric description

as the perfect complexes on the Tate curve T over Z [[q]]. The symplectic geometry of

the torus is thereby connected to the arithmetic algebraic geometry of T . Establishing

this connection is the task of this article.

Experts have certainly been aware that, in principle, homological mirror symmetry

should have an arithmeticgeometric dimension (cf. Kontsevich’s lecture [34], for

instance), but we believe that this article is the first to treat this idea in detail. Whilst

refining existing proofs of HMS for the 2torus might be a viable option, our method

is also new: we identify a generating subalgebra A of the Fukaya category, and show

that Weierstrass cubic curves precisely parametrize the possible A∞ structures on it

(Theorem C). The mirror to (T, z) is then the unique Weierstrass curve corresponding

to the A∞ structure belonging to the Fukaya category. Our identification of this

mirror parallels an argument of Gross [23] but also has a novel aspect, relating the

multiplication rules for thetafunctions on the Tate curve to counts of lattice points in

triangles (not areas of triangles). Our identification of the wrapped Fukaya category

of the punctured torus with coherent complexes on T|q=0 appears to be a basic case of

an unexplored aspect of mirror symmetry for Calabi–Yau manifolds.

1.1 Statement

Let T be a closed, orientable surface of genus 1; ω a symplectic form on T ; z ∈ T

a basepoint; T0 = T \ {z}; and θ a primitive for ω on T0 . Fix also a grading for

the symplectic manifold T , that is, an unoriented linefield ℓ. These data suffice to

specify the relative Fukaya category F(T, z) up to quasiisomorphism. It is an A∞ 

category linear over Z [[q]] whose objects are embedded circles γ ⊂ T0 which are exact

(
∫
γ θ = 0) and are equipped with orientations, double covers γ̃ → γ and gradings (a

grading is a homotopy from ℓ|γ to Tγ in T(T0)|γ ).

Let T → SpecZ [[q]] denote the Tate curve, the cubic curve in P2(Z [[q]]) with equation

(1) Y2Z + XYZ = X3
+ a4(q)XZ2

+ a6(q)Z3,
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where

(2) a4(q) = −5
∑

n>0

n3qn

1− qn
, a6(q) = −

1

12

∑

n>0

(5n3 + 7n5)qn

1− qn

(note that n2(5 + 7n2) is always divisible by 12).

Let vect(T) denote the Z [[q]]linear differential graded (dg) category whose objects are

locally free sheaves of finite rank over T , and whose morphism spaces are Čech com

plexes with respect to a fixed affine open cover: homvect(T)(E,F) = Č•(Hom(E,F)).

Theorem A A choice of basis (α, β) for H1(T), with α · β = 1, determines, canon

ically up to an overall shift and up to natural quasiequivalence, a Z [[q]]linear A∞ 

functor

ψ : F(T, z)→ tw(vect(T))

from the relative Fukaya category to the dg category of twisted complexes in vect(T).

Moreover,

(i) the functor ψ maps an object L#
0 representing β to the structure sheaf O. It maps

an object L#
∞ representing α to the complex [O→ O(σ)], where σ = [0 : 1 : 0]

is the section at infinity of T , and the map is the inclusion. (This complex is

quasiisomorphic to the skyscraper sheaf Oσ = σ∗OSpecZ[[q]] at the section at

infinity.) It is an embedding on the full subcategory A on {L#
0, L

#
∞}; and is

characterized, up to natural equivalence, by its restriction to A. See Figure 1.

(ii) ψ extends to an equivalence

Dπ F(T, z)→ Perf(T) ≃ H0(tw vect(T))

from the idempotentclosed derived Fukaya category to the triangulated category

of perfect complexes on T .

(iii) The specialization of ψ to q = 0 is a Zlinear functor

ψ0 : F(T0)→ tw vect(T|q=0)

from the exact Fukaya category of (T0, θ) to the category of perfect complexes on

the central fiber of the Tate curve, inducing an equivalence on derived categories

Dψ0 : DF(T0)→ Perf(T|q=0)

(both of these derived categories are already idempotentclosed).

(iv) Dψ0 extends to an equivalence of triangulated categories

DW(T0)→ Db Coh(T|q=0)

from the derived wrapped Fukaya category to the bounded derived category

of coherent sheaves on T|q=0 (these derived categories are again idempotent

closed).
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Remark. The functor ψ has an additional property, which is that it is ‘tracepreserving’,

in a sense to be discussed later.

Clause (ii) has the following corollary:

Corollary 1.1 There is an A∞ quasiequivalence ModF(T, z) → QC(T) from the

category of cohomologically unital F(T, z)modules to a DG enhancement of the

derived category of unbounded quasicoherent complexes on the Tate curve.

Indeed, QC(T) is quasiequivalent to Mod vect(T) as an instance of the general theory

of [59] or [9].

L#
0 (slope β)

L#
∞

(slope α) L#
(1,−5)

z

L#
∞
←→ Oσ

L#
0 ←→ O

L#
(1,−n) ←→ O(np)

horizontal line field
grades T

rotate line field to grade a Lagrangian
stars indicate nontriviality

of the double cover

Figure 1: The torus T and the mirror correspondence ψ , for one possible choice of the line

field ℓ .

Comparison to the standard formulation. The A∞ structure in the ‘relative’ Fukaya

category F(T, z) is based on counting holomorphic polygons weighted by powers qs ,

where s counts how many times the polygon passes through the basepoint z. The

‘absolute’ Fukaya category F(T), in the version most popular for mirror symmetry,

has as objects Lagrangian branes L# in T equipped with U(1) local systems E → L .

In the latter version, holomorphic polygons are weighted by (holonomy) qarea . The

coefficientring for F(T) is usually taken to be ΛC , the field of complex Novikov series∑
k>0 akqrk : here ak ∈ C, rk ∈ R, and rk →∞.
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To explain the relation between the relative and absolute versions, note first that there

is an equation of currents ω = δD + dΘ, where Θ is a 1current. We take θ to be the

(smooth) restriction of Θ to M .

Lemma 1.2 There is a fully faithful ‘inclusion’ functor

e : F(T, z)⊗Z[[q]] ΛC → F(T),

linear over ΛC and acting as the identity on objects. For each exact Lagrangian L ,

select a function KL ∈ C∞(L) such that dKL = θ|L . Then define e on morphismspaces

hom(L#
0, L

#
1) = CF(φ(L#

0), L#
1) by

e(x) = qA(x)x, x ∈ φ(L0) ∩ L1,

where A(x) = Aφ(L0),L1
(x) is the symplectic action, defined via the KL , and φ is the

exact symplectomorphism used to obtain transversality. The higher A∞ terms for e

are identically zero.

Proof The symplectic action is defined as follows. For a path γ : ([0, 1]; 0, 1) →
(M; L0, L1) (for instance, a constant path at an intersection point) we put

AL0,L1
(γ) = −

∫ 1

0

γ∗θ − KL0
(γ(0)) + KL1

(γ(1)).

For any disc u : (D, ∂D)→ (X, L), we have
∫

D

u∗ω − D · u =

∫

D

u∗(ω − δD) =

∫

∂D

u|∗∂Dθ =

∫

∂D

d(u|∗∂DKL) = 0.

Similarly, if u : D→ X is a polygon attached to a sequence of Lagrangians (L0, L1, . . . , Ld)

(where d ≥ 1) at corners x1 ∈ L0 ∩ L1, . . . , xd+1 ∈ Ld ∩ L0 , then

∫

D

u∗ω − D · u =

∫

D

u∗(ω − δD) = ALd+1,L0
(xd+1) +

d+1∑

i=1

ALi−1,Li(xi).

From this it follows that e ◦ µd
F(T,z)(x1, . . . , xd) = µd

F(T) ◦ (ex1, . . . , exd), which proves

that e is a functor. Note that the perturbations that are used to define homspaces in

F(T, z) serve equally well in F(T). It is clear that e is fully faithful.

The ‘standard’ statement of mirror symmetry is as follows. Let TΛC
= T ×Z[[q]] ΛC ;

it is an elliptic curve over the field ΛC . When ω is normalized so that
∫

T
ω = 1, there

is a functor

Φ : F(T)→ D̃
b
Coh(TΛC

),
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where D̃
b
Coh is the unique dg enhancement of the bounded derived category Db Coh

[36], inducing a derived equivalence; and that this functor is again canonically de

termined by a choice of basis for H1(T): see [41, 39, 40, 6] for one proof; [23] for

an expository account of another, occasionally missing technical details (e.g. certain

signs); and [51] for yet another. Our result is an arithmetic refinement of this standard

one:

Theorem 1.3 The diagram

F(T, z)⊗ ΛC

e

��

ψ⊗1// tw vect(T)⊗ ΛC

i
��

F(T)
Φ // D̃

b
Coh(TΛC

).

is homotopycommutative under composition of A∞ functors.

Since T×Z[[q]]ΛC is a nonsingular variety over the field ΛC , we may take tw vect(TΛC
)

as our dg enhancement of DCoh(TΛC
). Then i is the basechange functor tw vect(T)→

tw vect(TΛC
). For this theorem to make sense, ψ and Φ must be set up so that i◦(ψ⊗1)

and Φ ◦ e agree precisely (not just up to quasiisomorphism) on objects.

1.2 The Tate curve

Useful references for this material include [56, 26, 14, 23]. The Tate curve is the plane

projective curve T over Z [[q]] whose affine equation is the Weierstrass cubic

(3) y2
+ xy = x3

+ a4x + a6,

where a4 and a6 are as at (2). So T is a projective curve in P2(Z [[q]]). Like any

Weierstrass curve w(x, y) = 0, T comes with a canonical differential with poles at the

singularities,

Ω = dx/wy = −dy/wx = dx/(2y + x) = −dy/(y− 3x2 − a4).

Notation:

(4) T̂ = T specialized to Z ((q)) (= Z [[q]] [q−1]).

The analytic significance of the Tate curve is the following. Consider the Riemann

surface Eτ = C/〈1, τ〉, where Im τ > 0. The exponential map z 7→ q := exp(2πiz)

identifies Eτ with C∗/qZ . As q varies over the punctured unit disc D∗ , the Riemann
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surfaces C∗/qZ form a holomorphic family E→ D∗ . The Weierstrass function ℘q for

the modular parameter q defines an embedding

E→ CP2 × D∗; (z, q) 7→ ([(2πi)−2℘q(z) : (2πi)−3℘′
q(z) : 1], q).

This embedding is cut out by an equation y2 = 4x3 − g2(q)x − g3(q), which is a

Weierstrass cubic in (x, y) varying holomorphically with q. The functions g2 and g3

are holomorphic at q = 0, and moreover are defined over Z[ 1
6
] [[q]] (making this so is

the purpose of the powers of 2πi in the definition of the embedding). We can change

coordinates, writing x′ = x − 1
12

and 2y′ + x′ = y, so as to put the equation in the

form y′2 + x′y′ = x′3 + a4(q)x′ + a6(q). The benefit of the coordinatechange is that

the coefficients now lie in Z [[q]]. The series a4 and a6 are those given above—so the

algebraic curve y′2 + x′y′ = x′3 + a4(q)x′ + a6(q) is the Tate curve T .

We conclude, then, that the specialized Tate curve T̂ is an elliptic curve, analytically

isomorphic over C to the family Z ((q))∗ /qZ when 0 < |q| < 1.

Its integrality is one interesting feature of T , but another is that the absence of negative

powers of q. One can therefore specialize T to q = 0. The result is the curve

T0 = T|q=0 in P2(Z) given by

(5) y2
+ xy = x3.

We can characterize this Weierstrass curve as follows:

Lemma 1.4 The curve T0 → SpecZ has a section s = [0 : 0 : 1] which is a node

of T0 ×Z Fp , the mod p reduction of T0 , for every prime p. Any Weierstrass curve

C → SpecZ possessing a section s with this property can be transformed by integral

changes of variable to T0 .

Proof Consider a general Weierstrass curve C = [a1, a2, a3, a4, a6], given as the

projective closure of

(6) y2
+ a1xy + a3y = x3

+ a2x2
+ a4x + a6, ai ∈ Z.

Integral points of C ⊂ P2
Z , other than [0 : 1 : 0], can represented as rational points

on the affine curve. The point [0 : 1 : 0] is regular over any field, and is the unique

point of C with Z = 0. Suppose [X : Y : Z] is an integral point that is nodal mod p

for all primes p. Then Z must be nonzero mod p for every prime p, and hence Z is a

unit of Z. Consider the Zpoint (x0, y0) = (X/Z, Y/Z) of the affine curve. The partial

derivatives vanish, since they vanish mod p for all p:

(7) 2y0 + a1x0 + a3 = 0, a1y0 = 3x2
0 + 2a2x0 + a4.
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The nodal condition is that the Hessian is nonsingular, that is,

(8) a2
1 + 2(6x0 + 2a2) 6= 0 mod p.

(We note in passing that conditions (7, 8) hold for the point [0 : 0 : 1] of T|0 at all

primes p.) Since (8) holds for all p, we have

(9) a2
1 + 12x0 + 4a2 = ±1.

We shall use the criterion (9) to make three changes of variable, successively making

a1 , a2 and a3 equal to their counterparts for T0 .

First, (9) tells us that a1 is odd. Hence by a change of variable x = x′ , y = y′ + c,

we may assume that a1 = 1, whereupon 6x0 + 2a2 is either 0 or −1. The latter

possibility is absurd, so 3x0 + a2 = 0. Being divisible by 3, a2 can be removed

altogether by a change of variable x = x′ + dy, y = y′ without interfering with a1 .

Thus we can assume additionally that a2 = 0. We now find from (9) that x0 = 0.

Hence 2y0 + a3 = 0, so a3 is even. It follows that a3 can be set to zero by a change

of variable x = x′ , y = y′ + e, leaving a1 and a2 untouched. Equations (7) now tell

us that y0 = 0 = a4 , while the equation (6) for C tells us that a6 = a2
4 = 0.

More abstractly, if we define a curve π : C → SpecZ by taking P1
Z and identifying

the sections [0 : 1] and [1 : 1], so as to make every geometric fiber nodal, then the

parametrization P1
Z → P2

Z given by [s : t] 7→ [st(s − t) : s(s − t)2 : t3] identifies C

with T0 .

Outline of method and algebraic results. This article is long partly because it

contains rather more than a single proof of Theorem A, and partly because working

over Z presents significant technicalities beyond those that would be present if one

worked over fields (or in some cases, of fields in which 6 is invertible). Part I—a

large chunk—is purely algebraic; it refines and elaborates the method of [35]. The

basic point is that for any Weierstrass curve C , one has a 2object subcategory BC

of Perf C—the dg category of perfect complexes of coherent sheaves—with objects

O (the structure sheaf) and Op (the skyscraper sheaf at the point at infinity), and

this subcategory splitgenerates Perf C . The cohomology category A = H∗BC is

independent of C , but the dg structure of BC knows C . One can transfer the dg

structure to a minimal A∞ structure on A. This procedure defines a functor from the

category of Weierstrass curves to the category of minimal A∞ structures on A. We

prove in Theorem C that this functor is an equivalence. A slightly coarsened statement

of Theorem C is as follows:
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Theorem 1.5 Let R be an integral domain which is either noetherian and normal

of characteristic zero, or an arbitrary field. Let (B, µ∗
B

) be an Rlinear A∞ category

together with a Calabi–Yau structure of dimension 1. Assume that B is minimal, has

just two objects a and b, both spherical of dimension 1 and forming an A2 chain

(i.e. hom(a, a) ∼= Λ∗(R[−1]) ∼= hom(b, b) as graded Ralgebras; and hom(a, b) ∼= R,

hom(b, a) ∼= R[−1] as graded Rmodules; and µ1
B
= 0). Then B is tracepreservingly

quasiequivalent to BC for a unique Weierstrass curve C → SpecR, where BC has

the Calabi–Yau structure arising from its Weierstrass differential Ω ∈ Ω1
C/ SpecR

.

The proof of Theorem C invokes the Hochschild cohomology HH∗(A,A). We com

puted this cohomology additively in [35], but here we give a complete calculation,

as a Gerstenhaber algebra, by interpreting HH∗(A,A) as the Hochschild cohomology

HH∗(Ccusp) of a cuspidal Weierstrass curve Ccusp (Theorem B).

In Part II, we identify the unique curve Cmirror for which ACmirror
is quasiisomorphic

to the 2object subcategory Asymp of the Fukaya category F(T, z) on objects of slopes

0 and −∞, equipped with nontrivial double coverings. In [35], we used Abouzaid’s

plumbing model [3] to prove that Asymp|q=0 is not formal, which implies that Cmirror is

not cuspidal. Here we identify Cmirror precisely. In fact, we identify the specialization

Cmirror|q=0 in three independent ways: (i) by eliminating the possibility that Cmirror

is smooth or cuspidal after reduction to an arbitrary prime p, by means of the ‘closed

open string map’ from symplectic cohomology to Hochschild cohomology of the

Fukaya category; (ii) by calculating “Seidel’s mirror map” [64], or more precisely,

by determining the affine coordinate ring of Cmirror|q=0 via a calculation in the exact

Fukaya category; and (iii) via thetafunctions. The third proof extends to a proof of

mirror symmetry for F(T, z), not just its restriction to q = 0. We use an intrinsic model

for the Tate curve, and the integral thetafunctions for this curve which played a major

role in Gross’s proof [23]. The nub is the multiplication rule for these thetafunctions

and its relation to counts of latticepoints in triangles. The proof of mirror symmetry

for the wrapped category is a rather formal extension of that for the exact category.

We should perhaps make one more remark about exposition. The authors’ background

is in symplectic topology. We imagine that typical readers will have an interest in

mirror symmetry, perhaps with a bias towards the symplectic, algebrogeometric or

physical aspects, but, like us, will not be expert in arithmetic geometry. We would be

delighted to have readers who do come from an arithmetic geometry background, but

ask for their patience in an exposition which we fear belabors what is obvious to them

and rushes through what is not.

Higher dimensions? We believe that there should be an arithmetic refinement to

homological mirror symmetry for Calabi–Yau manifolds in higher dimensions, but



10 Yankı Lekili and Timothy Perutz

will leave the formulation of such conjectures for elsewhere; the 2torus is, we think,

far from being an isolated case. The case of 2tori with several basepoints can be

treated rather straightforwardly starting from the onepointed case, but we shall also

leave that for another article.
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Part I

Algebraic aspects

2 Background material

2.1 Derived categories and A∞ categories

Our conventions and definitions are those of [49, chapter 1]; see [23] for an informal

introduction. For now, we work over a ground field K (commutative and unital), but we

shall discuss presently more general ground rings. All our A∞ categories and functors

are cohomologically unital.

Triangulated envelopes. Any A∞ category C has a triangulated envelope, a minimal

formal enlargement that is a triangulated A∞ category, i.e., every morphism in C has

a mapping cone in C. The twisted complexes tw C of an A∞ category C form a model

for the triangulated envelope. The cohomological category H0(tw C) is known as the

derived category and denoted DC.

Split closure. One can formally enlarge tw C further to another triangulated A∞ 

category twπ C which is additionally splitclosed (also known as idempotentclosed

or Karoubi complete). An idempotent in the A∞ category tw C is defined to be an
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A∞ functor π : K → tw C from the trivial A∞ category K, which has one object ⋆
and hom(⋆, ⋆) = K (the ground field). For example, if the object X is the direct sum of

objects X1 and X2 , meaning that hom(·,X) ∼= hom(·,X1)⊕ hom(·,X2) in the category

of tw Cmodules, then X1 defines an idempotent π in X1 ⊕ X2 , with π(⋆) = X and,

on morphisms, π(1) = idX1
⊕ 0X2

. The module hom(·,X1) is actually intrinsic to

the idempotent π (it can be constructed as the ‘abstract image of π ’ [49, Chapter 1,

(4b)]); the object X1 represents the abstract image. Splitclosed means that the abstract

image of an arbitrary idempotent is represented by an object. We write Dπ C for the

triangulated category H0(twπ C). It is useful to note that tw C is splitclosed as an

A∞ category if and only if H0(tw C) is splitclosed as an ordinary Klinear category.

Thomason’s theorem. By [57], a necessary and sufficient condition for an A∞ 

functor which is a quasiembedding to be a quasiequivalence is that (a) it should induce

a quasiisomorphism after splitclosure, and (b) that it should induce an isomorphism

of Grothendieck groups K0 . Thus, clauses (iii) and (iv) from Theorem A, which assert

derived equivalence without splitclosure, are partly statements about K0 .

A∞ categories over rings. Our Fukaya categories will be A∞ categories over unital

commutative rings L. The usual definition of an A∞ category C makes sense over

such rings: the morphism spaces are arbitrary graded Lmodules. Let’s call such

an object a naive A∞ category. The basic notions carry through. For instance, the

twisted complexes tw C, defined as usual (the multiplicity spaces are finiterank free

modules), form a triangulated envelope for C, as in [49, chapter 1]. However, some of

the naive constructions do not have the homotopical significance one might wish for.

An example is that the Hochschild cohomology HH∗(A,A) of a Lalgebra A, defined

through the bar complex, does not compute the bimoduleExt module Ext∗Ae(A,A), but

rather, relative Ext for the map of Lalgebras L→ Ae [61].

Over fields, A∞ constructions are automatically ‘derived’. To retain this property, we

define a projective A∞ category to be a naive A∞ category in which the morphism

spaces are projective graded Lmodules. Fukaya categories are projective because the

homspaces come with finite bases. Projective graded modules satisfy Ext(V1,V2) =

Hom(V1,V2) and Tor(V1,V2) = V1 ⊗ V2 . The naive definitions of A∞ functors and

their natural transformations, and of Hochschild homology and cohomology, work well

for projective A∞ categories.

DG categories over rings. Differential graded (dg) categories over commutative

rings have been well studied [30], and the theory does not depend on such ad hoc
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arrangements as having projective homspaces. There is a selfcontained theory in

which derived categories are defined via localization, not via twisted complexes.

Calabi–Yau structures. When K is a field, a Serre functor of a Klinear category

C with finitedimensional homspaces is an equivalence S : C → C, together with

isomorphisms

φA,B : HomC(A,B) ≃ HomC(B, SA)∨,

natural in both inputs, such that S∨ ◦ φA,B = φSA,SB ◦ S as maps HomC(A,B) →
Hom(SB, S2A)∨ [10, 11]. A Serre functor SX for the (bounded) derived category

Db Coh(X) of a smooth projective variety X over a field K is given by SX = · ⊗
KX[dim X]. The maps φX,Y are Serre duality isomorphisms.

A Calabi–Yau (CY) structure of dimension n on C is a Serre functor (S, φ) in which S

is the shift functor Z 7→ Z[n]. If X is a smooth projective Calabi–Yau variety, equipped

with an nform Ω trivializing KX , then its derived category has a CY structure induced

by the isomorphism Ω : O→ KX . The role of Ω is to normalize the CY structure.

The cohomological (not derived) Fukaya category HF(M) of a (compact or exact)

symplectic manifold M2n , with coefficients in a field K, comes with a natural Calabi–

Yau structure: φL0,L1
is the Floertheoretic Poincaré duality isomorphism HF(L0, L1) ∼=

HF(L1, L0)∨[n]. It is a subtler matter to obtain a Calabi–Yau structure on the derived

Fukaya category DF(M). It is expected that such a structure does exist, and is

canonical, and arises from a cyclic symmetry defined on the A∞ level (see [20] for

a construction of such a cyclic symmetry over R, and [33] for an account of the

relevant homological algebra), but this more refined structure will play no role in our

considerations.

A CY structure gives a canonical ‘trace map’ trX = φX,X(idX) : Homn
C(X,X) → K.

From the trace maps, one can reconstruct all the maps φX,Y . In this article we think of

CY structures in terms of their trace maps; a functor preserving CY structures will be

called tracepreserving.

We shall need to say what we mean by a CY structure for a category over a commutative

ring L. The categories in question are of form H0C, where C is an A∞ category, and

this permits us to make an expedient (but not fully satisfactory) definition:

Definition 2.1 A CY structure consists on the Llinear A∞ category C consists of

cochainlevel maps

φA,B : homC(A,B) ≃ homC(B,A[n])∨

such that the induced maps on cohomology

[φA,B ⊗ 1F] : HomH0(C×LF)(A,B) ≃ HomH0(C×LF)(B,A[n])∨
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form a CY structure for each residue field L→ F→ 0. (Note that since the homspace

in C are projective modules, they are also flat, so tensoring them with F commutes

with H0 .) If C and D have CY structures, an A∞ functor ψ : C→ D is called trace

preserving if the induced functors H0(C⊗ F)→ H0(D⊗ F) are all tracepreserving.

With this definition, Fukaya categories have CY structures over arbitrary rings L,

since Poincaré duality is defined at cochain level but our demands on the maps are all

at cohomologylevel.2

Perfect complexes. Let X be a scheme. A strictly perfect complex is a bounded

complex of locally free, finite rank OX modules. A perfect complex is a cohomo

logically bounded complex P• of coherent sheaves of OX modules which is locally

quasiisomorphic to a strictly perfect complex. Inside the bounded derived category

of coherent sheaves Db Coh(X), one has a full triangulated subcategory Perf(X) of

perfect complexes.

We will need to consider dg enhancements of Perf(X); that is, we want a pre

triangulated dg category C and an equivalence of triangulated categories ε : H0(C)→
Perf(X). When X is a projective scheme over a field K, Perf(X) has a dg enhancement

(C, ε) which is unique: if (C′, ε′) is another then there is a quasifunctor φ : C → C′

such that ε′ ◦ H0(φ) = ε [36]. Since we wish to work over more general base rings,

and for computational purposes, we specify a dg enhancement of Perf(X), valid for X

a projective noetherian scheme, as follows.

Assume X is separated and noetherian. Fix an affine open covering U of X . Define a

dg category vect(X) whose objects are locally free sheaves (=vector bundles) of finite

rank, and whose homspaces, denoted R hom•(E,F), are Čech complexes:

R hom•(E,F) =
(
Č•(U;Hom(E,F)), δ

)
,

with δ the Čech differential. The cohomology of the Čech complex is

RHom•(E,F) = Ȟ•(U;Hom(E,F)) ∼= Ext•(E,F)

by [24, Theorem III.4.5] and the fact that Ext•(E,F) ∼= H•(E∨ ⊗ F). Composi

tion combines the shuffle product of Čech cochains with the composition of sheaf

morphisms. Whilst vect(X) depends on the open covering, different choices lead to

quasiisomorphic dg categories (take the union of the two coverings). We now pass to

the pretriangulated dg category tw vect(X) of twisted complexes. There is an embed

ding H0(tw vect(X))→ Perf(X), mapping a twisted complex to its total complex. This

2This does not apply to wrapped Fukaya categories.
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embedding is a quasiequivalence, because every perfect complex is quasiisomorphic

to a strictly perfect complex [58, Prop. 2.3.1(d)].

Another approach to dg enhancement is to use injective resolutions; the equivalence of

the injective and Čech approaches is shown in [46, Lemma 5.1], over fields; the proof

remains valid over rings.

Grothendieck–Serre duality defines a CY structure for tw vect(X) when X is equipped

with a trivialization of the relative dualizing sheaf ωX/L . In Theorem A, the functor ψ
is tracepreserving.

2.2 Geometry of Weierstrass curves

2.2.1 Genusone curves

We shall need to work with curves over the rings Z and Z [[q]], and to this end we note

some terminology for curves over schemes (cf. for example [17, 13]). A curve over a

noetherian scheme S is a morphism of schemes π : C → S that is separated, flat and

finitely presented, such that for every closed point s ∈ S the fiber Cs is nonempty of

pure dimension 1. The Euler characteristic χ(Cs,OCs) is then locally constant; when

it is constant and equal to 1− g, and the geometric fibers are connected, we say that C

has arithmetic genus g.

We shall always apply the restrictions that curves are to be proper, and that the fibres

Cs are Cohen–Macaulay. This implies that one has a dualizing sheaf ωC/S , and where

C → S is regular it coincides with the sheaf of differentials Ω1
C/S

. A reminder on

duality [14]: there is an intrinsic residue isomorphism of sheaves on S

res : R1 f∗(ωC/S)→ OS.

