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This paper was first conceived as a short note in which two operations—
called ordered addition and ordered multiplication—were to be defined for
ordered systems and shown to include all but the sixth of the assorted opera-
tions of ordinal and cardinal addition, multiplication, and exponentiation
discussed by G. Birkhoff in [lK1). These facts are still in the paper but are
completely overshadowed by far more important considerations, mostly aris-
ing from the rather unexpected properties of the operation of ordered multi-
plication. The general purpose of this paper is easily explained. We define
these operations of ordered addition and multiplication of families of systems
and define certain unary operations called transitization and contraction,
which are applied to single systems. We wish to discuss, first, the properties
of these operations singly and in combination, and, second, the nature of the
ordered systems which arise when these are applied to systems with assigned
properties. Examples of the first type of theorem are the general associative
laws satisfied by ordered addition and multiplication; a sample of the second
type is Theorem 5.14 which shows that while the product of transitive sys-
tems need not be transitive it has a property (defined below) which is closely
allied to transitivity.

The systems (called numbers) studied by Birkhoff have the two properties
of transitivity (if a^b^c, then a^c) and antisymmetry (if a^b^a, then
a = b). It is noted in [l] that the ordinal power of such systems need not be
antisymmetric; that transitivity also fails is easily seen by an example (see
§3 below) in which the base is a two-element well-ordered system and the ex-
ponent is the system of integers ordered by magnitude. It can be seen from
the systems used in this example that any restriction on base and exponent
so great that the ordinal power is transitive must be very strong indeed.
(For example, we show in §4 that when base and exponent are both numbers,
the ordinal power is a number if and only if the base is a cardinal number or
the exponent satisfies the ascending chain condition.)

In this paper an ordered system 3f = (R, ^ ) will be a set R in which a
reflexive binary relation ^ holds between some pairs of elements of R. The
preceding paragraph shows why no further restriction is placed on the sys-
tems involved ; apparently no reasonable subclass is closed under ordinal
exponentiation. Even the ordinal power of countable ordinals leads to non-
transitive systems! Since we often prefer transitive systems or numbers, this
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makes useful the simple methods (see §1) by which we can associate to each
ordered system © a unique transitive system tr(©) with a minimal set of
extra related pairs and to each transitive system © a unique number e(©)
defined by identifying all elements in each subset of © in which each element
follows every other. We shall be interested in the relationship of these opera-
tions with those of ordered multiplication and addition.

In this connection it soon appears that there are degrees of intransitivity.
To make this more precise, note that the condition of transitivity says that
if rièr2è • • • ^rn, then rx^rn; that is, if rx and rn can be connected by a
finite chain of r,- such that r<s£r<+n then the chain can be shortened until no
middle links are left. Even if this is not possible in a system 9î it may
still be possible to shorten any such chain to some definite length ; this sug-
gests the following definition: 9Î is called ¿-transitive if the conditions
fi^^è • • • sîrn imply the existence of k elements r{, • • • , rl such that
fiitr{ è • • • =>"* =>%• That such a definition is not without fruitful content
follows from the fact proved in §5 that the example mentioned in the second
paragraph of this introduction is 1-transitive.

Briefly the contents of the various sections are as follows : In §1 properties
and processes for single systems are discussed; it is here that transitization,
contraction, and ¿-transitivity are carefully defined and relations given be-
tween these properties and various order and equivalence relations among
ordered systems. In §2 an ordered sum, Z<ä,&)©>■> is defined for ordered sys-
tems dt and ©r, r£R, and conditions are given under which the sum is transi-
tive; transitized and contracted sums are also studied. A relation is given
between iterated sums and sums over sums which is shown to be the general-
ization to ordered addition of the ordinary associative law.

The remaining sections are devoted to the ordered productLTcs-è)©«-. The
definition is given in §3 along with some preliminary but important proper-
ties; the ones used most in succeeding sections are 3.7—if all ©r are ¿-transi-
tive andIT(Ä,ä) tr(©r) is w-transitive, thenjj^.le, ©ris (2m+¿)-transitive—
and 3.8—if all ©r are ¿-transitive, then tr(JT(fi è) tr(©r)) is isomorphic to
tr(IX(fi,È) ©r) ; these facts enable us to avoid many computations with intran-
sitive factors. §4 deals with transitivity of the product; it leads up to Theo-
rem 4.12 which gives a set of conditions on $R and ©r necessary and sufficient
that the ordered product IT(fi.è) ®r be transitive.

§5 studies ¿-transitivity of products over numbers and over transitive
systems, completing a sequence of theorems of which the important ones are
4.2, 5.5, 5.7 and 5.14; for example, the last of these says that if ¿R and all ©r
are transitive, then IXck.è) ®r is 2-transitive. Rather simple examples show
that the values of the transitivity numbers given in these theorems are best
possible. §6 deals with certain homomorphisms and isomorphisms between
iterated products and products over sums; these are in the nature of associa-
tive laws for the ordered product.
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1945] ARITHMETIC OF ORDERED SYSTEMS 3

§7 is concerned with the problems on ordinal exponentiation of num-
bers which were studied by Birkhoff in [l]. We study in this section not
only the ordered power <R.S)(g> defined asIX(A..ë) ©r where ©r=©, but also
tr((Ä'-)@) and ctr((Ä'e)©); for example, Theorems 7.3 and 7.10 give condi-
tions under which these assorted systems are lattices; we also discuss when
these are simply ordered or well-ordered or complete lattices or other types of
numbers. §8 is a brief appendix discussing the relationship of the product and
sum defined here to those defined by Whitehead and Russell in Principia
Mathematica.

Notation for point set operations will be as usual; that is, £, C> W, O
will have the usual meanings of element of, is contained in, union, and inter-
section, respectively; {/>|(?} means the set of all p having the property Q.
Due to difficulties in printing the following convention has been adopted to
avoid subscripts attached to subscripts and superscripts : If N is a symbol to
which it is desired to attach as a subscript a compound symbol */, the com-
pound symbol shall be rewritten as i(j) when it is actually used as a subscript
so the symbol with subscript appears as Ntt$, For another example the sum
over (R, ^ ,■) will appear as E<».&(«'»•

1. The elementary operations and relations. If R is a non-empty set and
è a reflexive binary relation that holds between some pairs of its elements,
we shall call the combination of R and ^ an ordered system and use the sym-
bols 9î and (R, à) for this system; r>r' will mean that r=V but r^r'. The
fundamental equivalence relation to be used is isomorphism; 3Î and © are
called isomorphic (symbol: 9î~@) if there is a one-to-one function h from
3Î onto © such that r^r' if and only if h(r)^h(r'). We shall consider two order
relations between ordered systems. © is a homomorphic image of 9Î (symbol :
9î>©) if there is a function h from 3Î onto © such that h(r)^h(r') if r_V;
that is, if and only if there is a monotonie function h defined on 9Î whose
values fill up @. A subsystem dt' = (R', ê) of 9? = (R, à) is a subset R' of R
with the order relation in 9Î' imposed by that in 9Î; that is, for r and r' in R',
r^r' in 9Î' if and only if r^r' in 9Î. Say that & follows 9Î (symbol: ©>9î)
if $ft is isomorphic to a subsystem of ©.

There are certain common ordered systems that will be used frequently.
If R is any non-empty set, the system (R, = ) will be called a cardinal number.
If 9îi and 8Î2 are both cardinal numbers, obviously 9îi'—'9î2 if and only if
there is a one-to-one mapping of Ri onto R2; also, for any relation è in R,
(R, =)>(R, ï£). Systems which are well-ordered (that is, in which every
subset has a first element) will be called ordinal numbers; in particular, the
system (N, w) of all positive integers ordered by magnitude is an ordinal and
$R> (N, w) if 9î is an infinite ordinal. If n is any positive integer, let (Nn, w)
be the subsystem containing the first n elements of (N, w) ; then the systems
(iVn, w) are finite ordinals; the systems (iVn, =) are, of course, finite cardinals.
If R is a non-empty set, the universal relation u in R is that in which every
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element follows every other; that is, r u r' for every r, r' in 7?. Note that
(Nx,w) = (Nx, =) = (Nx,u).

If è and ^ ' are two order relations in one set 7?, say that ^ includes
è ' if r ^ V' implies that r ^ r' ; clearly if ^ includes ^ ', then (R, £ ') > (R, à)•
If 9î= (7?, ^) is an ordered system, define tr($R), the transitization of 9î, to be
the ordered system (7?, ^ ¡) where è ( is the least transitive relation includ-
ing è ; that is, roà t r means that there exist rlt • • • , rn, n^O, such that
ro^rl=^ • • ■ ^rn^r. Clearly 9î>tr(3î) for every 9Î; 9î is called transitive if
9í = tr(3í). Since transitivity is clearly preserved under isomorphism, and
since-tr(tr(9î)) = tr(9î), $R is transitive if and only if 9?—tr(9î) and if and
only if there exists © such that 9?~tr(©). Also 9î is transitive if and only if
the conditions roè»"iè  ■ • ' ^rn imply ro^rn.

A second operation can be applied most profitably to transitive systems.
If 9Î is transitive and rGT?, let c(r) = {r'|r = r'^r} ; that is, (c(r), è) as a
subsystem of (7?, ^) has the universal order relation u and c(r) is the largest
such set containing r. Let c(9î), the contraction of 5R, be the system whose ele-
ments are these sets c(r), where c(r)^c(r') if and only if r^r'. It is easily
verified that there is no contradiction in defining the order relation in this
way; it is also clear that if 7?' is a subset of 7? such that R'f~\c(r) contains just
one point for each r, then (7?', 2:)~c(3t) so 9î>c(9î); since the contraction
mapping is a homomorphism, 9î>c(9î) also holds. As in [l] 9Î will be called
a number if and only if the natural homomorphism r—*c(r) of 9Î onto c(tr(9i))
is an isomorphism; that is, if and only if $R is transitive and has no pairs of dis-
tinct points r and r' for which r>r'>r. From one point of view a number may
be regarded as an extremely transitive system ; precisely, (7?, ^ ) is a number
if and only if the relation > is transitive.

1.1 Lemma, tr and c are invariant under isomorphism and monotone under
homomorphism; that is, if 9Î~©, then tr(9î)~tr(©) and c(tr(9î))~c(tr(©))
while if ©>8Î, then tr(©)>tr(jK) and c(tr(©))>c(tr(9?)). If © is transitive
and ©>9?, then dt is transitive and c(©)>c(5R).

These properties can be verified directly from the appropriate definitions.
Note that ©>9î need not imply that tr(©)>tr(9î); for example, let © con-
tain elements sx, s2, s3 where, besides equality, all the relations that hold are
sx>s2, s2>Sx, sx>s3, 53>Ji; let 9Î be the subsystem of © containing only 52
and s3; then tr(©) = (5, u) while tr($R) = 9i = (7?, =), so tr(9î) is not isomor-
phic to any subsystem of tr(©).

We give next a theorem on factorization of homomorphisms.

1.2 Theorem. If © is a number and 9Í = (7?, = ), then 9î > © if and only if
there exists a transitive relation ^ ' including ^ in R such that c(R, 5: ')~©. If
h and H are, respectively, the homomorphism and isomorphism involved, one can
be calculated from the other by the relation H(c(r)) =h(r).
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1945] ARITHMETIC OF ORDERED SYSTEMS 5

If h is given so that h(r)¡íh(r') if r2:r', define r = V to mean that
h(r)^h(r') ; since © is transitive, 2: ' is transitive; since h is monotone, 2: ' in-
cludes 2:. Then in (R, 2i') we have c(r)=h~lh(r), so the mapping H defined
by the equation above is one-to-one between c(R, 2:') and ©. c(r)^c(r')
means r 2: V;that is, h(r) =Ä(r') or H(c(r)) =ii(c(r')), so H is an isomorphism.
If 2: ' and H are given, define h by the above equation; since the identity is
a homomorphism of (R, 2:) onto (R, 2^'), since contraction is a homomor-
phism of (R, = ') onto c(R, = '), and since H is an isomorphism of c(R, 2: ')
onto ©, h is a homomorphism of (i?, ¡g ) onto ©.

