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Abstract. This paper is a study of variations in the rank of the Mordell-Weil
group of an elliptic curve E defined over a number field F as one passes to
quadratic extensions K of F. Let S(K) be the Selmer group for multiplication by 2
on E(K). In analogy with genus theory, we describe S(K) in terms of various
objects defined over F and the local norm indices <„ = dimF2£(Ft))/Norm{£(ÄH,)}
for each completion Fv of F. In particular we show that dim S(K) + dim E(K)2
has the same parity as Zi„. We compute i„ when E has good or multiplicative
reduction modulo v. Assuming that the 2-primary component of the Tate-Shafare-
vitch group U1(K) is finite, as conjectured, we obtain the parity of rank E(K). For
semistable elliptic curves defined over Q and parametrized by modular functions
our parity results agree with those predicted analytically by the conjectures of
Birch and Swinnerton-Dyer.

1. Introduction. Let E be an elliptic curve defined over a number field F. Our
motivating question is this: What can be said about variations in the rank of the
Mordell-Weil group E{K) over quadratic extensions K = F(dl/2)1 Let E(d) denote
the twist of E which becomes isomorphic to E over K but not over F. Concretely, if
we choose for E a model over F of the form y2 = f(x) then a model for £,(d) is
given by dy2 = f(x). If a denotes the generator of Gal(K/F), then E(F) can be
identified with the ( + l)-eigenspace and E(d\F) with the (-l)-eigenspace of a
acting on E(K). It follows that rank E(K) = rank E(F) + rank E(d\F). An equiv-
alent question therefore is to describe changes in the rank of E(d\F) as d varies.
For certain specific curves defined over Q this question has been discussed for
example in [1], [11].

Let N: E(K) -h> E(F) be the norm mapping defined naively by N(P) = P + P".
Our starting point is to determine the dimension (as a vector space over F2) of the
cokernel of its local counterpart Nv: E(K^) -* E(FV) for each completion A^, of K.
The results depend of course on the ramification in K^ over Fv and the type of
reduction of E. We restrict our attention to semistable (i.e., good or multiplicative)
reduction and, in case of residue characteristic 2, an unramified ground field Fv.
These local calculations are of interest in themselves, and may be read indepen-
dently. The situation for cases of additive reduction seems to be more complicated;
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122 KENNETH KRAMER

we hope to resolve it in the future. (See [8, §4] for a general discussion of local
norm problems.)

The standard way to obtain at least a bound for the rank of E(F) is by a descent
[6, §23]. §3 below contains a review of this procedure, wherein one determines a
finite group of exponent 2, the Selmer group S(F), into which E(F)/2E(F) injects.
In §4 we use methods borrowed from genus theory of the ideal class groups of
quadratic fields to relate 5(AT), the Selmer group for E(K)/2E(K), to S(F). For
example, we prove that if S(F) = 0 then dim S(K) = 2„/„ where /'„ =
dim E(FV)/N(£'(ÄH,)} is the local norm index as computed in §2.

In linking local information to global information we are led to consider a
subgroup $ of S(F) consisting of those elements which are norms from E{KJ) for
all primes w of K (including Archimedean ones). The local/global norm group
$/N{S(K)} does not seem to have been studied explicitly before. We prove in §5
that its dimension as a vector space over F2 is even by constructing a nondegener-
ate, strictly alternating bilinear form on it, related to the pairings [6, §26] on the
Tate-Shafarevitch groups IH(F)2 and III^F^ of the curve E and its twist E(d). If
LU(F)2 = IH(d)(F)2 = 0 we prove that &/N{S(K)} is trivial; we also give an
example in which it has dimension 2.

One of our general results is that rank E(K) + dim UI(AT)2 has the same parity
as the sum of the local norm indices £»„. Using the conjectured finiteness of III(A^)
to conclude that dim W(K)2 is even [6, §26], and using the local calculations of §2,
we obtain the parity of rank E(K). For example, if £ is a semistable curve of
conductor N defined over Q and if K — Q(di/2) then

/_|\ rnnkE(K) = /_ l)bv.(-ff ) (1)

where Xt is tne quadratic character for K, Nx is the product of primes dividing TV
which are unramified in K, and b is the number of primes p dividing N and
ramified in K such that the tangent directions at the node of E modulo/? are in Fp.
This agrees with the parity of rank predicted from the L-function of E by the
conjectures of Birch and Swinnerton-Dyer if £ is a modular curve. (See [A-L].)

Formula (1) can also be interpreted to yield the following analog of a conjecture
formulated by Birch and Stephens [12, p. 30]. Let £ be a semistable curve defined
over Q and let K = Q(dl/2). Let t be the number of primes w of K such that E has
a node modulo w at which the tangent directions are in the residue field k(w). If
LUÍA:) is finite then

(_irnk£W = (_iy.(sign¿/)

Finally, we remark on the case in which F is a function field of transcendence
degree one over a finite constant field. If char(F) =^ 2 the results of this paper are
valid as proved once one checks that Lemma 6.2 of [4] holds. In particular, the
finiteness of IH(A^) implies that rank E(K) has the same parity as the sum of the
local norm indices, and these are as computed in §2 for places of good or
multiplicative reduction. Of course one must omit factors X/(~l) or sign{NF/()d}
corresponding to Archimedean primes in Corollaries 1 and 2.
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It is a pleasure to thank Armand Brumer for many important suggestions used in
this work. I also wish to thank Winnie Li for valuable discussions about the sign in
the functional equation of an L-function arising from a twist of a modular form.