With the Yoneda (composition) product ⌣, this defines the Serre duality pairing,

RHom1−i
S (F, ω1

C/S)⊗ Ri f∗(F)
⌣
→ R1 f∗(ω1

C/S)
res
→ OS,

for any coherent sheaf F .

A curve has arithmetic genus one if and only if OC
∼= ωC/S , i.e., if and only if OC

is a dualizing sheaf. If ω : OC → ωC/S is an isomorphism then it composes with the

residue map to give an isomorphism

trω : R1 f∗(OC)→ OS,

and a Serre duality pairing

RHom1−i
S (F,OC)⊗ Ri f∗(F)

⌣
→ R1 f∗(OC)

trω→ OS

which induces a perfect pairing on stalks at any closed point s ∈ S .
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2.2.2 Weierstrass curves: definitions

Definition 2.2 An abstract Weierstrass curve (C, σ, ω) over S is a curve C → S

of arithmetic genus one, such that each geometric fiber Cs is irreducible, equipped

with a section σ : S → C of π and a specific isomorphism ω : OC → ωC/S . An

isomorphism of abstract Weierstrass curves (C1, σ1, ω1) and (C2, σ2, ω2) over S is an

isomorphism f : C1 → C2 of Sschemes such that f ◦ σ1 = σ2 , and such that the map

f ∗ω2 : f ∗OC2
→ f ∗ωC2/S coincides with ω1 under the identifications f ∗OC2

∼= OC1
and

f ∗ωC2/S
∼= ωC1/S induced by f .

Definition 2.3 An embedded Weierstrass curve over S = SpecR is a curve C ⊂ P2
S

embedded as a cubic

(10) y2
+ a1xy + a3y = x3

+ a2x2
+ a4x + a6 (ai ∈ R).

Such a curve comes with its point at infinity p = [0 : 1 : 0], which defines a section

σ of C → S . It also comes with a standard differential ω , possibly with poles at the

singular points: Writing the cubic equation as w(x, y) := y2 − x3 + · · · = 0, one has

ω = dx/wy at points where wy 6= 0, and ω = −dy/wx at points where wx 6= 0.

Lemma 2.4 Assume that R is a normal ring (i.e., R is reduced and integrally closed

in its total quotient ring). Then ω defines a section of the dualizing sheaf ωC/R .

Proof Let R[a] = R[a1, a2, a3, a4, a6]—another normal ring. It will suffice to prove

the assertion for the ‘universal Weierstrass curve’ p : C → SpecR[a] defined by (10),

since the formation of the dualizing sheaf is compatible with the specialization to

particular values of the ai .

The scheme C is normal: in the open set U where (10) is valid, a6 is a function of

the other variables, so projection U → SpecR[x, y, a1, a2, a3, a4] is an isomorphism,

and R[x, y, a1, a2, a3, a4] is normal. Along the section at infinity σ = [0 : 1 : 0], the

fibers of p are regular, and the base normal, so the total space is normal. The relative

dualizing sheaf ωC/R[a] is an invertible sheaf, since all its fibers are Gorenstein (being

local complete intersections). The locus where the fibers of p are singular is defined

by wx = wy = 0. This locus has codimension 2 in C: it maps to the codimension

1 locus {∆ = 0} ⊂ SpecR[a] defined by the vanishing of the discriminant, and

it has codimension 1 in each fiber. Since ω is a section of ωC/R[a] defined outside

a codimension 2 subset of a normal scheme, it extends to a global section, by the

algebraic counterpart to Hartogs’s theorem.3

3One can take this to be the statement that an integrally closed subring A of a field K is the

intersection of the valuation rings in K which contain A [8, 5.22].
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Thus an embedded Weierstrass curve functorially defines an abstract Weierstrass curve

(C, σ, ω). By Riemann–Roch, every abstract Weierstrass curve is isomorphic to an

embedded one. To specify the embedding into P2 , one must give a basis of H0(OC(3σ))

of the form (1, x, y), where 1 is the regular function with value 1, and x ∈ H0(OC(2σ)).

The denominatorfree form of the argument is given at [29, p. 68], for instance.

2.2.3 Reparametrization group

The algebraic group G ⊂ PGL(3) of elements which preserve Weierstrass form consists

of matrices (up to scale) of the shape

(11)




u3 s t

0 u2 r

0 0 1


 , u ∈ Gm.

We shall call G the reparametrization group for embedded Weierstrass curves. It acts

on embedded Weierstrass curves via the substitutions

x = u2x′ + r, y = u3y′ + u2sx′ + t.

The effects of a substitution on the Weierstrass coefficients are listed in [16] or [54]:

ua′1 = a1 + 2s(12)

u2a′2 = a2 − sa1 + 3r − s2(13)

u3a′3 = a3 + ra1 + 2t(14)

u4a′4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st(15)

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.(16)

The unipotent subgroup U ≤ G of elements where u = 1 is the subgroup which

preserves the differential ω . Thus if g ∈ U then g : C → g(C) is an isomorphism of

abstract Weierstrass curves.

The Lie algebra. The Lie algebra g of G is spanned by four vectors:

∂s :=




0 1 0

0 0 0

0 0 0


 , ∂r :=




0 0 0

0 0 1

0 0 0


 , ∂t :=




0 0 1

0 0 0

0 0 0


 ,

(these three span the Lie algebra u of U ) and

∂u :=




3 0 0

0 2 0

0 0 0


 .
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The derivative of the Gaction on

(17) W := SpecK[a1, a2, a3, a4, a6]

is an action of g on W by a Lie algebra homomorphism

(18) ρ : g→ vec(W),

which we think of as a map ρ : g×W → W . The partial derivative (∂ρ/∂w)|w=0 : g×
W → W makes W a gmodule. We can form a differential graded Lie algebra (DGLA)

concentrated in degrees 0 and 1,

(19) L = {g
d
→ W}, d(ξ) = ρ(ξ, 0),

whose bracket combines the Lie bracket of g with the module structure of W . Thus

L captures the truncation of ρ where we only work in a firstorder neighborhood of

0 ∈ W .

There are K× actions on g and on W , intertwined by d . The action on W is given by

τ ·aj = τ−jaj ; that on g by τ ·∂s = τ−1∂s , τ ·∂r = τ−2∂r , τ ·∂t = τ−3∂t , τ ·∂u = ∂u .

Thus W and g are graded Kmodules.

Explicitly, taking (∂s, ∂r, ∂t, ∂u) as basis for g, and (a1, a2, a3, a4, a6) as coordinates

for W , one has

d =




2 0 0 0

0 3 0 0

0 0 2 0

0 0 0 0

0 0 0 0




and

Wg := coker d =

a1

K

(2)
[1] ⊕

a2

K

(3)
[2] ⊕

a3

K

(2)
[3] ⊕

a4

K[4] ⊕
a6

K[6],(20)

ker d =
∂u

K ⊕

∂s

K

(2)
[1] ⊕

∂r

K

(3)
[2] ⊕

∂t

K

(2)
[3] .(21)

2.2.4 The cuspidal cubic

The cuspidal Weierstrass curve

(22) Ccusp = {y2 − x3
= 0}

will play a special role in our story, stemming from the fact that the full subcategory of

its derived category whose objects are the structure sheaf and the skyscraper at infinity
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is formal. Let X = P1 , and let p : SpecK → X be the Kpoint [0 : 1]. Let z denote

the standard affine coordinate A1 → P1 , z 7→ [z : 1]. One has the structure sheaf OX ,

and inside it the sheaf Op ⊂ OX of functions f such that Df (p) = 0 (that is, in terms

of the local coordinate z, functions f (z) = f (0)+O(z2)). Let Xcusp denote the scheme

(X,Op).

Lemma 2.5 The abstract Weierstrass curve underlying Ccusp is isomorphic to

(Xcusp, p, z
−2dz),

Proof The normalization of Ccusp is a nonsingular rational curve C̃ with a distin

guished point c which maps to the cusp under the normalization map ν : C̃ → Ccusp .

We fix an isomorphism X → C̃ mapping p to c. The map ν is a homeomorphism in

the Zariski topology, and so defines a schemetheoretic isomorphism (C̃, ν∗OCcusp)→
(Ccusp,OCcusp). One has OCcusp

∼= Op : the local model near the cusp is the map of

Kalgebras K[x, y]/(y2 − x3) → K[z] given by x 7→ z2 and y 7→ z3 , whose image is

K.1⊕ z2K[z].

The Op module of differentials Ω1
Xcusp

is given by the submodule of Ω1
X(2p) (mero

morphic differentials on X with a double pole at p) formed by the differentials with

vanishing residue at p. In terms of the affine coordinate z near p, the differential of a

function g(z) = a+ bz2 + . . . is dg = g′(z)dz. The Weierstrass differential ω is given

by ω = dx/(2y) = dy/(3x2) (in characteristics 2 and 3 only one of these expressions

makes sense). In terms of z, one has ω = z−2dz; this makes global sense because

ω = −d(z−1).

3 Perfect complexes on Weierstrass curves

3.1 The twoobject dg category associated with a Weierstrass curve

In this subsection we explain how to pass from a Weierstrass curve C → SpecR to a

twoobject dg category BC with standard cohomology. Consider a genusone curve C

over a noetherian affine scheme S . It has a dg category vect(C), defined via an affine

open covering, linear over the ring OS . The dg category tw vect(C) for an abstract

Weierstrass curve (C, σ, ω) over SpecR has extra structure in the form of a trace

pairing tr, as described in the introduction. It also has distinguished splitgenerators,

namely, the structure sheaf and the skyscraper OC,σ = σ∗OSpecR at σ (more properly,

its locallyfree resolution O→ O(σ)):
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Lemma 3.1 For a Weierstrass curve C → SpecR over a noetherian affine scheme,

one has

tw vect(C) = 〈OC,OC,σ〉.

Here 〈·〉 denotes the smallest dg subcategory of tw vect(C) closed under quasi

isomorphisms, shifts, mapping cones and passing to idempotents.

Proof We claim first that, if O(1) is a very ample line bundle on C , then tw vect(C) is

splitgenerated (i.e., generated under quasiisomorphisms, shifts, mapping cones and

passing to idempotents) by the twists {O(n)}n<0 . The argument is as in [46, Lemma

5.4], which Seidel attributes to Kontsevich. Take a locally free sheaf V on C . By

Serre’s theorem that very ample implies ample [24, Theorem II.5.17], which is valid for

noetherian projective schemes, one can find an epimorphism O(m)⊕r → V for some

m≪ 0. Iteratively, one can find for each k a left resolution

0→ V ′ → O(mk)⊕rk → · · · → O(m1)⊕r1 → V → 0.

There results an exact triangle in D(C)

{O(mk)⊕rk → · · · → O(m1)⊕r1} → V → V ′[k]
+
→ .

Now, Extk
R(V,V ′) = Hk(C,V∨ ⊗ V ′), and if we take k > dim C = 1 + dim R, this

Extmodule must vanish. Consequently, the exact triangle splits and defines a quasi

isomorphism

{O(mk)⊕rk → · · · → O(m1)⊕r1} → V ⊕ V ′[k].

Thus V is a direct summand in the object on the LHS. Note also that V ′ is a perfect

complex, because it is the mapping cone of a map of perfect complexes; therefore, V ′

is quasiisomorphic to a strictly perfect complex. This proves that every locally free

sheaf lies in the splitclosure of the collection {O(n)}n<0 . It follows that the same is

true of every object of tw vect(C).

Note next that 〈OC,OC,σ〉 includes OC(nσ) for each n ≤ 0, by a straightforward

induction. But O(3σ) is a very ample line bundle, so now the claim completes the

proof.

A twoobject subcategory. Let BC denote the full dg subcategory of tw vect(C)

with the two objects OC and OC,σ and with the trace map trω . It is defined up to

quasiisomorphisms acting trivially on cohomology. To be precise, we shall define

BC using the Čech complexes associated with an affine open covering U. If we

pick two coverings U1 and U2 , we get dg categories BU1
and BU2

, and a zigzag of

quasiisomorphisms

BU1
← BU1∪U2

→ BU2
.
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The cohomology category H∗BC is truly canonical—defined up to canonical isomor

phism.

An isomorphism g : C1 → C2 of abstract Weierstrass curves is a homeomorphism

g, together with a local isomorphism of sheaves of Smodules g# : OC2
→ g∗OC1

,

respecting the sections and differentials. That means, first, that σ2 : S → C2 is the

composite g ◦ σ1 ; this implies a canonical isomorphism OC2,σ2
→ g∗OC1,σ1

. The

isomorphism g induces isomorphisms between the abelian categories of coherent

sheaves on C1 and C2 , preserving the objects O and Oσ . This naturally extends to an

isomorphism of dg categories g∗ : BC1
→ BC2

, provided that we use an open covering

U for C1 and g(U) for C2 . Thus, if we have g12 : C1 → C2 and g23 : C2 → C3 with

composite g13 , then the composite isomorphism g23∗ ◦ g12∗ : BC1
→ BC3

coincides

with g13∗ , provided again that we use the coverings U, g12(U) and g13(U). If we do

not, then we get instead the formal composite of chains of quasiisomorphisms:

Bg12(U1)∪U2

%%��

Bg23(U2)∪U3

�� %%
BU1

// Bg12(U1) BU2
// Bg23(U2) BU3

The cohomology category. We shall be interested in the map which assigns to

each Weierstrass curve (C, ω, σ) a gradedlinear cohomology category AC and a dg

categorywithtrace,

(C, ω, σ) 7→ BC,

with an isomorphism H∗BC
∼= AC , defined up to quasiisomorphisms acting trivially

on AC .

Proposition 3.2 The category AC is independent of the abstract Weierstrass curve.

Precisely: There is an OS linear graded category A with two objects O and Oσ ,

equipped with a trace map tr , such that the following holds: For any abstract Weierstrass

curve (f : C → S, ω, σ) the cohomology category AC = H∗(BC) is tracepreservingly

isomorphic to A in such a way that if C1 → C2 is any isomorphism of Weierstrass

curves then the resulting map A→ A is the identity.

In other words, the category of Extmodules between OC and OC,σ is independent of

(C, σ, ω) as a graded Klinear category with trace.

To prove the proposition, we examine the structure of H∗BC . Writing O = OC and

Oσ = OC,σ := σ∗OS , one has canonical isomorphisms

RHomS(O,O) ∼= R f∗(O) ∼= OS ⊕ R1 f∗(O),

RHomS(Oσ,Oσ) ∼= Λ
∗(σ∗TC) ∼= OS ⊕ σ

∗TC
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Thus both endomorphism spaces are 2dimensional and sit in degrees 0 and 1. The

trace isomorphisms

trω : R1 f∗(O)→ OS

trω : σ∗TC → OS

are, in the first case, the one that we have discussed (the composite of ω and the residue

pairing) and in the second case the pullback by σ of the composite

TC → TC ⊗O O
id⊗ω
−−−→ TC ⊗ ωC/S

evσ−−→ O,

where evσ is the map defined by evaluating ω—viewed as a differential—on tangent

vectors at σ . One has

RHomS(O,Oσ) = R0 HomS(O,Oσ) ∼= f∗(Oσ) ∼= OS.

Finally, one has isomorphisms

RHomS(Oσ,O) = R1 HomS(Oσ,O)

∼= R1 HomS(Oσ,O)⊗OS
OS

∼= R1 HomS(Oσ,O)⊗OS
R0 HomS(O,Oσ)

⌣
−→ R1 HomS(Oσ,Oσ)

trω−→ OS.

We now describe the category A demanded by the proposition above. Let X = O and

Y = Oσ . We have seen how to use ω to obtain algebra isomorphisms

End(Y) ∼= Λ
∗(OS[−1]) ∼= End(Y)

such that the trace maps correspond to the identity map of OS . We also have exhibited

isomorphisms Hom(X, Y) = OS and Hom(Y,X) = OS[−1]. The composition maps

are mostly dictated by the requirements of grading and unitality. The interesting ones

are

Hom1(Y,X)⊗Hom0(X, Y)→ Hom1(Y, Y), Hom0(X, Y)⊗Hom1(Y,X)→ Hom1(X, Y).

These are both given by the multiplication of functions

OS ⊗ OS → OS.

The objects X and Y and their morphisms form a gradedlinear CY category (A, tr),

independent of C .
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Differential graded structure. While the cohomology category A = AC is indepen

dent of C , the dg structure of BC is fully sensitive to the curve C :

Theorem 3.3 (dg comparison theorem) Work over a field K.

(1) Let B be a dg category with trace such that H∗(B) ∼= A. Then there exist an ab

stract Weierstrass curve (C, ω, σ) and a tracepreserving A∞ quasiisomorphism

B→ BC .

(2) If (C, ω, σ) and (C′, ω′, σ′) give rise to quasiisomorphic dg categories with

trace, i.e., BC is related to BC′ by a zigzag of tracepreserving isomorphisms,

then (C, σ, ω) ∼= (C′, σ′, ω′).

We state this result now so as to indicate our aims. However, we will establish it as

a corollary of a more detailed statement, Theorem C, and it will in fact be the latter

result which we use, not Theorem 3.3.

Remark. The proofs will be given later, but we offer two hints. For the uniqueness

clause, the point is that there is a construction which assigns to any such category

B a sequence Tn of twisted complexes in a uniform manner. When B = BC , one

has Tn ≃ OC(nσ). One further constructs multiplication maps H0(Tn) ⊗ H0(Tm) →
H0(Tm+n). When B = BC , these reproduce the multiplication H0(O(m))⊗H0(O(n))→
H0(O(m + n)). Thus the coordinate ring of the affine curve C◦ , the open complement

of imσ , is determined by BC . The existence clause (1) is plausible because one has

H0(Λ2T∗
C) = 0 and H2(OC) = 0. As a result, Perf(C) has no Poisson deformations

and no noncommutative deformations, and it is reasonable to expect all deformations

of Perf(C) to be geometric.

The cuspidal cubic Ccusp = {y2 − x3 = 0} has the following special property, which

already appeared in [35]:

Lemma 3.4 The dga Bcusp := BCcusp is formal.

Proof We may transfer the dg structure of Bcusp to a minimal A∞ structure on

A = H∗Bcusp . The transfer of dg structure will be described in detail in the proof

of Lemma 5.2. The goal, then, is to prove that the A∞ structure maps µd vanish for

d > 2.

Ccusp is the curve {Y2Z = X3} ⊂ P2 . The multiplicative group Gm acts on Ccusp by

t · (X, Y, Z) = (t−2X, t−3Y, Z), preserving the point σ = [0 : 1 : 0], and therefore acts

on Bcusp . The action of Gm on Bcusp induces an action on the cohomology A, and the
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transfer will be set up equivariantly so that the resulting A∞ structure has the property

that µd(t · ad, . . . , t · a1) = t · µd(ad, . . . , a1).

A short computation leads to the following conclusion: the weight of the Gm action on

a homspace Homk
A(X,X′) (where X is O or Oσ , ditto X′ ) is equal to the degree k . Now

take (X0, . . . ,Xd) a sequence of objects (O or Oσ ), and take aj ∈ hom
kj

Bcusp
(Xj−1,Xj).

For the equation µd(t · ad, . . . , t · a1) = t · µd(ad, . . . , a1) to hold, one must have

k1 + · · ·+ kd + 2− d = k1 + · · ·+ kd, i.e., d = 2.

3.2 Stable vector bundles on T0

When we come to prove Theorem A, clause (iii), we will need to apply Thomason’s

theorem about Grothendieck groups [57], and for that we shall need to know K0(T0).

We think of T0 , the central fiber of the Tate curve, as the curve over SpecZ obtained

from P1 by identifying p = [1 : 0] and q = [0 : 1]. By definition, K0(T0) is the

Grothendieck group of the abelian category of vector bundles (locally free sheaves

of finite rank) on T0 . It can also be thought of as K0(Perf T0), the Grothendieck

group of the triangulated category of perfect complexes.4 The proof of the following

lemma is more substantial than one might expect. As partial justification, we point out

that K0(T0) is an absolute invariant of the scheme T0 —it is not defined ‘relative to

SpecZ’—and that T0 is 2dimensional as a scheme.

Lemma 3.5 The map (rank, det) : K0(T0)→ Z⊕Pic(T0) is an isomorphism. Thus a

vector bundle on T0 with trivial determinant is stably trivial.

Proof Let K0(R) denote the Grothendieck group of finitelygenerated projective

modules over the commutative ring R. We also have the reduced group K̂0(R) =

ker(rank : K0(R) → Z) and the group of ‘stable endomorphisms’ K1(R). For the

following standard results in Ktheory we refer to the text [62] (see in particular the

‘Fundamental theorem for K1 ’ (3.6)). We have K̂0(Z) = 0 since Z is a PID. The units

R× are always a subgroup of K1(R), and one has K1(Z) = Z× . Since Z is a regular

ring, the inclusioninduced maps K̂0(Z) → K̂0(Z[t]) and K1(Z) → K1(Z[t]) are iso

morphisms. One has a split injection K1(Z[t])→ K1(Z[t, t−1]), induced by the natural

map Z[t]→ Z[t, t−1], whose cokernel is K0(Z). Hence K1(Z[t, t−1]) ∼= Z⊕ Z× .

There is a group K0(Z[t] on (t)) of complexes of f.g. projective Z[t]modules whose

cohomology is bounded and supported on the ideal (t); and an exact sequence

K1(Z[t]) −→ K1(Z[t, t−1])
∂
−→ K0(Z[t] on (t)) −→ K̂0(Z[t])

4That is, the abelian group generated by the objects, with a relation [B] = [A] + [C] for

each distinguished triangle A→ B→ C→ A[1].
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[58, (5.1)]. From our discussion, we see that the first map has cokernel Z and that

K̂0(Z[t]) = 0, whence K0(Z[t] on (t)) ∼= Z.

Now consider the ‘node’ R = Z[x, y]/(xy), and the normalization map ν : R →
Z[t]⊕Z[t], namely, ν(f ) = (f (x, 0), f (0, y)). One has K̂0(K[t]⊕K[t]) = 0. The kernel

of ν∗ : K̂0(R)→ K̂0(Z[t]⊕Z[t]) is also zero, because a f.g. projective Rmodule M is

determined by ν∗M—which is given by a pair of f.g. projective Z[t]modules M1 and

M2 —and ‘descent data’, an isomorphism θ : M1/tM1 → M2/tM2 . By stabilizing, we

may assume that M1 and M2 are free, and choosing appropriate bases we can make θ
the identity matrix. Hence K̂0(R) = 0.

We have (from [58, (5.1)] again) a commutative diagram with exact rows

(23)

K1(R) //

ν∗
��

K1(R[x−1, y−1]) //

∼= ν∗
��

K0(R on (x, y)) //

ν∗
��

0

0 //
⊕2

K1(Z[t]) //
⊕2

K1(Z[t, t−1]) //
⊕2

K0(Z[t] on (t)) // 0

The middle vertical arrow is an isomorphism, since it is induced by a ring isomor

phism. Note that K1(R) contains the units Z× . Chasing the diagram, we see that

K0(R on (x, y)) ∼= Z2 ⊕ S , where the summand Z2 mapped isomorphically by ν∗ to⊕2
K0(Z[t] on (t)), and S is either Z× or 0.

We now switch from rings to schemes, referring to [58] for foundational matters. If Z

is a closed subscheme of X , K0(X on Z) is the Grothendieck group of the triangulated

category of perfect complexes on T0 whose cohomology sheaves are coherent and

supported on Z .

The map det : K̂0(T0) → Pic(T0) is surjective—apply it to a line bundle. We must

prove its injectivity. Let ν : P1 → T0 be the normalization map. Let Z be the closure

of the image of the nodal section of T0 , and j : U → T0 the inclusion of the open

complement of Z . There is a commutative diagram with exact rows

(24) K1(U)
∂ //

=ν∗

��

K0(T0 on Z)
µ //

ν∗

��

K̂0(T0)
j∗ //

ν∗

��

K̂0(U)

=ν∗

��

K1(U)
∂′// K0(P1 on {p, q})

µ′ // K̂0(P1) // K̂0(U)

.

The groups K0(X on Z) have an excision property [58, (3.19)], which tells us for

instance that restriction induces an isomorphism K0(T0 on Z) = K0(V on Z), where V

is any open neighborhood of Z . Further, it tells us that K0(V on Z) = K0(V̂Z on Ẑ),

where V̂Z is the completion of V along Z , and Ẑ the image of Z . Similarly,

K0(P1on {p, q}) = K0(P̂1
{p,q}

on {p̂, q̂}) =
2⊕

K0(Z [[t]] on (t)) =

2⊕
K0(Z[t] on (t)).



Arithmetic mirror symmetry for the 2torus 25

Now, V̂Z is isomorphic to SpecZ [[x, y]] /(xy), and by naturality of normalization, the

map ν : V̂Z → P̂1
{p,q}

corresponds to the normalization map ν : SpecZ [[x, y]] /(xy)→

Spec
⊕2

Z [[t]], which is itself the completion of ν : SpecZ[x, y]/(xy)→ Spec
⊕2

Z[t].

The upshot is that the map ν∗ : K0(T0 on Z) → K0(P1 on {p, q}) in (24) can be

identified with the arrow ν∗ : K0(R on (x, y)) →
⊕2

K0(Z[t] on (t)) in (23). Hence

ker
[
K0(T0 on Z)→ K0(P1 on {p, q})

]
= S .

Now take e ∈ K̂0(T0) with det e = 1 ∈ Pic(T0). Then det ν∗e = 1 ∈ Pic(P1), and

ν∗e = 0 ∈ K̂0(P1) [58, (4.1)]. Hence j∗e = 0 ∈ K̂0(U). Thus e is the image µ(f )

of some f ∈ K0(T0 on Z), and ν∗f maps to zero in K̂0(P1). So ν∗f = ∂′g for some

g ∈ K1(U). Then f − ∂g ∈ S ⊂ K0(T0 on Z), and so e ∈ µ(S).

Let ℓ ∈ Pic(T0) be the linebundle obtained from the trivial line bundle on P1 by gluing

the fibers over the [0 : 1] and [1 : 0] by the map (−1) ∈ Z× . Let x = [ℓ]−1 ∈ K̂0(T0).

Then det x 6= 1 ∈ Pic(T0), so x 6= 0. We have j∗x = 0, so x = µ(y), say. Also

ν∗x = 0; hence µ′(ν∗y) = 0, and so ν∗y = ∂′z, say, and y− ∂z ∈ S . If S were zero,

we would have x = µ ◦ ∂z = 0. Hence S is not zero, which we have seen implies

that S = Z× , and therefore µ(S) = {0, x}. So our class e from the previous paragraph

must be zero.

4 Hochschild cohomology via algebraic geometry

In the previous section we set up a twoobject, graded linear category A, the coho

mology AC = H∗BC of a dg category associated with an arbitrary Weierstrass curve.

We can view (the sum of direct sum of the homspaces in) A as a Kalgebra. In this

section we compute its Hochschild cohomology HH•(A,A) as a bigraded algebra; or

more precisely, the truncated version HH•(A,A)≤0 relevant to noncurved A∞ defor

mations [46]. Later (Theorem 5.6) we shall complete the picture by determining the

Gerstenhaber bracket. Our main result is as follows:

Theorem B Let K be any field. Introduce the commutative graded Kalgebra

T = K[x, y]/(y2 − x3, 2y,−3x2),

concentrated in degree zero. Make it a bigraded algebra by assigning the following

internal degrees s to the generators:

s(x) = 2; s(y) = 3.

Introduce also the free gradedcommutative graded algebra

S•
= K[β, γ] = K[β]⊗ Λ[γ], degβ = 2, deg γ = 1,
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made a bigraded algebra by assigning internal degrees

s(β) = −6; s(γ) =





0, 6 6= 0 ∈ K

−2, 3 = 0;

−3, 2 = 0.

Define the bigraded algebra Q• = T ⊗ S• . Let Q•,≤0 denote the subalgebra of Q•

spanned by those classes with s ≤ 0. Then there is a canonical isomorphism of

bigraded algebras

HH•(A,A)≤0 → Q•,≤0.