1.3 Corollary. If h is a homomorphism of an ordered system 9? onto the
number ©, //?e« h can be factored into three pieces, h = Hd, where I is the identity
mapping of (R, 2: ) onto (R, 2: ') and 2: ' is a transitive relation including 2t,
c is the contraction of (R, =') onto c(R, 2:'), and H is an isomorphism of
c(R, 2: ') onto ©.

Note that if © is only transitive but not a number, a similar factoring,
h = Hc'I, is possible with first and third factors of the same nature as before,
but the middle factor c' is only a partial contraction of (R, 2^ '). If © is not
even transitive, then factoring is still possible but 2: ' need not be transitive.

We have already defined transitivity of ordered systems, but the lumping
together of all intransitive systems into one class is too crude a procedure for
some parts of this paper. We shall define a property of ¿-transitivity of or-
dered systems, k a non-negative integer, in such a way that ordinary transi-
tivity is the special case for which k = 0. The system (S, 2: ) or the relation 2;
is called k-transitive if and only if the existence of a chain Si^s2^ • • • 2rs„
connecting si with sn implies the existence of 5/, • • • , sii1 in 5 such that
Si^si 2^52' = ■ ■ • =5i 2ts„. Note that no assertion is made about the dis-
tinctness of the si nor do the si have to be among the original s¡; hence if ©
is ¿-transitive it is also «-transitive for every integer n^i; this property has
the disadvantage that 3Î>© and 9Î ¿-transitive do not imply © w-transitive
for any n (except where k = 0). This is unfortunate but not fatal; after all,
even transitivity is not preserved under the relation >.

Another formulation of this property may add some clarity. If E is any
subset of the ordered system © = (5, 2:), define Eu = {s\ there exists s' in
E for which i^i'}; similarly, let ED= {s\ there exists s' in E for which
s'2:5}. Then the operation E-^EU (or £—>£B) is a closure function in 5 in
the sense of my earlier paper [3] ; it has several elementary properties: £aD£;
if £1 C£î, then Ef ÇLE2; much more than this is true; this operation is addi-
tive for an arbitrary number of terms; that is, if R is a set and if for each r
in R, £rC5,then (U,eH £r)^=Ure« (Er) ; FF = E for every finite set £ if and
only if EU = E for every EQS; that is, if and only if © is (S, =). The various
transitivity properties of © can be simply expressed in terms of this operation;
© is transitive if and only if EUU = EU for every ECS; that is, if and only if

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 M. M. DAY [July

ü(or, dually, D) is idempotent. Similarly, © is ¿-transitive if and only if
_E<*-r»t/ = £(*+i)r/ where Eku means to apply u ¿ times in succession.

For future reference we give here two definitions. A star in © is a subset
£ of © such that EU = E; that is, £ is a star if it contains every successor of
each of its elements. Clearly the stars in © and in tr(©) are the same subsets
of 5. A set E is cofinal [coinitial] in © if and only if ED = S [Eu = S].

A terminal element of an ordered system 9î is an element r0 with no suc-
cessors (different from itself) ; that is, r0 is a terminal element of DÎ if the con-
dition r>r0 is not satisfied by any r in 7?. (This is not quite the usage of [2]
but agrees with it for numbers.) r0 is a terminal element of dt if and only if
it is a terminal element of tr(9î); if r0 is a terminal element of a transitive
9Î, then c(r0) is a terminal element of c(5K), but not necessarily conversely. If
E C.R, let E(1) be the set of terminal elements of the subsystem (E, è) of
(7?, ^ ). For any ordinal number a > 1 define £(a) to be the set (E — Ux< aE w)(1).
Then there must be a smallest ordinal Xo^l such that £cx(°» is empty; if
X>Xo, Em is also empty; define £' = Ux<xco)£a).

1.4 Lemma. For any "St and any a, (\Ji<aR<»)u=l)i<aR(»;that is, Ux<a7?<x>
is a star in 9î ; hence R' is a star in 9Î.

If r£7?(X(1)) for some Xi, then r is a terminal element of R — Ux<X(i)7?(X>;
hence every successor of r is in Ux<xa)^<X); that is, (Ux<«72(X>)t7=Ux<a7?(X).

1.5 Corollary. If 3Î is transitive and R' = R, then dt is a number.

Let X(r) be the ordinal less than X0 such that r£7?(X) ; then X(r) is defined
for every r in 7? and is strictly decreasing; that is, r>r' implies X(r) <X(r').
Hence r>r'>r would imply X(r) <X(r')<X(r) and this is impossible under the
relation among ordinals.

1.6 Theorem. If (R, ^) is transitive, R = R' if and only if E(~.EWD
for every EQR.

If 7? ¿¿R', let E = R-R'; then E<« is empty so E™D3>E. If R' = R and
ECZR, let r(E_E; then there is a smallest ordinal X0 in the set of ordinals
{\(r')\r'=-r and r'££}. If r0 is a successor of r in E such thatX(r0)=Xo, then
no successor of r0 can Hein E, so r0(E.Em and r0^r; that is, ECZE(1)D.

1.7 Theorem. R = R' if and only if ascending chains in 9Î are finite; that
is, if and only if the conditions rx^r2^ • • • ár»S¡¡ • • • imply that rn = r„(o) for
all n^some no.

If R = R' and r1 = r2^ ■ • • ^rn^ • • • , then X(ri)^X(r2)è • • • èX(r„)
è • • • ; the set {X(r„)|«£/V} contains a smallest element, say X(r„(o)), so
X(rn)=X(r„(0)) if wîîwo. Hence rn = r„(0) if «â«o- If R' ^R, every element of
R — R' has a successor different from itself, so there exists an infinite chain
ri<r2< • • • <rn< • • ■ .
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1945] ARITHMETIC OF ORDERED SYSTEMS 7

Note that if the transitive system 9Î is finite, R' = R if and only if 9î is a
number.

For §4 we shall need the next two lemmas.

1.8 Lemma. If A and B are subsets of (R, St), then (A KJBy» C4 («US«;
in fact, (AVJBy» = (4<» -BD)VJ(B™ -AD)\J(A™r\B™).

If r£-(A\JByi\ if r'Srr and r'EA, then r'G(AUB) and r'Str so r' = r;
hence if r£-(A \JBy»C\AD, r£-A™. Similarly if rE(AUB)^nBD, rEB™;
since every r in (AKJB)(1) is in ADVJ BD, we have the three distinct possi-
bilities r<=4<« -BD or S<»>-4ß or 4t1' fW1».

1.9 Lemma. If '¡ft is a number with no terminal elements, there exists three
disjoint cofinal subsets of 9?.

Well-order the elements of 9Î and let ri be the first element in this order-
ing, let f2 be the first that follows ri, and so on as long as possible; that is,
let ra be the first element of R that follows all r\, \<a, as long as such an ra
exists. Then there must be a first «o such that the set {r„|a<a0} has no com-
mon successors; since 9î has no terminal elements such an a0 must be a limit
ordinal. At such a point define r«(0) to be the first element of R which does not
precede any r„, a<aa, and proceed from ra(0) as from ri until stuck again
at «i. Repetition of this process defines limit ordinals ax, X<Xo, and points ra,
a<«x(o, such that ra<ra> if ct\^a<ct'<a\+i while ra> does not precede or
equal ra if a'>a; moreover, for each r in R there is an a<ax(o) such that
ra2:r. Let E,= {ra\a a limit ordinal plus i — 1 plus a multiple of three,
a <o¡X(0)} ; then the sets £< have the desired properties, since £iW£2W£3 is co-
final in R, and if raG£», then rtt+i££i+i(modl).

2. Ordered addition. For disjoint systems a notion of ordered addition
should, to fit our intuitive notions, have something to do with an ordering
of the point-set union of the systems. It should include the notions of cardinal
and ordinal addition used in [4] and [l], and, if all the terms in the sum are
alike, should specialize to some kind of multiplication, in this case the ordinal
multiplication of [4] and [l ]. It is easy to give a rough description of the sum
over 9î of the systems ©r; the sum is obtained by putting each ©r in place
of r in the system 9î. This will be made more precise in the next paragraph,
but it should be mentioned that this definition of sum need not give transitive
sums even when all systems concerned are transitive. Since it is often useful
to construct transitive systems or numbers from systems of the same sort,
we shall also define modified sums obtained by following the operation of
addition by tr or ctr. (It will be seen by those who have read [2] that the
operation of ordered addition used there is the one called ¿Z' here.) In [4] a
definition of ordered sum of relations is given which translates into the defini-
tion of sum used here; see §8 for further remarks on this subject.

We give now the precise definition of sum. If 9Î is an ordered system and
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if, for each r in 9Î, ©r is an ordered system, define Z<a,è> ®'»tne ordered sum
over 9Î of the systems @r, to be the system <$ = (P, ^) where the elements of
P are the ordered pairs (r, s) with r in 7? and s in S„ and (r, s) ^ (r', 5') means
that r>r' or else r = r' and s = s'; 9î will be called the index system and the
©r the terms of the sum. (Note that if the ©, are disjoint, there is a natural
one-to-one correspondence between P and Ure.R Sr.) Define Z'fl.â) ©>■ to be
tr(Z(B,è) ©r) and Z(S.ê) ©r = ctr(Z<A,ê> ©r); these are, respectively, the
transitive and contracted sums over 8Î of the ©r; we shall use ^' and à« for
the order relations in these systems.

2.1 Theorem. If 9Î and all ©r are transitive, (r, s) ^ '(r', s') if and only
if (a) (r, s)'=(r', s') or (b) r = r' but there exists r" such that r>r">r; hence
Z<».£> ©r *5 ^-transitive if 9î and ©r are transitive.

Obviously (r, s)^'(r', s') if (a) or (b) holds, (r, «)£'(/', s') means that
there exist points (r{, s{) such that (r, s) ^ (rlt Sx) ̂  (r2, s2) è • ■ • è (/m in)
2;(f', s')- Hence refie^tS; • ■ • ^rn^r'. If equality holds all down this
chain, then i^Si^S2^ • ■ • ^Sn^s', so r = r' and s^s' by transitivity in ©r;
that is, (r, s) = (r', s'). If at least one of these is not an equality, by transitivity
in 9Î either r>r' (implying (a)) or (b) holds.

2.2 Lemma. The index system and the terms of a sum are isomorphic to
subsystems of the sum; that is, 9î<Z(a,ê) ©r an<^ ©r(0)<Zc«,ä) ©r for every
choice of 'St, ©r, and r0.

If sr is any point of Sr, the function h(r) = (r, sr) is an isomorphism of 9Î
into Z(B.è) ©<■; the function g from ©r(0) into Z(«.ê) ©r defined by g(s)
= (r0, s) is also an isomorphism. Note that if r0>rx>ro, ©r<0) need not be
isomorphic to a subsystem of Z(B.è) ©r-

2.3 Corollary. Z(*.£) ©r is transitive if and only if (a) 9Î and every @r
are transitive, and (b) if r>r'>r, then ©r has the universal order relation.

(a) is necessary by 2.2 since every subsystem of a transitive system is tran-
sitive. If r>r'>r, let s, s"GSr and i'G5r-; then (r, s)>(r', s')>(r, s") so,
by transitivity, (r, s) è (>"» s") ; hence s^s" for every pair of points in ©r; that
is, @r is (Sr, u). If (a) and (b) hold, by 2.1 Z(«.à> ©<-=Z'(«.è) ©>■ so tne
first system is transitive.

2.4 Corollary. If 9Î is a number, Z(«.è) ©r is transitive if and only if
all ©r are transitive awdZ(«,£> ©r is a number if and only if all @r are numbers.