2. The cokernel of the local norm. Throughout this section, F is a finite extension
of Q^, and its valuation v is written additively. E is an elliptic curve defined over F,
with an integral model whose discriminant A has minimal valuation. We consider
those d G F for which K = F(di/2) is a quadratic extension of F. The cokernel of
the local norm mapping N: E(K)-> E(F) is a finite vector space over F2 whose
dimension we denote by i(K/F). We shall often express i(K/F) in terms of the
Hubert norm-residue symbol, a bimultiplicative form ( , )F: F* X F* -* /^ whose
properties are described in [9, pp. 212-220].

If K over F is unramified and E has good reduction then i(K/ F) = 0 according
to [8, Corollary 4.2]. To treat the case of multiplicative reduction we recall the
following information. If £ is a Täte curve [7, p. 197] over F, then there is an
element q in F with

oo

A = q II (1 - q")
n=\

such that E is isomorphic to Gm/qz via a parametrization by /»-adic theta
functions. If E is twisted by the quadratic extension L, then E becomes isomorphic
to Gm/qz over any field containing L. However, if the field M contains F but not
L, then E(M) is isomorphic to I(M)/qz where I(M) = {z G ML\NML/Afz G qz}.
In that case, the connected component of the identity in the Neron model of E
corresponds to

I0(M)={zGML\NML/MZ=l).

Proposition 1. Suppose that E is a Täte curve. Then i(K/ F) is 0 or 1, according
to whether (A, d)F is -1 or +1.

Proof. From the explicit formulas for parametrization by />-adic theta functions
[7, p. 197] one sees that the norm mapping on E corresponds to field-theoretic
norm modulo qz. Thus E{F)/N{E(K)} = F*/(NK*)qz. By local class field
theory, i(K/F) therefore is at most 1, and i(K/ F) = 1 precisely when q G NK*, or
equivalently when (A, d)F — + 1. Here and again later on we use the fact that Aq~l
is a square in F.

Proposition 2. Suppose that E is a twisted Täte curve, twisted by the unramified
quadratic extension L.

(a) If K is unramified over F, then i(K/ F) is 0 or 1 according to whether u(A) is
odd or even.

(b) If K is ramified over F, then

i(K/F) =
0 // (A, d)F = +1 and u(A) odd,
1 if(A,d)F =-1,
2 // (A, d)F = +1 and u(A) even.
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124 KENNETH KRAMER

Proof. In case (a) we have the commutative square:

E\K)      —»        K*/q

E(F)      Z      I(F)/qz

If we denote the generator of Gal(ÁT/F) by a, then the vertical arrow on the right
is induced byz-»z'""° because of the twist. Using Hubert's Theorem 90 one sees
that E(F)/N{E{K)} is isomorphic to I(F)/I0(F)qz, which clearly has the dimen-
sion specified in (a).

In case (b), letting U denote units and letting t be the generator of Gal(L/F),
we have the exact commutative diagram:

UK     -*     UK
N¡, N¡, Ni

0     _»     uK     -»     UKL     -»     E0(K)     -»    0

0     _     UF     ->      i/L      4      F0(F)     -4    0

Here the norm on U is the field-theoretic norm, and we have identified E0 with I0,
so that the map / is induced by z->zl~r. We obtain the exact sequence of
cokernels

UF/NUK^ UL/NUKL^E0(F)/N{E0(K)} -+0. (2)
Now by naturality properties of the Hubert symbol, if x G F, then (x, d)L =
(NL,Fx, d)F = (x2, d)F = 1. Hence any element of F, when lifted to L, becomes a
norm from KL to L. Therefore in (2), the map g is 0 and/is an isomorphism. Since
KL over L is ramified, the dimension of E0(F)/N{E0(K)} therefore is 1.

Let us denote by P(z) the point in E{K) parametrized by the element z in KL
such that NKL/Kz = qe. Then N {P(z)} = P(y), where y = NKL/Lz. Now P(y) =
Piyi^) andyq~" lies in I0(F). Hence N{E(K)} is contained in E0(F).

Since AT over F is ramified while ÄX over K is unramified, ^ becomes a norm
from ÄX to K. Say <? = NKL/Kz. Clearly the group E(K)/E0(K) has order 2 and is
generated by P{z). We have therefore shown that

V   7    ; "    ° \ 1    if #{/»(*)} G AT{£„(*•)}.

Now dim E(F)/E0(F) is 0 or 1 according to whether t>(A) is odd or even. To
complete the proof of part (b) we therefore need to show that N{P(z)} is in
N{E0(K)} if and only if (A, d)F = (-l)c(A). We do this in the following tedious but
straightforward calculation, in which the underlying idea is to make an explicit
choice for z and use the isomorphism / of (2). There is a somewhat simpler
calculation when the residue characteristic of F is not 2, but we give a uniform
argument.