(The bihomogeneous classes of Q• with s > 0—i.e., the bihomogeneous classes

omitted in Q•,≤0 —are spanned by x and xγ when 6 6= 0; by x , x2 and x2γ when

3 = 0; and by x , y, xy and xyγ when 2 = 0.)

Remark. By definition, HHr+s(A,A)s = Extr
(A,A)(A,A[s]), the (r + s)th derived ho

momorphism A → A[s] in the category of graded (A,A)bimodules. Composition of

bimodulehomomorphisms yields, on the derived level, an associative product making

HH•(A,A) a graded Kalgebra with an additional internal grading s. The product is

gradedcommutative with respect to the cohomological grading • [22]. The truncation

HH•(A,A)≤0 , in which s is required to be nonpositive, is a subalgebra. Theorem B

does not make any claims about the untruncated Hochschild algebra.

The rank of HHr(A,A)s was computed by the authors in [35] by a different method.

Another approach has been found, in characteristic 0, by Fisette [19], who also makes

the link between A∞ structures and elliptic curves. Although the additive result is the

only part that is essential, we choose to present here this more complete calculation,

proved via algebraic geometry on a cuspidal cubic curve Ccusp , by a method explained

to us by Paul Seidel.

Lemma 4.1 Let Ccusp be a cuspidal Weierstrass curve over the field K. Then

HH•(A,A) ∼= HH•(Ccusp).

This lemma is restated as part of Prop. 4.4 and proved there. One can compute

HH•(Ccusp) using sheaf theory; the heart of the calculation is that of HH•(R,R), where

R = K[x, y]/(y2 − x3). The latter calculation can be done—as for any complete

intersection singularity—by using a Koszul resolution to replace R by a smooth affine

dg manifold, for which a version of the Hochschild–Kostant–Rosenberg theorem is

available.

One virtue of the method is that it adapts easily to yield a computation of the Hochschild

cohomology of A with a nontrivial A∞ structure arising from a Weierstrass curve.

We shall carry out the computation for the case of a nodal curve, which we will be able

to identify with the symplectic cohomology SH∗ for the punctured torus.
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4.1 Hochschild cohomology for varieties

Note: The ideas that we review in (4.1) have undergone a lengthy evolution, which we

have not attempted to trace in detail. Our citations do not necessarily reflect priority.

4.1.1 The global HKR isomorphism

Let X be a quasiprojective scheme of dimension d over a field K. Its Hochschild

cohomology HH•(X) is defined as

HH•(X) := Ext•

X×X(δ∗OX, δ∗OX),

where δ : X → X × X is the diagonal map [55]. When X is smooth, there is a natural

morphism of complexes of sheaves

(Lδ∗)(δ∗OX)→
⊕

r

Ω
r
X[r]

(trivial differential in the complex on the right), the Hochschild–Kostant–Rosenberg

(HKR) map; see [63] or the précis in [12]. When d! is invertible in K—which means

that char(K) is either 0 or > d—the HKR map is a quasiisomorphism.5 From the

HKR map and the adjunction RHom•

X×X(δ∗OX, δ∗OX) ∼= RHom•

X((Lδ∗)(δ∗OX),OX),

one obtains, under this assumption on K, an isomorphism of graded Kvector spaces

HKRn : HHn(X)→
⊕

p+q=n

Hp(ΛqTX).

The Hodge spectral sequence. For X quasiprojective over K, there is a sheaf of

graded algebras HH∗ on X , the sheafification of a natural presheaf whose sections are

Γ(U) = HH∗(U). There is by [55] a localtoglobal (or ‘Hodge’) spectral sequence

E∗∗
∗ converging to HH∗(X), with

(25) E
pq
2
∼= Hp(X,HHq).

When X is smooth of dimension d , and d! is invertible in K, one has HHq ∼= ΛqTX

by the HKR isomorphism. Comparing dimensions of HHn(X) and En
2 , one sees that

the spectral sequence degenerates at E2 . One therefore has

Epq
∞ = E

pq
2
∼= Hp(X,ΛqTX).

As a sheaf of graded algebras, HH has cohomology spaces which form a bigraded

algebra H∗(X,HH•). Like any localtoglobal spectral sequence computing selfExts,

the Hodge spectral sequence is multiplicative. From this one sees:

5For a general field K , this map may not be a quasiisomorphism but it is nevertheless true

([61, Ex. 9.1.3],) that HH•(X,X) ∼= Λ•TX when X = An .



28 Yankı Lekili and Timothy Perutz

Lemma 4.2 For X a quasiprojective Kscheme, the edgemap HH•(X) → E
0,•
2 =

H0(X;HH•) is an algebra homomorphism.

4.1.2 Derived categories

Let QC(X) denote a dg enhancement for the unbounded derived category of quasi

coherent sheaves on the Kscheme X (e.g. [36, 59]). Thus one has an equivalence of

H0(QC(X)) with the unbounded derived category. There is a natural isomorphism of

rings [59]

HH∗(X)→ HH∗(QC(X)),

where by the latter we mean the Hochschild cohomology of the dg category QC (i.e.,

selfExt of the identity functor). Let P̃erf(X) be the full dg subcategory of QC(X) of

objects which map to perfect complexes in the unbounded derived category. Since

P̃erf(X) is a full subcategory of QC(X), there is a restriction (ring) map

HH∗(QC(X))→ HH∗(P̃erf(X)),

and this too is an isomorphism when X is quasiprojective, because QC(X) is the

indcompletion of P̃erf(X) [9]. When X is quasiprojective, we also have P̃erf(X) ≃
tw vect(X). Putting these facts together, we obtain the following:

Lemma 4.3 For any quasiprojective Kscheme X , one has a canonical algebra

isomorphism

HH•(tw vect(X)) ∼= HH•(X).

If T is a splitgenerator for tw vect(X), the Morita invariance of Hochschild cohomol

ogy (e.g. [59]) implies that the restriction map

HH•(tw vect(X))→ HH•(End(T))

is an isomorphism. Hence we have HH•(End(T)) ∼= HH•(X), and consequently

Proposition 4.4 Take an abstract Weierstrass curve (C, σ, ω) and let T = O ⊕ Oσ .

Then there is a canonical algebraisomorphism

HH•(C)→ HH•(End(T)).

In particular, by Lemma 3.4,

HH•(Ccusp) ∼= HH•(A,A).

Note that the latter isomorphism respects bigradings. The internal grading of HH•(A,A)

comes from the grading of A. The internal grading of HH•(Ccusp) arises because of

the K× action on Ccusp discussed in the proof of (3.4), which gives rise to an action

on tw vect(Ccusp), hence on Hochschild cohomology. They agree because the action

on Ccusp induces the grading of End(T) (cf. the proof of (3.4)).
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4.1.3 Curves

We now specialize to quasiprojective curves C over K. HKR reads as follows:

Lemma 4.5 For a nonsingular curve C over an arbitrary field K, one has an HKR

isomorphism of Kmodules

HKRn : HHn(C)→ Hn(O)⊕ Hn−1(TC).

For more general curves, we have the following

Lemma 4.6 For any quasiprojective curve C , one has short exact sequences

0→ H1(C,HHn−1)→ HHn(C)→ H0(C,HHn)→ 0.

Proof Since curves have cohomological dimension 1, the Hodge spectral sequence

(25) is supported at E2 in two adjacent columns p ∈ {0, 1}, and therefore degenerates.

The edgemaps then give rise to these short exact sequences.

One has HH0 = OC , while HH1 ∼= Der(OC), the sheaf of derivations of OC , also

known as the tangent sheaf TC .

To go further, we suppose that C is given with a point s ∈ C(K), and that C \ {s} is

nonsingular. We take an affine open cover U = {U,V} of C such that s 6∈ V . We

compute sheaf cohomology H∗(C,HH•) using the Čech complex Č∗ = Č∗(U,HHq).

To validate such a computation, we must check that Hi(HHq|Y ) = 0 when Y = U , V

or U∩V and i > 0. As coherent sheaves, HH0 and HH1 have no higher cohomology

on affine open subsets. When q > 1, HHq is supported at s, by (4.5). It therefore has

no higher cohomology. We now proceed with the computation.

Since V is nonsingular, (4.5) implies that HH0(V) ∼= Γ(V,OV ), HH1(V) ∼= Γ(V, TV)

and HHq(V) = 0 for q > 1. The same applies over U ∩ V . So the Čech complex is

0→ HHq(U)⊕ HHq(V)→ HHq(U ∩ V)→ 0

supported in degrees 0 and 1. Hence:

Lemma 4.7 For q > 1, one has

H0(C,HHq) ∼= HHq(U), H1(C,HHq) = 0.

Therefore, for n > 2,

HHn(C)
∼=
−→ H0(C,HHn) ∼= HHn(U) = HHn(Γ(OU),Γ(OU)).
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In low degrees, we have an isomorphism HH0(C) ∼= H0(OC) and two short exact

sequences

0→ H1(C,OC)→ HH1(C)→ H0(C,TC)→ 0(26)

0→ H1(C,TC)→ HH2(C)→ HH2(U)→ 0.(27)

In summary,

HH•(C) coincides with HH•(Γ(OU),Γ(OU)) with corrections in degrees ≤ 2 from

the cohomology of the functions and of the vector fields on C.

4.1.4 Plane curve singularities

If R = K[x, y]/(f ) is a plane curve singularity, over a field K, one can compute

HH•(R,R) via Koszul resolutions and a version of HKR. We have been informed that

such calculations go back to Quillen [42], but an explicit recipe, valid for complete

intersections, is explained by Kontsevich in [32]. The result is that

(28) HH•(R,R) ∼= H•(D, dD),

where (D, dD) is a certain dga, namely, the supercommutative Kalgebra

R⊗K[β, x∗, y∗], degβ = 2, deg x∗ = deg y∗ = 1

and dD(R) = 0, dD(β) = 0, dDx∗ = fxβ , dDy∗ = fyβ . Thus

D2n = Rβn ⊕ Rβn−1x∗y∗, D2n+1 = Rβnx∗ ⊕ Rβny∗.

With the isomorphism (28) understood, one immediately reads off the even Hochschild

cohomology of R. Let T = R/(fx, fy). In the literature T is often called the Tjurina

algebra of this isolated hypersurface singularity; it parameterizes a miniversal defor

mation of the singularity; see for instance [25, Theorem 14.1] for the case of curve

singularities.

Lemma 4.8 Assume that fx and fy are not both zero. Then the map

T → HH2n(R,R), [α] 7→ [αβn]

is an isomorphism for each n > 0. Hence
⊕

n>0 HH
2n(R,R) ∼= T ⊗ βK[β].

Let M be the Rsubmodule of R ⊕ R of pairs (α1, α2) with α1fx + α2fy = 0 ∈ R. It

has a submodule N generated by (fy,−fx). There is a skewsymmetric pairing

ω : M ⊗M → T, (α1, α2; γ1, γ2) 7→ [α1γ2 − α2γ1]
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such that ω(N ⊗M) = 0. When f is irreducible and df 6= 0, one has ω = 0. Indeed,

R is then an integral domain, and the matrix
[
α1 α2

γ1 γ2

]
,

over R, has a nontrivial kernel and therefore vanishing determinant.

Observe also that the Rmodule M/N is actually a T module.

Lemma 4.9 One has a surjective map

M → HH2n+1(R,R), (α1, α2) 7→ βn[α1x∗ + α2y∗]

The kernel is 0 when n = 0 and is N when n > 0.

The proof is an easy check, in light of (28). Note that HH1(R,R) = DerR, the

derivations of R; the isomorphism M = H1(D, dD) → Der(R) induced by (28) is the

map (α1, α2) 7→ α1∂x + α2∂y . We deduce:

Proposition 4.10 There is a canonical map of algebras

HH•(R,R)→ Q•,

which is an isomorphism in degrees ≥ 2. Here

Q•
= K[β]⊗

(
T ⊕

M

N
[−1]

)
, deg T = 0, degβ = 2.

The product in Q• combines the algebra structure of T , the left and right T module

structures of M/N , and the skew pairing ω :

(βn⊗ (t+m)) · (βn′ ⊗ (t′+m′)) = βn+n′ ⊗ (t · t′+ t ·m′
+m · t′)+βn+n′+1⊗ω(m,m′).

The following observation, whose proof is immediate, is helpful in computing M/N :

Lemma 4.11 M/N is the middle homology H1(fx, fy; R) of the Koszul complex

K(fx, fy) , i.e., the chain complex

R





fy
−fx





−−−−−−→ R2

[

fx fy
]

−−−−−−−→ R.

K(fx, fy) (notation from Serre [52, ch. IV]) is the tensor product K(fx)⊗RK(fy) of Koszul

complexes for the elements fx and fy . Here K(a) denotes the complex 0→ R
a
→ R→ 0

where the map—multiplication by a—maps degree 1 to degree 0.
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4.2 Hochschild cohomology for the cuspidal cubic

4.2.1 Hochschild cohomology for the affine curve

We take f (x, y) = y2 − x3. The Tjurina algebra T (4.8) is as follows:

T ∼=





K[x]/(x2) if 6 6= 0,

K[x]/(x3) if 3 = 0,

K[x, y]/(x2, y2) if 2 = 0.

(The isomorphism takes x ∈ T to x , and takes y ∈ T to 0 in the first two cases and to

y in the third.)

Lemma 4.12 There are isomorphisms of Rmodules

M/N ∼=





AnnR/fy(fx) = (x) if 6 6= 0,

AnnR/fy(fx) = R/fy if 3 = 0,

AnnR/fx(fy) = R/fx if 2 = 0

and

T → M/N, t 7→





[2xt, 3yt] if 6 6= 0,

[t, 0] if 3 = 0,

[0, t] if 2 = 0.

Proof By Lemma 4.11, M/N is equal as an Rmodule to H1(fx, fy; R), and hence

isomorphic to H1(K(fx; R)⊗ K(fy; R)).

If 2 6= 0 ∈ K then the element fy = 2y is not a zerodivisor in R. Therefore the

complex K(fy) has homology only in degree zero, and H0(K(fy)) = R/(fy). Projection

R → R/(fy) defines a quasiisomorphism K(fy) → R/(fy). Hence K(fx, fy; R) ≃
K(fx; R)⊗ R/fy , and the latter complex is

0→ R/(fy)
fx
→ R/(fy)→ 0,

where the differential maps degree 1 to degree 0. So H1(fx, fy; R) is isomorphic as an

Rmodule (hence also as a T module) to the annihilator of fx in R/fy . Explicitly, the

annihilator is (x) ⊂ K[x, y]/(x3, y) if 3 6= 0 and K[x, y]/(x3, y) if 3 = 0. If 2 = 0

then the element fx = −3x2 is not a zerodivisor in R. We can then run the same

argument with the roles of fx and fy interchanged, with a similar outcome. Here R/fx
is K[x, y]/(x2, y2), and fy = 0.

At this stage, we can easily see that dimK T = dimK(M/N). The given map T → M/N

is injective, by another easy check, hence an isomorphism.
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Since f is irreducible and df 6= 0, we have the

Lemma 4.13 The skew pairing ω : (M/N)× (M/N)→ T is zero.

Collating results (Prop. 4.10 and Lemmas 4.12, 4.13) we obtain

Lemma 4.14 Consider the free gradedcommutative algebra Q• = T⊗K[β, γ], where

degβ = 2 and deg γ = 1. One then has a map of graded Kalgebras

HH•(R,R)→ Q•

which is an isomorphism except in degrees 0 and 1.

Proof In light of Prop. 4.10, we need only see that T ⊗ K[β, γ] agrees with the

algebra named Q• there. In view of the isomorphism T ∼= M/N , and the vanishing of

ω , the latter algebra is

K[β]⊗ (T ⊕ T[−1]) ∼= K[β, γ]⊗ T, deg γ = 1.

We can be more explicit. We know that HH•(R,R) ∼= H•(D). The map H•(D) → Q•

is Rlinear. It maps β to β . It maps a certain class [ax∗ + by∗] ∈ H1(D) to γ . The

coefficients are given by (a, b) = (2x, 3y) when 6 6= 0; (a, b) = (1, 0) when 3 = 0;

and (a, b) = (0, 1) when 2 = 0.

4.2.2 Global calculation

Lemma 4.15 The Lie algebra H0(Ccusp,TCcusp) contains linearly independent vector

fields v0 , v1 which restrict to U as the vector fields

v0|U = 2x∂x + 3y∂y, v1|U = 2y∂x + 3x2∂y.

When 6 6= 0, v0 and v1 span. When 3 = 0, H0(Ccusp,TCcusp) is 3dimensional,

spanned by v0 and v1 together with

v−2 = −∂x.

When 2 = 0, it is 4dimensional, spanned by v0 , v1 and

v−1 = x∂y, v−3 = ∂y.

(We will see presently that the subscript s of vs represents the internal degree.)
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Proof As shown to us by Seidel, the calculation of H0 is straightforward when one

takes the ‘abstract’ view of Ccusp (Lemma 2.5), as P1 with the marked point c, and

nonstandard structure sheaf Oc . Thus TCcusp = Der(Oc) is the sheaf of meromorphic

vector fields θ on P1 , with a pole only at c, which preserve Oc . The latter condition

forces θ to be regular at c except when 6 = 0. When θ is regular at c, it must

vanish there, except in characteristic 2. One has H0(TP1) = pgl2 (the Lie algebra of

the automorphism group of P1 ), spanned by v−1 = ∂z , v0 = z∂z and v1 = z2∂z . In

characteristic 2, all three lie in H0(Der(Oc)), while when 2 6= 0, only v0 and v1 do

(they span the Borel subalgebra b ⊂ pgl2 of upper triangular 2 × 2 matrices modulo

scalars).

When 3 = 0, there is a additional derivation v−2 = z−1∂z ; when 2 = 0, there is again

one additional derivation, v−3 = z−2∂z .

To interpret these vector fields as derivations of R, we observe that the normalization

map ν : P1 → Ccusp corresponds to the map of rings R = K[x, y]/(y2 − x3) → K[z],

x 7→ z2 , y 7→ z3 . Using this we compute that the vi restrict to U in the way stated

above.

Lemma 4.16 One has H1(Ccusp,TCcusp) = 0.

Proof Consider P1 with the cusp modifying its structure sheaf at c = [0 : 1]. Let

b = [1 : 0]. We use the affine coordinate [z : 1] 7→ z. Take a derivation θ of OP1 (i.e.,

a vector field) over P1 \ {b, c}. We must show that it is the difference u− v of vector

fields u on U = P1 \ {b} and v on V = P1 \ {c}. We can extend θ to a meromorphic

vector field on P1 . We proceed by induction on the order d of the pole of θ at b. If θ
is regular at b (i.e., d ≤ 0) then we take u = 0 and v = −θ . For the inductive step,

say θ ∼ azd at b, where a 6= 0 and d > 0. Let u = azd . Then u defines a derivation

of Oc near c, because d > 0. Moreover, θ′ := u− θ has a pole of order < d at b, so

by induction we can write θ′ = u′− v′ for u′ on U and v′ on V ; then θ = (u− u′)+ v′

and we are done.

At this stage it becomes useful to bring internal gradings into play. The Hochschild

cohomology HH•(Ccusp) carries an internal grading s, arising from the K× action on

Ccusp . Equivalently, this is the internal grading of HH•(A,A) arising from the grading

of A. There is also an action on HH• , hence an internal grading on H0(Ccusp,HH
•).

Under the K× action on Ccusp , the functions X , Y and Z on Ccusp have respective

weights w(X) = 2, w(Y) = 3 and w(Z) = 0. Hence on the affine part, the functions

x = X/Z and y = Y/Z have weights w(x) = 2 and w(y) = 3. The dga (D∗, dD)

inherits a K× action, i.e., a grading s, in which the weights of x and y are s(x) = 2
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and s(y) = 3. The variables x∗ and y∗ have weights s(x∗) = −2 and s(y∗) = −3. It

then follows that s(β) = −6.

In Lemma 4.15, one should understand ∂x to have weight s = −2 and ∂y weight

s = −3. Then the vector field vk has weight k .

Introduce the internal grading on Q• as in the statement of Theorem B. It is is set up

so that the homomorphism HH•(R,R) → Q• respects it. Let Q•,≤0 be the subalgebra

of Q• where the internal grading is nonpositive. Similarly, define H0(Ccusp,HH
•)≤0 .

Lemma 4.17 The map HH•,≤0(Ccusp)→ H0(Ccusp,HH
•)≤0 is an isomorphism.

Proof The kernel of the surjective map HH•(Ccusp) → H0(Ccusp,HH
•) is spanned

by H1(TCcusp) in degree 2—this vanishes by Lemma 4.16—and H1(O) in degree 1.

The action of K× has weight 1 on H1(O). Hence the restricted map HH•(Ccusp)≤0 →
H0(Ccusp,HH

•)≤0 is injective, and so an isomorphism.

Lemma 4.18 One has an isomorphism of graded algebras H0(Ccusp,HH
•)≤0 →

Q•,≤0.

Proof There is a restriction map r : H0(Ccusp,HH
•) → HH•(U) = HH•(R,R). By

Lemmas 4.7 and 4.16, r is an isomorphism in degrees ≥ 2. In degree 1, it is the

restriction map H0(Ccusp,TCcusp) → H0(U,TU), and therefore again injective. The

composite

H0(Ccusp,HH
•)

r
−→ HH•(U) = HH•(R,R)→ Q•

of r with the map from Lemma 4.14, restricted so as to map between the nonpositively

graded subalgebras, is the soughtfor map. It is certainly an isomorphism in degrees

• > 1. It is also an isomorphism in degree 0, where both sides reduce to K.

The nonpositively graded part of H0(Ccusp,Der(OCcusp)≤0) has dimension dim T − 1,

by Lemma 4.15: it is spanned by v0 , together with v−2 in characteristic 3, and v−1 ,

v−3 in characteristic 2. One also has Q1 = T , and dim(Q1)≤0 = dim T − 1.

We have identified vj as derivations of R, hence as elements of H1(D, dD) = M . One

has Q1 ∼= M/N , in such a way that the map H1(D, dD) → Q1 corresponds to the

quotient map H1(D, dD) = M → M/N . To show that H0(Ccusp,Der(OCcusp)≤0) →
(Q1)≤0 is injective, one need only show that the relevant elements vj are linearly

independent in M/N . But as elements of M , one has v0 = [2x, 3y]; v−2 = [−1, 0];

v−1 = [0, x]; and v−3 = [0, 1]. Linear independence in M/N is easily seen.
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Proof of Theorem B The isomorphism we want is the composite of the isomorphisms

described in the last two lemmas:

HH•(Ccusp)≤0 → H0(Ccusp,HH
•)≤0 → Q•,≤0.

Before leaving Ccusp , it will be worthwhile to spell out our findings about HH1(Ccusp)≤0

in a clean form. They are as follows:

Proposition 4.19 (1) The canonical map

HH1(Ccusp)≤0 → H0(Ccusp,TCcusp)≤0

is an isomorphism.

(2) Let ker d ⊂ W be as at (21); it is the Lie subalgebra of pgl3(K) of those vector

fields on P2(K) which preserve Ccusp . Thus there is a canonical map

ker d → H0(Ccusp,TCcusp)≤0,

natural in K. The latter map is an isomorphism.

Proof Only the second clause has not already been proved. As a vector field on P2 ,

we have ∂u = (∂x/∂u)∂x + (∂y/∂u)∂y = −2x∂x − 3y∂y . Similarly, ∂s = −x∂y ;

∂r = −∂x ; and ∂t = −∂y . Now, ∂u is tangent to Ccusp , and the restriction of ∂u

to Ccusp is the vector field v0 . When 2 = 0, ∂s and ∂t are also tangent to Ccusp ,

and they restrict to Ccusp as the respective vector fields v−1 and v−3 . When 3 = 0,

∂r is tangent to Ccusp and restricts to Ccusp as v−2 . Thus, by Lemma 4.15, the map

ker d → H0(Ccusp,TCcusp)≤0 is an isomorphism in every case.

4.3 Hochschild cohomology of the nodal cubic curve

Note: this subsection is not used elsewhere in the paper.

Let T0 → SpecZ be the central fiber of the Tate curve, defined by w(x, y) = 0

where w(x, y) = y2 + xy − x3 : the proposed mirror to the punctured 2torus T0 . The

Hochschild cohomology HH•(T0) is also the Hochschild cohomology of tw vect(T0).

Since Hochschild cohomology is invariant under A∞ quasiequivalences, Theorem A

says that HH•(T0) ∼= HH•(F(T0)ex). So, taking that theorem for granted for now, one

can regard this subsection as a computation of HH•(F(T0)ex). In general, there is a

natural map to the Hochschild cohomology of the exact Fukaya category from the

symplectic cohomology [47] of the manifolds, and in certain cases [45] this is expected

to be an isomorphism. The graded ring we compute here is indeed isomorphic to

SH•(T0), though we do not check that the map is an isomorphism.
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Theorem 4.20 Over any field K, there is an isomorphism of graded algebras

HH•(T0)→
K[β, γ1, γ2]

(γ1γ2, β(γ1 − γ2))

where

deg γ1 = deg γ2 = 1, degβ = 2,

and K[β, γ1, γ2] is a free supercommutative algebra.

The computation follows similar lines to that for the cuspidal cubic, and we shall be

terse. Taking R = K[x, y]/(w), one readily checks the following:

Lemma 4.21 The Tjurina algebra T is reduced to K. Its module M/N is 1

dimensional, and therefore the skew pairing ω : M/N ⊗ M/N → K is zero. Hence

there is a surjective map of algebras

HH•(R,R)→ K[γ, β], degβ = 2, deg γ = 1,

with kernel concentrated in degree 1.

The normalization of T0 is isomorphic to P1 ; the normalization map ν : T0 → P1

carries two points, p and q, say, to the node. The pullback ν∗OT0
is contained in OP1

as the sheaf of functions f such that f (p) = f (q). Similarly, ν∗Der(OT0
) is contained

in Der(OP1) as the sheaf of vector fields v with v(p) = v(q) = 0. Hence

h0(T0,Der(OT0
)) = h0(P1,Der(ν∗OT0

)) = 1.

By Riemann–Roch for P1 ,

h1(P1,Der(ν∗OT0
)) = 0.

In Čech terms, this means that if we cover P1 by U = P1 \ {p, q} and V = P1 \ {r},

then every vector field on U ∩ V can be expressed as the difference u − v of vector

fields on U and V with descend to ν(U) and ν(V) respectively. Hence

H1(T0,Der(OT0
)) = 0.

This vanishing result gives us the following lemma:

Lemma 4.22 The map HH•(T0)→ HH0(T0,HH
•) is surjective with kernel H1(O)[−1].

We know that H0(T0,HH
•) = HH•(R,R) in degrees • ≥ 2. We have

H0(T0,HH
1) = H0(T0,Der(O)) ∼= K.
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Lemma 4.23 The composite of the maps

H0(T0,HH
1)→ HH1(R,R)→ K{γ},

(the restriction map and the surjection from Lemma 4.22) is an isomorphism.

Proof We know that H0(T0,HH
1), the space of global vector fields, has dimen

sion 1, so we need only show that the composite map is nonzero. The composite

H0(T0,HH
•) → HH•(R,R) → K[γ, β] is a map of algebras. Moreover, by Lemma

4.21, H0(T0,HH
•) is generated in degrees 1 and 2. If the map on H0(T0,HH

1) were

zero, the same would be true of the map H0(T0,HH
3)→ Kβγ ; yet we know that the

latter map is an isomorphism.

Proof of Theorem 4.20 The previous lemma implies that

H0(T0,HH
•)→ K[β, γ]

is an isomorphism. Now consider the surjective map

HH•(T0)→ H0(T0,HH
•).

Its kernel is H1(T0,Der(O))[−2] ⊕ H1(T0,O)[−1], and the first summand vanishes.

Thus we have a surjection of algebras

HH•(T0)→ K[β, γ]

with kernel H1(O)[−1]. Since this map is an isomorphism in degrees ≥ 2, we write β
to denote a class in HH2(T0), etc.