The first of these statements follows immediately from 2.1 and 2.3 since
neither case (b) can occur if 9Î is a number. For the second result we can use
the first; if all ©r are numbers and (r, s)^(r', s') = (r. s), then r^r'^r so
r = r' and s^s'^s; hence 5 = 5'. If £c*.i) ©» is a number, 2.2 implies that SR
and ©r are numbers.
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1945] ARITHMETIC OF ORDERED SYSTEMS 9

2.5 Lemma. If 2^ includes =2 in R and if 2:»' is the order relation in
E(B.èc>>) ©r> then =l includes 2:2 and a similar relation holds for the transitive
sums;   hence   zZ<.R.=a» ©r< E<«.i«) ©<■>  Ecs.Sfl» ©>•"< E's.èc«)  ©r and
E(B.Ê(1»  ©r<E(K.ê(2)) ©r.

If (r, s)2t2(r', s')> then r^2r' or r = r' and s2:s'; hence r=^r' or r = r'
and 5 2:/, so (r, s)^1^', 5'); that is, 2:1 includes 2:2. If ^i( is the order rela-
tion in tr(]T(B,È(i), ©r), it follows immediately that =1( includes 2:2'. The first
two homomorphisms are immediate consequences of these two inclusions; the
third follows from the second and 1.1.

2.6 Lemma, If in Ec».ä) ©r a chain (rh si) 2; (r2, s2) 2: • • • 2: (rn, sn) is
given, either (1) r, = r,-+i and s, = s,+i/or all i or (2) there exists a shortest sub-
chain (r,(D, 5,-(i))> • ■ • >(rnk), 5¿(t)) such that rio-)>rnJ+i) for all j<k, while
¿i=l and r,(fc)=rn.

If all r,- are equal, then we have 5<2:s,+i. If some r¿ differ, we can find in-
tegers i¡ such that ri = r2 = • • • = rw)-i>rii2) = • • • = r,(3)_i>ri(3) • • • ri(i)_i
>r,-(t)= • • • =rn; these r¿ satisfy the given conditions.

This result has two useful consequences, 2.7 and 2.8.

2.7 Theorem. If 9î is m-transitive and all ©r are k-transitive, then
E(B.ê) ©rîs n-transitive, where w = sup (m + 1, k).

If (ri, 5i)= • • • 2r(rp, sp) and all r¿ are equal, Si2t522: • • • 2:sp in ©r;
since @r is ¿-transitive, this chain can be replaced by Si^si 2: • • • 2:5* 2:sp
so (ri, 5i) 2^ (ri, s/)à • • • 2: (rít s¿ ) 2: (rp, sp) and a chain with not more than
k middle links connects the ends. If some r.-^r.+i we can use the second chain
of 2.6, {(r,(J-), Si(j)) ]. If ri7¿rP, shorten the chain down by w-transitivity in 9t
till there is a chain with not more than m middle links ri such that
ri>r{> ■ • ■ >rq>rp; then for any si in Sr'(»>, (ri, Si)>(r{, s{)>
>(r¿, Sq)>(rp, sp) so there is a chain with not more than m middle links
connecting (ru Si) with (rp, sp). If ri = rp, take the last rt(J-) before the chain
first closes up to ri again; then there exist r/ such that ri>r[ > • • • >r4'
>f<(j)>fi; using the argument just above we see that there is a chain with
not more than m + 1 middle links connecting (r%, Si) and (rp, sp). This shows
that any chain can be shortened until it contains not more than n middle
links; that is, E(ß.E) ©r is n-transitive.

The next theorem shows that we can alter the order relations in 9Î and
the @r to some extent without altering the order relation in the transitive sum.

2.8 Theorem. For every choice of the systems dt and ©r we have

£'©r =   £'  tr («,).
(B,ä) tr (Ä.ä)

Let = ' and 2:T be the order relations in the left and right-hand systems
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respectively, and use ^ ( for the relations in tr(9?) and tr(©r) ; clearly ^T
includes ^'. (r, s)tT(r', s') means, by 2.1, that either (1) r>,r' or (2) r = r'
but s> ts' or (3) r>,r"> tr = r'. In case (1) either r>r' or there exist r,-
such that r>rx> • ■ • >rn>r'; in either case (r, s) ^ '(r', s'). In case (2) there
exist Si such that iè*iiE • • • è*»às' so (r, s)^(r, Sx)^ • • ■ §;(f, s„)
è(r', s') so again (r, s)^l(r', s'). In case (3) take any s" in S,<<; then as in
case (1), (r, s)^'(r", s")£'(r', s') so (r, s)Z'(r', s'). Hence =* and =T are
equal.

2.9 Corollary. If tr(R, ^x) = tr(R, ^2) and tr(Sr, äir) = tr(5r, ^2r) for
each r, then Z'cB.êa» (Sr, ^ir)=Z'(«.è(2)) (Sr, ^2r); in particular, both the
transitive sums of 2.8 are equal /oZ'(«.à) tr(©r)=Z'tr(B,ä) ©r.

The relations between Z i >" an(l > are not surprising.

2.10 Theorem. If @r>^„ /Äe» Z(«.e) ©>>Z(k.é> ^Pr; 7/ ©r<^ßr, í*«n
Z(b.ä) ©r<Z(B,^> ^ßr. The first relation holds forZ' awdZ"! ^g second holds
fort,' and2Zc if tr(@,) <tr(?r).

If Är is a homomorphism of ©r onto ^L, define Ä(r, s) = (r, Är(s)); it is
easily verified that h is a homomorphism of Z(B,è) ©•■ onto Z(«.&) $r. If
instead hr is an isomorphism of ©r into ^5r, clearly h(r, s)^h(r', s') if
(r, s)~=(r', s'). If Ä(r, s)^h(r', s'), either r>r' or r = r' and hr(s)^hr(s');
in the first case (r, 5)>(r', 5'); in the second s^s' as hr is an isomorphism,
so, again, (r, s) = (r', s'); that is, h is an isomorphism of Z(B,è) ©>■ an(l a sub-
system of Z(Ä.e) $r-

1.1 now implies the relation > for Z' an(l Zc- To prove that Z'(«.ê) ©r
<Z'(B,è) ?r, we see by 2.8 that this holds if and only if it holds when all

systems are transitive; that is, we need only prove the special case:

2.11. If dt and $, are transitive and ©r<<ß,-, thenZW) ©r<ZW> $r.

Let h be the function previously defined; then (r, s)^'(r', s') means by
2.1 that r>r' or r = r', s^s' or r>r">r' = r. One of these cases occurs if and
only if the same relation holds for (r, hr(s)) and (r', hr'(s')), so h is again an
isomorphism. 1.1 gives the same relation forZ"-

Another special case is:

2.12 Corollary.  If the  systems $r  are transitive and ^)3r>©r,  then
Z'(B,à) $r>Z'(Ä,&l  ©rfl«dZC(B.È> $r>ZC<B.ë>  ©r-

The relation 2.8 between Z and tr is simpler than the corresponding rela-
tion between Z an(l c-

2.13 Corollary.Zc(B.è) ©^Z'W.è) ctr(©r).

Since ZW> ©r=ZitrcB,Ê) tr(©r), by 1.1 Ze<Ä.Ä> ©r^Z'W.â) tr(©r)
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1945] ARITHMETIC OF ORDERED SYSTEMS 11

so we need only prove Ectr(S,è) tr(©r)-~Ectr(B,È) ctr(@r); that is, we need
only prove the following special case of 2.13.

2.14. If 9Î and all @r are transitive, Ec(K.ê) ©r~Ee<R.È> c(©r).

Since the contraction c of ©r onto c(©r) is a homomorphism, by the
proof of 2.10 the function h defined by h(r, s) = (r, c(s)) is a homomorphism of
E'(a.è) ©r ontoEV.£) c(©r) ; hence the function H defined from c(¿Z\r,£) ©,)
onto c(E'(B.ë) c(©r)) by H(c(r, s)) = c(h(r, s)) is also a homomorphism. Sup-
pose H(c(r', s'))=H(c(r, s)); that is, c(h(r, s))—c(h(r', s')); this is equivalent
toh(r,s)t%(r',s')or (r,c(s))^'(r',c(s')).Thenby 2.1, r>r' or r>r">r' = r
or r = r', c(s)^c(s'); that is, r>r' or r>r">r' = r or r = r', 52t5'; hence
(r, s)^'(r', s') if if(c(r, s))=H(c(r', s')). From this it follows that c(r, s)
2:c(r', s') if H(c(r, s))—H(c(r', s')), so H is one-one and an isomorphism of

Ec(*.ë> ©rOntoX)c(A,ê) c(©r).
We have an elementary relation between addition and contraction which

will be most useful in §5.

2.15 Theorem. If © is transitive, there is a number 9Î (c(©) will do) and
subsystems ©r=(5r, u) of © such that ©~E<».fc> ©<••

We need only let 9t = c(©) and let Sr = c~1(r), where c is the contraction
mapping of © onto dt.

We give next a theorem on subsystems.

2.16 Theorem. If dti=(Ri, 2:) is a subsystem of 9Î = (R, 2:) and if'tyr is
a subsystem of ©r for each r in Ri, then (a) E(S(i),È> tyr is a subsystem of
zZa.èf) ©>•; (b) Str(B(i),è) ?r « a subsystem of Etr(s,&) ©r if and only if
tr(Ri, 2t) is a subsystem of tr(R, 2:); (c)E'cB(i).ë) fyTis a subsystem of ¿Z\r,& ©r
if and only if (1) tr(Ri, 2: ) is a subsystem of tr(R, = ), (2) if r in Ri is such that
an r' in R exists for which r> tr'> ¡r in tr(R, — ), either there is an ri in Ri such
that r>itri>itr in tr(Ru 2:) or tr(^3r) = (Pr, u), and (3) tr0ßr) is a subsystem
of tr(©r) if r is not such a point of Ri.

(a) follows immediately from the definitions. If tr(2?i, 2:) is a sub-
system of tr(i?, è) it follows from (a) that Etr(B(U.È) *$>■ 1S a subsystem of
Etr(S.ê) ©r- If Etr{B(i).È) Vr is a subsystem of Etr(B,&) ©r, if r and r* are
in Ri and if r>tr' in tr(£, 2:), then for any p in Pr and any p' in Pr>
(r, p) = (r', p') in Etr(B.È) ©r! hence (r, p) 2: (r', p') in E*rc«fl>.Ä) $<■• There-
fore r>tr' in tr(2?i, 2:) and this latter system is a subsystem of tr(i?, 2t).
This proves (b).

For (c) we apply 2.8 and see thatE'(B(i),ä) ipr is a subsystem of^'(B,à) ©r
if and only if EW<D,£) tr($r) is a subsystem of E'fcs.à) tr(©r). Let è1
and =2, respectively, be the order relations in these latter systems. By 2.1,
(r, />)2:1(r/, />') if and only if r>ur' or r>itri>itr' = r for some fi in i?i
or r = r' and p^up' in  tr(<(Jr);   (r, p)^2(r', />')  if and only if r>,r' or
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r>,r">tr' = r for some r" in 7? or r = r', p^,p' in tr(©r). If (1), (2) and
(3) hold, (1) implies that ¡£n in tr(7?i, ^) is the same as <£t, so the first con-
dition is the same for à1 as for ^2. The middle terms are the same by (2)
and the last from (3). If è1 and 2:2 agree and r>trx, (r, p)>*(rl7 pi) for any
p and pi, so (r, p)>1(ri, pi) and r>1(ri; that is, (1) holds. If r>tr'>tr, if p
and p" are in $r and if s' is in ©,.., then (r, p)>*(r', s')>*(r, p"); hence
(r, p)^(r, p") so either there is an n in Rx such that r>itri>ur or else
p^itp" in tr(^3r) for every p. "in Pr. If r is not such a point and p^tp'
in tr(©r), then (r, p)^*(r, p') so (r, />) è»fr. P') or£èn/>' in tr(Çr).

An arithmetical property of these sums is contained in the next theorem.
As we shall show, this has a number of special cases such as the associative
laws of cardinal and ordinal addition and of ordinal multiplication.