Let mK be a prime for K and NK/FmK = itf a prime for F. Then there is a unit
a G F such that q = airF. Since L over F is unramified, there is a unit b of L such
that NL/Fb = a and a unit c of ÄX such that NKL/Kc = wjj-1. Let x = NKL/Lc. By
Hubert's Theorem 90 we have x = y ' ~T for some unit.y in L.
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ELLIPTIC CURVES 125

If we let z = b{cvrK)n then NKL/Kz = q. Also,

NKL/Lz = b2{x-nF)n = b2x"qa-' = bl"r(ym)l"*q.

Using the isomorphism / in (2) it follows that N{P(z)} = P(NKL/Lz) is in
N{E0(K)} if and only if by" is a norm from KL to L, or equivalently (Ay", ¿/)£ =
1. We now proceed to evaluate this Hubert symbol.

First we show that (y, d)L — -1. Otherwise we could write y as a norm, say
y = NKL/Lw. But then NKL/L(cwT~l) = 1 so that c = wi~Tu"~i for some u in Ä'L.
Taking norms from KL to tf we find that tr^~l = NKL,Kc = (NKL,Ku)"~i. There-
fore ttk = (NKL/Ku) ■ (element of F). But the right side of this equation has even
valuation in K, a contradiction.

Hence ( v, d)L = -1. Since -nF was arranged to be a norm from K, we have
(irF, d)F = 1. Hence

{by-, d)L = (b, d)L{-\y = (NL/Fb, d)F(-iy^ = (a, d)A-\y(1,)

= (q,d)F(-\y^ = (A,d)f(-\rA\

Now by our previous discussion, N {P(z)} is in N{E0(K)} if and only if (A, d)F =
(-lf(A>, as desired.

Proposition 3. Suppose that K over F is a ramified extension with residue field k
having odd characteristic. If E has good reduction modulo irF then i(K/ F) =
dim E(k)2. Moreover i(K/F) is even or odd according to whether (A, d)F = ± 1.

Proof. Let F, denote the kernel of reduction. Then by [8, Corollary 4.6] there is
an exact sequence

E,(F)/N{El(K)}^E(F)/N{E(K)} -* Ê{k)/ÏË(k) -0. (3)
Since F,(F) is uniquely divisible by 2 via [15, p. 189] and N ° (inclusion) is
multiplication by 2, the left-hand group in (3) is trivial and i(K/F) =
dim Ê(k)/2Ë(k) = dim E(k)2. It is clear for example by [9, p. 305] that dim Ë(k)2
is even if and only if, upon reduction, A becomes a square in k, or equivalently
(A,^= 1.

We now restrict our attenton to ground fields F with residue characteristic 2, and
elliptic curves E with good reduction. We make the simplifying assumption that F is
unramified over Q2. Suppose that E has minimal model

y2 + axxy + a3y = x3 + a2x2 + a4x + a6 (4)

and discriminant A. Let F„(F) consist of the point at infinity and those (x,y) in
E(F) for which v(x) < -In. There is a formal group law for addition on the
maximal ideal pF giving rise to an isomorphism fF^£,(F) which we denote by
z -> P(z). Then F(z,) + P(z2) = F(z3) with

z3 = zt + z2 — alziz2 — a2{z\z2 + zlzj) — 2a3(z^z2 + z^f)

+ (a.a7 - 3a^)zh2 + (degree > 5). (5)

(See [15, §3].)
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126 KENNETH KRAMER

We may assume that K = F(dl/2) is a ramified extension of F; otherwise,
i(K/F) = 0. The injection E(F)/EX(F) -> E(K)/EX(K) then is onto, since both
sides are isomorphic to E(k) via the reduction map. Hence E(K) = E(F) + EX{K)
and N{E(K)} = 2E(F) + N{EX(K)}. It follows that for the map / in exact
sequence (3) we have

kernel/= (£,(F) n 2E(F))/(N {EX(K)} n 2E{F)). (6)

Proposition 4. Assume that F is an unramified extension of Q2 and that K over F
is ramified. If E has supersingular reduction modulo 2 then

[  0 if v(d) is even,
>(K/n = I j- F. q2j    ¡fv^ is odd

Moreover, i(K/F) is even or odd according to whether (A, d)F = ±1.

Proof. Supersingular reduction forces E(F)/ EX(F) as E(k) to have odd order.
Therefore the map/in (3) is surjective and furthermore, EX(F) n 2E(F) = 2EX(F),
so that/is injective by (6). Hence i{K/F) = dim EX(F)/N{EX(K)}, which we now
evaluate.

Since the formal group law (5) has height 2, the coefficient ax is divisible by the
prime element 2 of F. By a suitable translation we can therefore arrange for
a, = a2 = 0 in the minimal model (4). Using (5), the formal group multiplication
then looks like \p2(z) = 2z + (degree > 4), from which it is clear that F2(F) =
2F,(F).

It is easy to check that the following diagram is commutative.

EX(K)/E2(K)      -»     pK/p\
Nl |tr

EX{F)/E2{F)      Z      pF/p2F

where the formal group law on p/p2 reduces to ordinary addition and the vertical
arrow on the right is induced by trace.