Let η be a generator for the 1dimensional image of H1(O) in HH1(T0). We claim

that βη = 0. To see this, observe that the E∞ page of the Hodge spectral sequence

is an algebra isomorphic to grHH•(C), the associated graded algebra for the filtration

giving rise to the spectral sequence. The E∞ page here is supported along the 0th row

and the 0th column (in nonnegative total degrees). Hence gri HH•(T0) = HHi(T0) for

i 6= 1. Thus, to show that βη = 0, it suffices to show that it vanishes in H1(T0,HH
2),

which is obvious since this module vanishes.

Now let γ1 be any lift of γ to HH1(T0), and let γ2 = γ1+η . Then {γ1, γ2} is a basis of

HH1(T0). Moreover, γ1β = γ2β , and γ1γ2 is zero since it maps to γ2 = 0 ∈ K[β, γ].

The result now follows.

5 Weierstrass curves versus A∞structures

In this section we shall prove our ‘dg comparison theorem’ 3.3, and refinements of it.
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5.1 Cochain models and splittings

Our plan is to reformulate Theorem 3.3 in terms of minimal A∞ structures on the

fixed algebra A, and prove it in sharper form in that language. To do so, we need

homological perturbation theory.

Definition 5.1 Let (C•, δ) be a cochain complex over a commutative ring R, with an

action of a group Γ by automorphisms. A splitting for C• is an internal direct sum

decomposition

Ck
= Hk ⊕ im δk−1

︸ ︷︷ ︸
ker δk

⊕Ik

for each k , with Γinvariant summands. Equivalently, it is a Γequivariant linear map

s ∈ hom−1(C,C) such that δsδ = δ (for given given the direct sum decomposition

we put s|H⊕I = 0 and s|im δ = δ−1 : im δ → I, while given such an s we have

C• = [ker δ ∩ ker(δ ◦ s)]⊕ im δ︸ ︷︷ ︸
ker δ

⊕ im(s ◦ δ)).

The set of splittings will be denoted by splΓ(A). When A is a Γequivariant A∞ 

algebra, with cohomology A, a splitting for A as a cochain complex gives rise, via the

homological perturbation lemma [49], to a canonical, Γequivariant A∞ structure µ•

A

on A, together with equivariant A∞ homomorphisms i : A → A and p : A → A such

that i and p induce the identity map idA on cohomology; equivariance follows from

the naturality of the construction.

If one merely splits the cocycles, writing ker δ = im δ ⊕H , but does not complement

the cocycles, the conclusion is the same except that one does not get the map p [28].

One can find a splitting of the cocycles (not necessarily equivariant) whenever A is a

projective module.

5.1.1 A Čech model for Weierstrass curves

Let OW = K[a1, . . . , a6], and and let C be the universal embedded Weierstrass curve

y2z + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6z3 over OW . We are interested in

cochain models BC for the endomorphism algebra Ext•(T, T), where T = O ⊕ Oσ

over the curve C. A technical irritation is that Oσ , though a perfect complex, is not

locally free. However, there is an autoequivalence τ of tw vect(C)—a twist along

the spherical object O [50]—such that τ (O) = O and τ (Oσ) = O(−σ). There is an

autoequivalence τ ′ which is inverse to τ in that τ ◦ τ ′ and τ ′ ◦ τ are both naturally

isomorphic to the identity functor. There is an induced isomorphism Ext•(T, T) ∋
[h] 7→ [τ ′ ◦ h ◦ τ ] ∈ Ext•(T ′, T ′), where T ′ = O⊕ O(−σ). We shall set up a cochain
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complex B′
C

which computes Ext•(T ′, T ′), and use τ and τ ′ to obtain from it a complex

BC which computes Ext•(T, T). We observe that a splitting for the former complex

will transfer to one for the latter.

Our dg model for B′
C

will be the Čech complex

(29) B′
C :=

(
Č∗(U;End(T ′)), δ

)
, U = {U,V},

where U := {z 6= 0} is the complement of the point at infinity σ = [0 : 1 : 0] and

V = {y 6= 0}. The multiplicative group K× acts on C , covering its an action on W .

The action preserves each of the two sets in the covering U; hence K× acts on B′
C

by

automorphisms—a strict action [49, (10b)].

Lemma 5.2 The set splK×(B′
C) of K× equivariant retractions is nonempty; there

exists a distinguished splitting r .

Proof The sheaf End(T ′) has four linebundle summands (‘matrix entries’): O

(twice), O(σ), and O(−σ). The complex B′
C

is the direct sum of the Čech com

plexes for these line bundles, so it suffices to handle them separately. Evidently, we

must put I1 = 0 and H0 = ker δ0 . Our tasks are to identify H1 and I0 for the line

bundles O, O(σ) and O(−σ).

1. We consider endomorphisms of O or of O(−σ). We have End(O) = End(O(−σ)) =

O. To describe coker δ = H1(O), take a function g = γUV ∈ Γ(U ∩ V,O). If it is

regular at σ then g = δ(0,−γUV ). If g has a pole of order d ≥ 2 at σ then we can

find a function ζU on U such that g − ζU has a pole of order < d at σ . On the

other hand, if gUV has a simple pole at σ , with σ(s) = 1
s
+ O(1) with respect to a

local uniformizer s at σ , then H1(O) = [g] ·K[W]. (The restriction of g to the locus

K[W][∆−1] where the discriminant ∆ is nonzero cannot be a coboundary, since there

is no degree 1 rational map defined on an elliptic curve. It is of no consequence to our

argument whether g is a coboundary when we restrict to ∆ = 0.)

We take g = γUV = X2

YZ
, which is indeed regular on U ∩ V = {YZ 6= 0}. One

has a local uniformizer s = X/Z at σ , and C is cut out formally as the graph of

t ∈ K[W] [[s]] with t = s3 + O(s4); and g = s2/t = s−1 + O(1), as required. Thus,

we put H1 = K[W] · g, and we then have Č1(U;O) = im δ ⊕H1 . (Note: g restricts

to the cuspidal fibres as a Čech coboundary, but that does not affect our argument.)

Turning to the degree 0 part, ker δ0 consists of pairs (c, c) with c constant. A comple

ment I0 is given by

I0
= OU ⊕ I ⊂ OU ⊕ OV , I = {γV ∈ OV : γV (σ) = 0}.
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2. We consider Hom(O,O(σ)) = O(σ). One has Č1(U,O(σ)) = im δ0, so H1 = 0;

and

ker δ0
= {(c, c) ∈ O(σ)U ⊕ O(σ)V : c constant}.

Thus

Č0(U,O(σ)) = ker δ ⊕ I0, I0
= O(σ)U ⊕ I,

where I consists of sections over V which vanish at σ .

3. We consider Hom(O(σ),O) = O(−σ). There are no global sections, so we put

I0 = Č0(U,O(−σ)). We have

Č1(U,O(−σ)) = im δ0 ⊕H1,

where H1 = K[W] · g, for similar reasons to those explained in case 1.

We now come to a key point in the construction:

Take r from Lemma 5.2. By applying the homological lemma to (B′
C
, r), we obtain

a minimal A∞ structure AW = (A⊗W, µ•

W), linear over K[W].

Said another way, we obtain a family of minimal A∞ structures Aw = (A, µ•

w)

parametrized by w ∈ W , whose structure coefficients depend polynomially on w.

The K× equivariance of r implies equivariance of µ•

W ; precisely, for w ∈ Wk (the k th

graded part), we have

(30) µd
ǫkw

= ǫd−2µd
w.

The dg comparison theorem was stated in terms of abstract Weierstrass curves, but the

A∞ version will be formulated using embedded Weierstrass curves. First we set up

the relevant categories:

(1) The groupoid W whose objects are embedded Weierstrass curves, thought of

as elements w ∈ W . The group of reparametrizations G, from (2.2.3), acts on

obW; we set

morW(w1,w2) = {g ∈ G : g(w1) = w2}.

(2) The groupoid M of minimal A∞ structures A on A. Let Cr+s(A,A)s denote

the part of the r th Hochschild cochain group in cohomological degree r+ s and

internal degree s,

Cr+s(A,A)s
= Homs

K[W](A
⊗r,A).

and write Ck(A,A)≤0 =
∏

s≤0 C
k(A,A)s : these are the truncated Hochschild

cochains, and they govern deformations of A∞ structures [46]. Let G denote

the group of ‘rescalings and gauge transformations’, namely, the group of u ∈
C1(A,A)≤0 whose leading term u1 ∈ Hom(A,A) is r · id for some r ∈ K× .
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Then G acts on the objects of M, (u,A) 7→ u∗A. We think of u as an A∞ 

functor A→ u∗A acting trivially on objects. The morphisms in M are given by

morM(A,A′) = {u ∈ G : u∗A = A′}/ ∼, where ∼ is the equivalence relation

which identifies homotopic functors. ‘Homotopy’ has the following meaning:

say u1 and u2 are A∞ functors A → A′ with the same action on objects.

Their difference D = u1 − u2 then defines a natural transformation, i.e., a

morphism D = (D0,D1,D2, . . . ) ∈ hom1
Q(u1, u2), where Q is the A∞ category

of nonunital functors funct(A,A′), satisfying µ1
Q

D = 0. One puts D0 = 0 and

Dk = uk
1 − uk

2 for k > 0. A homotopy from u1 to u2 is a T ∈ hom0
Q(u1, u2),

with T0 = 0, such that D = δQT . Functors are called homotopic if a homotopy

exists.

Theorem C (A∞ comparison theorem) Let K be a normal commutative ring. The

passage from Weierstrass curves over K to Klinear minimal A∞ structures on A

defines a functor F : W→M. Precisely:

(1) Each embedded Weierstrass curve C = Cw gives rise to a minimal A∞ structure

F(C) = Aw = (A, µ•

w), by applying the homological perturbation lemma to BC ,

defined via the open cover U and the splitting r . These A∞ structures depend

polynomially on w ∈ W , and are K× equivariant, meaning that µd
t·w = td−2µd

w .

In particular, the cuspidal cubic C0 gives rise to the minimal A∞ structure A0

with no higher products: µd
0 = 0 for d 6= 2.

(2) Each pair (g,w) ∈ G ×W , where G is the group of projective transformations

acting on Weierstrass curves, gives rise to an element F(g,w) = ug(w) ∈ G such

that ug(w)∗Aw = Ag(w) . Moroever, ug(t · w) = td−1ug(w) for t ∈ K× .

(3) One has u1(w) = id. For any (g1, g2) ∈ G× G, there exists a homotopy

ug2g1(w) ≃ ug2(g1w) ◦ ug1(w)

depending algebraically on w.

The functor F commutes with basechange (i.e., the operation · ⊗K K′ when K→ K′

is a ring homomorphism. If K is either an integrally closed noetherian domain of

characteristic zero, or a field then F is an equivalence of categories.

The equivalence clause says that the following three properties hold:

• Essential surjectivity: every minimal A∞ structure on A is isomorphic in M to

one of the form Aw .

• Faithfulness: If g1(w) = g2(w), and if ug1(w), ug2(w) ∈ ob funct (Aw,Ag1(w))

are homotopic functors, then g1 = g2 .



Arithmetic mirror symmetry for the 2torus 43

• Fullness: if u ∈ G and u∗Aw1
= Aw2

then u ∈ ob funct (Aw1
,Aw2

) is homotopic

to ug(w1) for some g ∈ G such that g(w1) = w2 .

The normality condition is there because that is the condition under which we know that

the Weierstrass differential ω on the universal Weierstrass curve C defines a section of

the dualizing sheaf.

Proof of Theorem 3.3 assuming Theorem C. Over a field K, every dg structure

B can be transferred to a quasiisomorphic A∞ structure A on the cohomology

A ∼= H∗(BC). By Theorem C, A is gaugeequivalent to Aw for some w, which

in turn is quasiisomorphic to the dg category Bw . Hence B ≃ Bw in the A∞ sense.

Furthermore, if BC1
≃ BC2

, realize Ci as an embedded Weierstrass curve Cwi ; so

Bw1
≃ Bw2

, and hence Aw1
≃ Aw2

. Pick a gaugeequivalence u : Aw1
→ Aw2

, and

then use the theorem to replace u by a homotopic gaugetransformation u(g), where

g(w1) = w2 . Hence C1
∼= C2 .

Coherence. One can ask whether the homotopies H(g1, g2) from ug2g1 to ug2(g1·)◦u
g1

can be chosen coherently in the sense of [49, (10b)]. Let M̃ be the category of

minimal A∞ structures on A, over K, in which morphisms A → A′ are rescaled

gauge transformations u ∈ G such that u∗A = A′ . Let M = Aut(idM̃); it is an abelian

group under composition (by an Eckmann–Hilton argument), and a G(K)module.

The obstruction to coherence is a group cohomology class o ∈ H2(G(K); M). If one

works over a field K and asks that the homotopies to be continuous in g1 and g2 the

obstruction lies in the continuous group cohomology H2
cont(G(K); M); if wants them

algebraic, it lies in an algebraic version of group cohomology.

We do not pursue these obstructions in detail, but content ourselves with an easy case.

Work over C, and let Gan denote G(C) with its analytic (not Zariski) topology. We ask

that the homotopies be continuous on Gan ×Gan ×C5 . If we restrict g1 and g2 to the

unitriangular normal subgroup Uan ⊂ Gan then the obstruction lies in H2
cont(Uan; M).

But Uan is contractible, hence H2
cont(Uan; M) = H2(BUan; M) = H2({pt.},M) = 0.

Thus we can make our homotopies coherent for Uan .

The Lyndon–Hochschild–Serre spectral sequence for Uan ⊂ Gan is concentrated in a

single row, which tells us that H2
cont(Gan; M) ∼= H2

cont(C
×,MUan) ∼= MUan . So MUan is

where to find the obstruction to extending the coherent homotopies from Uan to Gan .

5.2 The functor F on homspaces

The proof of the equivalence clause of Theorem C will be given in the next section; for

now, we shall set up the functor.
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We have already set up the functor on objects—namely, we have constructed AW . Now

take g ∈ G and w ∈ W , and notice that they define an isomorphism g∗ : Cw → Cg(w) .

We have a diagram of A∞ quasiisomorphisms

Bg(w),g(U)∪U

f

xx

f ′

&&
Bw,U

g∗ //

pw

��

Bg(w),g(U)

s

88

Bg(w),U

pg(w)

��
Aw

iw

OO

Ag(w)

ig(w)

OO

Here f and f ′ are maps of dga; they forget one of the three open sets in the covering

g(U)∪U = {U,V, g(V)}. The dotted arrow marked s is an A∞ homomorphism which

is inverse to f , up to homotopy; s is still to be constructed. The A∞ maps iw and pw

are mutual inverses up to homotopy; they are associated with the splitting r , via the

homological perturbation lemma [49, Remark 1.13].

Once s has been constructed, we shall define F(g,w) as the A∞ composite pg(w) ◦ f ′ ◦
s ◦ g∗ ◦ iw . For composition of A∞ functors, see [49, (1e)]. To obtain s, we consider

the following picture (cf. [49, Cor. 1.14]):

Bg(w),g(U)

g∗pw

��

Bg(w),g(U)∪U
f

oo

g∗Aw
v−1

// Ãg(w)
v

oo

ĩg(w)

OO

The left vertical arrow is the pullback by g of the A∞ morphism pw : Bw,U → A,

produced by means of the splitting r and the homological perturbation lemma.

Claim: the K[W]cochain complex Bg(w),g(U)∪U admits a K× invariant splitting

for its cocycles.

The proof of the claim will be given below. The splitting gives rise to a minimal

A∞ structure Ãg(w) on its cohomology A, and the A∞ quasiisomorphism ĩg(w) . The

composite (g∗pw) ◦ f ◦ ĩg(w) is an A∞ morphism inducing the identity map A→ A on

cohomology. Thus it is a gauge transformation v ∈ C1(A,A)≤0 . As such, it has a strict

inverse v−1 . We put s = ĩg(w) ◦ v−1 ◦ (g∗pw). Then s ◦ f and f ◦ s are homotopic

to identity maps. (To prove this, use the fact that composition with a fixed functor

preserves homotopy and observe that therefore, since v = (g∗pw) ◦ f ◦ ĩg(w) , one has

(g∗iw) ◦ v ◦ p̃∗w ≃ f .)

We now consider the existence of homotopies F(h, g(w)) ◦ F(g,w) ≃ F(hg,w). For
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this, contemplate the diagram

(31)

Bhg(w),hg(U)∪h(U)∪U

�� ((
Bg(w),g(U)∪U

�� ((

h∗

// Bhg(w),hg(U)∪h(U)
oo Bhg(w),h(U)∪U

&&��
Bw,U

g∗
//

pw

��

//

Bg(w),g(U)
oo

OO

Bg(w),U

pg(w)

��

h∗

// Bhg(w),h(U)
oo

OO

Bhg(w),U

phg(w)

��
Aw

iw

OO

Ag(w)

ig(w)

OO

Ahg(w)

ihg(w)

OO

In the lower part of the diagram we see the juxtaposition of the maps that go into the

definitions of F(g,w) (red arrows) and F(h, g(w)) (magenta arrows). In the top row is

the Čech complex associated with a 4set open cover. The long, curved arrow pointing

to it is a homotopyinverse to the fourstep composite formed by the blue arrows; it

must be constructed.

The arrows marked g∗ or h∗ have strict inverses g−1
∗ and h−1

∗ . Now consider the

arrow pointing down and right from the top of the diagram, shown in cyan. It is

homotopic to the composite of five arrows going the other way round the hexagonal

region. Moreover, the composite of the four blue arrows in (31) is equal to the forgetful

map Bhg(w),hg(U)∪h(U)∪U → Bhg(w),hg(U) followed by (hg)−1
∗ . As a result, we see that

F(h, g(w)) ◦ F(g,w) is homotopic to the map Aw → Ahg(w) which factors through the

curving and cyan arrows:

(32) Bhg(w),hg(U)∪h(U)∪U

vv ((
Bw,U

(hg)∗//

..

Bhg(w),hg(U)

66

Bhg(w),U

phg(w)

��
Aw

iw

OO

Ahg(w)

Therefore it will suffice to construct a homotopyinverse to the latter forgetful map

(this homotopyinverse is indicated by the straight dotted arrow in (32)). For this, it is

sufficient to prove the

Claim: the K[W]cochain complex Bhg(w),hg(U)∪h(U)∪U admits a K× invariant split

ting for its cocycles.

The A∞ homomorphism Aw → Ahg(w) indicated by (32) is homotopic to F(hg,w).

That is because the solid arrows make the following diagram commutative; hence the
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dotted homotopyinverses form a homotopycommutative diagram:

Bhg(w),hg(U)∪h(U)∪U

}}   

��
Bhg(w),hg(U)∪U

vv ((
Bhg(w),hg(U)

==

66

Bhg(w),U

Hence F(hg,w) ≃ F(h, g(w)) ◦ F(g,w).

It remains to prove the two claims highlighted above. Recall that we constructed a

splitting for Bw,U by constructing one for B′
w,U , meaning that we considered End(O⊕

O(−σ)) instead of End(O⊕Oσ). We shall do the same here. And as before, it suffices

to consider the line bundles O, O(σ) and O(−σ) which form the matrix entries for

End(O⊕O(−σ)). These sheaves have cohomology in any given degree which is either

zero (in which case the splitting of the cocycles is trivial) or is a free module of rank 1,

which means that one can complement im δ in ker δ by choosing any representative for

the generator of cohomology—and the resulting splitting will be K× invariant. This

establishes the two claims, and thereby completes the construction of the functor F .

5.3 Comparison of deformation theories

Introduce the shifted Hochschild cochain complex D• , given by

D•
= (C•(A,A)≤1)[1].

A minimal A∞ structure on the algebra A is a sequence of maps µd ∈ Hom2−d
K (A⊗d,A)

for d ≥ 2 such that µ2 is the multiplication for A. We can view the structure as a

truncated Hochschild cochain µ• ∈ D1 . Thus the functor F is defined, on objects, by

a map µ• : W → D1 . Pick a K∗ equivariant splitting of the cocyles for BC , where

C is the universal Weierstrass curve over K[W]; then we obtain, for each w ∈ W , a

minimal A∞ structure α(w) := µ•

w on A.

Lemma 5.3 Pick i > 2 and (a1, . . . , ai) ∈ A. The map p : Wd → K given by

w 7→ µi
w(a1, . . . , ai) is zero except when i − 2 is a multiple of d . It is linear if

i = d + 2, and in general is homogeneous of degree (i− 2)/d .

Proof The map p is a polynomial function, equivariant under K× , meaning that

p(ǫdw) = ǫi−2p(w), and is therefore homogeneous, of degree (i− 2)/d .
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We now consider the derivative at 0 of the map w 7→ Aw ,

λ := Dµ•|w=0 : W → D1.

Take w ∈ Wd . By definition, λd(w) is a sequence (x2, x3, x4, . . . ) where xi ∈
Hom2−i

K (A⊗i,A). By Lemma 5.3, xi = 0 except when i = d + 2. Thus, we con

sider λ|Wd
as a map

λd : Wd → (D1)−d.

It is the map which assigns to w its primary deformation cocycle (see e.g. [46]).

Because µi
w = 0 for i < d + 2, we have δ ◦ λd = 0.

The effect of F on morphisms is encoded in a map

u : G×W → D0,

which has a partial derivative

∂u

∂g

∣∣∣∣
g=1

: g×W → D0.

We define

κ0 : g→ D0, ξ 7→
∂u

∂g

∣∣∣∣
g=1

(ξ, 0).

When ξ ∈ gd , the only nonvanishing component of κ0(ξ) lies in D0 .

Lemma 5.4 The vertical maps κj in the diagram

0 // g
d //

κ0

��

W //

κ1=λ
��

0

κ2

��
0 // D−1 δ // D0 δ // D1 δ // D2

define a map κ• of cochain complexes.

Proof We have seen that δ ◦ κ1 = 0. To prove that δ ◦ κ0 = κ1 ◦ d , observe

that the action of gauge transformations on A∞ structures is defined through a map

a : D0 × D1 → D1 . We have a(ug(0), µ•

0) = µ•

g(0) ; differentiating this relation with

respect to g, and setting g = 1, we obtain the sought equation.

Theorem 5.5 The maps κ0 and κ1 induce isomorphisms

[κ0] : ker d → HH1(A,A)≤0(33)

[κ1] : coker d → HH2(A,A)≤0(34)

when the base ring R is
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(i) a field K; or

(ii) the ring of integers Z; or more generally

(iii) an integral domain of characteristic zero.

Proof (i) We begin with [κ1]. We claim that ker[κ1] = 0. Indeed, if w lies in in

this kernel, let Cwt be the Weierstrass curve C over K[t]/t2 with parameters ai = twi .

Thus Cwt specializes to Ccusp at t = 0. The resulting minimal A∞ algebra Awt is

then formal over K[t]/t2 ; indeed, its class [κ1(wt)] ∈ tHH2(A,A) exactly measures

nontriviality of Awt as an A∞ deformation of A. Since the quasiisomorphism class

of ACwt determines the curve, one finds that Cwt
∼= Ccusp ×SpecK SpecK[t]/t2 . It

follows that wt defines a trivial firstorder deformation of Ccusp . Hence w ∈ im d .

We quote from [35] or section 4 the result that, as graded Kmodules, we have

HH2(A,A)≤0
=

s=−1

K/(2) ⊕
−2

K/(3) ⊕
−3

K/(2) ⊕
−4

K ⊕
−6

K .

Thus coker δ is abstractly isomorphic to HH2(A,A)≤0 as a graded vector space, and

hence the injection [κ1] is an isomorphism.

Now consider [κ0] : ker d → HH1(A,A)≤0 . Recall that W is a gmodule. On the

level of cohomology, Wg = coker d is a ker d module. Moreover, this module is

easily checked to be faithful: that is, the action homomorphism ker d → End(Wg) is

injective. Moreover, HH2 is a HH1 module, and the map [κ•] respects the actions on

cohomology:

[κ0ξ] · [κ1w] = [κ1(ξ · w)].

Given ξ ∈ ker d , pick a w ∈ Wg such that ξ ·w 6= 0 ∈ Wg . We then have [κ0(ξ)] 6= 0.

Hence [κ0] is injective. Both domain and codomain of [κ0] are isomorphic to

s=0

K ⊕
−1

K/(2) ⊕
−2

K/(3) ⊕
−3

K/(2);

therefore [κ1] is an isomorphism.

(ii) It will be helpful to note at the outset that for any ring R one has CC•

R(A⊗R,A⊗R) =

CC•(A,A)⊗R, that gR = gZ⊗R, and that these canonical isomorphisms are compatible

with the construction of the map κ• . Let K = Z/(p) be a residue field of Z. Form the

Zcochain complex K• = coneκ• , a complex of free abelian groups, and note, using

(i), that H1(K•⊗K) = H2(K•⊗K) = 0 while HH0
K(A⊗K,A⊗K)≤0 → H0(K•⊗K) is

an isomorphism (so the latter vector space is 1dimensional). By universal coefficients

[61, 3.6.2], Hj(K•⊗K) has a direct summand Hj(K•)⊗K. Consequently H1(K•)⊗K =

H2(K•) ⊗ K = 0. Since Hj(K•) is a finitelygenerated abelian group, one deduces

H1(K•) = H2(K•) = 0. One then has TorZ1 (H1(K•),K) = 0, and so by universal
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coefficients again, H0(K•)⊗K ∼= H0(K• ⊗K) ∼= K. Hence H0(K•) is free of rank 1.

Over Z, one has ker δ ∼= Z, and a look at the exact sequence of the mapping cone then

tells us that HH0(A,A)≤0 → H0(K•) is an isomorphism. The same exact sequence

then tells us that [κ0] and [κ1] are isomorphisms.

(iii) Take the Zcochain complex K• as before. Universal coefficients now tells us that

H0(K• ⊗Z R) ∼= H0(K•)⊗Z R⊕ Tor1
Z(H1(K•),R) ∼= R,

H1(K• ⊗Z R) ∼= H1(K•)⊗Z R⊕ Tor1
Z(H2(K•),R) = 0,

H2(K• ⊗Z R) ∼= H2(K•)⊗Z R⊕ Tor1
Z(H3(K•),R) = Tor1

Z(H3(K•),R).

The ring R is torsionfree as an abelian group, so Tor1
Z(H3(K•),R) = Tor1

Z(R,H3(K•)) =

0. The exact sequence of the mapping cone then tells us that [κ1] is an isomorphism.

Over R, one has ker[δ : g → W] ∼= R, again because R is torsionfree. Part of the

exact sequence of the mapping cone reads

0→ HH0(AR,AR)≤0 → R→ R
[κ0]
−−→ HH1(AR,AR)≤0 → 0,

and since HH0(AR,AR)≤0 is nonzero, and R an integral domain, the map R→ R must

be zero. Hence [κ0] : R→ HH1(AR,AR)≤0 is also an isomorphism.

Remark. Out of caution, work over a field K in this remark. The map [κ1] has

a straightforward deformationtheoretic meaning (a firstorder deformation of Weier

strass curves gives a firstorder deformation of A∞ structures on A). The map [κ0] may

then be characterized as the unique map that makes the following diagram commute:

ker d //

[κ0]
��

End Wg

[κ1]
��

HH1(A,A)≤0 // EndHH2(A,A)≤0.

The horizontal arrows are the module actions. This leads to a derivedcategorical

construction of [κ0] as the composite of the canonical isomorphisms of graded K

modules

ker d
∼=
−→ H0(Ccusp,T)≤0 Prop. 4.4(2)
∼=
−→ HH1(Ccusp)≤0 Lemma 4.17
∼=
−→ HH1(tw vect(Ccusp))≤0 Prop. 4.3
∼=
−→ HH1(B′

cusp,B
′
cusp)≤0 Prop. 4.4

∼=
−→ HH1(A,A)≤0 Prop. 3.4.
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Remark. Before embarking on the proof of Theorem C, we say a word about

the methodology. We are very close here to the framework for deformation the

ory which uses differential graded Lie algebras (DGLA). For instance, the DGLA

K• = C•−1(A,A)≤0 determines, in characteristic zero, a deformation functor which

assigns to a local artinian Kalgebra A the solutions in K1⊗mA to the Maurer–Cartan

equation δµ• + 1
2
[µ•, µ•] = 0, modulo the group exp(K0 ⊗ mA) (see e.g. [37]). A

standard approach would be to show that κ• is a map of DGLA, and conclude, given

its effect on cohomology, that the deformation theories controlled by g ⊕W and K•

coincide [37].