2.17 Theorem. If St, 'Brandar, are ordered systems, let (T, â)=Z(B.è) ©>•;
then the following associative laws hold for the various types of sums :

Z   Z $«~ Z c™.
(B.ê) (*,.S) <r,ê)

Z'        T!%.~    Z'    $»,
(B,è)   (Sr,è) tr(T,ë)

<zwd

ZC       Z" «r. ~    ZC   ft-
(B,fe)   (Sr,ë) tr(7\fe)

In the first isomorphism the elements of the left-hand system are the
points (r, (s, p)) with r in R, s in Sr, and p in Pr<; (r, (5, p))^(r', (s', p'))
means that r>r' or r = r', s>s' or r = r', s = s', p^p'. The elements of the
right-hand system are the points ((r, s), p) with r in R, s in 5, and p in Pr„;
((/. s),/>)è((/', s'),p') means that r>r' or r = r', s>s' or r = r', s = s', p^p'.
Hence the natural correspondence (r, (s, p))-^±((r, s), p) is an isomorphism
of the two sums. The second isomorphism follows from the first, 2.8, and 2.9
for

Z'      Z'   ft.-tr(   Ztr(   Z   %))

= tr(   Z       Z     ft.)~tr(   Z   ft.)=tr(   Z   ftA

For the last isomorphism we note from these results and 2.15 that

Zc   Zc ft. =2Zec( Z' ft.) ~ Zc   Z1 ft.
ï,ê)    (S(r),fe> (B,ë)      \(S(r),&)       / (B,ë)    (S(r),g)

= <( Z'    Z'ft.Wf   £' *•)"  £< ?-

(«

(B
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1945] ARITHMETIC OF ORDERED SYSTEMS 13

Note that by 2.8 in the last two isomorphisms of the theorem the operator
tr can be applied or left off at will anywhere after the first Z' orZc on each
side.

For the last general results of ordered addition we give two decomposi-
tion theorems.

2.18 Theorem. ©>"Z<B,ê> ft- if o-nd only if there exist disjoint subsystems
©P of © such that ©r>ft-/or each r and ©>Z<b.S) ©>■; if St is a cardinal,
©~Z<B.£> ©r-

If ©>"Z(B.Ê> ©>■ and ©r^ft,' by 2.10 and the transitivity of > we can
conclude that ©>*Z(B,è> ft. If A is a homomorphism of ©ontoZ(B,è> ft- let
Sr= \s\ there exists p for which h(s) = (r, p)} ; on Sr define hr by hT(s)=p if
h(s) = (r, p). If s^s' in ©r, s es' in © so h(s)^h(s') in Zcb.sj ft; that is,
(r, hr(s)) = (r, hr(s')) so hr(s) ^ hr(s') and hr is a homomorphism of ©r onto ft.
If g(s) = (r, s) whenever s(E.Sr, g is clearly a homomorphism of © onto
Z(B.è) ©r- If 5R is a cardinal number, (R, =), and if (r, s) = g(s) ^g(s')
= (r', s'), then r^r' so r = r'; hence s^s' and g is an isomorphism.

Note that if 9Î is a number, the relations given above for Z will also hold
for Z' although Z andZ' need not be the same unless in addition all the ©r
are transitive.

2.19 Theorem. ©<Z(b,è) ft if and only if there exists a subsystem 9îi
of 9Î and disjoint subsystems  ©r  of © for r in Rx such that ©r<ft awd
©~Z(B.Ê) ©r-

Sufficiency of the condition is clear. For necessity let h be an isomorphism
of © intoZ(B.ê) ft- and let 7?i, the projection of &(©) into 7?, be [r\ there
exist s and p such that h(s) = (r, />)}. Let Sr= {s\ there exist p such that
h(s) = (r, p)} and let hr be defined from ©r into ft by hr(s)=p if h(s) = (r, p).
Then s^s' means h(s)^h(s'); that is, (r, hT(s))^(r', hr-(s')); hence if s and
s' are in one Sr, r = r' and s^s' if and only if hr(s)=hr(s'); that is, hr is an
isomorphism of ©r into ^r. Let g be the mapping of © ontoZ(ß.e) ©r defined
by g(s) = (r, s) if s£Sr; then s^s' means (r, hr(s)) ^ (r', hr'(s')) which means
that either r>r' or r = r' and hr(s)^hr(s'); since hT is an isomorphism, this
condition means that either r>r' or r = r' and s^s'; that is, s^s' is equiva-
lent to g(s)^g(s'), so g is an isomorphism of © andZ(B,è> ©>■•

Finally we give an elementary result on terminal elements in sums; we
do not give a condition for initial elements since it is dual to this.

2.20. (r, s) is a terminal element of Z(B,è) ©r (or of Z'(B,S) ©r) if and
only if r is a terminal element of 3Î and s is a terminal element of ©r. c(r, s)
is a terminal element of Zc(B,ë) ©r if and only if (1) r is a terminal element
of dl and c(s) is a terminal element of ctr(©,) or (2) c(r) is a terminal element
of ctr(SR) which contains at least one element in addition to r.

If (r, s)EZ(B,â) ©r and r'>r, then (r', s')>(r, s) so (r, s) can not be a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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terminal element of E(B,è) ©r unless r is a terminal element of 9Î. Similarly
s'>s is impossible if (r, s) is a terminal element, so s must be a terminal ele-
ment. On the other hand if r and 5 are terminal elements and (r', s') = (r, s),
r' = rsor' = r; hence s' = s so s' = s so (r, s) is a terminal element. The same is
true forE' since a system and its transitization have the same terminal ele-
ments. The proof of the last statement is of the same nature and can be left
to the reader with the remark that for any ordered @, c(s0) is a terminal ele-
ment of ctr(©) if and only if s0 is an element of © such that s^tso implies
that So'èiS in tr(©).

Certain special cases of this addition operation have been given before,
for instance in [1 ] ; most of these writers have considered more restricted sys-
tems. E(W(*).«) ®» wu*i De called the ordinal sum ©i©©2© • • • ©©& of the
©n- zZ(R.=) ®r will be called the cardinal sum of the ©r; if R = Nk, we write
©i+©2+ • • • +©* for this. Since (N3, =)~(N2, =) + (Nu =)~iNu =)
+ (N2, =) and iN3, w)~(Ni, w)®(N2, w)~(Nt, w)®(Nu w), after a renum-
bering of the systems the relation 2.17 specializes to ©iffi(©2©©3)~©i©©2
©©3~(©1©©2)©©3      and       ©l+(@2 + ©3)~©l + ©2 + ©3~(@l + ©2)+©3;

these rules are slightly stronger than the associative law for cardinal and
ordinal addition. A check of the properties (10)—(18) given in fl, §3] for
ordinal and cardinal addition shows that they are special cases of various
formulas in this section.

Ordinal multiplication is another special case of ordered addition. If all
©r=©, we write 9Î o © forE(B.È) ©r; explicitly, 9Î o © is the set of ordered
pairs (r, s) with r in R, s in S, where (r, s)^(r', s') means r>r' or r = r', s = s'.
Taking all ©r = © and all ^3rs = ^)3, we derive from 2.17 the associative law of
ordinal multiplication 9? o (© o $)~(9Î o ©) o ^J. Similarly, if 9Î= (N2, w)
and all Ç„ = ^, we have from 2.17 that (©i o $)ffi(©2 o C)~(@!©©2) o <ß, a
one-sided distributive law for ordinal multiplication; similarly, the other rules
(30)-(35) given in [l, §6] for ordinal multiplication can be found among the
preceding theorems.

3. Ordered multiplication. The ordered product that is to be defined in-
cludes not only the ordinal and cardinal products of [4] and [l ] but also the
ordinal exponentiation of [l ]. As with addition we shall give three multiplica-
tion operations, an ordered product II(B,ê) ©n and the related transitive
and contracted products. The definition is essentially that of ordinal ex-
ponentiation but it does not have the virtues claimed for it in [l, §§8, 9];
even when all the systems involved are ordinal numbers, the ordered product
need not be transitive. We shall show, however, that the ordered product is
often almost transitive; for example, if 9Î is a number and all ©r are transi-
tive, 5.7 shows thatIX(ieè) <gr is 1-transitive.

If dt=(R, è) and ©r are ordered systems, defineII(B,&> ©r, the ordered
product over 9Î of the ©r, to be the system (P, Sr) where the elements of P
are the functions/ defined on R such that f(r)ESr, while fs^f means that if
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1945] ARITHMETIC OF ORDERED SYSTEMS 15

f(r)^f'(r) there exists r'^rsuch that f(r')^f'(r'); that is, {r\ f(r)>f'(r)\ is
cofinal in {r\ f(r) 5¿f'(r)\. In the case where SR is a finite ordinal it is easily
seen that this becomes the lexicographic ordering of the "words" in P except
that spelling is backwards. Let TL\r.£) ©r = tr(JX(Ä,ä) ©r) and IPcß.a) ©r
= c(TIi(B,È) @r); these are, respectively, the transitive and contracted products.

The special cases mentioned above are easily defined. JIcb,-) @r is the
ordinary direct or cardinal product of the systems ©r in which /è/' if and
only if f(r)^f'(r) for every r in 7?. If 1R=(N2, w), rLw<2).«o ©n reduces to
©2 o ©i, the ordinal product of the systems in reverse order. If all ©r = ©,
[I(B,ë) ©r reduces to the ordinal power <Ä-ä>©.

Let us give first the example mentioned in the introduction. Recall that
(N, w) is the system of integers ordered by magnitude and that (N2, w) is
the subsystem containing the first two elements of N; if 9Î=(7V, w) and
©r=(7Y2, w) for every r, then U<B,è) ©r= iN,w)(N2, w) is not transitive. To
prove this we construct three functions such that /1 >/2 >/3 but /i does not
follow or equal/3; for every n let

/i(2«) = 2, /2(2«) = 1, /3(2«) = /3(4« + 1) = 2,
/i(2« + 1) - 1,       /2(2w + 1) = 2,       /3(4« + 3) = 1.

Then/i(2«)>/2(2«) for every n so /i>/¡; /2(4«+3)>/3(4«+3) for every n
so f2>f3; however/3(«)^/i(«) for every « and equality does not always hold
so fx does not follow or equal f3.

We proceed with a discussion of properties of this product.

3.1 Lemma. If (Ra, ^) is a subsystem of (R, è) and if, for each r in R0,
ft is a subsystem of @r, thenJl(RW,èi ft <ILb,£> ©r-

Let sr be a fixed point in Sr for each r not in R0 and define h from
IT(B(0),e) ft- intoII(B,È) ©r by hf0=f if and only if/(r) =/0(r) if rE.R0,f(r)=sr
if r(£Ro. h is clearly an isomorphism of the left-hand system into the right.

3.2 Lemma. If ^i includes =^2 in R and ^' is the order relation in
H(A,à(0) ©ribera è1 includes S:2.

fè*f means that if/(r) ^f'(r) there exists r'^2r such that/(/')>/'(/');
such an r' = 1r so/a1/'-

3.3 Lemma. If ^ir includes ^2r in Srfor each r and if à* is the order rela-
tion i«IT(B,ä) (-SV, ̂ir),lhen ^includes =*.

f^*f means that if f(r) ¿¿f(r) there exists r'^r such that f(r')>2rf'(r');
hence f(r')>xrf'(r') so/â1/'.