Since F2(F) is contained in N{EX(K)} we find that EX(F)/N{EX(K)} is isomor-
phic to the cokernel of tr. If v(d) is even tr is surjective; hence i(K/F) = 0. If v(d)
is odd tr is the 0-map; hence i(K/F) = dim PF/p2F = [F: Q2].

As for the parity of i(K/F), the explicit formula given in [15, p. 180] for A in
terms of the coefficients of the model (4) shows that A is in -3 • F2. If v(d) is even,
then (A, d)F = 1. If v(d) is odd, then (A, d)F = 1 precisely when -3 is a square in
F, or equivalently [F: Q2] is even.

To treat the case of ordinary reduction modulo 2 we shall use the following
lemma. Since the formal group law for multiplication by 2 is to have height 1, the
coefficient ax in (5) is a unit. By suitable translation we arrange for a minimal
model (4) with ax — -1 and o3 = 0.
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Lemma 1. The following diagram is commutative, where the horizontal arrows are

UK/U2^0
In

Up/U£-*0
Proof. One uses (tedious) direct computation involving the formal group law (5)

with ax = -1, a3 = 0, and the information that 1 + p5K c U£ and 1 + pF c UF, to
show that the horizontal arrows are homomorphisms and to check commutativity.
The surjectivity of the g's is clear and injectivity of gF results from direct
computation.

Proposition 5. Assume that F is an unramified extension of Q2 and that K over F
is ramified. If E has ordinary good reduction modulo 2 then i(K/F) is 2 or I
according to whether (A, d)F = ±1.

Proof. By Lemma 1, EX(F)/N{EX(K)} is isomorphic to UF/NUK so has
dimension 1. Since E is ordinary modulo 2, the reduction E already has a point of
order 2 over F2. Hence E(k)/2E(k) is 1 dimensional. We show below that the
group in (6) is trivial if and only if (A, d)F = 1, so that i(K/ F) is as desired, using
exact sequence (3).

Suppose first that A is a square in F. Since EX(F) contains a unique point of
order 2 by [2, Lemma 3.5], there must also be another point of order 2, say P0, in
E(F) - EX(F). Since the 2-Sylow subgroup of E(F)/EX(F) ^ E(k) is cyclic, P0
generates {F(F)/F,(F)}2. Then clearly F,(F) n 2F(F) = 2EX(F) and the group
in (6) is trivial while (A, d)F = 1.

Suppose next that A is not a square in F. By [2, §2] there is an injection
X: E(F)/2E(F) -> H\G&l(F/F), £(F)2) in which this cohomology group Hl is
isomorphic to F(A1/2)*/F(A1/2)*2. Moreover, by [2, Lemma 3.5] the map X when
restricted to EX{F) has the form X{P{z)} = coset{l + z - a2z2}. Find a unit « in F
such that in the residue field k we have A = u2, and solve for z0 such that
1 + z0 — a2z2 = At/"2 modulo pF. Then P(z0) is in 2E{F) but not in 2F,(F), since
A G F2. Now by the isomorphism £,(F)/N {EX(K)} -» UF/NUK coming from
Lemma 1 we see that P(z0) is in N[EX(K)}, or equivalently, the group in (6) is
trivial, if and only if (A, d)F = 1.

Proposition 6. For Archimedean primes /(C/R) is 0 or 1 according to whether A is
negative or positive.

Proof. Since F(C) = 2F(C) we find that N{E(C)} = 2F(R). Hence /(C/R) =
dim F(R)/2F(R), which is as given above, say by [2, Proposition 3.7].

We cull from the above propositions the following results on the parity of
i(K/F). Consistent with later usage, we say i(K/F) = 0 if d is in F2. We let A
denote the discriminant of E and irF a prime in F. In case of multiplicative
reduction we must distinguish between a Täte curve, for which the tangent
directions at the node on the reduction of E are in the residue field of F, and a

induced by P(z) —» l + z — a2z2:

EX(K) %

n\,

0^F,(F)/2F,(F)
*,
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128 KENNETH KRAMER

("O'

twisted Täte curve, for which those directions lie in an unramified quadratic
extension of the residue field.

(Airy, d)F    if E has multiplicative reduction
and K/F is unramified,

- (A, d)F     if F is a Täte curve over F and
K/F is ramified,

(-A, d)F      if F = R,
(A, d)F        otherwise.

We close this section by giving a global version of the above parity results.
Suppose that F is a number field and K = F(dl/2) for some d G F. We define a
quadratic character x¿ on the free abelian group generated by -1 and the non-Ar-
chimedean primes it of F which are unramified in K by

Xd(-0 = II (-1, d)v = sign NF/Qd,

x^) = (., ¿)„ = f-7 **£!;!**I -1 if m inert in K.
Corollary 1. Suppose that F is a number field in which 2 does not ramify, and

that K = F(dl/2). Let E be a semistable curve defined over F. Let iv =
dim F(F„)/Ar{F(Äw)} be the local norm index at the completion Fc of F, with the
convention that iv = 0 if v splits in K. Let Nx be the symbolic product of the primes of
F which are unramified in K and at which E has bad reduction. Let b be the number
of primes of F which are ramified in K and at which E is a Täte curve. Then

(•-if*. = (-i)6Xrf(-Ar,).
Let t be the number of primes w of K at which E is a Täte curve over K^,. Then

(-l)2'° = sign{AV/Qrf}-(-l)'.
Proof. To obtain the first formula, we multiply the parity of local norm indices

given in terms of Hubert symbols above, and note that II„(A, d)v = 1 by reciproc-
ity. To obtain the second formula, we use the fact that if E has multiplicative
reduction at the prime € of F and E is not already a Täte curve over FD, then E
becomes a Täte curve over K^,, where w\v, if and only if v is inert in K.