The route we have actually taken is a variant of this standard approach. Everything here

works over arbitrary fields; there is no need for characteristic zero. A minimal A∞ 

structure on A is a Hochschild cochain µ• ∈ C2(A,A)<0 which satisfies δµ•+µ•◦µ• =

0. The Gerstenhaber square µ• ◦ µ• agrees with 1
2
[µ•, µ•] when 2 is invertible. There

are no artinian rings in the picture, but the length filtration of Hochschild cochains

serves as a substitute. The map κ• is not quite a Lie algebra homomorphism; it might

be possible to promote it to an L∞ homomorphism, but we have chosen to use the

functor F more directly.

Proof of Theorem C We have set up the functor w 7→ Aw over regular rings R, and

must prove that it is an equivalence in the stated sense.

Essential surjectivity: If two minimal A∞ structures on A, with composition maps mk

and nk , agree for k ≤ 8, then the two structures are gaugeequivalent. Indeed, one

proves inductively that if mk = nk for k < d then one can find a gauge transformation

u such that (u∗m)k = mk for k < d and (u∗m)d = nd . To do so, one notes that md−nd

defines a class in HH2(A,A)2−d . This Hochschild module is zero for d > 8: when

R is a field, this holds by Theorem B; when R = Z, it then follows by the universal

coefficients; when R is an integral domain of characteristic zero, it then follows by

universal coefficients from the Z case (cf. the proof of Theorem 5.5). One uses a

trivialization of md − nd to define the gauge transformation (cf. [46]).

Now let A = (A, µ•) be a minimal A∞ structure on A, over Z. Our goal is to show

that A is gaugeequivalent to Aw for some w ∈ W . We shall repeatedly apply gauge

transformations to A, without notating them. If A is formal then A ≃ A0 . If it is

not formal then we apply a gauge transformation so as to arrange that µk = 0 for

2 < k < d but [µd] 6= 0 ∈ HH2(A,A)2−d . By Theorem 5.5, one has [µd] = [κ1(w)]

for a unique w ∈ Wd−2 ; we may assume, by applying another gauge transformation,

that in fact µd = κ1(w). By Lemma 5.3, µk
w = 0 for k < d . Thus µk = µk

w for k ≤ d .

The difference µd+1 − µd+1
w is a cocycle, as one checks using the A∞ relations. If

it is exact, one can adjust µd by a gauge transformation which leaves µk untouched
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for k ≤ d such that µd+1 equals µd+1
w , whereupon µd+2 − µd+2

w is a cocycle, and we

can repeat the process. What we find is that either µ• is gaugeequivalent to µ•

w , or

else there is a d′ ≤ 8 − d such that, after applying a gauge transformation to µ• , one

has µd+k = µd+k
w for k = 0, . . . , d′ − 1 and [µd+d′ − µd+d′

w ] 6= 0. In the latter case,

write µd+d′ − µd+d′

w = κ1(w′), and consider µ•

w+w′ . The differences µk − µk
w+w′ can

be killed by gauge transformations for k ≤ d + d′ . We continue in the same fashion;

the process stops once has made µk agree with µk
w+w′+... for k ≤ 8.

Faithfulness: We shall consider the case of automorphisms: say g(w) = w, and that

ug(w) ≃ id (≃ means ‘is homotopic to’); we shall show that then g = 1. From this,

the general case will follow: say g1(w) = g2(w) and ug1(w) ≃ ug2(w). Let g = g−1
1 g2 .

Then g(w) = w and ug(w) ≃ (ug1)−1 ◦ ug2 ≃ id.

Recall that the Lie algebra g is a graded Rmodule: g = g0⊕g−1⊕g−2⊕g−3 . There

is an induced filtration by Lie subalgebras

g = g≤0 ⊃ g≤−1 ⊃ g≤−2 ⊃ g≤−3 ⊃ g≤−4 = 0, g≤j =
⊕

k≤j

gk.

One easily finds algebraic subgroups G ⊃ G−1 ⊃ G−2 ⊃ G−3 ⊃ G−4 = {1}, with

LieGj = g≤j ; for instance, G−1 is the unipotent subgroup U .

We also filter the group G, so that G = G0 ⊃ G−1 ⊃ . . . , as follows: take v =

(v1, v2, v3, . . . ) ∈ G (so vj ∈ C1(A,A)1−j , and v1 = c id with c a unit). If v1 = id, say

v ∈ G−1 ; if in addition, vk = 0 for 1 < k ≤ d − 1, say v ∈ G1−d . If g ∈ G1−d then

ug(w) ∈ G1−d . If in addition d > 2 then we have [ud] 6= 0 ∈ HH1(A,A)1−d . Hence

we have the following observation:

if g(w) = w, if u = ug(w) ∈ G1−d for some d > 2, and if [ud] 6= 0, then g ∈ G−d .

Now let ug(w) = (u1, u2, u3, . . . ), where uj ∈ C1(A,A)1−j , with g(w) = w and

id ≃ ug(w). Since ug(w) ≃ id, u1 induces the identity on A = H∗Aw . Hence g

lies in the unipotent subgroup U = G−1 ⊂ G. Hence u1 = id, i.e., ug ∈ G−1 .

Thus δu2 = 0, but the fact that ug(w) ≃ id implies that u2 is a coboundary. By

the highlighted observation, we deduce that g ∈ G−2 . We argue similarly that u2 is

a coboundary, hence that g ∈ G−3 , and finally that u4 is a coboundary, hence that

g ∈ G−4 = {1}.

Fullness. Next consider the assertion that given v ∈ G and given w1,w2 such that

v∗Aw1
= Aw2

, there is some g ∈ G such that g(w1) = w2 and v ≃ ug(w1).

We first note a nonemptiness statement: if v∗Aw1
= Aw2

where v ∈ G, then there is

some h ∈ G such that h(w1) = w2 . This is true because the formal diffeomorphism

type of the A∞ structure Aw determines the affine coordinate ring, and hence the
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curve. That is:

morM(Aw1
,Aw2

) 6= ∅ ⇒ morW(w1,w2) 6= ∅.

Likewise, if v∗Aw1
= Aw2

where v ∈ G−1 , then there is some h ∈ U = G−1 such that

h(w1) = w2 . Indeed, if we know Aw up to gaugeequivalence then we can reconstruct

not only the affine coordinate ring of the curve, but also the Weierstrass differential on

the curve.

Hence, since W and M are groupoids, and F functorial, it will be enough to prove

fullness when w1 = w2 . We wish to show that the map

Fw,w : morW(w,w)→ morM(Aw,Aw),

which we already know to be injective, is also surjective. Moreover, by a rescaling

argument, we see that it suffices to prove this under the assumption that v ∈ G−1 .

Take some v ∈ G−1 with v∗Aw = Aw . If v is homotopic to the identity, we are done.

If not then there is a d > 1 such that v is homotopic to some x ∈ G−d , x∗Aw = Aw ,

where [xd] 6= 0 ∈ HH1(A,A)1−d . By Theorem 5.5, [xd] = [κ0(ξ1)] for some ξ1 ∈ gd .

We then have g1 := 1 + ξ1ǫ ∈ U(K[ǫ]/ǫ2), and g1([w]) = [w] ∈ W ⊗K K[ǫ]/ǫ2 . It is

possible to lift g1 to g2 = 1 + ξ1ǫ + ξ2ǫ
2 ∈ U(K[ǫ]/ǫ3), with ξ2 ∈ g−d . We wish to

do so in such a way that g2([w]) = [w] ∈ W ⊗K K[ǫ]/ǫ2 . The obstruction is the class

of g2(w) − w in TwW/ im ρw = coker ρw . Now, [κ1] maps W to HH2(A,A)≤0 , and

carries im ρw to [Aw,HH
1(A,A)≤0]. Because xd extends to a gauge transformation

which preserves Aw , [κ1(g2(w)−w)] ∈ [w,HH1(A,A)≤0]. Hence g2(w)−w ∈ im ρw .

Inductively, we extend g1 to 1 + ξ1ǫ + · · · + ξ3ǫ
3 (mod ǫ4 ) with ξj ∈ g≤j . We can

then find a homomorphism θ : K → g which has this series as its 3jet, and we put

g = θ(1). One has g(w) = w.

We next ask whether (ug)−1 ◦ v is homotopic to id : Aw → Aw . The obstruction

we encounter now lies in HH1(A,A)1−d′ with d′ > d . Repeating the argument, we

eventually obtain an element g ∈ U with ug ≃ v.

5.4 The Gerstenhaber bracket on HH
•(A,A)≤0

Note: This subsection will not be used elsewhere, except in the variant method (7.1.1)

of our proofbyelimination that T0 is mirror to T0 .

The truncated Hochschild cohomology H• = HH•(A,A)≤0 , in addition to its graded

algebra structure, carries the Gerstenhaber bracket [ , ]. These two operations make H•

a Gerstenhaber algebra over K: the product is graded commutative, the bracket makes

H•[1] a Lie superalgebra, and the bracket is a biderivation for the product. Moreover,

the internal grading s is additive under the bracket. Since the brackets can readily be

computed from our results, we record it here. We use the notation of Theorem B.
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Theorem 5.6 Q•,≤0 carries a Gerstenhaber bracket [·, ·], respecting the internal grad

ing s and making the (canonical) isomorphism HH•(A,A)≤0 → Q•,≤0 from Theorem

B a map of Gerstenhaber algebras. The Gerstenhaber bracket on Q•,≤0 is as follows.

The Lie algebra L = (Q1)≤0 = (T ⊗ γ)≤0 is given by

Kγ, if 6 6= 0

Kγ ⊕Kxγ, [γ, xγ] = −γ, if 3 = 0

Kγ ⊕Kxγ ⊕Kyγ, [γ, xγ] = 0, [γ, yγ] = γ, [xγ, yγ] = xγ, if 2 = 0.

One has
[
Q2,Q2

]
= 0. The brackets [L,Q2] are given by

[γ, xβ] = −4xβ, [γ, β] = −6β, if 6 6= 0;

[xγ, x2β] = x2β, [xγ, xβ] = −xβ, [xγ, β] = 0,
[γ, x2β] = xβ, [γ, xβ] = −β, [γ, β] = 0 if 3 = 0;

[yγ, xyβ] = xyβ, [yγ, yβ] = yβ, [yγ, xβ] = 0, [yγ, β] = 0,
[xγ, xyβ] = 0, [xγ, yβ] = xβ, [xγ, xβ] = 0, [xγ, β] = 0,
[γ, xyβ] = xβ, [γ, yβ] = β, [γ, xβ] = 0, [γ, β] = 0, if 2 = 0.

Q•,≤0 is generated as a unital Kalgebra by L and Q2 . The remaining brackets are

therefore determined by the Leibniz rule.

Proof The structure of L was already computed in Prop. 4.19; the first assertion

here is essentially a restatement. A Hochschild 2cocycle c for A determines a

firstorder deformation of A as an A∞ algebra, and that the Gerstenhaber square

[c ◦ c] ∈ HH3(A,A) is the obstruction to lifting it to a secondorder deformation. By

Theorem 5.5, all firstorder deformations of A come (via κ1 ) from deformations of

Ccusp as a Weierstrass curve. These Weierstrass deformations lift to second order;

hence the algebraic deformation of A also lifts. This shows that c◦ c = 0. The bracket

on HH2 is given by [a, b] = a ◦ b + b ◦ a = (a + b) ◦ (a + b) − a ◦ a − b ◦ b, so

[HH2,HH2] = 0. The adjoint action of the Lie algebra HH1(A,A)≤0 on HH2 is the

natural action of infinitesimal (A∞ ) automorphisms of A on first order deformations.

But the Lie algebra H0(TCcusp)≤0 acts via Lie derivatives on Weierstrass deformations

of Ccusp . Namely, take ξ ∈ ker d = H0(TCcusp)≤0 . We have a vector field ρ(ξ) on

W . Take w ∈ W , and regard it as a translationinvariant vector field on W ; then the

adjoint action of ξ on w is given by the Lie bracket of vector fields: w 7→ [ρ(ξ),w](0).

One computes these brackets using the formulae (12). The maps [κ•] from (5.5)

intertwine this Lie derivative with the adjoint action of HH1 on HH2 . The statement

about generation is clear from the definition of Q•,≤0 .
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Remark. Once the Lie algebra L has been computed, another approach to obtaining

the rest of the brackets is to compute the BV operator ∆ : Q•,s → Q•−1,s . Along with

the product, that determines the brackets, and it is sharply constrained by the bidegrees

(which, for instance, force ∆β = 0). We have used this method as an independent

check of the above formulae for [L, L] and [L,Q2]—in particular, as a check on the

signs.

Part II

Symplectic geometry and the mirror map

6 Fukaya categories

6.1 The exact Fukaya category

T0 as a Liouville manifold. Let T be a 2dimensional torus marked with a point z

and equipped with a symplectic form ω . In the complement T0 = T \ {z}, ω is exact;

say ω|T0
= dθ .

A small punctured neighbourhood of z is symplectomorphic to the negative end in the

symplectization of the contact manifold (cz, θ|cz), where cz is a small loop encircling z.

The disc Dz bounded by cz has the property that there is a diffeomorphism Dz \{z} →
cz × [0,∞), which is the identity on the boundary, under which θ pulls back to θ|cze

r .

T0 is a Liouville manifold (see e.g. [47]): an exact symplectic manifold (M, θ) whose

Liouville vector field λ is complete, with a given compact hypersurface H enclosing a

compact domain D in M , such that λ is nowhere vanishing on M\ int D. The Liouville

structure of T0 includes the selection of the curve cz , but is independent of this choice,

as well as that of the form θ , up to Liouville isomorphism. A Liouville isomorphism

f : (M0, θ0)→ (M1, θ1) is a diffeomorphism such that f ∗θ1− θ0 = dK for a compactly

supported function K ∈ C∞
c (M).

Grading. We specify a grading of T0 as a symplectic manifold, that is, a trivialization

of the square of the canonical line bundle; in two dimensions, that amounts to an

unoriented line field ℓ ⊂ T(T0). Anticipating our discussion of F(T, z), we shall

always choose ℓ extends over z to a line field on T . Such line fields form a torsor for

C∞(T,RP1); one has π0C∞(T,RP1) = H1(T;Z).
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Branes. The objects of F(T0)ex , the exact Fukaya category of the Liouville manifold

T0 , as defined in [49, chapter 2], are ‘exact Lagrangian branes’ L# :

embedded closed curves L ⊂ T0 such that
∫

L
θ = 0, equipped with spin structures

and gradings.

A grading for L is a homotopyclass of paths from ℓ|L to TL inside T(T0)|L . If L

and L′ are graded curves then a transverse intersection point y ∈ L ∩ L′ has a degree

i(y) = ⌊α/π⌋ + 1, where α is the net rotation of the path from TyL to ℓy to TyL′ .

When ℓ is oriented—pointing along β , say—the grading for a curve L induces an

orientation for L . The sign (−1)i(y) is then the intersection sign [L′] · [L] (note the

order!), regardless of which orientation for ℓ was selected; see Figure 1 for relevant

examples. There are four inequivalent spin structures on each curve L , defined by the

two orientations and the two double coverings.

The morphismspaces in F(T0)ex are Zlinear cochain complexes; homF(T0)ex(L
#, L′#)

is a cochain complex CF(φ(L#), L′#) = Zφ(L)∩L′

computing the Floer cohomology

HF(L#, L′#); here φ(L) is the image of L under the time1 map φ of a specified Liouville

isotopy. The degrees i(y) define the grading of the complex; the spin structures

determine the signcontributions of the holomorphic bigons defining the differential.

Floer cohomology is invariant under Liouville isotopies φt (i.e., 1parameter families of

Liouville automorphisms) in that HF(φt(L
#), L′#) ∼= HF(L#, L#). As a result, Liouville

isotopic objects are quasiisomorphic in F(T0)ex .

One has homF(T0)ex(L
#, L#) ≃ Z[−1]⊕Z: this is just a formula for the Morse cochain

complex for L . If L⋆ denotes the brane sharing the same oriented, graded curve as L#

but with the other double covering, then one has homF(T0)ex(L
#, L⋆) ≃ {Z

2
−→ Z[−1]},

which is the Morse complex for L with the local system with fiber Z and holonomy

−1.

The composition map µ2 : hom(L1, L2) ⊗ hom(L0, L1) → hom(L0, L2) can be under

stood purely combinatorially [49, (13b)], provided that L0 , L1 and L2 are in general

position. The coefficient for y0 in µ2(y2, y1) is a signed count of immersed triangles

bounding L0 , L1 and L2 in cyclic order, with convex corners at y1 , y2 and y0 . We shall

discuss the sign when we discuss the relative Fukaya category. When (L0, L1, L2) are

not in general position, one moves L1 and L2 by exact isotopies so as to make them so.

Beyond the differential µ1 and the composition µ2 , the higher A∞ structure maps

µd are defined through inhomogeneous pseudoholomorphic polygons for a complex

structure j on T0 compatible with the orientation and the Liouville structure at infinity.

We refer to [49] for the foundations; since we shall not make any direct calculations

with the higher structure maps, we need not say more here.
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Describing the objects. Oriented simple closed curves in T0 do not realize all free

homotopy classes of loops, but just one free homotopy class per nonzero homology

class. Indeed, suppose that γ0 and γ1 are two such curves representing the same class

in H1(T0). It follows from the ‘bigon criterion’ [18] that they can be disjoined by

isotopies in T0 . Assuming that they are disjoint, they divide T into two annuli. Only

one of the annuli contains z, and hence an isotopy from γ0 to γ1 can be realized in

T0 . If, moreover, γ0 and γ1 are isotopic simple closed curves which are both exact

then they cobound an immersed annulus of area zero, and hence are Liouvilleisotopic.

A nonexact simple closed curve representing a nontrivial homology class can be

isotoped to an exact one (just take an isotopy of an appropriate flux).

Generation. Pick a basis (α, β) for H1(T0;Z) with α · β = 1. Let L#
0 and L#

∞ be

objects of F(T0)ex of respective slopes α and β . In Figure 1, the line field ℓ is chosen

to be parallel to β . With that choice, we grade L0 by the trivial homotopy from ℓ|L0

to TL0 , and L∞ by the homotopy depicted, so that i(x) = 0 where x is the generator

for CF(L0, L∞). We also orient these curves in the respective directions of α and β
(so,if ℓ is oriented in the direction of β , the orientations are those obtained from the

orientation of ℓ and the grading of the curve). It is permissible to choose a different line

field ℓ′ , so long as it is defined on all of T , twisting say, a times along L∞ and b times

along L0 ; but in that case we put the same number of extra twists into the gradings of

L0 and L∞ , so that one still has i(x) = 0. We take the spinstructures on L0 and L∞ to

be the nontrivial double covers. A convenient way to keep track of double coverings

of curves L is to mark a point ⋆L ∈ L , and declare the double cover to be trivial on

L \ {⋆L} and to exchange the sheets over ⋆L . Such stars appear in Figure 1.

Let A be the full A∞ subcategory of F(T0)ex with objects (L#
0, L

#
∞). Every object of

F(T0)ex whose double covering is nontrivial is quasiisomorphic, in twF(T0)ex , to a

twisted complex in A. This is because such objects are given, up to possible reversal

of orientation and shift in degree, by iterated Dehn twists (τ #
L∞

)n(L#
0), n ∈ Z, and the

effect of the Dehn twist τL#
∞

on the Fukaya category is the twist functor along the

spherical object L#
∞ , provided that the double covering of L#

∞ it is nontrivial. For a

systematic account, including the doublecover condition, see [49, Theorem 17.16]; a

lowtech account of the case at hand is given in [35].

Curves with trivial spin structures are not quasiisomorphic in twF(T0)ex to object

of twA; in fact, we shall see later that these objects do not represent classes in the

subgroup of K0(twA) of K0(twF(T0)ex). What is true, however, is that for any object

X of F(T0)ex , the direct sum X⊕X[2] is quasiisomorphic, in twF(T0)ex , to a twisted

complex in A. One can write down an explicit twisted complex representing X⊕X[2]

using [49, Cor. 5.8, Theorem 17.16, and formula 19.4], bearing in mind that there is
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an exact isotopy (τL0
τL∞

)6 ≃ τcz where τγ is a symplectic Dehn twist along γ . The

isotopy takes place in a compact domain containing the surface bounded by cz , and is

trivial near the boundary. The relation arises from the monodromy of an anticanonical

Lefschetz pencil on CP2 with 8 of the 9 basepoints blown up. Consequently, A

splitgenerates F(T0)ex , i.e., twπ A→ twπ F(T0)ex is a quasiequivalence.

6.2 The wrapped category

The wrapped Fukaya A∞ category W(M) of a Liouville manifold (M, θ) is set up in

[5]. It is a Zlinear A∞ category containing F(M)ex as a full subcategory. Its objects

are again certain Lagrangian branes L# . Precisely, L must be a properly embedded,

eventually conical Lagrangian submanifold, exact in the strong sense that θ|L = dK

for some K ∈ C∞
c (L). The brane structure consists of a spin structure and a grading on

L , and both can be taken to be eventually translationinvariant on the conical end. The

morphism spaces homW(M)(L
#, L′#) are cochain complexes CW∗(L#, L′#) computing

wrapped Floer cohomology HW∗(L#, L′#), which is Lagrangian Floer cohomology

HF∗(φ(L#), L′#) for a Hamiltonian diffeomorphism φ which ‘accerelates’ on the conical

end. That is, φ acts on the conical end N × R+ as φ(x, r) = φReebf (r) (x), where {φReebt }
is the time t Reeb flow on the contact crosssection N and f (r) is a function which

increases rapidly in a precise sense. As a consequence φ ‘wraps’ L around the end

many times, typically producing an infinity of intersections with L′ .

An object in W(T0) is either an object of F(T0), or an eventuallystraight oriented arc

A, with a spinstructure, of which there is only one isomorphism class per orientation,

and a grading. A grading is, again, a way to rotate from ℓ|α to TA inside T(T0)|A .

The oriented arc A has an initial segment {ain}× [r,∞) and a final segment {aout}×
[r,∞), where ain and aout are points on the circle cz . Exact arcs with fixed ain and aout
are Liouvilleisotopic if and only if they have the same slope, i.e., represent the same

primitive class in H1(T, {z}). Exact arcs with the same slope but different endpoints

are not Liouvilleisotopic, but are nonetheless quasiisomorphic in W(T0).

If L# is an object of W(T0) such that L is closed, and Λ# any object of W(T0) such

that [L] 6∈ {[Λ],−[Λ]} in H1(T, {z}), one can apply a Liouville isotopy to L0 so as to

reduce the number of intersections to the minimal intersection number i(L,Λ). There

are then no bigons, so HW∗(L#,Λ#) = Zi(L,Λ) .

If A is an arc of the same slope as the closed curve L , one can apply a Liouville

isotopy to A that disjoins it from L , whence HW∗(A#, L#) = 0. It then follows that

HW∗(L#,A#) = HW1−∗(A#, L#)∨ = 0: this is an instance of Floertheoretic Poincaré

duality, which applies only when one of the objects is a closed Lagrangian. One can
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show that HW∗(A#,A#) is the noncommutative (tensor) algebra T(u, v) on generators

of degree 1 modulo the twosided ideal (u2, v2), but we shall not need to use this

assertion.

Generation. Let A be any noncompact exact arc, equipped with a brane structure

so as to make it an object of W(T0). Let L0 be a simple closed curve of the same slope

as A, and L∞ a curve which intersects L∞ transversely at a single point. Equip these

three curves with brane structures, with the doublecoverings of the two closed curves

both nontrivial. Then {A#, L#
0, L

#
∞} splitgenerates W(T0). Indeed, we have already

seen that {L#
0, L

#
∞} splitgenerates F(T0)ex , so we need only consider the arcs. Any

arc can be obtained from A by a sequence of Dehn twists along L0 and L∞ , and so by

an easy adaptation of [49, Theorem 17.16], or by a much more elementary argument

which applies to the surface case, can be represented as a twisted complex in A# , L#
0

and L#
∞ .

6.3 The relative Fukaya category

The relative Fukaya category F(T, z) (cf. [45, 46, 53]) has the same objects as F(T0)ex ;

and

homF(T,z)(L
#, L′#) = homF(T0)ex(L

#, L′#)⊗Z Z [[q]] ,

i.e., homF(T,z)(L
#, L′#) is a free Z [[q]]module on the intersections L ∩ L′ . The line

field ℓ on T defines a grading, and hence makes the homspaces graded modules.

The A∞ structure {µd} is defined through inhomogeneous pseudoholomorphic poly

gons, now in T . Such polygons u count with a weight ε(u)qu·z , where ε(u) is a sign,

defined just as in F(T0)ex , and u · z is the intersection number with z. A formula

for ε(u) is given in [48] (see also [35]). We shall give here only a special case in

which all corners of the polygon (i.e., yk+1 ∈ hom(Lk, Lk+1) for k = 0, . . . , d − 1

and y0 ∈ hom(Ld, L0)) have even index i(yk). In that case, ε = (−1)s , where where

s is the number of stars on the boundary (recall that the stars designate nontrivial

monodromies for the double covers).

The same perturbations that define the A∞ structure in F(T0)ex succeed in defining

an A∞ structure here too. The proof uses automatic regularity for holomorphic maps

to surfaces [49, (13a)], and is otherwise unchanged from the proof in the the exact

case. The resulting A∞ structure is an invariant of (T, ω, z; θ). Moreover, up to quasi

equivalence it is independent of θ ; the proofs of these assertions are straightforward

adaptations of their analogues for T0 given in [49].
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Generation. The objects L#
0 and L#

∞ splitgenerate F(T, z). The proof is essentially

the same as for F(T0). One can see curves with nontrivial double coverings as explicit

twisted complexes in L#
0 and L#

∞ , cf. [35]. For arbitrary objects X , the sum X ⊕ X[2]

is again a twisted complex in L#
0 and L#

∞ ; the proof uses the main results of [49] just

as before, via the relation (τL0
◦ τL∞

)6 ≃ id[2] in the graded symplectic mapping class

group. It is significant here that c1(T) = 0, and more particularly that ℓ extends over

T , since Seidel’s argument depends on the presence of absolute gradings; with that

point noted, the argument applies to (T, z) as it does to T0 .

6.4 The closedopen string map

Besides the ‘open string’ invariants F(M)ex and W(M), Liouville manifolds M have

a ‘closed string’ invariant, the symplectic cohomology algebra SH•(M) (see [47] for

an exposition and foundational references). In the first, place SH•(M) is a graded

commutative graded ring; the grading depends on a choice of grading for M as a

symplectic manifold. It also comes with a ring map v : H•(M) → SH•(M), which in

our grading convention is a map of graded rings; this pins down our normalization for

the grading of SH•(M), which in some other accounts (such as [47]) differs from ours

by dimC M . As a simple algebraic variant, we can work with SH•(M;K), an algebra

over the commutative ring K.

Lemma 6.1 For any commutative ring K, there is an isomorphism of graded K

modules

θ : K[β, γ1, γ2]/(γ1γ2, β(γ1 − γ2))→ SH•(T0;K),

canonical after a choice of basis of H1(T0), where deg γ1 = deg γ2 = 1 and degβ = 2.

Moreover, θ(γ1) · θ(γ2) = 0.

When K is a field, the algebra on the right is isomorphic to HH•(FK(T0)ex) by Theorem

4.20. We will see presently that θ respects products.

Proof We begin with a comment about grading. The grading of SH(T0;K) depends,

a priori, on the choice of line field ℓ. If ℓ′ = h(ℓ) is another choice, obtained

from ℓ by a map g : T0 → RP1 representing a class c = g∗(o) ∈ H1(T0;Z), where

H1(RP1;Z) = Z o, the degrees of generators, which are 1periodic Hamiltonian orbits

y, change according to the formula |y|ℓ′ = |y|ℓ ± 2〈c, [y]〉 (we do not bother with

the sign). In the cochain complex for SH(T0) we shall describe, all orbits are null

homologous, and hence the grading of SH(T0) is independent of ℓ.