It might be hoped that some relation such as ©r>-ft for all r would
imply that JI(B,g) ©r>"IT(ß.E> ft. That this is false is easily seen by letting
©=(7V2, w) o (N2, u) and ^ = (N2, w); then w.»>@> (Jv,»)sß would imply that
tr((Ar'u')©)>tr((iV»ft; this is false since in tr((iV ■<">©) every element follows
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every other while this is not the case in tr((Ar'",)l!ß). Note that ©>$ so, by
3.1, <*.«>©> w.wKß. Note that the factorization theorem 1.2 for homomor-
phisms suggests that some such trouble might occur. If hT is a homomorphism
of ©r onto <ßr, then hT factors into HrcrIr, where HT is an isomorphism of fy,
and cr(Sr, 2:r' ), = r' includes 2: r in Sr, and cr is a partial or total contraction
Of (Sr, e/).IÍ<*.i) iSr, àr)>II(BJe) (Sr, è / ) by 3.3, but ©/ ><;(©/) is the
only fact we are able to use about contractions, so we get the relations
II(B.è)  ©r>IIcB,ê) ©r' >IIcB,è> Vr-   _

From 3.2 and 3.3 we derive relations between JJ and tr; these are not as
simple as the corresponding relations for £) and tr.

3.4 Theorem.IIW) ©r>IT<B,a) tr(©r)>n'(r(B,à) tr(©r) awáüW) ©r
>IIW,è) ©r>n'«r(B,Ê) tr(©r).

We give two examples to show that these homomorphisms need not be
isomorphisms. Note that the fourth homomorphism is a special case of the
first and the second is a special case of the third.

3.5a. Let © = (iV, 2:) where j>¿ means that j = k + l; then tr(tJV'_)©) is
not isomorphic to tr((JV'-) tr(©)).

Clearly tr(©) = (N, w) so/2t1/' in tJV--»tr(©) means that f(n)wf(n) for
every n; it is easily seen that this system is already transitive and is even a
lattice; in particular, every pair of elements has an upper bound, trf^"*©)
does not have this property./>2/'means that there exist/i, • • ■ ,/„ such that
f=fitfi^ ■ ■ ■ 2r/„=/' in W.*)®; that is, such that /<(«) =/,+i(n) or/¿(re)
=/,+i(«) + l for every n; that is, /2:2/' means that f(n)wf'(n) for all n and
that the difference of / and /' is a bounded function. Hence two functions
whose difference is unbounded have no common successor in tr((JV'-)©) so
this system is not isomorphic to the other.

3.5b. Let 9Î= (N, 2:) (the © of the example above) and let ©= (N2, w);
then tr((jV'M)©) is not isomorphic to tr((JV-à>©).

¡5-* in this first system is easily described; clearly each /for which f(n) = 2
for an infinite number of values of b^1 each /' for which f'(n) = l for an
infinite number of values of n. Hence the system falls into three parts: (1) If
/>*/' and / is ultimately equal to 1, then there exists n0 such that f(n0)
— 2 >/'(«o) while fin) =/'(») = 1 for all n beyond n0. This relation well-orders
those functions which are ultimately equal to 1 ; there are only a countable
number of them. (2) Above all these lie those functions which are not ulti-
mately constant; each of these follows every other and also follows every
element of the first set. (3) Above these lie the functions which are ultimately
equal to 2 ; these are well-ordered in reverse and all follow all the elements
of the first two classes. From this we see that tr((JV-w)©) is isomorphic to
(N, w) © (D, u) © (N, w*), where D is of the power of the continuum and w*
is the relation w turned end for end ; that is, w* is the usual ordering of the
negative integers by magnitude.
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The relation ^ * of tr((Ar'ê)©) is harder to describe; however, to show that
this system is not isomorphic to the other it suffices to show that there exist
two points neither of which follows the other. For this let ^2 be the relation in
iw.*>® anfj note that/è^' means that if/(«) </'(«), then/(« + l)>/'(« + l).
Then f^*f in tr((JV'->©) means that there exist/1, •••,/* such that
/àî/iêi • • • èi/*£î/'. Define/and/'by/(4») = 2,/(j) = l ifjV4»forsome
n,f'(2-An) = 2,f'(j) = 1 ifj 5¿2-4n for some n. Then/^2/i means that fx(j) = 1
if j ;=4n or 4n —1 for some n while for each « either /i(4n —1) = 1 or /i(4n) = 1.
That is, iff^ifx, the set of points where fx is equal to 2 can not be shifted back
more than one unit from the set of points Where / is equal to 2 ; clearly the
same is true for/i ^2/2 and so on, so no finite chain can connect these two func-
tions/and/'. Such incomparability does not occur in tr(<JV'"')©) so these sys-
tems are not isomorphic.

3.8 shows that on certain occasions the first homomorphism of 3.4 is an
isomorphism ; the proof uses the following lemma which has also the impor-
tant consequence 3.7.

3.6 Lemma. Let à1 be the relation in II(ß.a) ©r and è2 be that in
lI(b.è) tr(©r). If f>*f and if all @r are k-transitive, there exist /1, • • • , /*
such that f>xfx and fx(r)^fi(r)^ • ■ • è/&(0 =/'(r) in ©r for every r in R
(sofx^fit1 ■ ■ ■ à7»àV).

Let £={r| f(r)>tf'(r) in tr(@r)}; by ¿-transitivity of ©r there exist
points Sfi, • • ■ , srk in ©r such that/(r) > s,i è Sr2 è • • • ^srk^f'(r) in ©r.
Define fk(r) = srk if r<=E, fk(r)=f'(r) if not; then fx(r)= ■ • ■ ̂ f'(r) for all r
and [r\ f(r)>fx(r) in @r} =£so/>1/i.

3.7 Theorem. If all @r are k-transitive and í/IT(B,a> tr(©r) is m-transitive,
then IX(fl.ê) ©r is (k +2m)-transitive; if, in addition, tr(©r) is a number for
every r, XIjb.ê) @r is (k+m)-transitive.

If fo^fit1 ■ ■ ■ k% in IT(B,ë)©r, then /„^2/ia2 • • • l2/n in
IT(B.ê) tr(@r); hence there exist//, • • • ,/„,'.such that/0^2/i' à2 • ■ • â2/»'
^2/„. If fx =/o, let fxx=fx ; if not, /o>2/i so by 3.6 there is a chain whose
top element fxx has the properties /o>1/n and fn(r)^tfx(r) for all r. Let
Ex = {r I f( (r) > tfi (r) =fxx (r)} ; if £1 is empty, then fa > 2f2' and we let /12 =/u ;
if £1 is not empty, define/12 so that/n(r) >f12(r) è tfx (r) if r££1, fn(r) =fn(r)
if r$Ex. Then fxx(r)^f12(r)^tfxx(r) for every rand {r\ fx2(r)> tfi (r)\
D {r I fx (r) > tfi (?) } so /12 à 2/2'. Repeating this process we see that there
exist fa and fi2 such that /„ ^ % = x/i2 à % ^ ^22 èl • • ■ ̂  l/»i è '/«ï ä; 2/n- In-
sert ¿ elements in this last gap by 3.6; then the resulting chain connecting/0
with/„ has 2w + ¿ middle links, so IT(B,â) ©r is (2w+¿)-transitive. If tr(©r)
is a number for every r, then/,i=/,-2 for every i soIJ<b.&) ©r is (¿+w)-transi-
tive.

3.8 Theorem. If all ©r are k-transitive, then
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n' a = n' tr (©,).
(S,à) (B,ë)

We have already shown in 3.3 that the relation on the left-hand side is
included in that on the right. /2:r/' in the right-hand system means that
there exist/i, •••,/„ such that/â2/^2 • • • è2/„è2/' inII<B,è> tr(@r); by
3.6 there exist/i', ■ • • .//.such that/S;1//.^1 • • • è1// à1/' inütB.e) ©r!
that is,/> '/' inIp(B,¿) ©r and the relations in the two systems are the same.

Related to this is
3.8'. If R is a finite set.IIW) ©r=ÜW> tr(@r).
As in the proof of 3.6 when/>2/' inücB.ä) tr(©r), let £= {r\ fir) > ,/'(r)} ;

then for each r in £ there are points sri, • • • , srk(r) such that/(r)>sri2: • • •
èSridosl/'M in @r; since supre.s k, must be finite, we can continue the ar-
gument of 3.6 and then of 3.8.

The ordered product contains subsystems isomorphic to the factors and
to part of the index system ; this need not be true of transitive and contracted
products.

3.9 Lemma.IJ(ie,ä) ©r>@r<o)/or every choice of 31, ©r, and rQ.

This follows immediately from 3.1 since @~TO'-ig,
Note that ^(^'"'[(iV, w*)®(N, w)]) has the universal order relation so

it contains no subsystems not of the same sort; hence no such conclusion as
3.9 holds for 11'or n°-

3.10 Lemma. If Ri= {r\ ctr(©r) is not a cardinal number} is not empty,
then (Ri, èXlI(B,S) <®rand (Rlt á)<IL*.i> ©r-

If r£i?i, there exist points sri in ST such that sTi>sri but sTi does not follow
or equal s^; for r not in Ri let sT be any point of Sr. Define h from Ri into
II(B.è) ©r by Ar(0)=/ if f(r) = sr for r not in Ru f(r)=sri if rG£i but r^r0,
f(ro) — Sri. Then r2>ri implies that Är(2)>Är<i) for hT(i)(r)=hra-)(r) if rs¿r2 or ru
and hHi)(r2)>hTii)(r2). If hr(i-¡>hTii-,, hHi)(ri)>hrii)(ri) and r2 is the only point
at which Är{2) (r2) > Är<i) (r2) so r2>ri; that is, h is an isomorphism. Interchang-
ing the roles of sri and S& gives the last relation.

To see that no bigger subsystem of 9Î need be isomorphic to a subsystem
of the product, let 9î = 9îi+9?2, where 3ii<Yl^w.=) ®r and 9Î2 is a lattice;
let ©r be a cardinal number if rÇiRi- Then (see 6.5) H(fiu).fe>+<fi<2),Ä) ©>■ is
isomorphic to (H<b<i>.S) ©>•)• (II(R(2),ê) ©r)- This latter factor is a cardinal
number also, so, if 9îi + 9Î2<II(B(i),â)+(B(2),ë) ©r, the lattice character of 9î2
would force a system isomorphic to 9?2 to be a subsystem of a part of the prod-
uct isomorphic toIjjRu),à) ©r! we chose 9?2 so this could not happen. A simple
special case of this is given by 9îi = <3r= (A72, w) if r££i, 3ti=(N, w) and
<5r=(N, =)ifrG£2.

The example before 3.10 shows also that nothing like 3.10 can be expected
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from the transitive product; however, the reader who considers the proofs of
7.12 and 7.12' will see that certain subsystems of (R, 2r) and (R, á) can often
be embedded in the transitive or contracted product.

4. Transitivity of the ordered product. This section gives conditions under
which the ordered product, II<B,è> ©>•> is already transitive. We begin with
a simple special case which in some ways suggests the principal part of what
may happen in general. Recall the definition of R' from §1.

4.1 Theorem. If 9Î and all ©r are numbers and R' = R, thenJJ^^R,^) ©r is
transitive.

If/iè/22r/3, let £i={r|/<(r)^/i+1(r)}, t-1, 2, and let £= {r\ fi(r)
¿¿f3(r) ] ; then £C£iW£2, and f((r) >fi+1(r) if r^E^. We shall show that if
rE(EiVJEi)(v, then fi(r)>f3(r); since ECEi\JE2C(EiVEi)^D (by 1.5) this
will prove/i2t/3. By 1.7, (£^£2)^) = (£(11,-£2D)U(41)-£?)W(£(11)n£21)).
If r is in the first of these sets, /i(r) >f2(r) =/3(r); if r is in the second, fi(r)
=f2(r)>f3(r); if in the third, fi(r)>f2(r)>f3(r); since > is transitive in a
number,/i(r)>/3(r) in all these cases, so {r\ fi(r)>f3(r)} is cofinal in £ and
fl=U   _

This can easily be extended slightly.

4.2 Theorem. If 31 and all @r are numbers and-E = [r \ @r is not a cardinal
number], thenYí(R,¿) ©r is transitive if and only if E = E'.