3. A review of descent and related dualities. For the moment, let E be an elliptic
curve defined over a field F of characteristic not 2. We use Galois cohomology
with the notation H*(F, E2) for //*(Gal(F/F), E^F)^. From the cohomology of
the short exact sequence 0 —> E(F)2 —» E(F) -» E(F) —> 0 one sees that there is an
injection

XF:E{F)/2E{F)^H\F,E2). (7)
Suppose now that F is a number field. If Fv denotes the completion of F at the
prime v, then the local Selmer group S(FV) is defined to be the image of XF and is
of course isomorphic to E(FV)/2E(FV). The global Selmer group is defined to be

S(F) = {s G H\F, E2)\s G S(FV) for all v)
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and is a finite vector space over F2. Letting III(F), the Tate-Shafarevitch group, be
the kernel of Hl(F, E) —*• ][vHl(Fv, E) we have the exact sequence

0 -* F(F)/2F(F) -* S(F) -> III(F)2 -* 0.
We recall from local duality theory [13] that Sv = S(FV) is its own orthogonal

complement in the perfect pairing

hv-.H^F^EjxH^EJ^^
given by cup-product followed by invariant. Let FKunr be the maximal unramified
extension of Fv and let H = ÜZ/'íF^, F2) be the restricted direct product with
respect to H \Ga\{F™ / Fv), F(Fcunr)2). There is a global perfect pairing (using [4,
Lemma 6.2], but note correction in [5, Appendix 2])

hF:H/ {H\F, F2)-nSc} xS^ft

with hF being the product of the local Ac's and H\F, E¿) being embedded in the
diagonal of H.

There is an alternating bimultiplicative form ([4, Theorem 1.1] or [14, Theorem
3.2]) on the Tate-Shafarevitch group III(F), which becomes nondegenerate modulo
the (conjecturally trivial) divisible subgroup of III. For our purposes, we need only
to know that the following construction provides us with an alternating form on
III(F)2 with values in /t2. Let

yP:E(F)/4E(F)^H\F,E4) (8)

be the connecting homomorphism obtained from the cohomology of the short
_ _   4       _

exact   sequence   0 —» E(F)4 -h> £(F) -» E(F) —» 0.   From   the   cohomology   of
0 —» E(F)2 —► E(F)4 —» £(F)2 —* 0 we get the exact sequence

E(F)2 Xh1(F, E2) -» H \F, E4) ̂  H \F, £2). (9)

Then 2*yF = XF, with XF as in (7).
Given a G 5(F) there exists for each prime v of F a point Pv G E(FV) such that

a = X^ÇPJ = 2*yv(Pv). It follows from Tate's Lemma [4, Lemma 6.1] that globally
a = 2*c for some c G H\F, E4). Since c — yc(Pv) is killed by 2*, we may view
c - yv(Pv) as an element of H\FV, E2) by (9). Given b G S{F), let T(a, b) =
hfic - yv(Pv), b).

Theorem ([4, Theorem 1.1], [14, Theorem 3.2]). The bilinear form
T: S(F) X S(F) -» fa is well defined and strictly alternating in the sense that
T(a, a) = I. It induces a nondegenerate pairing on UI(F)2/2III(F)4.

Next we examine the effects on these pairings of passing to a Galois extension K
over F. It is convenient to collect together the local Selmer groups at all the primes
of K lying over a fixed prime v of F, and to denote with a dash those objects with
ground field K. Thus Sv = S(FJ. 5„' = n^Si/Q, 5 = S{F) and S' = S(K).

It follows from the diagram below (commutative if one uses only the restriction
maps or only the corestrictions) that NV(S¿) <Z Sv and iv(Sv) C SJ. Hence also
globally N(S') C S and ;(5) ç S'.
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0     -+      JlEiJO/lEiKj     -      UH^EJ     ->     TiH^E)
w\v w\v w\v

IT "»IT'- IT       (10)
0     -»        E(FV)/2E(FV) -» H\FV,E2)        *       H\FV, E)

Let i~l(S;) = {s G //'(£„, F2)|/„(j) G 5„'} and globally let i~\S') = {s G
H\F, F2)|/(j) G S'}. By naturality properties of cup-product with respect to
restriction and corestriction [3, Chapter XII, §8] we obtain from the pairing hv the
perfect pairing hv: i^(S¿)/Sv X Sv/NS¿ —> u2. The implications of this on the
global pairing hF are given in the following lemma.