The graded Kmodule SH(T0;K) is described in [47, ex. 3.3]. One uses an autonomous

Hamiltonian which is a perfect Morse function h, accelerating appropriately on the
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cylindrical end. One has a natural map of algebras v : H•(T0;K)→ SH•(T0;K) which

is an isomorphism onto SH≤1(T0;K); this is the contribution of the minimum m and

two saddlepoints s1 and s2 of h. We choose h so that ([s1], [s2]) is the chosen basis

for the Morse homology H1(T0). Define θ(1) = 1, θ(γ1) = s1 and θ(γ2) = s2 .

For each q ≥ 1, there is a Reeb orbit oq which winds q times around the puncture;

H∗(oq;K) contributes classes c2q ∈ SH2q(T0;K) and c2q+1γ ∈ SH2q+1(T0;K) which

span those respective modules. We define θ(βq) = c2q and θ(γ1β
q) = c2q+1 . We have

[s1] · [s2] = 0, because o1 is not contractible.

The exact Fukaya category of a Liouville manifold M is tied to its symplectic coho

mology via the ‘closedopen string map’ [45] to its Hochschild cohomology

(35) CO : SH•(M;K)→ HH•
(
F(M)exK

)
.

For the details of the construction of CO we refer to S. Ganatra’s doctoral thesis [21].

Lemma 6.2 (see [21]) CO is a homomorphism of Kalgebras: it intertwines the

pairofpants product on SH• with the cup product on HH• .

7 The punctured torus

This part of the paper pinpoints the Weierstrass curve Cmirror → SpecZ [[q]] such

that the minimal A∞ structure Amirror it induces on the algebra A is gaugeequivalent

to the A∞ structure Asymp obtained from the Fukaya category F(T, z). Theorem C

assures us that Cmirror exists, and is unique as an abstract Weierstrass curve. Our aim

is to show that Cmirror
∼= T . This will be accomplished in the final section of the paper

by an argument involving θ functions. In this section we offer two alternative proofs

that Cmirror|q=0
∼= T0 . One is by eliminating all possibilities other than T0 ; the other is

by a calculation of ‘Seidel’s mirror map’. We also prove our mirrorsymmetry theorem

for the wrapped category.

7.1 First proof that Cmirror|q=0 = T0 : by elimination

Lemma 1.4 characterized the Weierstrass curve T0 → SpecZ as having a section

which is a node at p, for any p ∈ SpecZ. Symplectic topology now enters the picture:

Proposition 7.1 Take p ∈ SpecZ, and C → SpecFp a Weierstrass curve (here

F0 = Q). Suppose that the exact category twπ F(T0)ex , taken with coefficients in Fp ,

is quasiequivalent to tw vectC . Then C is nodal.
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Proof Let K = Fp . One has Viterbo’s map v : H•(T0;K) → SH•(T0;K), a graded

algebra homomorphism [60, 47], and restriction homomorphisms

HH•(F(T0)ex)→ HH•
(
homF(T0)ex(L

#, L#)
)
,

(everything over K), one for each Lagrangian brane L# ∈ obF(T0)ex . The Hochschild

cochain complex C• for an A∞ algebra [49] has a filtration Fr C• by the length of

cochains (so C•
= F0 C• ⊃ F1 C• ⊃ . . . ), and so for each L one has a quotient map

HH•(hom(L#, L#))→ H(C• /F1 C•) = H•(hom(L#, L#)) = HF(L#, L#).

Now, HF(L#, L#) ∼= H•(L;K), ordinary cohomology, by a canonical isomorphism [49,

(8c)]. It follows easily from the definitions, plus the gluing theorem for Hamiltonian

Floer theory—of which [44] has a meticulous account—that the composite of the maps

H•(T0;K)
v
−→ SH•(T0;K)

CO
−−→ HH•(F(T0)ex)→ HH•(hom(L#, L#))→ H•(L;K)

is the classical restriction map H•(T0;K) → H•(L;K)—a surjective map. Taking the

sum of these composite maps for the objects L#
0 and L#

∞ produces an isomorphism

(36) H1(T0;K)→ H1(L0;K)⊕ H1(L∞;K).

We note one more feature of the composite CO ◦ v, which is that it maps H1(T0;K)

to HH1(F(T0)ex)≤0 , the part spanned by cocycles in F1 C1 . Indeed, the lengthzero

component of CO ◦ v returns, for each Lagrangian brane L , a count of indexzero

pseudoholomorphic discs attached to L , with one marked boundary point, of which

there are none by exactness (constant discs have index −1).

On the algebrogeometric side, suppose that C = Cmirror → SpecK is a Weier

strass curve mirror to T0 over K. By Lemma 4.3, one has HH•(tw vectC) ∼=
HH•(C). Hochschild cohomology is invariant under passing to twπ , by a form of

Morita invariance [30, 59]. Hence, under the hypotheses of the proposition, one has

HH• (F(T0)ex) ∼= HH•(C). Consequently, using (36) we obtain a map of Kalgebras

SH•(T0;K)→ HH•(C) such that the composite

H1(T0;K)→ SH1(T0;K)→ HH1(C)≤0 → Ext1(OC,OC)⊕ Ext1(OC,σ,OC,σ)

is an isomorphism of Kmodules. We assert that such a homomorphism exists only if

C is nodal. To prove this, we must eliminate the cuspidal and smooth cases.

We claim that if C were smooth, one would have HH•(C) ∼= Λ•[α1, α2], where

degα1 = 1 = degα2 . Additively, this follows the degeneration of the Hodge spec

tral sequence (25). The spectral sequence is multiplicative, and so the Kalgebra⊕
p,q H

p(ΛqTC) is isomorphic to the associated graded algebra E∞ = grHH•(C). We

have α1 · α2 6= 0 ∈ HH2(C), since this is even true in the associated graded algebra;

this establishes the claim. Any homomorphism of graded unital Kalgebras

θ : SH•(T0)→ K[α1, α2]
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obeys, in the notation of Lemma 6.1, θ(γ1)θ(γ2) = 0, and therefore θ fails to sur

ject onto the 1dimensional part {α1, α2}. The composite of θ with the maps to

Ext•(OC,OC) and Ext•(OC,σ,OC,σ) cannot then both be surjective.

We can rule out the possibility that C is cuspidal, i.e., that C ∼= Ccusp , by noting

that Ext1(OCcusp ,OCcusp) ∼= H1(OCcusp) = K · ω . This module transforms under the

K× action on Ccusp , and it has weight +1. The restriction map HH1(Ccusp) →
Ext1(OCcusp ,OCcusp) respects the weight of the K× action—that is, it is a map of graded

vector spaces—and hence its restriction to HH1(Ccusp)≤0 is zero.

7.1.1 Variants

There are other methods for ruling out Ccusp :

• When 6 6= 0, the map that HH1(Ccusp)≤0 is 1dimensional, and therefore the

composite map H•(T0;K) → Ext1(O,O) ⊕ Ext1(Oσ,Oσ) unavoidably has a

kernel.

• In [35], we used Abouzaid’s model [3] for the Fukaya category of a plumbing

to describe the structure maps of A and thereby prove nonformality, assuming

6 6= 0.

• When 6 = 0, the Gerstenhaber bracket on HH1(Ccusp)≤0 is nonzero by The

orem 5.6. For any Liouville domain M , the bracket is zero on the image of

Viterbo’s map v : H•(M) → SH•(M). Indeed, v is a ring homomorphism, and

it is easy to see that ∆ ◦ v = 0, where ∆ is the BV operator on symplec

tic cohomology [47], and the bracket is, in accordance with the rules of BV

algebras,

[x, y] = (−1)|x|∆(x · y)− x ·∆y− (−1)|x|(∆x) · y,

which implies that [v(a), v(b)] = 0. Moreover, CO preserves Gerstenhaber

brackets: this was first stated by Seidel [45], but there is no published proof. In

characteristic 2 we have verified it for ourselves using standard gluing methods.

Over other fields the signs are tricky, so we regard it as conjectural. However,

taking this assertion for granted, the composite map H1(T0;K)→ HH•(Ccusp)≤0

preserves brackets and so cannot be injective.

Proof of Theorem A clause (iii). We want to construct an A∞ functor

ψ : F(T0)→ tw vect(T|q=0).

We already have an isomorphism Hψ : A = H∗A→ H∗BC , valid for any Weierstrass

curve C defined over Z. Theorem C implies that there is a unique C for which Hψ
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lifts to a quasiisomorphism ψ : A → BC. For that particular C , ψ extends naturally

to a quasiisomorphism

twπ A→ twπ BC.

Since the inclusion maps twπ A → twπ F(T0)ex and twπ BC → twπ vect(C) are

quasiequivalences, one obtains a quasiisomorphism

twπ F(T0)ex → twπ vect(C).

Composing this with a quasiinverse to the inclusion tw vect(C) → twπ vect(C), one

obtains a quasiisomorphism

twπ F(T0)ex → tw vect(C)

whose restriction to F(T0) is the functor we want.

Our task, then, is to identify the mirror Weierstrass curve C . In light of Prop. 7.1, it

must be a curve which is nodal over Q. A priori, the node is only a Qpoint. However,

the normalization of C , defined over Q, has two points (over Q) which map to the

node, and since the normalization is a rational curve, these points are actually defined

over Q. Hence the same is true of the node. By clearing denominators, we obtain

integer coordinates for the node. It then defines a section of C → SpecZ, which by

the proposition must map to a node over Fp for every prime p. By Lemma 1.4, C is

therefore equivalent to T|q=0 .

We have proved a weakened form of Theorem A clause (iii): we have shown that

twπ F(T0)ex → tw vect(C) is a quasiequivalence, while the theorem claims that

twF(T0)ex → tw vect(C) is already an equivalence. We formulate this step as a

separate statement, Prop. 7.2, whose proof completes that of the theorem.

Proposition 7.2 twψ : twF(T0)ex → Perf(C) is a quasiequivalence.

The triangulated A∞ category tw vect(T0) is splitclosed. Let I ⊂ tw vect(T0) denote

the image of twF(T0)ex under twψ . We must show that the inclusion I→ tw vect(T0)

is a quasiequivalence. By Thomason’s theorem [57], it is sufficient to prove equality

of Grothendieck groups: K0(I) = K0(tw vect(T0)).6

Lemma 7.3 Consider the map s : obF(T0)ex → Z/2 which maps an exact Lagrangian

brane L to 0 if and only if the double covering L̃ → L (part of the brane structure) is

trivial. This map descends to a homomorphism s : K0(twF(T0)ex)→ Z/2.

6By K0 of a triangulated A∞ category C , we mean K0(H∗C), the Grothendieck group of

the classical triangulated category H∗C—in this case, K0(Perf T0).
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Proof This is an adaptation of a result of Abouzaid [1, Prop. 6.1]. One views a spin

structure, lifting a given orientation, as a local system for the group {±1} ⊂ U(1).

The switch from closed, highergenus surfaces to T0 is irrelevant.

Completion of the proof of 7.2. We must show that

K0(ψ0) : K0(twF(T)ex)→ K0(tw vectT0)

is onto. We have K0(tw vectT0) = K0(T0), and by Lemma 3.5, (rank, det) : K0(T0)→
Z ⊕ Pic(T0) is an isomorphism. One also has an isomorphism (deg, ρ) : Pic(T0) →
Z⊕Z× , where deg is the degree and ρ describes the ‘descent data’ under normalization,

as at the end of the proof of that lemma. The image of ψ0 contains O (rank 1, degree

0) and O(σ) (rank 1, degree 1). Hence (rank, deg) ◦ K0(ψ0) : K0(twF(T)ex))→ Z2 is

onto. Now take some L# ∈ obF(T0)ex , and let L⋆ be the same object with the other

double covering. Then the class [L#]− [L⋆] is 2torsion in K0(twF(T)ex), by the last

lemma and the fact that the change of covering can be accomplished by an involution

of twF(T0)ex (namely, tensoring spinstructures on Lagrangians by the restrictions

of some real linebundle ℓ → T0 ). Thus [ψ0(L)] − [ψ0(L′)] is again 2torsion in

K0(tw vectT0). There is a unique 2torsion class in K0(tw vectT0), detected by ρ.

Therefore ρ ◦ K0(ψ0) is surjective, and hence K0(ψ0) is surjective.

Remark. There is an alternative to the argument just given which does not appeal to

Abouzaid’s analysis, but instead observes that the objects L#
0 and L⋆0 (which differ only

in their double coverings) map under ψ to perfect complexes whoses K0 classes differ

by the generator of Z/2 ∈ K0(T). For this, we regard L⋆0 as L#
0 with a local system

with fiber Z and holonomy −1. We have ψ(L#
0) = O, and it follows from an easy

adaptation of Lemma 8.2 below that ψ(L⋆0) = O(σ − σ′), where σ′ is the 2torsion

section of Tsm
0 = Gm(Z)→ SpecZ and, as usual, σ is the identity section. From this

point, the argument is straightforward.

7.2 A second identification of the central fiber of the mirror curve: Sei

del’s mirror map

The affine coordinate ring. Suppose given an abstract Weierstrass curve (C, σ,Ω)

over Spec S . There is then a Weierstrass cubic embedding carrying σ to [0 : 1 : 0]; the

affine complement to the closure of imσ is SpecRC , where RC , the affine coordinate

ring, is the ring of functions on C with poles only at σ :

RC = lim
−→

n

H0(C,O(nσ)).
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7.2.1 The Dehn twist ring.

We want to compute RCmirror
by determining an equation that holds in H0(Cmirror,O(6σ)).

(This is almost the method of [64], but we are concerned here with the affine rather

than homogeneous coordinate ring.) We shall in fact carry out this computation only

for Cmirror|q=0 .

Since A splitgenerates F(T, z), the quasiisomorphism A → BCmirror
extends to an

A∞ functor ψ : F(T, z)→ tw vect(Cmirror). Consider the object L#
∞ . The Dehn twist

τ = τL#
∞

, acting as an autoequivalence of F(T0), is homotopic to the twist functor along

the spherical object L#
∞ : this is elementary in the present case [35], but is an instance

of a general result of Seidel’s [49]. Now, ψ(L#
∞) = Oσ . The twist along the spherical

object Oσ ∈ ob tw vec(Cmirror) is homotopic to the functor O(σ)⊗ · of tensoring with

O(σ) (see [50, (3.11)]; the argument is carried out over fields, but over Z [[q]], Seidel–

Thomas’s map f must be a unit times the restriction map by basechanging to reduce

to the case of fields). Thus ψ induces an isomorphism RCmirror
∼= Rτ , where

Rτ := lim
−→

n

HF∗(L#
0, τ

n(L#
0)).

The ‘Dehn twist ring’ Rτ , needs explanation—neither the direct system, not the ring

structure, is obvious. The maps

σn,m+n : HF∗(L#
0, τ

n(L#
0))→ HF∗(L#

0, τ
m+n(L#

0))

which form the direct system are defined via holomorphic sections of a Lefschetz

fibration over a strip; this interpretation is part of Seidel’s analysis of Dehn twists [49].

The ring structure is easier: the mth power of the Dehn twist defines a map

(τ∗)m : HF∗(L#
0, τ

n(L#
0))→ HF∗(τm(L#

0), τm+n(L#
0))

which applies the Dehn twist to the intersection points between Lagrangians. The

product in the ring is given by composing this with the triangle product ·,

HF∗(L#
0, τ

n(L#
0))⊗ HF∗(L#

0, τ
m(L#

0))
τm
∗
⊗id

−−−→ HF∗(τm(L#
0), τm+nL#

0)⊗ HF∗(L#
0, τ

m(L#
0)

·
−→ HF∗(L#

0, τ
m+n(L#

0)).

Associativity of this product is easily seen, as is the fact that the unit element e ∈
HF∗(L#

0, L
#
0) is a 2sided unit for the multiplication in the Dehn twist ring. However,

commutativity is something that we learn from the isomorphism Rτ ∼= RCmirrror
.

7.2.2 Avoiding the direct system

If one knew the maps σm,m+n explicitly, one would be able to proceed by perfect

analogy with the algebrogeometric side of the mirror, as follows. Take the unit
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e ∈ HF∗(L#
0, L

#
0) and its images en = σ0,n(e) ∈ HF∗(L#

0, τ
n(L#

0)). Take a basis

{e2, x} for HF∗(L#
0, τ

2(L#
0)) and a basis {e2, σ2,3x, y} for HF∗(L#

0, τ
3(L#

0)). Iden

tify the Weierstrass equation as the unique relation satisfied by the seven monomials

{y2, x3, xye1, x
2e2, ye3, xe4, e6}.

We can extract nearly complete information about the maps σ0,n as follows. We choose

L0 and L∞ to have just one, transverse intersection point. Then L0 ∩ τ (L0) consists

of a single point z′ , and HF∗(L#
0, τ (L#

0)) = Z [[q]] z′ . Hence e1 = f (q)z′ for some

f (q) ∈ Z [[q]]× . From the isomorphism Rτ ∼= RCmirrror
, we see that en · em = em+n , and

hence that en = (e1)n = f (q)nz′n . Moreover, σm,m+1(u) = e1u = f (q)z′ ·u. In practice,

then, one obtains a cubic equation by picking x′ so as to make {z′2, x′} a basis for

HF∗(L#
0, τ

2(L#
0)) and y′ so as to make {z′3, z′x′, y′} a basis for HF∗(L#

0, τ
3(L#

0)). One

computes the products

{y′2, x′3, x′y′z′, x′2z′2, y′z′3, x′z′4, z′6}

and identifies the unique (up to scale) relation that they satisfy. This relation is

necessarily of form

y′2 − f (q)x′3 = . . . ,

hence it determines f . Now let x = fx′ and y = fy′ . Then one has y2 − x3 = . . . , i.e.,

these coordinates satisfy the Weierstrass equation.

Remark. We learned something interesting en route here, though we shall not pursue

it: the series f , which encodes information about sections of a Lefschetz fibration, can

be computed.

7.2.3 A model for the Dehn twist

To compute with the Dehn twist ring, note that one can take for τ any compactly

supported exact automorphism of T0 that is isotopic to a Dehn twist along L∞ . To

obtain a convenient model, start with the linear symplectomorphism of T = R2/Z2

given by

δ[x1, x2] = [x1, x2 − x1].

The fixedpoint set of δ is the line L∞ = {x1 = 0}. We will take our basepoint to be

z = (ǫ, ǫ) where ǫ ∈ (0, 1/4). One has δ(z) = (ǫ, 0); let D be the ǫ2 neighborhood

of the line segment [δ(z), z]. Take ρ ∈ Autc(D, ω|D) to be a symplectomorphism such

that ρ(δ(z)) = z; extend ρ to a symplectomorphism of T , still called ρ, which is trivial

outside D. Let τ = ρ ◦ δ . Then τ (z) = z; by adjusting ρ, we may assume that τ acts

as the identity in some neighborhood of z. Thus τ restricts to give τ0 ∈ Autc(T0, ω|T0
).

Let L(1,−n) = {[x1, x2] ∈ T : nx1 + x2 = 0}. When 0 ≤ n ≤ (2ǫ)−1 , we have that

τ n
0 (L0) = L(1,−n) .
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Lemma 7.4 There is a primitive θ for ω|T0
making L0 an exact curve and τ0 an exact

symplectomorphism.

Proof We must exhibit a primitive θ for ω such that [τ∗0 θ − θ] = 0 ∈ H1
c (T0;R)

and
∫

L0
θ = 0. For the first requirement, it suffices to show that

∫
γ(τ∗0 θ − θ) = 0

for curves γ forming a basis for H1(T, {z};R). Such a basis is given by {L∞, L0},

with chosen orientations for these two curves. For any primitive θ for ω , one has∫
L∞

(τ∗0 θ − θ) =
∫
τ0(L∞)

θ −
∫

L∞

θ = 0. It suffices to choose θ , therefore, in such

a way that L0 and τ0(L0) = L(1,−1) are both exact Lagrangians. It is easy to find a

1form ι on T0 such that dι = ω on a small regular neighborhood N of L0 ∪ L(1,−1)

and such that
∫

L0
ι = 0 =

∫
L(1,−1)

ι. Now, ∂N is a circle, isotopic to a loop encircling

z. There is therefore no obstruction to finding a 1form κ ∈ Ω1(T0), supported outside

L0 ∪ L(1,−1) , such that ω = d(ι+ κ); then θ = ι+ κ is the required primitive.

Proposition 7.5 For any natural number N , one can choose a primitive θ for ω|T0

such that the curves L(1,−n) are exact for n = 0, . . . ,N .

Proof Choose ǫ < (2N)−1 , and take θ as in the lemma. Since L0 is exact, so too is

τ n
0 (L0) for any n ∈ Z. But for 0 ≤ n ≤ N we have τ n

0 (L0) = δn(L0) = L(1,−n) ,

7.2.4 Computation in the exact case

Use a θ as in the proposition, taking N at least 6. We have

L0 ∩ L(1,−1) = {z
′}, z′ = [0, 0];

L0 ∩ L(1,−2) = {ζ0, ζ1}, ζk = [k/2, 0];

L0 ∩ L(1,−3) = {η0, η1, η2}, ηk = [k/3, 0].

In calculating products in the Dehn twist ring Rτ , immersed triangles in T0 count with

sign +1. To avoid repetition, we do not give the argument here but defer it to Section

9.4. With this understood, it is straightforward to calculate that in the Dehn twist ring

of F(T0)ex , one has

z′2 = ζ0 + 2ζ1.

We put x′ = ζ1 ; then {z′2, x′} is a Zbasis for HF∗(L#
0, L

#
(1,−2)). Next, we compute

z′ζ0 = η0 + η1 + η2,

z′ζ1 = η1 + η2.
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We deduce that

z′3 = z′(ζ0 + 2ζ1) = η0 + 3η1 + 3η2,

z′x′ = η1 + η2.

We put y′ = η2 , and note that {z′3, z′x, y′} is a basis for HF∗(L#
0, L

#
(1,−3)). Further

computations yield

η2
2 = θ4, η1η2 = θ3, ζ3

1 = θ3

where (θ0, . . . , θ5) are the intersection points θk = [k/6, 0] ∈ L0∩L−6 . These relations

imply that

y′2 + x′3 = x′y′z′.

Putting x = −x′ , y = y′ and z = z′ , we obtain the Weierstrass relation in the desired

form

y2 − x3
= −xyz.

8 The wrapped Fukaya category

We restate clause (iv) of Theorem A, in slightly refined form. The category tw vect(T0)

is a dg enhancement for Perf(T0). Enlarge it to any dg enhancement D̃
b
Coh(T0) of

the bounded derived category Db Coh(T0) (over Z). That is, D̃
b
Coh(T0) is a dg

category containing tw vect(T0) as a full subcategory, with an equivalence of triangu

lated categories H0(D̃
b
Coh(T0)) → Db Coh(T0) extending the canonical equivalence

H0(tw vect(T0)) → Perf(T0). A standard method to construct such an enhancement

would be to use injective resolutions for coherent sheaves, and then to exhibit equiv

alence of that approach to the approach via Čech complexes in the case of perfect

complexes by the method of [46, Lemma 5.1]. However, there is no requirement for

the enlargement to be of geometric origin.

Theorem 8.1 There is a Zlinear A∞ functor ψwrap : W(T0) → D̃ Coh(T0) which

extends to a quasiequivalence

twW(T0)→ D̃
b
Coh(T0),

and which restricts to ψ0 : F(T0)→ tw vect(T0).
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8.1 Rank 1 local systems

It will be helpful to make the quasiequivalence ψ0 more explicitly by describing its

effect on Lagrangians with finiterank local systems; these may be regarded as twisted

complexes in F(T0)ex .

As usual, let L#
∞ ∈ obF(T0) be a Lagrangian brane of slope (0,−1) with nontrivial

double covering. For any h ∈ C∗ , let Lh
∞ denote the brane L∞ equipped with a rank

1 Klocal system of holonomy h ∈ K× . This is an object in a larger Fukaya category

F(T0)exloc whose objects are exact Lagrangian branes with local systems of finite rank

free Zmodules.

For a Klinear A∞ category C, let modC denote the category of finitely generated

projective Cmodules, assigning to each object a finite cochain complex of finitely

generated projective Kmodules. With K = Z, the object Lh
∞ defines a left Yoneda

module YL(Lh
∞) = homF(T0)(L

h
∞, ·) ∈ obmodF(T0).

Let φ0 : tw vect(T0) → F(T0) be an A∞ functor quasiinverse to ψ0 . Over Z, the

existence of such a functor is not quite trivial. However, our earlier analysis of Čech

complexes implies that one can define a quasiinverse (or even strict inverse) BT0
→ A

to ψ0|A : A → BT0
. We then define φ0 by extending the latter functor to twisted

complexes. Module categories are contravariant, and so φ0 induces a functor

φ∗0 : modF(T0)→ mod vect(T0).

Lemma 8.2 Work over a base ring R which is a commutative, unital, normal, noethe

rian domain. Identify the normalization of T0 with P1(R) by sending the preimages

of the nodal section of T0 to {[0 : 1], [1 : 0]} and σ to [1 : 1]. Two such iden

tifications exist, of which one has the property that for each h ∈ R× , the module

Ph := φ∗0(Lh
∞) ∈ obmod vect(T0) is represented by a locally free resolution of the

skyscraper sheaf Oh at the section h = [h : 1] : SpecR→ P1(R).

Proof There is, for each h ∈ R× , a rank 1 Klocal system Eh over T0 for which

hol(L∞) = h and hol(L0) = 1. Moreover, Eh1 ⊗ Eh2 = Eh1h2 . The local system Eh

induces a strict autoequivalence αh of F(T0)exloc : on objects: leave the Lagrangian brane

unchanged but tensor the local system by the restriction of Eh . On morphismspaces,

for each intersection point x ∈ L ∩ L′ , map x to θ(h)x , where θ : K → EndK Eh(x) is

the isomorphism that sends 1 to id.

Define Ah = αh(A), the full subcategory of F(T0)exloc on the two objects L0 with

its trivial local system and Lh
∞ = L∞ with its local system of holonomy h. Then

Ah is a minimal A∞ structure. Moreover, αh induces a tracepreserving isomorphism
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H∗(A) ∼= H∗(Ah). By Theorem C, the A∞ structure Ah is gaugeequivalent to BC for a

unique Weierstrass curve C . As an abstract curve, we have C = T0 , but the Weierstrass

data (basepoint, differential) might not be standard. We can think of C as T0 with

standard differential, but different basepoint σ(h). By Theorem C, the isomorphism

αh : A → Ah arises from a Weierstrass isomorphism (T0, ω, σ) → (T0, ω, σ(h)).

Automorphisms of (T0, ω) are the same thing as automorphisms of P1 that map

{0,∞} to {0,∞}; thus they form a group (Z/2) ⋉ R× , where Z/2 acts as the

antipodal involution. Our construction gives rise to a homomorphism

βR : R× → AutT0 = (Z/2) ⋉ R×

mapping h to the automorphism βh such that (φ0)∗(Lh
∞) is represented by βR(h)∗Oσ =

OβR(h)◦σ . The homomorphisms βR are by construction compatible with base change

R → R′ . We claim that they must map R× to R× . Indeed, since R× is normal in

(Z/2)⋉R× , there is a quotient map β̄R : R× → Z/2, also natural in R. One must have

β̄k = 0 when k is an algebraically closed field, since then every z ∈ k× is a square.

By naturality, β̄k = 0 for arbitrary fields k (embed k into an algebraic closure), and so

for arbitrary domains R of the sort specified in the statement (embed R into its field of

fractions).

In view of their compatibility with base change, we view the βR collectively as a

natural transformation β : Gm ⇒ Gm, where rings is the category of rings satisfying

the conditions listed in the statement, and Gm : rings → groups is the multiplicative

group functor: Gm(R) = R× .