If E^E', E—E' is not empty and has no terminal elements; by 1.9 there
exist three disjoint cofinal subsets £1, £2 and £3 of £ —£'. If r££, there exist
points sri,i=l, 2, in ©r such that sri>sri but sri does not follow or equal Sri.
The example at the beginning of §3 now suggests the proper procedure; define

fi(f) = Mr) = f3(r) to be any point of ©r if r G R - £1 - £2 - £3,

fi(r) = Sri, fi(r) = Sn,        fa(r) = sr2    if    r G £1,

fi(r) - Sn, fi(r) = sr2,       f3(r) = sn    if    r G £2,

fi(r) = Sri, fi(r) = sr2,       fs(r) = sr2    if    r G £3.

Then/i>/2>/3, but/i does not follow or equal/3.
If £ = £', the argument of the previous theorem is easily applied to show

thatH(A,è) ©r is transitive.

4.3 Corollary. If 31 and all ©r are numbers, II(B,è) ©r is a number if
and only if E = E'.

If the product is a number, it is transitive, so, by the theorem, £ = £'. If
£ = £', the product is transitive; to prove it antisymmetric let/12:/2 2^/3 and
suppose that there exists r such that fi(r)?¿f2(r). Then (£iVJ£2)(1> is not
empty and for r in (£i*JE,)<l>,/i(r)>/,(r) so/i>/, if/i>/2; that is,/iè/»è/i
implies /1 =f2.
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4.4 Corollary. If 9Î is a finite number and all ©r are numbers, IT(B,ä) ©r
is a number.

From 1.7, R = R' if R is finite.
The next sequence of lemmas gives a number of necessary conditions for

transitivity of the product; all together they will turn out to be sufficient
(Theorem 4.12).

4.5 Lemma. If IT(b,è) ©r is transitive, then every ©r is transitive.

This follows from 3.9 and the obvious fact that transitivity is preserved
by >.

4.6 Lemma. If H(B,â) ©r is transitive and 7?i= [r\ ctr(©r) is not a cardinal
number}, then the subsystem 3îi of 9Î is transitive.

This follows from 3.10 as 4.5 did from 3.9.

4.7 Lemma. Under the hypothesis of 4.6, if ri ^ r2 si r3, if rx and r2 are elements
of Rx and if ©r(3) ̂  (Sr(3), u), then rx à r3.

If ri = r2 or r2 = r3, there is no more to prove; if rx>r2>r3, define s,-}-,
1=1, 2,7 = 1, 2, 3, in ©r(i) so that S2y>Si/and Sx¡ does not follow or equal s2j
for j=l, 2 while Si3 does not follow or equal S23; define/¿ to be equal except
on the r< and define

/i(/i) = S21,       f2(rx) = Six,       fz(rx) = *u,

/l(*"í)   — S22, fi(Tl)   = Sl2i f3V2)   =  s22,

fi(r3) = S13,       f2(r3) = s23,       f3(r3) = s23.

Then fx>fi>f3, so/i>/3; since fi(r2) =f3(r2) and fi(r3)>f3(r3), rx>r3.

4.8 Lemma. If IJ(B,ä) ©r ** transitive and ©r(o) is not a number, then
©r=(5„ u)ifr<r0.

If ©r(0) is not a number, since it is transitive by 4.5, there exist two points
Si in ©r(0) such that Si>s2>si. Let rx be a point such that ri<r0; define/,- so
that/i(r)=/2(r)=/3(r) if r^r0 or ru /i(r0)=/3(r0) =su f2(r0) = s2, and let/,(ri)
be any point of ©r(ij. Then/i>/2>/3 so/iè/3; since fi(r0) =f3(r0), it follows
that /i(r0 e/3(ri); since these were any two points of ©r(i)> it follows that
©r(i) has the universal relation.

Though we have shown that 5Ri is transitive, it need not be a number.
An example is the system (JV<2>>u)(7Y2, w); this has four elements which may be
represented by (i,j),i,jÇLN2. (1, 1) <any other element and (2, 2)>any other
element, (2, 1)>(1, 2)>(2, 1); these are all the relations that hold in the
system so transitivity can easily be verified. Here 7?i = 7? and R' is empty.
We are going to show in 4.9 and 4.11 that this example is really typical instead
of very special, for Rxf\c(r) can contain not more than two points if the prod-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1945] ARITHMETIC OF ORDERED SYSTEMS 21

uct is transitive and the corresponding factors must be of this form (N2, w).

4.9 Lemma. Under the hypotheses of 4.6, (7?i, â) has no subsystem (R2, u)
such that R2 contains more than two elements.

Any one-point set in (7?2, u) is a cofinal subset of (7?2, u) ; if 7?2 contains
more than two points, (7?2, u) contains three disjoint cofinal subsets and the
construction of 4.2 shows thatXl(B,ä) ©r can not be transitive.

4.10 Lemma. Under the hypotheses of 4.6, if r2>rx>rt in Rx, if r<r2 and
if r <rlt then @r = (Sr, u).

Take points í</, i,j=l, 2, in ©r(j) so that s2j>Sxj but Siy does not follow
or equal s2¡. Define

Mr') = Mr') = f3(r') if    r' * n, ru or r,

fi(fi) = /»(/i) = Six, fi(fx) = in,

fx(r2) = f3(r¡) = Si2, f2(r2) = S22,

fi(r) any point of ©,.

Then/i(ri)>/2(ri) so fx>f2; f2^2) >f3^2) so/¡>/3; hence/iè/3; that is, every
point of ©r follows every other.

4.11 Lemma.    Under  the  hypotheses  of 4.6, if r0>rx>r0 in Rlt  then
©r(0)~(7Y2, W).

Since c(©r(o)) is not a cardinal number, ©r<0) contains a subsystem iso-
morphic to (N2, w); that is, there exist s¡, i= 1, 2, such that si>52 but s2 does
not follow or equal Sx. Hence by 4.8, ©r(0) is a number (since ro<rx and
©r(D has this same property). If ©r(0) contains one more point, then ©r(o>
contains a subsystem isomorphic to one of the systems (7V3, w), (Nx, =)
+ (N2, w), (Nx, =)®(N2, =) or (N2, =)@(Nx, =). If ft is one of these
four systems and l$2=(N2, w), we know that @r(i)>ft; if ©r(0)>ft then
II(B,ê) ©i->IT(JV(2),u) fti! we show that for no one of these choices of ft is
this latter system transitive, so transitivity of IX<b,e) ©r implies that
©r(0) >ft for any of these choices of ft.

If ft=(iV3, w), the elements of the product are pairs (i, j), i=l, 2, 3,
¿-1,2; (i, j)>(i',j') if i>i' or j>j'; hence (2, 1)>(1, 2)>(3, 1) but (2, 1)
does not follow or equal (3, 1).

If ft = (TYi, =) + (7V2, w), this system may be represented by a system of
three points a, b and c where b>c is the only relation besides equality.
XI(AT(2),u) ̂Pn is the system of pairs (p, i), p = a, b or c, •—1, 2, where
(g, 2)>(p, 1) for every p and g in ft, and (b, i)>(c, i) for i = l or 2; then
(b, l)>(c, 2)>(a, 1) but (b, 1) does not follow or equal (a, 1).

If ft=(7\^i, =)®(N2, =), the only difference between this case and the
preceding is that an extra relation a>c has been added; the same example
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holds here. If ^ßi = (iV2, =)©(7Y1, =) the extra relation b>a is added in the
system of the preceding paragraph; then (c, 2) > (b, 1) > (a, 2), but (c, 2) does
not follow or equal (a, 2).

HenceIX(jv(2)fU) tyn is not transitive in any one of these cases; it follows
that $i<©r<0) is false; hence €>r(i)'*-'(iVs, w).

These conditions can now be collected into one big set of necessary and
sufficient conditions for transitivity of the product.

4.12 Theorem. IX(b,ê) ©r is transitive if and only if all of the following
conditions hold :

(1) Every @r is transitive.
(2) If Ro= {r\ @r is not a number} and rCRo~Ro\ then <¡£T=(ST, u).
(3) If Ri= {r\ c(©r) is not a cardinal number}, (Ri, 2:) is a transitive sub-

system of (R, 2:).
(4) If ri = r2 = r3, if ri and r2G-Ri, and @r(3) ̂ CSr(3), u), then fiar».
(5) (Ri, è) contains no subsystem (A, u) where A contains more than two

points.
(6) If Ri= [r\ rG£i and there exists ri in Ri such that r>n>r} and r is a

point which is less than both elements in such a pair r', ri of Ru then @r = (ST, u).
(7) If rÇ:Ri, then ©r~(iy2, w) (so Ri is disjoint from R0).
(8) If E = Rx-Ro-Ri,then E = E'.
Suppose thatII(B,È) ©r is transitive; 4.5 gives (1) ; 4.8 gives (2) ; 4.6 gives

(3). 4.7 gives (4); 4.9 gives (5); 4.10 gives (6); 4.11 gives (7). ILb.ê) ©r
<LT(B,è) ©r by 3.1; since £ is a number and ©r is a number if rgfi, 4.2
gives (8).

If the conditions (l)-(8) hold, suppose that/i>/2>/3 and that r is a point
for which fi(r)^f3(r); we produce a point r' — r such that /i(r') >f3(r') by
considering various cases, (a) If rG^o —-^o' or if rE.R2—R2, by (2) or (6)
fi(r)>f3(r). (b) If rGR2, either (bi) fi(r') =f2(r') =f3(r') for every r'>r but
not in Ri or (b2) not. In case (bi) if n is the element of Ri such that r>ri>r,
(7) and the example before 4.9 assure that fi(r)>f3(r) or fi(ri)>f3(ri). In
case (b2) Ufi(r)>f3(r), there exists r'>r and not in £2 such that fi(r')^f2(r')
orMr')^^'); r' must lie in Ri—R2 so is in £. Since/i>/2>/3 in £, and the
product is transitive there (by (8) and 4.2), there exist r">r' such that
fi(r")>Mr"); by (3), r">r. (c) If rER-Ri-Ro and fi(r)^f3(r), either
fi(r) ^h(r) or f2(r) ^f3(r) (or both) so there exists r'>r such that/¿(r') >/,+i(r')
for i = 1 or 2; this r' must be in £; as before it follows that there exists r" in £
with r">r' andfi(r")>f3(r"). By (4) this r">r. (d) If rG£, (8) and 4.2 are
all that are needed. If rE.R0l)—Ri, the usual argument provides r' in £ such
that r'>r and fi(r')>fi+i(r') for i=l or 2; as before, r" can be found in £
andr">r by (3) or (4).

A corollary of this which extends 4.3 is :

4.13 Theorem. II(s,è) ©r is a number if and only if (1) if i?i= {r\ ©r is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1945] ARITHMETIC OF ORDERED SYSTEMS 23

not a cardinal number], Rx' = Rx, (2) (Rx,  è) and all ©r are numbers, and
(3) if rx^r2^r3, if rx and r2£7?i, and ©r(3) 7^ (A^i, =), then rx^r3.

If these conditions hold, the sets i?o and 7?2 of 4.12 are empty, so 7?i = £.
It is easily verified that the conditions (l)-(8) of that theorem hold so
II(B.à) ©>• is transitive. The relations/>/'>/ in II<B,à> ©r would imply the
same relation for the functions equal to these but defined only over 7?i; 4.1
and the condition (2) prevent this so the product is a number.

Suppose thatIJ(B,è) ©r is a number; then conditions (l)-(8) of 4.12 hold
for 9î and the ©r. Since ©r(o> <LT<b.è) ©r, every ©,(o> is a number. Hence 7?0
is empty; if R2 were not empty, IT(b,è) ©r would contain a subsystem iso-
morphic to (JV(2),u)(iV"2, w); the discussion of this system before 4.9 shows that
it is not a number, so R2 must be empty. Hence Rx is a number and 7?i = £ so
R' = R. (3) follows immediately from (4) of 4.12.

Also from 4.12 and 3.7 (with w = 0) we have the following corollary.

4.14 Corollary. If SR and tr(©r) satisfy the conditions (l)-(8) and all ©r
are k-transitive, ¿AeraIT<B,è) ©r is k-transitive.