Lemma 2. Let $ = [s G S\s G NVS¿ for all v). The orthogonal complement of 4>
in the pairing hF is H \F, E2) ■ II/Ü"1(5'Ü') modulo H \F, E^ ■ RSV and is isomorphic
to

^ = ncuo/{/--(so-iu}.
Proof. An element 5 G S is orthogonal to II/"'(So) in the pairing hF if and only

if for each prime v we have hv(t, s) = 1 for all t G i~l(S^)', that is, if and only if for
each v, s G NVS¿ by the nondegeneracy of hc. Thus $x = H\F, E^ ■ ]li~\S¿)
modulo H\F, E2) ■ U.SV and is isomorphic to A by elementary isomorphism
theorems.

4. The Selmer group S(K). We continue to assume that E is an elliptic curve
defined over a number field F and that K — F(d1^2) is a quadratic extension with
G = Gal(ÀT/F) generated by a. At each completion Fv of F we denote the local
Selmer group S(FV) by Sv. For completions of K we write S¿ = JI^SiKJ. Also,
S = S(F) and S' = S(K). Let /„ = ¡(K^/FJ be the local norm index as computed
in §2. By the perfect pairing hv and the fact that N[E^K^)} D 2£(FC) we have

/„ = dim E(FC)/N{F(*J} = dim SV/NVS¿ = dim i~\S¿)/Sv. (11)
In the exact sequences used to prove the following theorem, we relate 5" to

various objects defined over F, namely the "ambiguous Selmer elements" of S'
given by

il(S')= {s(£Hl(F, F2)|/(j) G 5'},

the everywhere-local norms from S¿ given by

$ = {s G S\s G NVS; for all v),

and the global norms, TVS'.

Theorem 1. The rank of E(K) is 2/„ + dim $ + dim TVS' - 2 dim F(F)2 -
dim Ui(K)2. rank E(K) has the same parity as 2/„ + dim Ui(K)2.

Proof. From Lemma 3 below we deduce that the sequence

0 -» E(F)2/N{E(K)2} A /"'(S') -^ S' -X NS' -* 0 (12)
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is exact. Let " denote Pontrjagen dual. It follows from Lemma 2 of §3 that the
cokernel of/is (£/<&)*, and the rest is clear in the exact sequence

0 -» S -> r\S') U n i~\S¿)/Sv -> (S/*)'-» 0. (13)
N

We also have the exact sequence 0—> E{F)2 -> F(AT)2->N{E(K)2) -»0. Taking
Euler characteristics and using (11) we obtain the claimed formula for rank E(K)
upon  noting  that  dim S' = rank E(K) + dim E(K)2 + dim Wl(K)2.  The  parity
statement follows from the fact that dim &/NS' is even, as we show in Theorem 2
of §5.

Corollary 2. Assume finiteness of the 2-primary component of III(ÄT), as conjec-
tured. Under the hypotheses and in the notation of Corollary 1

C-ir"^ = {-\)bU'Nx) = sign{AV/Q¿} • (-1)'.
Remark. If S = 0 then its subgroups 0 and NS' also are trivial. Moreover, since

F(F)/2F(F) injects into S, it follows that F(F)2 = 0. By exact sequence (12), S'
then is isomorphic to the ambiguous Selmer elements /"'(S"). Furthermore, dim S"
= 2/„, the sum of the local norm indices, each of which is zero except possibly if E
has bad reduction or K over F is ramified at v. We therefore have an analog of
genus theory for elements of order 2 in the ideal class group of a quadratic
extension of a field with odd class number.

In a Weierstrass model y2 = f(x) = x3 + a2x2 + a4x + a6 for E the points of
order 2 have the form P = (t, 0) where/(/) = 0. A model for the twisted curve F(</)
is given by y2 = x3 + da2x2 + d2a4x + d3a6. We identify F2 with E-f* and thus
also H*(F, E2) with H*(F, E¡d)) via the Galois isomorphism F-> Fw = (dt, 0).

Lemma 3. Let F be any field whose characteristic is not 2. The following sequence is
exact, with i being restriction, N corestriction, and a = XF ■ X^ where XF and X^ are
the homomorphisms of (7) for the curves E and F(</) respectively:

0^E(F)2/N{E(K)2}^H\F, E2)-Uh\K, E2)^H\F, E2).

Proof. By inflation-restriction we obtain the exact sequence

0^H\G,E{K)2)^H\F,E2)Xh\K,E2).

Since 1 — a = 1 + a on E(K)2 it follows from the cohomology of cyclic groups
that H\G, F(AT)2) is isomorphic to E(F)2/N{E(K)2}. Making this identification
and tracing through the maps in terms of cochains one sees that a(F) = X(P) ■
X(d\P(d)) for P in E(F)2.

H\F, E2) is killed by 2, so that N ° i is trivial. Suppose that E is given by a
Weierstrass modely2 = f(x), and let AF be the F-algebra F[T]/(f(T)). View AF as
a direct sum of fields according to the number of roots of/(F) = 0 in F. Recall [2,
§2] that H '(F, F2) is isomorphic to the multiplicative group of elements of
AF = Ap/Ap2 whose norms to F*/ F*2 are trivial. Suppose that x G A% represents
an element x of AK whose norm to K*/K*2 is trivial and such that Nj ,?x ™ 1.
Then there is a G AF such that NAk/Afxo~1 = 1. Using Hubert's Theorem 90 we
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can write x = az"~' for some z G A£. Let b = NA ,A z and let c be the image of
NÄF/F(ab) under the natural inclusion from F to AF. Since norm composed with
this inclusion is cubing, NA¡!/F(abc) is in F2. Moreover, NAK/K(ab) = NAx/fC(xz2) is
a square in A-. Hence c becomes a square in ^4^ and x =abc (modulo A£2).
Therefore Jc = i(abc) and we have exactness around H l(K, E2).