Now, Gm is corepresented by S := Z[t, t−1], meaning that Gm
∼= Homrings(S, ·)—

the identification makes the set Homrings(S,R) into a group. The isomorphism sends

r ∈ R× to the homomorphism S→ R, f 7→ f (r). We note that S is indeed a noetherian

normal domain! By Yoneda’s lemma, β must arise from some ring endomorphism

b : S → S . Moreover, Homrings(S, S) ∼= S× = {±td : d ∈ Z}. These endomorphisms

give rise to the settheoretic natural transformations R× ∋ r 7→ ±rd ∈ R× , of which

r 7→ rd is a group homomorphism but r 7→ −rd is not. We note also that βR must

be injective for each R, which leaves us only with the two possibilities b(r) = r±1 .

One of these possibilities is the right one, the other not; this is the ambiguity left in the

statement of the lemma.

Remark. The imprecision in the previous lemma is easily resolved. To fix an identi

fication of the normalization of T0 with P1 of the sort described, it suffices to describe

its effect on the tangent space to T0 at σ . Now, σ∗TT0
∼= R canonically, via the

1form ω ; and T[1:1]P
1 = T1A

1 = R. The correct identification is the one given in

these terms by idR . That is because σ∗TT0 can be understood as Ext1(Oσ,Oσ), which

is identified by ψ with HF1(L#
∞, L

#
∞). The latter identification is the one determined

by the tracemaps.
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8.2 Higher rank local systems

The material in this subsection is not used elsewhere in the paper.

In Lemma 8.2, we established that over a base ring R, the functor φ∗0 : mod F(T0)ex →
mod vectT0 maps Lh

∞ , that is, L#
∞ with a rank 1 local system of holonomy h ∈ Gm(R),

to the skyscraper sheaf located at the section h of the smooth locus V = Tsm
0 =

SpecR[t, t−1] = Gm(R). Over Z, rank 1 local systems are not very interesting, higher

rank local systems more so. Working over Z, take a local system on L#
∞ with fiber Zn

and holonomy φ ∈ GL(Zn); denote this object by L
φ
∞ ∈ obF(T0)exloc . It maps under φ∗0

to a module for vect(T0) corepresented by some quasicoherent complex K•

φ . That

is, YL(K•

φ) ∼= φ∗0YL(L
φ
∞) ∈ H0(mod vect(T0)).

Theorem 8.3 Let V be the smooth locus in T0 ; thus V ∼= SpecZ[t, t−1] ∼= Gm(Z).

For φ ∈ GL(Zn), Let Zn
φ denote the Z[t, t−1]module Zn , on which t acts as φ. Let

(Zn
φ)∼ be the associated quasicoherent sheaf on V , and let Kφ be the pushforward of

(Zn
φ)∼ to T0 . Then K•

φ is quasiisomorphic to the sheaf Kφ .

Proof Notice that L
φ
∞ is quasiisomorphic in twπ F(T0)exloc to an object of twπ A.

As such, it is a compact object of the dg category of Amodules (see for instance

[9]). Quasiequivalences preserve compact objects; consequently K•

φ is compact as

an object of QC(T0). Therefore K•

φ is quasiisomorphic to a perfect complex [38, 9].

Since only its quasiisomorphism class matters, we may assume that K•

φ is a strictly

perfect complex—a finite complex of locally free sheaves.

It will be helpful to work over base fields K. We then take the object L
φ
∞ ∈ F(T0)exloc⊗K

associated with φ ∈ GLn(K).

Step 1. Work over an algebraically closed field K. We claim that K•

φ is then quasi

isomorphic to a sheaf supported whose support is contained in the eigenvalue spectrum

evalφ in K∗ = SpecK[t, t−1] = V(K) = V ×SpecZ SpecK.

If λ ∈ K∗ , we have a hyperext spectral sequence

Ers
2 = Extr

T0
(H−s(K•

φ),Oλ)⇒ RHomr+s
T0

(K•

φ,Oλ) ∼= HFr+s(Lφ∞, L
λ
∞).

If λ ∈ evalφ then (only) HF0 and HF1 are nonzero. If λ 6∈ evalφ then HF∗ = 0. One

has Extr
T0

(H−s(K•

φ),Oλ) = Extr
V (H−s(j∗K•

φ),Oλ), where j : V → T0 is the inclusion.

Since V is the spectrum of a regular local ring of dimension 1, the Extr modules

vanish except for r ∈ {0, 1}. Since it is supported in two adjacent columns, the

spectral sequence degenerates at E2 . Therefore HomV (H−s(j∗K•

φ),Oλ) = 0 except

when −s ∈ {0, 1} and λ ∈ Specφ. Hence j∗H−s(j∗K•

φ) = 0 for s /∈ {−1, 0}.
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Next, consider the hyperext spectral sequence

′Ers
2 = Extr

T0
(O,Hs(K•

φ))⇒ RHomr+s
T0

(O,K•

φ) ∼= Kn.

The cohomology sheaf Hs(K•

φ) is supported on the singular section together with

evalφ. One has Extr
T0

(O,Hs(K•

φ)) = Hr(Hs(K•

φ)) which is zero for r 6= 0 because

Hs(K•

φ) has affine support. Thus ′Ers
2 = 0 except when r = 0. So the spectral

sequence degenerates, and we see that Hs(K•

φ) = 0 for s 6= 0. We may therefore

truncate the complex K•

φ , replacing it by 0th cohomology H0(K•

φ), to which it is

quasiisomorphic. Further, H0(K•

φ) is a torsion sheaf since its stalks are generically

zero.

Notice that if we have a short exact sequence of modules Zn
φ , the corresponding sheaves

H0(K•

φ) form a long exact triangle. From that, and the fact that over the algebraically

closed field K, matrices are conjugate to upper triangular matrices, we see that H0(K•

φ)

is supported in V(K), and therefore in evalφ ⊂ V(K).

Step 2. Over an arbitrary field K, K•

φ is quasiisomorphic to a torsion sheaf K′
φ ,

supported in V(K), such that H0(K′
φ) ∼= Kn canonically.

Indeed, by (flat) base change from K to its algebraic closure, we see that the sth

cohomology sheaf of K•

φ vanishes for each s 6= 0. By truncation we may replace

the complex by its zeroth cohomology F := H0(K•

φ). Moreover, F vanishes at the

generic point, and its stalk at the singular section is zero, so it torsion and supported in

V ⊗Z K. Moreover, H0(F) ∼= Kn via the spectral sequence ′E∗∗
∗ above.

Step 3. Over Z, K•

φ is quasiisomorphic to a torsion sheaf supported in V . Moreover,

H0(F) ∼= Zn canonically.

Since K•

φ is a perfect complex, its cohomology sheaves are coherent. Hence H0(Hs(K•

φ))

is a finitely generated Zmodule for each s. By Step 2 and the compatibility of the

construction with base change, one has H0(Hs(K•

φ)) ⊗ K = 0 for every field K and

every s 6= 0. Hence H0(Hs(K•

φ)) = 0 for s 6= 0. On the other hand, z∗(Hs(K•

φ)) is

a coherent sheaf on SpecZ, for each s; or in other words, it is a finitely generated

abelian group Gφ . By the projection formula, and Step 2, Gφ ⊗ K = 0 for any

field K. Therefore Gφ = 0. Consequently Hs(K•

φ) is supported in V , and so is the

module associated with its sections H0(Hs(K•

φ)), which is 0 if s 6= 0. Hence K•

φ is

quasiisomorphic to its 0th cohomology sheaf. One has H0(K•

φ) = Zn , again via the

spectral sequence ′E∗
∗∗ .

Step 4. Completion of the proof.

Since it is torsion and supported in V , the sheaf H0(K•

φ) is the pushforward of a

coherent sheaf on V . We think of this as the sheaf associated with a module Mφ . We
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stress that Mφ is canonically identified with Zn as an Zmodule, so Mφ = Zn
φ′ for

a welldefined matrix φ′ ∈ GLn(K). Moroever, the map φ 7→ φ′ is compatible with

conjugation of matrices (i.e. (χφχ−1)′ = χφ′χ−1 ).

These points apply over any Zalgebra K, and the construction is compatible with

base change. Hence the map φ→ φ′ arises from a map of Zschemes F : GLn(Z)→
GLn(Z). We claim that F = id. It will suffice to show that F = id when we base

change to Q, an algebraic closure of the rationals. The induced map F : GLn(Q) →
GLn(Q) is the identity on the diagonal matrices, and therefore, by compatibility with

conjugation, also on the Zariskiopen set of diagonalizable matrices. Therefore it is

the identity map.

8.3 Generation of the wrapped Fukaya category and the bounded derived

category

Let Λ# ∈ obW(T0) be an arc of slope (0,−1), graded so that HW(L0,Λ
#) lies in

degree 0, and oriented so that it runs into z. Our functor ψwrap will carry Λ# to Os ,

the skyscraper sheaf along the nodal section.

Lemma 8.4 W(T0) is generated by F(T0) and Λ# .

Proof First, if orient Λ in the opposite direction, we obtain an isomorphic object of

W(T0). This reflects the fact that a spinstructure on a Lagrangian (which trivializes w1

and w2 ) is more data than is needed; a Pinstructure, trivializing w2 , is sufficient [49].

Changing the orientation corresponds to an automorphism (−1)degid of the object. The

brane structure also involves a double covering of Λ, but that is necessarily trivial. With

these points noted, we find that any object of W(T0) whose Lagrangian is noncompact

is quasiisomorphic to a shift of an iterated Dehn twist of Λ# along closed, exact curves

equipped with nontrivial double coverings. These Dehn twists act on twW(T0) by

spherical twists [49, 35]; hence the arcs are represented by twisted complexes in F(T0)

and Λ# .

Lemma 8.5 D̃ Coh(T0) is generated by vect(T0) and the skyscraper sheaf Os along

the nodal section s.

Proof It suffices to show that G0(T0) is generated, as an abelian group, by the image

of K0(T0) and the class [Os]. Here G0 denotes the Grothendieck group of coher

ent sheaves, while K0 is the Grothendieck group of vector bundles. The quotient

G0(T0)/ im K0(T0) is certainly generated by coherent sheaves supported on Z , the clo

sure of im z. Thus it will suffice to show that K0(MZ(T0)), the Grothendieck group
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of the abelian category of coherent sheaves supported along Z , is generated by the

class of Os . We now proceed as in [62, ex. II 6.3.4]: MZ(T0) is the abelian cat

egory of finitelygenerated modules M for R = Z[x, y]/(y2 + xy − x3) such that

InM = 0 for some n, where I = (x, y) ⊂ R. Such a module has a filtration

M ⊃ IM ⊃ I2M ⊃ · · · ⊃ InM = 0 and therefore K0(MZ(T0)) is generated by

the factors of such filtrations, i.e., by modules N with IN = 0. As sheaves, those are

precisely the pushforwards of sheaves on Z , or equivalently those of the form s∗F for

some coherent sheaf F on SpecZ. Since G0(Z) = Z, the result follows.

8.4 The functor ψwrap

We have a sequence of A∞ functors

(37) W(T0)
YL−→ modA

φ∗0−→ modBT0

≃
←− mod vect(T0)

≃
←− QC(T0).

Here YL is the (covariant) left Yoneda functor, X 7→ homA(X, ·). The functor

modBT0

≃
←− mod vect(T0) is restriction, which is a quasiequivalence because

BC splitgenerates tw vect(T0). We denote by QC(T0) a dg enhancement of the

unbounded derived category of quasicoherent complexes, as in [59]; the last map,

mod vect(T0)
≃
←− QC(T0) is again a left Yoneda functor.

It follows from [59, Theorem 8.9] or [9] that mod vect(T0)
≃
←− QC(T0) is a quasi

isomorphism. Indeed, the dg category of modules over vect(T0) is, rather trivially,

equivalent to the dg category of dg functors [tw vect(T0), tw vect(SpecZ)]. There

are further equivalences [tw vect(T0), tw vect(SpecZ)] → [QC(T0),QC(SpecZ)]c

where the c denotes that the functors respect filtered colimits (think of quasicoherent

complexes as filtered colimits of perfect complexes); and QC(T0 ×SpecZ SpecZ) =

QC(T0) → [QC(T0),QC(SpecZ)]c (mapping an integral kernel to its pushpull func

tor).

The conclusion of this discussion is as follows:

Lemma 8.6 There is a homotopycommutative diagram of A∞ functors

W(T0) // modBT0
QC(T0)oo

F(T0)ex

OO

≃ // tw vect(T0)

OO

We now define Z• to be an object of QC(T0) corresponding under mirror symmetry to

the arc Λ# . Precisely:
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Define Z• to be a choice of quasicoherent complex whose associated BT0
module

YL(Z•) = homBT0
(Z•, ·) is quasiisomorphic to φ∗0YL(Λ#).

We have the full subcategory 〈Z•, tw vect(T0)〉 ⊂ QC(T0), and, by restricting the arrow

← in the previous diagram, a functorsequence

W(T0)
r
−→ modBT0

s
←− 〈Z•, tw vect(T0)〉.

The arrow H0(s) is an embedding, and the composite

H0(ψwrap) := H0(s)−1 ◦ H0(r) : H0(W(T0))→ H0〈Z•, tw vect(T0)〉

is welldefined.

Similarly, we have quasiembeddings QC(T0) → mod vect(T0) → modBT0

ψ∗

0−→
modA and a functorsequence

〈Z•, tw vect(T0)〉 → modA←W(T0)

whose effect on cohomology lifts to a functor

H0(φwrap) : H0〈Z•, tw vect(T0)〉 → H0(W(T0))

mapping Z• to Λ# . The composite H0(ψwrap) ◦ H0(φwrap) is the identity functor on

H0〈Z•, tw vect(T0)〉 (this composite does not involve the potentially informationlosing

functor W(T0)→ modF(T0)). Hence

Lemma 8.7 H0(ψwrap) is full.

A key point in the proof of mirror symmetry for the wrapped category will be the

following assertion:

Proposition 8.8 One has Z• ≃ Os in QC(T0), where as before, Os is the pushforward

of OSpecZ by the singular section s : SpecZ→ T0 .

Taking the proposition for granted for the moment, we explain how to complete the

proof of Theorem 8.1. First, it implies that 〈Z•, tw vect(T0)〉 ≃ D̃
b
Coh(T0) ⊂ QC(T0),

where D̃
b
Coh(T0) is the dg category of bounded complexes with coherent cohomology.

We now have a functor sequence

W(T0)→ modBT0
← D̃

b
Coh(T0)

Now, one can set up the full subcategory {L#
0, L

#
∞,Λ

#} ⊂W(T0) so as to be a minimal

A∞ category. (In particular, in the case of endomorphisms of Λ# , one can easily

draw a perturbation Λ′ of Λ so that they do not jointly bound any immersed bigons.)
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Hence there is a map W(T0)→ H0(W(T0)) inducing the identity map on cohomology.

The full subcategory {O,Oσ,Oσ} ⊂ D̃
b
Coh(T0) has projective homspaces, and thus

there is a map DCoh(T0)→ D̃
b
Coh(T0) inducing the identity on cohomology. Using

homological perturbation theory, we obtain a functor

ψwrap : W(T0)→ D̃
b
Coh(T0)

such that H0(ψwrap) is the functor previously sodenoted.

We must show that H0(ψwrap) is faithful. To do so, it will suffice to prove it on the hom

spaces HW∗(Λ,X) and HW∗(X,Λ), where X runs through a splitgenerating set: X =

L#
0 or L#

∞ or Λ. The graded Zmodules HW∗(Λ,X) are in each case isomorphic to their

mirrors Ext∗(Os, ψwrap(X)); likewise HW∗(X,Λ) ∼= Ext∗(ψwrap(X),Os). They are free

abelian graded groups, of finite rank in each degree. The map ψwrap : HW∗(Λ,X) →
Ext∗(Os, ψwrap(X)) is surjective and is therefore an isomorphism—and the same goes

for HW∗(X,Λ). This completes the proof of Theorem 8.1, modulo that of Proposition

8.8.

Lemma 8.9 If we work over a base field K, then the quasicoherent complex Z•

K

mirror to the arc is quasiisomorphic to Os , the skyscraper at the nodal point s of the

Kvariety T0(K).

Proof Let Hk
K be the k th cohomology sheaf of Z•

K . In general, if E• and F• are

complexes of quasicoherent sheaves over a scheme X , at least one of them bounded,

one has a right halfplane spectral sequence arising from a filtration on a complex

computing RHomr+s
OX

(E•,F), with

(38) Ers
2 =

⊕

k

Extr
OX

(
Hk−s(E•),Hk(F•)

)
,

abutting to RHomr+s
OX

(E•,F•). In particular, we have a spectral sequence

(39) Ers
2 = Extr

T0
(Op,H

s
K) ⇒ RHomr+s

T0
(Oσ,Z

•

K).

where p = [0 : 1 : 0]. Since H0(ψwrap) is full and HW(L#
∞,Λ

#) = 0, we have

RHomT0
(Oσ,Z

•

K) = 0. This spectral sequence degenerates at E2 . Indeed, let Ms

denote the module of global sections of j∗Hs
K , where j is the open inclusion of the

smooth locus V(K) ∼= SpecK[t, t−1]. Let p = (t − 1)K[t, t−1], a maximal ideal of

K[t, t−1], and let A denote the localization of K[t, t−1] at p. Then Extr
T0

(Oσ,H
s
K) ∼=

Extr
A(K,Hs

p). Since A is a regular ring of dimension 1, these Extmodules vanish

except for r = 0 or 1. Therefore the spectral sequence is concentrated in two adjacent

columns, and so degenerates. Thus HomA(K,Hs
p) = 0, and so Hs

p = 0.
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Consequently, Hk
K is for each k supported in the open set U(K) = SpecK[x, y]/(y2 +

xy− x3). Next consider the spectral sequence

(40) ′Ers
2 = Extr

T0
(O,Hs

K) ⇒ RHomr+s
T0

(O,Z•

K) ∼= HF(L#
0,Λ

#;K) ∼= K.

Since HF(L#
0,Λ

#;K) ∼= K, one has RHomk
T0

(O,Z•

K) = 0 for k 6= 0, while the space

HomT0
(O,Z•

K) is at most 1dimensional. One has Extr
T0

(O,Hs
K) = Hr(Hs

K), but this

cohomology module vanishes for each r > 0. This spectral sequence therefore also

degenerates, and so H0(Hs
K) vanishes for all s 6= 0. Since Hs

K is quasicoherent with

affine support in U(K), it follows that Hs
K = 0.

Because of the vanishing of the nonzero cohomology sheaves, we have a diagram of

quasiisomorphisms Z• ← τ≤0Z
• → H0 , where τ≤0 denotes the truncation · · · →

Z−2 → Z−1 → ker δ0 → 0. Therefore Z•

K is quasiisomorphic to the sheaf H0
K , with

which we may replace it.

Moreover, H0
K likewise has affine support in U(K), and so it is either zero, or is the

pushforward from U(K) of the sheaf associated with the K[x, y]/(y2+xy−x3)module

K (with some action of x and y). Thus H0
K is the skyscraper sheaf Ox at a closed point

x of T0(K). Now, if x is a regular point, then we have by Lemma 8.2 Ox ≃ ψ0(Lh
∞)

for some h ∈ K× , and thus H0(ψwrap) maps Λ# and Lh
∞ to isomorphic objects of

DCoh(T0). It is easy to check that the Yoneda functor H0(W(T0))→ H0(modFex(T0))

reflects isomorphism, and sends no object to the zero object. Since it is a composite of

that Yoneda functor and an embedding, H0(ψwrap) again reflects isomorphism. Thus

it cannot map Lh
∞ and Λ# to isomorphic objects; nor can it map Λ# to the zeroobject.

So x is the unique singular point s.

Proof of Prop. 8.8 Again, let j∗Hk be the restriction of Hk to the smooth locus

j : V → T0 . One has V ∼= SpecR where R = Z[t, t−1], an identification under which

the section σ is defined by the homomorphism R → Z, p(t) 7→ p(1). Let Mk be

the Rmodule of sections Γ(j∗Hk,V). Since Hk is quasicoherent, j∗Hk is the sheaf

associated with Mk . Let p = (t − 1)R, and let Rp be the localization at p. Our task is

to show that the Rp module Mk
p is zero.

We observe that Mk ⊗Z Q = 0. For this, consider the wrapped Fukaya category with

Qcoefficients; the arc now maps to Z•

Q = Z•⊗ZQ. One has Hk(Z•⊗Q) = H•⊗Q.

Also, j∗(Hk(Z•⊗Q)) = j∗Hk⊗Q. Thus, j∗(Hk(Z•⊗Q)) is the sheaf associated with

its module of sections Mk ⊗Z Q over R⊗Z Q. The previous lemma then implies that

Mk ⊗Z Q = 0.

Now, Rp = S−1R, where S = R \ p; in particular, S contains every prime of Z, and

hence Rp is a Qalgebra. Thus Mk
p = 0 is a Qalgebra, yet is torsion as an abelian

group. Hence Mk
p = 0.
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We now proceed on the same lines as the argument for the previous lemma. We now

know that Hk is supported in U = SpecZ[x, y]/(y2 + xy − x3). We deduce, just

as before, that Hk = 0 for k 6= 0, and hence that Z• is quasiisomorphic to the

cohomology sheaf H0 ; and that H0 corresponds to the OU module Z, with some

action of x and y; but x and y necessarily act as zero, because otherwise H0 would be

the image under H0(ψwrap) of a skyscraper sheaf at a nonsingular section, contradicting

the fact that H0(ψwrap) reflects isomorphism. Therefore H0 = s∗OSpecZ .

9 Identifying the mirror curve over Z [[q]]: the Tate curve

and toric geometry

In this section, we offer a third proof that Cmirror|q=0 has the equation y2 + xy = x3 .

More significantly, this proof extends to show that Cmirror is the Tate curve.

9.1 The Tate curve

The Tate curve was constructed by Raynaud using formal schemes; we have followed

the expositions by Deligne–Rapoport [17] and Conrad [14], and Gross’s reinterpretation

of the construction in toric language [23]. We review the construction.

9.1.1 Construction of a scheme with Zaction T∞ → SpecZ[t]

Toric construction of T∞ . We begin with the toric fan picture. Fix a commutative

ring R. Consider the rays ρi = Q+(i, 1) ⊂ Q2 , where i ∈ Z (Figure 9.1.1). The

Figure 2: Part of the fan F

convex hull of ρi and ρi+1 is a cone σi+1/2 ⊂ Q2 ; the collection of cones σi+1/2 , their

boundary faces ρj , and their common endpoint {0}, form a rational fan F in Q2 . Each

cone c of F has a dual cone

c∨ = {x ∈ Q2 : 〈x, s〉 ≥ 0 ∀s ∈ c}
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(the use of inner products rather than dual spaces is an aid to visualization). To be

explicit, ρ∨i is the halfplane {(m, n) ∈ Q2 : im + n ≥ 0}, and σ∨
i+1/2

= ρ∨i ∩ ρ
∨
i+1 .

The dual cones c∨ have semigroup Ralgebras R[c∨ ∩ Z2] spanned by monomials eλ

where λ ∈ c∨∩Z2 . We glue together the affine schemes Ui+1/2 = SpecR[σ∨
i+1/2

∩Z2]

so as to form a toric scheme T∞ → SpecR with an affine open cover {Ui+1/2}.

For each i, there is a map of cones σi+1/2 → Q+ , (x1, x2) 7→ x2 . The dual to this map is

the map of cones Q+ → σ∨
i+1/2

given by 1 7→ (0, 1), which induces a map of semigroup

Ralgebras R[Q+ ∩Z]→ R[σ∨
i+1/2

∩Z2] and hence a function Ui+1/2 → A1(R). The

maps σi+1/2 → Q+ assemble to form a map of fans F → Q+ , whence the functions

Ui+1/2 → A1(R) consistently define a morphism T∞ → A1(R) = SpecR[t]. This

morphism makes T∞ an R[t]scheme. We can regard t as a regular function on T∞ ;

its restriction to Ui+1/2 is the monomial t = e(0,1) .

Explicit description of the gluing maps. We now describe the gluing construction

of T∞ in schemetheoretic terms, without the toric language. The exposition follows

Deligne–Rapoport’s (op. cit.); we recall it for convenience. The lattice points σ∨
i+1/2

∩

Z2 are just the Z≥0 linear combinations of (1,−i) and (−1, i + 1). In R[σ∨
i+1/2

], let

Yi+1 = e(−1,i+1) and Xi = e(1,−i) . Then

Ui+1/2 = Spec
R[t][Xi, Yi+1]

(XiYi+1 − t)
.

Now let Vi = Ui−1/2 ∩ Ui+1/2 as subsets of T∞ . In abstract terms, we have

Vi ⊂ Ui+1/2, Vi = Ui+1/2[X−1
i ]

Xi 7→Xi∼= SpecR[t][Xi,X
−1
i ]

Vi ⊂ Ui−1/2, Vi = Ui−1/2[Y−1
i ]

Yi 7→Yi∼= SpecR[t][Y−1
i , Yi],

and these two descriptions of Vi are matched up by putting XiYi = 1. The scheme

obtained from the union of the open sets Ui+1/2 by gluing Ui−1/2 to Ui+1/2 is T∞ .

No additional gluing is required because when j − i > 1 one has Ui−1/2 ∩ Uj−1/2 ⊂
Ui−1/2 ∩ Ui+1/2 .

In the scheme T∞[t−1] → SpecR[t, t−1], all the open sets Ui+1/2[t−1] are identified

with one another. Thus one has isomorphisms T∞[t−1] ∼= U1/2[t−1] ∼= Gm(R[t, t−1]).

The fiber T∞|t=0 = T∞ ×R[t] R is the union of the subsets

Ui+1/2|t=0 = SpecR[Xi, Yi+1]/(XiYi+1).

The sets Ui+1/2|t=0 are disjoint when the indices i and j are not adjacent (|i− j| > 1).

Moreover, Ui−1/2|t=0 is glued to Ui+1/2|t=0 along Vi|t=0 = R[Xi,X
−1
i ] = R[Yi, Y

−1
i ].

Thus T∞|t=0 is an infinite chain of P1 ’s, say P1
i ⊂ Ui−1/2|t=0 ∩ Ui+1/2|t=0 .
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The group Z acts on T∞ covering the trivial action on SpecR[t]. The action is induced

by a Zaction on Q2 preserving the fan F , given by n · (x1, x2) = (x1 + n, x2). One

has n · Ui+1/2 = Ui+n+1/2 ; the action identifies Xi with Xi+n and Yi with Yi+n .

9.2 Quotients along the thickened zerofiber

We wish to form quotients of T∞ by the group dZ ⊂ Z, but find ourselves unable to

do so in the category of R[t]schemes. One can, however, construct quotients by dZ of

thickened neighborhoods of the zerofiber, i.e. of T∞|tk=0 , by virtue of the following

fact:

The Ui+1/2|tk=0 form a chain: they are disjoint when i and j are not adjacent.

Indeed, when j− i > 1, the set Ui−1/2 ∩ Uj−1/2 ⊂ T∞ lies over SpecR[t, t−1].

We write down a concrete model for the quotient T∞|tk=0/(dZ), when d > 1. We

take the affine schemes Ui+1/2|tk=0 for i = 0, . . . , d − 1, and we identify the open

subset Vd of Ud−1/2|tk=0 with the open subset V0 of U1/2|tk=0 in just the same way

as we identify Vd with an open subset of Ud+1/2 to form T∞ . The result is a proper

scheme Td
k → SpecR[t]/(tk) whose specialization to t = 0 is a cycle of d P1 ’s. We

find it convenient to rename t as q1/d ; so we have Td
k → SpecR[q1/d]/(qk/d). These

schemes form an inverse system in k ; passing to the inverse limit as k→∞, we obtain

a proper formal scheme T̂d → Spf R
[[

q1/d
]]

.

There are étale quotient maps T̂d1d2(q1/d1)→ T̂d1 , where by T̂d1d2(q1/d1) we mean the

formal basechange from Spf R
[[

q1/d1d2
]]

to Spf R
[[

q1/d1
]]

given by q1/d1d2 7→ q1/d1 .