In the special cases of cardinal and ordinal multiplication most of the con-
ditions of 4.12 are satisfied automatically. We state this as another corollary :

4.15 Corollary. IX<b,-) ©r is transitive (a number) if and only if all ©r
are transitive (numbers). ©2 o ©1 =JI<íí(2) ,«>) ©n is transitive if and only if (a)
both ©„ are transitive and (b) ©2 is a number or ©i=(5i, u); ©2 o ©1 is a
number if and only if both the factors are numbers.

(2) through (8) of 4.12 hold if 9î = (7?, =) so (1) is necessary and sufficient
for transitivity of the cardinal product. (3) through (8) hold for 9Î = (7V2, w) ;
(1) and (2) are then equivalent to (a) and (b). The last condition follows
from 4.13.

The condition for transitivity of the ordinal power is not quite as compli-
cated as that for the product in general.

4.16 Corollary. <*•->© is transitive if and only if one of the following con-
ditions holds: (1) © is a cardinal number. (2) ©=(5, «). (3) © is transitive
and 9í tí a cardinal number. (4) dt is transitive and © is a number; each c(r)
contains not more than two points; if R2={r\ c(r) contains two points], then
R2=R2; if R2 is not empty, © is isomorphic to (N2, w); R'=R — R2.

When all ©r=©, the sets 7?o and 7?i of 4.12 can only be empty or equal
to 7?; the various combinations of these possibilities give the four cases of this
corollary.

4.17 Corollary. <*■->© is a number if and only if © is a cardinal num-
ber or 9Î and © are numbers and R = R'.

It is to be noted that this condition says that the ordinal power of num-
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bers is a number if and only if it is transitive; 4.13 said the same for ordered
products in which factors and index system were both numbers.

5. ¿-transitivity of the ordered product. We have in this section a chain
of principal theorems with successively weaker hypotheses and conclusions.
The first of these (5.5)'shows that if 9Î and all ©r are numbers, thenJJ(B &) ©r
is 1-transitive; 5.7 improves on this by showing that if all ©r are transitive
and 9Î is a number, then the product is still 1-transitive. 5.9 asserts that if
{r\ ©, is not a cardinal number} contains more than one point, then

II(B,u) ©r is 2-transitive. At this level a simple computation with the pre-
ceding results shows that if 9Î and ©r are transitive, then IJ(a,è) ©r is 4-
transitive; however, a refinement of the proofs of 5.5 and 5.7 allows us to
prove the stronger result 5.14 that if 9Î and all ©r are transitive, then
LT(B.è) ©r is 2-transitive; this result is best possible as is shown by an ex-
ample before 5.9.

For convenience in the calculations to follow, if EQR, define /i 2:/2 over £
to mean that the functions are related as in LT(b,è) ©>•; that is, /i2t/2 over
£ means that if r is a point of £ such that/i(r) ^f2(r), there is a point r' in £
such that r' = r andfi(r')>f2(r'). Recall that £ is a star in 9Î if EU = E.

5.1 Lemma. If E is a star in 3t and /i 2:/2 over R, then /i 2:/2 over E.

Since a star contains all successors of each of its elements, if r exists in £
such that/i(r) ^/¡(r), the r' in R which exists since/i 2:/2 over R must lie in £.

5.2 Lemma. Iffi(r)>fiir) for every r in a set E(ZR, then /i>/2 over ED no
matter how the fi are defined on ED — E.

Every point r' of ED has a successor r in £; for such an r, fi(r)>fi(r).

5.3 Lemma. If Ep, pEP, are subsets of R and /i2t/2 over each Ep, then
fi^fiOver\JpGpEp.

This is clear from the definitions.

5.4 Theorem. If 9Î and all ©r are numbers and if /i 2:/2 i>/3 2:/, over R,
then there exists f such that /iè/è/4 over R.

The proof gives a stepwise construction of/ and is rather dull reading;
however, it is the fundamental construction of this section; modifications of
it are used to prove 5.7 and 5.14. Let £,= {r\ /<(r)9¿fi+i(r)}, *«=1, 2, 3, and
let £«-=H fi(r)>fi+i(r)}; then the given condition that/<2^/1+1 over R
means that F, is a cofinal subset of £,-; that is, that Ft D£¿.

Consider now the first three functions,/i,/2,/3; we can not generally con-
clude that /12:/3 over all of R, but there is usually a large subset of R over
which /i£ï/3; we begin by constructing such a subset whose complement has
certain properties. If Ro = Ex\JEi, then /i(r) **/s(r) «=/»(/) if r is not in R0.
If r£-Ro\ then by 1.8 and the fact that F, is cofinal in £¿ either fiir)>f2ir)
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-fs(r) or fx(r)=f2(r)>f3(r) or fi(r)>f2(r)>f3(r). By transitivity of > (not
only of è) in the number ©r we see that/i(r)>/3(r). We now know by 5.2
and 5.3 that

(A) If Ri = Ro-Rlo1)D, then/^/a over R-Ri.
If r££i — E2, then fi(r)¿¿f2(r) so there exists r'^r in F\\ this r' can not

be in £? sofi(r')>f2(r')=f3(r'); by 5.2, /i>/3 over (£i-£2D)D. Similarly
fi>f3 over (E2-Ex)D; by 5.3 we have

(B) If R2 = Rx-(Ex-E%)D-(E2-E?)D, then f^f, over R-R2.
Since no element of R2 has a successor in R0 — R2, it is clear that
(C) If f(r)=fx(r) and f'(r)=f3(r) for every r in £-£2, then /£/' over 7?

if and only if/è/' over £2.
We next prove
(D) R.P is empty, £2££iW£2 and £2r\£< is cofinal in £2 for i=l, 2.
Since 7?2 is a star in (7?i, ^) and 7?i(1> is empty, R2l) is empty.  RiC.RiC.Ro

= Ei\JEi. If rCRi = Ri-(Ei-E^)D- (E2-Ef)D, if rx>r and if rxCEu there
exists r2 in £3_,-such that r2>ri>r; therefore E(r\R2 is cofinal in £2 for each i;
since 7?2 is a star in (£0, si ), Fii~\R2 is cofinal in E{r\R2 and hence in R2.

We now include the extra function/4 and, as seems reasonable from (B)
and (C), define/on £-£2 by/(r)=/3(r) if r££-£2. Let R3 = R2-(F3-R2)D.
Then the values off in £2 — R3 will have no effect on whether/è/4, so we can
define f(r)=fi(r) if r££2 — £3; then by 5.2 and 5:3 we have

(E)/iè/è/4 0ver7v-7?3.
Since 7?3 is a star in £2 we have
(F) £,-n7?3 is cofinal ta R» if *-l, 2; R3l) is empty.
We prove next that
(G) If £= {r\ ft(r) is not a terminal element of ©r}, then £f^£3 is co-

final in 7?3.
If r££3, either f3(r') =ft(r') for each r'¡zr in £3or not; if the former, there

exists r'^r in F2i^R3, so f2(r')>f3(r')=fi(r'); if the latter, there exists r'^r
in £3 such that /3(r')>/i(r'); in either case r'££ni?3.

Since £iH7?3 and EC\R3 are both cofinal subsets of (7?3, ^ ) and since £3"
is empty, there exist disjoint cofinal subsets G and 77 of (£3, ^) such that
GCFir\R3andHCEnR3. Definef(r)>f4(r) if r£77,/(r)=/2(r) if r££3-77.
Then it is clear that/iu/e/* over R if and only if/1 ïî/sï/4 over £3; however,
{r\ fi(r)>f(r)}DG while {r| /(r)>/4(r)} D77 so/xè/è/« does hold over £3
and therefore over £.

5.5 Theorem. 7/ 9Î ö«d all ©r are numbers, then Yl(H.ë) ©r w 1 -transitive;
that is, 7//ie/2s? • • • è/n, /Aere exists f such that fx~èf^fn-

This follows from 5.4 and an obvious induction on w.
We wish now to improve 5.4 by weakening the hypothesis on the ©r.

5.6 Lemma. If Si is a number and all ©, are transitive and t//ie/2s^/3a/4
over R, there exists f such thatfx si/st/4 over R.
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Since we used transitivity of > in ©r in the proof that /iiï/3 over R01)D
we must modify that construction somewhat. (See step (3) below.) As before
let £o = £iW£2; then

(1) Define/(r)=/i(r)=/3(r) on R-R0; clearly /i2j/2:/4 over R-R0.
(2) Let f(r) =fi(r) i( re(F3-R%)D. If Ao = Ro-(F3-R00)D, /iè/2t/4 over

R-A0.
(3) Let A=A0l)n{r\ /i(r)>/2(r)>/3(r)=/x(r)} ; well-order 4 in a

transfinite sequence {ra} and let Ba=A0r^{r\ ra — r but r\ does not follow
or equal r if X<«}. If rEBa, let f(r)=fi(r) if ft(ra)^fi(ra); let f(r) =f2(r) if
ft(ra)=fi(ra). In the first case fi=f over i?a while/(r„)=/3(r0)^/4(ra); since
no r'>r« exists for which f3(r')>fiir'), it follows that/(ra)>/4(r„). In the
second case/i(ra) >/(ra) >ftira) ; in both cases/! è/è/4 over 5„. Hence by 5.3
we have, setting 4i=40—AD, that/i 2:/2:/4 over R—Ai.

(4) For r in A? = 4^-4, either fi(r)>f2(r)=f3(r) or fi(r)=f2(r)>f3(r)
orfi(r)>f2(r)>f3(r)^fi(r); in all these cases fi(r)>f3(r) so we define/=/3 in
4/Y411)D. If 42=41-4i)D, then/iä/Sr/4 over £-42.

(5) Let 43=42-(£1-£2D)B-(£2-£f)I>; then precisely as in (B) of 5.4,
/can be taken equal to/3 in A2—A3 and/i2r/2:/4 over R—A3.

(6) As before with R3 it is easily seen that 43 has no terminal elements,
that £if\¡43 is cofinal in (43, 2^) and that if £= {r\ /4(r) is not a terminal
element of ©r}, Ef~\A3 is also cofinal in (43, 2r ) ; these properties were used in
defining/in R3; the same technique gives/in 43 in such a way that/i2:/2:/4
over R.

From 5.6 we derive the following theorem by induction.

5.7 Theorem. If 31 is a number and all @r are transitive, then LT(b,è) ©r
is 1-transitive.

From this and 3.7 we derive the following corollary.

5.8 Corollary. If 31 is a number and all ©r are k-transitive, £ÄewIJ(ÄiS) ©r
is (k + 2 ) -transitive.

We wish next to relax the conditions on 9Î; that this can not be done with-
out penalty can be seen by a simple example, (Arc2),u)[(iV2, w) + (N2, w)], where
the exponent is the simplest possible transitive system that is not a number.
The base is isomorphic to the subsystem of four points 1, 2, i, 2i of the com-
plex plane where a+bi — a'+b'i if a = a' and b^b'. Define ft, • • • , /< on
(N2, u) by

fi(l) = 1, /2(1) = 2, /3(1) = 1, /4(1) = 2i,

fi(2) = 2, f2(2) = 1, /3(2) = 2Í,       /4(2) = i.

Then fi>f2>f3>fi but /i>/ implies f(2) = 1 and/>/4 implies f(2) = 2i; since
these conditions can not be satisfied simultaneously, fi>f>fi is impossible.
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Clearly/i does not follow or equal/4 so this system is at best 2-transitive:
5.9 shows that it is actually 2-transitive.

5.9 Theorem. If £ = {r| ©r is not a cardinal number} is empty, IJ(B,«) ©r is
a cardinal number; if E contains only one point r0, H^b,«) @r~IT(B-.Ea>),to ©r
• (©reo) o H(E(jd)_e,u) ©r), where the first and third factors are cardinal numbers;
if E contains more than one point, H^b,«) ©«■ is 2-transitive.