5. The everywhere-local/global norm group $/ NS'. In this section, we attempt to
treat symmetrically both the curve E and its twist E(d\ We continue to identify the
Galois-isomorphic modules E2 and E¡d). Let S„(</) ^ E(d\Fc)/2Ew(Fv) be the local
Selmer group for E(d) at the prime v, and let Sw be the global Selmer group for
E(d\

Proposition 7. Locally, i~\S¿) = Sv ■ S¿d) and NVS; = Sv n S^ a// viewed as
subgroups of HX(FV, E2). Globally the everywhere-local norm group $=5fl S^d\

Proof. Applying diagram (10) of §3 for both the curve E and the curve E(d) we
find that i~\S¿) contains Sv • S¿d). For the reverse inclusion suppose that x G
C'(SJ). By the usual conventions there is nothing to prove if v splits in K, so
suppose there is one prime w over v. Then iv(x) G S¿ = Image X¿ and we may
write iv(x) = A¿(F) for some P G F(Â„,). Using the commutativity of the left side
of (10) and the fact that Nv ° /„ is the 0-map on H\FV, E^ we have \(NP) =
NVX'V(P) = Nciv(x) = 0. Hence NP = 2Q for some Q G E(FC). If we let R = P -
Q, then R" = P" - Q° = (2Q - P) - Q = -R. Hence we may view R as an
element of E«\FV). Now iv(x) = X;(F) = A¿((2) • KW = 'c(\XÔ) ■ ̂ (Ä)). It
follows from Lemma 3 that the kernel of iv is contained in Sv ■ 5c(</). Hence
x G Sv- S¿d) as desired.

Using the perfect pairing hv of §3 and its analog for the curve F(</) it is now clear
that NS; = Sv n S™. Hence also globally $=5n Sw.

In §3 we reviewed the definition of the Cassels-Tate pairing T on III(F)2. Let
F<rf) denote the corresponding pairing on the Tate-Shafarevitch group IU(</)(F)2
arising from the descent involving E(d\F)/2E{d\F). Since 4> = S n S(</) there are
natural maps from 4> to both III(F)2 and Ul(d\F)2. Let

<, > = T- T(d): 4> X $^m2

be the bilinear form induced by the product T ■ T(d). We can now state our main
result about <b/NS'.

Theorem 2. The bilinear form < , > is strictly alternating and puts &/NS' in
perfect self-duality. The dimension of &/NS' is even.

Proof. The modules F2 and F2(rf) are Gal(F/F)-isomorphic, and we have
identified them. However E4 and E^d) only become Gal(F/A)-isomorphic. Our
strategy therefore is to compare the choices involved in defining T and F(</) by
lifting to K and using the corestrictions

N: C*(K, E4) -» C*(F, E4)    and    N: C*(K, E4) -* C*(F, E^).

We denote each of the restriction maps reversing these arrows by /.
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It is easy to check that on C*{K, E4)

i ° N + i ° Ñ = mult, by 2 = 2* (14)
noting for example in dimension 0 that N(P) = P — P" because of the twist.

We shall do some calculations on the cochain level, adopting the convention that
upper case letters denote cocycles and lower case letters the corresponding
cohomology classes.

Given a G $ = 5 n S{d) we can find c G H\F, E4) and c G H\F, E¡d)) such
that a = 2*c = 2*c. Then there are in fact cocycles such that A = 2*C = 2*C. Let
X = /(C) + /(C). Then 2*X = /(2*C) + /(2*C) = i(2A) = 0. Hence X actually is
a cocycle in Zl(K, E2). Moreover, since a fixes /(C) and inverts /(C) we have
NX = A. Passing to cohomology we obtain x G H\K, E2) such that Nx = a and

x = /(c) + /(c)    in H \K, E4). (15)

By definition of $, for each prime v of F there is Qv G U^Eif^,) such that
a = NVK(QV). By the commutativity of diagram (10) for the curve E and also for
Ew we find that a = \(NQV) = X¡d\ÑQv). Hence, for the definition of T and F(<0
we may choose Pv = NQV and F„ = M2C. Then

<«, 6> = F(a, b)T<d\a, b) = hF((zv), b)

where zv = c - Y„(FJ + c - y„(PJ is in H\FV, EJ. Here f„ is the map of (8) for
the curve F(rf) over F„. We also have a map

y'v: Meíkj/aeíkj^Rh^e,).
w\v w\v

Replacing E2 by F4 or F4(<i) in diagram (10) we see that yv ° N = Nvy^ and
yv ° N = Ny^. Using (14) and working in H \K, E4) we get

i[yM + %(k)] =[' •#.-+/• ^][v;(a)]
= 2*y;(ßJ =X(ÔJ-

Now using (15), ¿(z,,) = x — X^(QV) in H\K, E4). But since the left and right sides
of this equation are killed by 2* it follows from exact sequence (9) that Qv may be
changed by an element of LT^FÎÂ^ so that in fact

i{zv) = x - X'V(QV)    mH\K,E2).