The construction of T̂d does not work in quite the same way when d = 1, because one

is then gluing V0 to itself, and the Zariskiopen cover by the Ui+1/2 becomes merely

an étale cover. Nonetheless, we can define T̂1 → Spf R [[q]] as the étale quotient

T̂2/(Z/2). This quotient is the locallyringed space whose functions are the Z/2

invariant functions of T̂2 . To see that it is a formal scheme, we need only note that T̂1

can be covered by two Z/2invariant formalaffine open sets, which is straightforward

to check.

Notice also that T∞ → SpecR[t] has sections σi+1/2 : SpecR[t] → Ui+1/2 , defined

by Xi = 1 and Yi+1 = t . The Zaction intertwines these sections, and consequently,

T̂1 → Spf R [[q]] has a distinguished section σ .

9.2.1 Polarization

One now wants to polarize the formal scheme T̂1 , that is, to identify an ample line

bundle L̂→ T̂1 . A very ample power of L̂ will then define a projective embedding of
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T̂1 , and in doing so, will ‘algebraize’ T̂1 , refining it to a true scheme over R [[q]].7

That ample line bundles algebraize formal schemes is a general setting is a theorem of

Grothendieck, but here, as noted by Gross, it is quite concrete. We will find a line bundle

L̂→ T̂1 , by which we mean a sequence of linebundles Lk → T∞|tk=0/Z and isomor

phisms Lk|tk−1=0
∼= Lk−1 . We will find a basis {θ3,m/3}m=0,1,2 for H0(T̂1, L̂⊗3)—by

this we mean bases {θ(k)

3,m/3
}m=0,1,2 for H0(T∞|tk=0/Z, (Lk)⊗3), carried one to another

by the maps in the inverse system—defining a plane embedding of T̂1 . In this way we

will see that T∞|tk=0/Z is cut out from P2(R[t]/(tk)) by an equation which reduces

modulo tk−1 to that cutting out T∞|tk−1=0/Z. Passing to the limit, we see that T̂1 is

cut out by an equation from P2(R [[q]]), and hence arises from a projective scheme T .

As Gross explains, one obtains a line bundle L = L∆ → T∞ by observing that F

is the fan dual to an unbounded convex polygon ∆ ⊂ Q2 , namely, the convex hull

in Q2 of a sequence of points wi+1/2 ∈ Z2 , i ∈ Z, given by w1/2 = (0, 0) and

wi−1/2 − wi+1/2 = (1,−i) (Figure 9.2.1).

w−1/2

w−3/2

w−5/2

w1/2

w3/2

w5/2

Figure 3: The convex polygon ∆

The cone σ∨
i+1/2

is the tangent wedge Ti+1/2 at wi+1/2 . For each j ∈ Z+ 1
2

, we define

O∆|Uj
to be the free OUj

module OUj
·zwj on a generator zwj . Here z is a formal symbol.

We assemble the O∆|Uj
into an invertible sheaf L = O∆ → T∞ by declaring that the

transition function from L|Ui+1/2
to L|Ui−1/2

is multiplication by zw1/2−i−w1/2+i . Each

lattice point λ ∈ ∆ ∩ Z2 defines a section zλ ∈ H0(L): over Ui+1/2 , we view λ as a

7An analogous situation more familiar to geometers accustomed to working over C is that

a projective embedding of a complex manifold makes this analytic object algebraic.
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point in (wi+1/2 +σ
∨
i+1/2

)∩Z2 , and so assign to it a section wλ|Ui+1/2
= Xa

i Yb
i+1zi+1/2 .

These local sections agree on overlaps and so define a global section.

The line bundle L is ample: this is a general feature of line bundles associated with

lattice polytopes.

The Zaction on T∞ lifts to a Zaction on L (we continue to follow Gross). Define

τ ∈ SL2(Z) by

τ (x1, x2) = (x1 + 1, x1 + x2).

We have τ (wi+1/2) = wi−1/2 , from which it is easy to see that τ (∆) = ∆. Thus τ
generates an action of Z on ∆. We lift the action of m ∈ Z to L as follows. Take

the map φm : Uj → Um+j which defines the Zaction (namely, φm(Xj) = Xj+1 and

φm(Yj+1) = Yj+m+1 ) and lift it to a map

φ̃m : L→ L, zλ 7→ zτ
m(λ), λ ∈ ∆ ∩ Z2.

(we have specified in particular the effect of φ̃d on zwj ).

As a result, L descends to a line bundle L̂ over each scheme Td
k , and indeed over the

formal scheme T̂d . The projective embeddings T̂d → PH0(L⊗N)∨ for N ≫ 0 cut out

T̂d as a projective scheme Td → SpecZ [[q]]1/d , lifting the formal scheme structure.

This is even true for d = 1. The scheme T = T1 → SpecZ [[q]] is the Tate curve. It

has its distinguished section σ .

The line bundle L → T has a global section θ :=
∑

k∈Z zwk . This formula is to be

interpreted initially on Ui+1/2|tk=0 , where it is a finite sum. It descends to a section of

L over T∞|tk=0/(dZ), and thereby a section over T̂d for each d . It is instructive to

write θ in the open set V0 in the following forms:

θ|V0
=

∑

k∈Z

qk(k−1)/2(z(1,0))k
=

∑

k∈Z

(−1)kqk(k−1)/2ζk,

where ζ = −z(1,0) . Up to a factor of iq1/4ζ , θ(q, ζ) is exactly the Fourier expansion

for the classical thetafunction ϑ1,1 , written in terms of q = e2πiτ and ζ = e2πix , where

x is the coordinate on C/〈1, τ〉.

Observe (i) that θ|V0∩{q=0} vanishes precisely where ζ = 1, whence L has degree 1

on the geometric fibers of T → SpecR [[q]]; (ii) that θ(q, ζ−1) = −ζ−1θ(q, ζ), so θ
vanishes where ζ = 1; and hence (iii) that θ vanishes precisely where ζ = 1, i.e. along

σ . Thus L ∼= O(σ). Using Riemann–Roch, we see that L⊗3 = O(3σ) is very ample

relative to the morphism T → SpecR [[q]], and hence embeds T as a Weierstrass cubic

in P2(R [[q]]). Thus T becomes a Weierstrass curve, with a canonical differential ω .

Moroever, this perspective makes clear that T coincides, as a Weierstrass curve, with

the curve described in the introduction to this paper. (However, we shall not review the

derivation of the Fourier expansions of a6(q) and a6(q)).
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9.3 Latticepoints and multiplication of thetafunctions

We have a canonical Zbasis {zλ : λ ∈ Z2 ∩ N∆} for H0(T∞;L⊗N). The action

of q is given by q · zλ = zλ+(0,1) . To get a basis over Z [[q]], it suffices to consider

{zλ : λ ∈ Z2∩∂(N∆)}, since we then obtain the remaining lattice points by multiplying

by powers of q. There is also a canonical Z [[q]]basis βN for the Zinvariant part

H0(T∞;L⊗N)Z = H0(T;L⊗N),

βN = {θN,p : p ∈ CN},

where p runs over the cyclic group CN :=
(

1
N
Z
)
/Z. To define the ‘thetafunctions’

θN,p , let φ : Q → Q be the piecewiselinear function whose graph is the boundary of

∆. Define automorphisms τN of the dilated polygon N∆, sending vertex Nwj to the

adjacent vertex Nwj+1 , by

τN(x1, x2) = (x1 + N, x1 + x2).

Then (Np,Nφ(p)) lies on the boundary of N∆, and hence so does τ k
N(Np,Nφ(p)) for

each k ∈ Z. Put

θN,p =
∑

k∈Z

zτ
k
N (Np,Nφ(p)).

Again, the formula for θN,p makes sense, as a finite formal sum, on Ui+1/2|tk=0 , hence

on each T̂d , and so finally on T . It is clear that βN is a basis for H0(T,L). One has

θ1,0 = θ .

Explicit multiplication rules for classical thetafunctions are standard. Whilst these

thetafunctions are not precisely identical to the classical theta functions which give

canonical bases for H0(O(Np)), they do obey a very similar multiplication rule [23]:

(41) θn1,p1
· θn2,p2

=
∑

j∈Z

qλ(p1,p2+j)θn1+n2,E(p1,p2+j).

Here E(p1, p2) is the weighted average with respect to a distribution determined by n1

and n2 ,

E(a, b) =
n1a + n2b

n1 + n2

,

and

λ(p1, p2) = n1φ(p1) + n2φ(p2)− (n1 + n2)φ(E(p1, p2))(42)

= (n1 + n2) {E (φ(p1), φ(p2))− φ(E(p1, p2))} .

Three points about φ are noteworthy:

• For any convex function f , the quantity ∆f (p1, p2) := E(f (p1), f (p2))−f (E(p1, p2))

is nonnegative, by Jensen’s inequality. One has λ = (n1 + n2)∆φ .
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T(p1, p2)

(p1, 0) (E(p1, p2), 0)

(p2,−n1(p2 − p1))

slope −n1 slope −(n1 + n2)

• φ is a piecewiselinear approximation to the quadratic function

(43) ψ(x) = 1
2
x(x− 1);

indeed, φ(n) = ψ(n) for n ∈ Z, and φ is affinelinear on intervals [n, n + 1].

• The expression

a(p1, p2) := (n1 + n2)∆φ(p1, p2)(44)

= n1ψ(p1) + n2ψ(p2)− (n1 + n2)ψ(E(p1, p2))

= (n1 + n2) {E (ψ(p1), ψ(p2))− ψ(E(p1, p2))} ,

defined analogously to λ, is the area of the triangle T(p1, p2) with vertices

(p1, 0), (p2,−n1(p2 − p1)), (E(p1, p2), 0)

(see Figure 9.3).

The last fact is key to Gross’s derivation of ‘classical’ HMS [23, section 8.4.2].8 For a

fixed n, the thetafunctions θn,p are almost mirror to the intersection points of L0 and

L(1,−n) . We say “almost” because correction factors are required, since it is λ(p1, p2)

and not a(p1, p2) which appears in the product rule for thetafunctions.

It turns out that λ has a similar geometric interpretation, one which will be equally

central in our derivation of arithmetic HMS. We point out that whilst subsection 9.1

8A similar multiplication rule, but for classical thetafunctions, plays an analogous role in

Polishchuk–Zaslow’s proof of cohomologylevel mirror symmetry for elliptic curves [41]. For

those thetafunctions, a(p1, p2) is the relevant exponent.



Arithmetic mirror symmetry for the 2torus 85

was a review, and the material of subsection 9.3 has so far also been standard, this

interpretation is to our knowledge original:

Proposition 9.1 Fix ǫ > 0, and say a point in R2 is a perturbed lattice point if it is

congruent to (ǫ, ǫ) modulo Z2 . Then, if ǫ ≪ (n1 + n2)−1 , the number of perturbed

lattice points inside T(p1, p2) is equal to λ(p1, p2).

Alas, we have not found an elegant proof of this proposition; the proof we give is an

elementary but somewhat lengthy calculation:

Proof Let T1 be the right triangle with vertices (p1, 0), (p2, 0) and (p2,−n1(p2−p1)).

Thus there is a horizontal edge, a vertical edge, and an edge which is a segment of the

line y = −n(x − p1). Write n3 = n1 + n2 and p3 = E(p1, p2). Let T2 be the right

triangle with vertices (p3, 0), (p2, 0) and (p2,−n3(p2 − p3)); thus T2 is of the same

form as T1 , substituting n3 for n1 and p3 for p1 . The number Λ of perturbed lattice

points in T(p1, p2) is the difference

Λ = Λ1 − Λ2,

where Λi is the number of perturbed lattice points in Ti (see Figure 9.3 (left)).

T1 T1

T2 T ′

1

Figure 4: Left: T1 divided into T2 and T(p1, p2). Right: shaving off a trapezium from T1 .

We shall compute Λ1 by counting the points row by row, and shall then apply our

formula to T2 to obtain Λ2 .

Suppose, for i = 1, 2, we have pi = qi + ri/ni , where qi, ri ∈ Z and 0 ≤ ri < ni . We

have

λ(p1, p2) =
n1

2
q1(q1 − 1) +

n2

2
p2(p2 − 1)−

n3

2
q3(q3 − 1) + r1q1 + r2q2 − r3q3

(45)

and we wish to show that Λ = λ(p1, p2).
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Case where p2 ∈ Z. In this case, p2 = q2 and r2 = 0. We calculate

Λ1 =

⌊n1(p2−p1)⌋∑

m=1

(p2 − ⌈p1 + m/n1⌉)

=

n1(p2−p1)∑

m=1

(p2 − q1 − ⌈(r1 + m)/n1⌉)

= n1(p2 − q1)(p2 − p1)−

n1(p2−p1)∑

m=1

⌈(r1 + m)/n1⌉

= n1(p2 − q1)(p2 − p1)− n1 {1 + 2 + · · ·+ (p2 − q1)}+ r1

= n1(p2 − q1)(p2 − p1)−
1

2
n1(p2 − q1)(p2 − q1 + 1) + r1

=
1

2
n1(p2 − q1)

(
p2 − q1 −

2r1

n1

− 1

)
+ r1

=
1

2
n1q2

1 +
1

2
n1p2

2 + r1q1 − n1p2q1 − r1p2 −
1

2
n1p2 +

1

2
n1q1 + r1.

Hence, writing p3 = q3 + r3/n3 with 0 ≤ r3 ≤ n3 , we have

Λ2 =
1

2
n3q2

3 +
1

2
n3p2

2 + r3q3 − n3p2q3 − r3p2 −
1

2
n3p2 +

1

2
n3q3 + r3.

We now compute the difference Λ by inputting the relation r1−r3 = n3q3−n1q1−n2p2 :

Λ =Λ1 − Λ2

=
1

2
n1q2

1 −
1

2
n3q2

3 + r1q1 − r3q3 +
1

2
n1p2

2 − n1p2q1

−
1

2
n1p2 +

1

2
n1q1 +

1

2
n3p2 −

1

2
n3q3 −

1

2
n3p2

2

+ n3p2q3 + (n3q3 − n1q1 − n2p2)− (n3q3 − n1q1 − n2p2)p2

=
1

2
n1q2

1 −
1

2
n1q1 +

1

2
n2p2

2 −
1

2
n2p2 −

1

2
n3q2

3 +
1

2
n3q3 + r1q1 − r3q3

=λ(p1, p2).

General case. We drop the assumption that p2 is an integer. In this case, we can

shave off the righthand edge of the triangle T1 , so that its vertical edge is at x = q2

instead of x = p2 (Figure 9.3). Our previous formula applies to this shaved triangle

T ′
1 . The number of perturbed lattice points in the trapezium which we shaved off T1

is computed as follows: the trapezium is a rectangular strip together with a triangle at

the bottom. The triangle contains no lattice points, while the strip contains n1(q2− p1)

lattice points.
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Similarly, we shave off the righthand edge of T2 ; the trapezium which we shave off

contains n3(q2 − p3) perturbed lattice points. Note that the difference between the

counts of points in these trapezia is n1(q2 − p1)− n3(q2 − p3) = r2 .

We deduce that the numbers of perturbed lattice points in T1 and T2 are, respectively,

Λ1 =
1

2
n1q2

1 +
1

2
n1q2

2 + r1q1 − n1q1q2 − r1q2 −
1

2
n1q2 +

1

2
n1q1 + r1 + n1(q2 − p1),

Λ2 =
1

2
n3q2

3 +
1

2
n3q2

2 + r3q3 − n3q2q3 − r3q2 −
1

2
n3q2 +

1

2
n3q3 + r3 + n3(q2 − p3).

The difference is

Λ =Λ1 − Λ2

=
1

2
n1q2

1 +
1

2
n1q2

2 + r1q1 − n1q1q2 − r1q2 −
1

2
n1q2 +

1

2
n1q1 + r1

−
1

2
n3q2

3 −
1

2
n3q2

2 − r3q3 + n3q2q3 + r3q2 +
1

2
n3q2 −

1

2
n3q3 − r3 + r2

=
1

2
n1q2

1 −
1

2
n3q2

3 +
1

2
n1q2

2 −
1

2
n3q2

2

+ r1q1 − r3q3 − n1q1q2 + n3q2q3 −
1

2
n1q2 +

1

2
n3q2 +

1

2
n1q1 −

1

2
n3q3 + r2

+ (n3q3 − n1q1 − n2p2)− q2(n3q3 − n1q1 − n2p2)

=
1

2
n1q2

1 −
1

2
n3q2

3 −
1

2
n2q2

2

+ r1q1 − r3q3 +
1

2
n2q2 −

1

2
n1q1 +

1

2
n3q3 + r2 − n2p2 + q2n2p2

=
1

2
n1q2

1 −
1

2
n3q2

3 −
1

2
n2q2

2

+ r1q1 − r3q3 +
1

2
n2q2 −

1

2
n1q1 +

1

2
n3q3 − n2q2 + n2q2

2 + r2q2

=
1

2
n1q2

1 −
1

2
n3q2

3 +
1

2
n2q2

2

+ r1q1 + r2q2 − r3q3 −
1

2
n1q1 −

1

2
n2q2 +

1

2
n3q3

= λ(p1, p2).

9.4 Homogeneous coordinate rings

We earlier discussed the affine coordinate ring lim
−→N

H0(O(Np)). To work with this

ring, one must understand the direct system as well as the multiplication of sections



88 Yankı Lekili and Timothy Perutz

of powers of O(p). On any Weierstrass curve C → SpecR, the divisor D = 3p

is very ample. It defines a homogeneous coordinate ring R0
C =

⊕
N≥0 H

0(O(ND)),

a graded Ralgebra whose isomorphism determines the curve. The homogeneous

coordinate ring has the advantage over the affine one that it is directly determined by

the composition maps in Perf C . For a Weierstrass curve (C, σ, ω) over Spec S , let R∗
C

denote the extended homogeneous coordinate ring
⊕

n≥0 H
∗(O(nD)). This bigraded

ring differs from R0
C only by the presence of the summand H1(O). This summand has

its trace map trω : H1(O) → S . The ring R∗
C determines C , and the trace map then

determines the differential ω .

The truncated ring tR∗
C = R∗

C/I , where I =
⊕

N>3 H
0(O(ND)), with its bigrading and

trace H1(O)→ S , already determines (C, ω), because from it a defining cubic equation

(in Hesse form) can be read off in H0(O(3D)). However, the regular section σ might

not be fully determined by tR∗
C , or even R∗

C , inasmuch as one could replace σ by a

different regular section σ′ such that the divisor 3σ′ is linearly equivalent to 3σ .

Proof of Theorem A, clauses (i), (ii) Let Cmirror be an abstract Weierstrass curve

over Z [[q]] whose category B = Bmirror admits a quasiisomorphism with A such

that the induced isomorphism HA → HB is the standard one. We must show that

Cmirror
∼= T as Weierstrass curves. We shall initially prove that they are isomorphic

as curves with differential. For this it is sufficient to show that tR∗
Cmirror

∼= tR∗
T

by a

tracerespecting bigraded ring isomorphism. We recall that L#
(1,−n) denotes an oriented

exact Lagrangian in T0 of slope −n, equipped with its nontrivial double covering, and

graded in such a way that HF∗(L#
0, L

#
(1,−n)) = HF0(L#

0, L
#
(1,−n)) for n 6= 0 (this is not

quite a complete specification of the grading). We have

R∗
Cmirror

∼=
⊕

N≥0

HF∗(L0, L(1,−3N)) ∼= HF1(L0, L0)⊕
⊕

N≥0

HF0(L0, L(1,−3N)).

We use Prop. 7.5 to set up the basepoint z and the 1form θ on T0 in such a way

that the exact curve L(1,−n) is the image in R2/Z2 of a straight line through the origin

in R2 —this for 0 ≤ n ≤ 9. We realize the nontrivial double covering of L(1,−n) by

selecting the point ⋆ = ⋆−n = (ǫ,−nǫ) ∈ L(1,−n) , where 0 < ǫ ≪ 1, and declaring

the double covering L̃(1,−n) → L(1,−n) to be trivial away from ⋆ and to exchange the

sheets at ⋆.

Take 1 ≤ n ≤ 9. The differential on CF0(L#
0, L

#
(1,−n)) is zero, since there are no

immersed bigons bounding L0 and L(1,−n) . Thus we have a basis Bn = {xn,p : p ∈ Cn}
for HF0(L#

0, L
#
(1,−n)), where Cn = 1

n
Z/Z, and xn,p = [p, 0] ∈ R2/Z2 = T . We

have L(1,−n) = τ n(L0) for 0 ≤ n ≤ 9, where τ is the nearlylinear Dehn twist

along L∞ set up at (7.2.3); hence HF(L#
(1,−n1), L

#
(1,−n1−n2)) has basis τ n1(Bn2

) when
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0 < n1 < n1+n2 ≤ 9. We claim that the Floer product HF(L#
(1,−n1), L

#
(1,−n1−n2))⊗Z[[q]]

HF(L#
0, L

#
(1,−n1))→ HF(L0, L(1,−n1−n2)) is given by

τ n1(xn2,p2
) · xn1,p1

=
∑

j∈Z

qλ(p1,p2+j)xn1+n2,E(p1,p2+j),

an expression formally identical to the multiplication rule for thetafunctions (41);

E and λ are as defined there. The contributions to τ n1(xn2,p2
) · xn1,p1

are immersed

triangles, the images of embedded triangles in R2 . The first vertex is a lift of xn1,p1

to R2 , which we assume is the point (p1, 0) ∈ R2 . The second vertex is a lift of

τ n1(xn2,p2
) = [p2, n1p2] which lies on the line of slope −n1 through (p1, 0); thus it is of

form (p2+j,−n1(p2+j−p1)) where j ∈ Z. The third vertex is then at (0,E(p1, p2+j)).

The contribution of the triangle just described is εqλ(p1,p2+j) , where the exponent is the

number of perturbed lattice points in the triangle, as computed in Proposition 9.1, and

the sign ε = ±1 depends on the orientations, double coverings and the intersection

signs of the corners determined by the orientations. A formula for ε is given in [48]; it

is simplest when, as here, all the corners have intersection number −1 (and therefore

even index for Floer cohomology). In that case, ε = (−1)s , where where s is the

number of stars on the boundary. There are ⌈E(p1, p2 + j)⌉ − ⌈p1⌉ stars on the L0

boundary, ⌈p2 + j⌉ − ⌈p1⌉ on the L(1,−n1) boundary, and ⌈p2 + j⌉ − ⌈E(p1, p2 + j)⌉ on

the L(1,−n1−n2) boundary, so s = 2(j + ⌈p2⌉ − ⌈p1⌉) and ε = +1. This justifies our

claim.

Define a Z [[q]]linear map tψ : tR∗
Cmirror

→ tR∗
T

by linearly extending the assignment

tψ(x3N,p) = θ3N,p for N ∈ {1, 2, 3} together with the canonical ringisomorphism

tψ : HF∗(L0, L0) → H∗(O) defined by the Weierstrass differential ω . In view of (41)

and Prop. 9.1, and the fact that the unit of HF∗(L0, L0) is also the unit of tR∗
Cmirror

,

the map tψ is a bigraded ring isomorphism preserving the trace. Therefore, there

is an isomorphism ι : (Cmirror, σmirror, ωmirror) → (T, ω, σ′), where ω is the standard

Weierstrass differential on T and σ′ is some section of Tsm → SpecZ [[q]], the regular

locus in T .

Since T is a generalized elliptic curve (see [17] or [14, Def. 2.1.4]), one has a

homomorphism Γ→ Aut(T/Z [[q]]), from the group Γ of sections of Tsm → Z [[q]],

to the automorphism group of T fixing the base: sections act on T by fiberwise

translations. Consequently, all regular sections are related by automorphisms of T .

Hence (Cmirror, σmirror, ωmirror) is isomorphic to (T, ω, σ).

At this point we have proved clauses (i) and (ii) of Theorem A apart from the uniqueness

statement in (i). That is easily taken care of: A splitgenerates twπ F(T, z), and the

functor ψ is determined, up to natural quasiequivalence, by its effect on a full, split

generating subcategory.
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The proof just given also gives another identification Cmirror|q=0 , which may be used

as part of the argument for clauses (iii) and (iv) of Theorem A, which we have already

proved.

Remark. In the argument above, we identified the mirror essentially by describing a

canonical isomorphism of graded rings
⊕

n≥0

HF0(L#
0, L

#
(1,−3n))→ S :=

⊕

n≥0

H0(O(3nσ)),

given, in degrees 3n ≥ 3M where L#
(−1,3n)) is exact, by matching up the canonical

bases: x3n,p 7→ θ3n,p . The argument did not depend on this assignment being the one

arising from the functor ψ , but it is natural to expect that this is so. The assignment

ψ′(x3n,p) = θ3n,p , defined when n ≤ M , respects products. Hence, taking M ≥ 3,

we see that ψ′ extends to a ring isomorphism, because S is generated in degree 3 and

subject only to a relation in degree 9. The functor ψ defines another such isomorphism.

Thus ψ′ ◦ ψ−1 extends to an automorphism of S . This must come from a Weierstrass

automorphism α of T . The only possibilities for α are the identity and the hyperelliptic

involution, but we do not identify α here.

Proof of Theorem 1.3 We begin by clarifying how to construct Φ. We now consider

L#
0 and L#

∞ as objects of the ‘absolute’ Fukaya category F(T) over ΛC—so their

exactness plays no role. They form a full subcategory AT , which we identify with BE

for some mirror Weierstrasss curve E → SpecΛC . Thus we get a functor φ : F(T)→
tw vect(E) inducing a quasiequivalence Dπ F(T0)→ Perf(E).

We identify E via the homogeneous coordinate ring for its cubic embedding, just as we

did for Cmirror . Thus we must count triangles according to their areas, not the number

of lattice points they contain. By the argument of [41] (see also [6]), we identify the

homogeneous coordinate ring of E as that of T × (ΛC), with the bases of intersection

points Bn mapping to standard bases of θ functions. Thus E ∼= T(ΛC) = T×Z
[

[q]
]ΛC

as Weierstrass curves. Since E is smooth, every bounded coherent complex is quasi

isomorphic to a perfect complex, and so Perf(E) ≃ Db Coh(E). Thus we can think of

Φ as a functor

Φ : F(T)→ D̃
b
Coh(T(ΛC)).

We must now compare the two functors F(T, z) → Coh(T(ΛC)): first Φ ◦ e, and

second, ψ followed a basechange functor—call this composite Ψ. Both extend to

functors defined on twπ F(T, z), and it will suffice to show that these are homotopic.

The inclusion A→ F(T, z) induces a quasiequivalence twπ A→ twπ F(T, z), and the

definitions of Φ and Ψ both depend on a choice of quasiinverse twπ F(T, z)→ twπ A.
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We take this to be the same in both cases, so that the functors have the same effect on

objects—otherwise the assertion of homotopy makes no sense.

Take A to be the A∞ subcategory of F(T, z) with objects L#
0 and L#

∞ , and AT the

corresponding subcategory of F(T).

The construction of the functor e depends on choices of functions fL for each exact

Lagrangian L such that θL = dfL . Pick such a function fL0
, and choose fL∞

so that the

unique intersection point x ∈ L0 ∩ L∞ has symplectic action 0. The endomorphism

space CF(L#
0, L

#
0) is defined via a Hamiltonian image φH(L0); endow this with the

function fL0
◦ φ−1

H ; similarly for L∞ . Since e acts as the identity on objects, it

defines a quasiisomorphism e : A(ΛC) → AT . It induces the canonical isomorphism

H∗A→ H∗AT , because the relevant intersection points have action zero.

We have quasiisomorphisms e∗AT → BT(ΛC) and A → BT(ΛC) , both inducing the

canonical isomorphisms on cohomology. That is, we have two minimal A∞ structures

on the graded algebra A, and identifications of both of them with BT(ΛC) . By Theorem

C, these two identifications must be induced by an automorphism of T(ΛC) respecting

the Weierstrass data (σ, ω). This can only be the identity map. The result follows.
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