By Lemma 2 of §3, the pairing <a, ¿>) = hF((zv), b) is trivial for all b G <I> if and
only if there exists / G H \F, E2) and tv G /"'(SJ) such that zv = f + tv for each
prime v. If so, /(/) + x = /(ro) + \,(ß„) is an element of SJ for each t>. Hence
/(/) + x G 5' and a = N(i(f) + x) G WS'.

Conversely, if a = Ny for some v G S' then by Lemma 3 of §4,_y — x = /(/) for
some / G Hl(F, E2). Define tv by the equation zv = / + /„. Then i(tv) = i(zv) +
'(/) = / + ^,(öt>) is m ^o' f°r each c Hence by Lemma 2 of §3, hp{{zv), b) = 1 for
all b G 4>. It follows that < , ) provides us with a perfect duality on <&/NS', as
desired.
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Proposition 8. Let UI^(F) be {x G UI(<,)(F)2|/(x) = 0 in W(K)}. Then &/NS'
fits into an exact sequence

niW(F) i+ 9/NS' -* Ui(F)2/N{m(K)2).
Proof. We have the commutative triangle

A
E(F)/N{E(K)}-*S/NS'

f \ / g
tt

in which, by abuse of notation, X is the map induced by (7), and g maps to the
diagonal. We shall examine the resulting exact sequence -» Ker/—> Ker g —»
CokerÀ—». Clearly Coker X is isomorphic to IH(F)2/A/{III(A)2} and Kerg is
<&/NS'. From the definition of III we obtain the exact sequence below, with the
vertical arrows being restrictions.

0     -»     III«"(F)2     -*     H\F,E(d\     -»     ^{H\FV,E^)2
[i |res lures,

0     -*       W(K)2       -É       H\K,E)2      -*       JlH'i^E^
The kernel of res is the image under inflation of Hl(G, E(d\K)), which is
isomorphic to E(F)/N{E(K)} taking into account the twist. Similarly, the kernel
of res„ is F(Ft))/A/{F(Äw)} a¿ SV/NS¿. Hence we obtain the exact sequence
0 -» D4rf)(F) -» E(F)/N{E(K)} ^USJNS; giving Ker/ as desired.

Corollary 3. // III(F)2 = III(i')(F)2 = 0 then <b/NS' = 0.

Remark. Replacing E by £(</) above does not change <S>/NS' and yields the
exact sequence IiyF) -* 4>/7VS' -> IH(<,)(F)2//?{III(ä:)2}. One might try to prove
the perfect self-duality of $/ NS' by then studying the pairing III0(F) X
III(F)2/Ar{III(Är)2} and extending the above exact sequences to five terms. This
did not seem any easier to us.

Example. Let F be the curve v2 + xy = x3 + 244jc2 + 61x, of conductor N = 3
•5-13-61 and discriminant A = 25N2. Let d = 109 and K = Q(¿1/2). The local
norm indices are

Í2,     v = 109,
/„ = j 1,     v = 13,

[ 0,    otherwise.

dim 4> = 3 and dim NS' = 1 so that <&/ NS' is not trivial. The other numerical
invariants are as follows.

F(Q) FW(Q) E(K)
dim E2 2 2 2
dim Selmer 4 5 5
dim UI2 0 2 0
rank 2 1 3
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Outline of proof. Translate to obtain the model .y2 = x3 + (244^)x2 -t- 61x for
E. Setting y = 0 we see that the points of order 2 are rational. We identify
H '(Q, F2) with a subgroup of Q* © Q* © Q* modulo squares as in [2, §2], with
the map A of (7) induced by P -> (x(P), 4x(P) + 1, x(P) + 244). In [2, §§3 and 4]
we have local descent information at primes of semistable reduction over Q or K.
However, we need to determine Edd\Qd)/2E(d)(Qd) at Sdd\

By [2, Lemma 3.1], dim Sj'') = 2. One then sees that it must be generated by the
cosets of (1, d, d) and (d, 2, 2d) coming from the points of order 2 in F(d)(Qrf). By
a straightforward calculation which we leave to the reader, the elements of the
Selmer groups S(Q), S^XQ) and S(K) and the dimensions of these groups can
then be determined. By inspection dim N{S(K)} is then found to be 1, and
dim 4> = dim(S n Sid)) = 3.

The points of order 2 in F(Q) and the points Px+, P2 with abscissas x = 1,
x = 81 then provide a basis for S(Q). Hence rank F(Q) = 2 and III(Q)2 = 0. The
points of order 2 in E(d\Q) and the point Px~ on F(d)(Q), with x(Px~) = -244 give
3 independent elements of S(d)(Q). Hence rank F(</)(Q) > 1 and rank E(K) > 3.
Since dim S(K) = 5 we must have equality. Furthermore dim III(AT)2 = 0 and
dim TJI(</)(Q)2 = 2.

It is interesting to note that there are actual points on F(Q), for example the
points of order 2, which are norms from F(A^,) for each completion K^, but not
globally from E(K). Moreover, UT-^Q^ is "twisted away" by passing to K.
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