[T(B.è) ©r is always a cardinal number if all @r are cardinal numbers.
If r0 is the only point of £,/(r0) >/'(r0) if and only if/>/'; hence the mapping
f+±(h, s, g) if h(r) =f(r) if rGR-ED,f(r0) -i, and g(r) =/(r) if r££fl-£ is an
isomorphism of the given systems. In the last case suppose fi^f2^f3ê£/isï/o;
if one equality holds the chain can be shortened to four members. If no equal-
ity holds, then for each i^4 there exists r,- such that /.-(r<) >/,-+i(r,-). If for
i= 1 or 2, r,?ír,+2, define/(/<) </,-(ri), /(rf+2) >/<+3(r¿+2), /(r) arbitrary if rpír,-
or r,-+2; then/,->/>/i+3 so the chain can be shortened one link. If ri^r4, the
same device shows that the chain can be shortened. If none of these things
happens, ri = r3 = r4 = r2 and for every other r in £, /.(r)^/,+i(r) for every i.
By hypothesis £ must contain at least one point roP^rx; choose /(/i) <fi(ri),
f(ro) not an initial element of ©r<o), / arbitrary elsewhere, and define
f'(ri)>f¡>(ri)i f'(ro)<f(r0), f arbitrary elsewhere; then fx>f>f>f&. Hence
IT(B,u) ©r is 2-transitive since every chain with more than four elements can
be shortened repeatedly until there are only two middle links.

The next lemma is closely related to 6.1-6.5 but we use it here to prove a
relation between products over a general transitive system and over numbers.

5.10 Lemma. If Si is a number, if ©r=(5r, u) for each r, and if (T, ^)
=Z(B,Ä) ©r, then

n   n ft.~ n ft-
(B.ä)     (S(r),u) (T,ä)

The elements of the left-hand system are functions £ defined on R with
Fr inTJcs(r),«) ft» for each r; F^F' means that if £r^£/ there exists r'^r
and s' in ©r such that Fr>(s')>FÏ->(s'). The elements of the right-hand sys-
tem are functions/ defined onZ(B.ä) (Sr, u) with/(r, s) in ft, ;/â/' means
that if f(r, s) j*f'(r, s) there exists (/', s') ^ (r, s) such that/(r', s') >/'(/', s').
Since (r', s') ^ (r, s) means here that r^r',f^f means that if f(r, s) ^/'(r, s),
there exists (r', s') with r'^r such that/(r', s')>f'(r', s'). Under the one-to-
one mapping F+^f if Fr(s) =f(r, s) for all r, s, these conditions are equivalent
so the systems are isomorphic.

From the three preceding results we derive a fact which we improve in
5.14.

5.11 Corollary. If Si and all ©r are transitive, ü(B,e) ©r is 4-transitive.

If $ = c(Si) and %p = (c-\p),u), then (V, è)=Zci>,È> S3P~SR; if h is this
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isomorphism, let ©Pt> = ©ä<p,io ; then by 5.10

n ©r~n ©,«-11   n ©,..
(B,è) (F.fc) (P,ë)    (V(p),«)

By 5.9, ITí^tp).«) ©p» is 2-transitive for every p, for if ©p„ is a cardinal for
every v in Vp then the product is a cardinal and is transitive ; if Vp contains
just one element for which ©p„ is not a cardinal it is easily seen that
[T(f<p),u) ©p» is at worst 1-transitive when all ©p„ are transitive; if Fp con-
tains two elements such that ©p„ is not a cardinal, 5.9 asserts directly that
the product is 2-transitive. By 5.8 the right-hand system is 4-transitive so
the same is true of u(B,ë) ©r-

One last squeeze on the proof of 5.4-5.6 gives us an even better estimate
of the transitivity number of the product over a transitive system of transi-
tive systems. We need some additional lemmas.

5.12 Lemma. If$v are transitive and iffi>tf2>'fi in tr(IJ(r,U) tyv), then
there exist f and f such that fi>f^f >fi ¿«H(f,u) tyv.

By 5.9 there exist f[, f{* such that ft>f{ fc/i" 2tf2 in Jl(v,u) $„. Since
fi >'fu again by 2-transitivity there exist// ,/3' such that/i>/i >fi 2:/3' ^fv
If equality holds once here,// and/2' can be used for/ and/' ; if equality holds
twice,/=/'=/i will do; if neither of these equalities holds, then there exist
points Vi such that fi(vi)>fi (vi), f{ (%)>// (v2), fi(v3)>fi(v3), and /,'(»«)
>fi(vi). If Vi and a4 can be chosen unequal, define / so that f(vi)<fi(vi),

f(vi)>fi(v4) and/is defined arbitrarily elsewhere; then/i>/>/i and the con-
ditions are satisfied with /'=/. If ^i must be chosen equal to v4, there are
several cases: (1) fi (vi)>fi(vi); then/=/'=// will satisfy the given condi-
tions. (2)/i (vi) does not follow or equal fi(vi), v29ivi; takef=fi and define/'
so that/'fa) <f(vi),f'(vi) >fi(vi) ; thenfi>f>f>fi. (3)fi M does not follow
or equal fi(vi), v2 = Vi; then fi(vi) >f{ (vi) >f2 (vi) so fi(vi) 2r/2' (vi) ; equality is
impossible here since fi (vi) does not follow or equal /i(t>i) so fi(vi) >/2 (vi) ;
hence we may take / =/2' and /' =/3 .

5.13 Lemma. If 31 is a number, if ©^II^co.u) $r» and if /i = 2f2 = 2f3 in
ÎI(B,ê) tr(@r), there exist f and f such that fi^1 f—1 f ~—xf3 îwIX(b,è) ©r-

Let Et^lrlfii^ptft+iir)}, £¿= {r|/,(r)>'/i+1(r) in tr(©,)} and let
Ro = Ei\JE2.

In R-Ro define/=/'=/i=/3. As in the proof of 5.6 let 4 = {r\ rER™
andfi(r) > <f2(r) > 'f3(r) =fi(r) in tr(©r)} ; by 5.12 define/(r) and/'(r) for r in
4 so that/i(r)>/(r)e/'(»0>/i(r) in ©r. For r in AD-A define f(r) =f'(r)
in any way; then if B=R0-AD, /làVàV'è1/. over R-B. li rEB™
= Ro) —A, then fx(r)> 'f3(r) so, by 2-transitivity, f(r) and f'(r) can be chosen
so that/i(r)>/(r)2:/'(r)2:/3(r) in ©r; if reB™D-B™, let f(r)=f'(r)=f3(r).
If Bi = B-B™D, then fi 2: »/£ lf 2: »/, over R-Bi. As before we see that for r
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in (Fx-E°)r\Bx,fx(r)>lf2(r)=f3(r) and in (£2-£?)r\Bi, fx(r) =f2(r)>'f3(r);
again by 2-transitivity we can define /i(r) >/(r) è/'(r) e/3(r) in either of these
two sets and define/=/'=/3 for all other r in [(£1-£2D)DU(£2-£f)D]n731.
If B2 = Bx minus this last set, then/i^ x/s£ x/' = 1f¡ over R — B2 ; B2 is precisely
the subsystem £2 of 5.4 (B) and (D). From this we define/=/' in B2 just as
we defined/ in £3 in that proof to be below/ on one set cofinal in 752 and above
/3 on another set cofinal in 732 ; then fx è x/= lf è lf» everywhere over £.

From this lemma and 5.7 we can improve 5.11; the example before 5.9
shows that this result is the best possible.

5.14 Theorem. If Si and all ©r are transitive, ¿Ae«U(Ä,&) ©r is 2-transi-
tive.

Use the notation of 5.11 ; then Sl~(V, è)=Z(P.à> (Vp, u) and !!(«.&) ©r
~ILv.s> ©p»~ILf.'s> H(V(p),u) ©p». If /lèVià;1 - - ' =Vn in this last sys-
tem, then/i^2 • • • è2/n inH(P,ä) tr(H(f(p),«> ©pl>), so, by 5.6, there exists
/"such that/iè7"è2/n in Jl(P.e) tr&Jivw.u) ©„,)■ By 5.13 there exist/
and /' such that /^'/â'/'^'/n in IT(P.à) HV(p),u> ©pt,; hence this latter
system is 2-transitive so the original product is also 2-transitive.

5.15. Corollary. If 9Î is transitive and all ©r are k-transitive, then
ITcb.è) ©r is (k+4:)-transitive.

This follows from 5.14 and 3.7.
A problem which is still unsettled is to determine whether ¿-transitivity

of Si and all @r implies thatIJ(B,a> ©r is m-transitive for some m.
6. Some properties of ordered products. In a special case 5.10 asserts that

if (T, è)=Z(B,â) ©r, then IX(fiià)I7(S(r),â)^3ri~TI(7',a)^r.; this is not true
in general but a homomorphism one way always holds and a similar relation
is true if U' is used in place of JJ in the first place on each side. We also give
some conditions under which the isomorphism above does hold. The elements
of the left-hand side we represent by functions £ for which £r£iI(sc-).È) ft«
and F^F' means that if Fr?¿F¿, there exists r'^r such that Fr'>F'r> in
IT(S(r').ä) ft'.- The elements of the right-hand system are functions / for
which f(r, s)£ft, and /â/' means that if f(r, s)^f'(r, s) there exists
(r', s')=i(r, s) such that/(r', s')>f'(r', s'). There is an obvious one-to-one
correspondence h between these systems, defined by hF=f if £r(s)=/(r, s)
for all r and s.

6.1 Theorem. The function h just defined is a homomorphism so

IT       II   ft. > IT   ft.   where    (T, 5:) =  Z   ©~
(B,ä)      (S(r),6) (7\ä> (B,&)

If £> F', if ¿£=/and hF' =/', let (r, s) be a point such that/(r, s) ^f'(r, s) ;
then Fr(s)¿¿F¿(s) so FT^Fi. Hence there exists r'^r such that £r<>£¿-;
if r'>r, takes'to be any point of @r'Such that £r-(s')>£¿<(s') ; if r' = r, take
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s' = s such that Fr(s')>Fi (s'). Then (r', s')^(r, s) and f(r', s')>f'(r', s');
hence /à/' if F—F' and h is a homomorphism.

It is easy to give an example of systems where this homomorphism is
not an isomorphism. Let 31= (N, w), &r = ($rt=(Ni, w); then define/and/'
by f(r, D=f'(r, 2) = 2, f(r, 2)=f'(r, 1) = 1 for all r. Then (r + 1, l)>(r, s)
for all r, and 2=f(r+l, l)>f'(r+l, 1) = 1, so/>/'; since £r(2)<£r'(2) for
every r, £r>£/ no matter how r is chosen, so F does not follow or equal F'
and the homomorphism is not an isomorphism.

The next result has two useful consequences.

6.2 Lemma. Iff^f, there exists F" such that F=F" = F'.

If/>/', let Ri= {r\ there is an 5 in ©r such that/(r, s)>f(r, s)}. If
rG-RÍ1' and FT(s)j¿Fr'(s), there exists (r', s')2î(r, s) in]T)cB,ä> ©r such that
f(r', s')>f'(r', s'); hence r' = r and r'G£ so r = r' and s'^s; that is, if
r£-R[l) and Fr(s)^Fi(s) there exists 5'2: s such that Fr(s')>Fi (s'); hence
£r>£/ if rGi?!1' and F>F' over £Í1)D. Let £2 = £i-£i1)D and let R3= {r\
c(r) is a terminal element of c(£2, à)}. Then if rERi, c(r) contains at
least one r' different from r, while in R2 — R3 every element r has a successor
not in c(r) ; hence there are two disjoint cofinal subsets 4i and 42 of (Ri, 2:).
If rG4i there exists s0 in Sr such that f(r, s0)>f'(r, s0); define Fi by
Fi(s) = Fr(s) if s^so, Fi'(so) = Fi(s0). Then £r>£r" if rEAi. Similarly,
if rEAi, choose s0 so that/(r, s0)>f'(r, s0); then let F" be defined by
Fi' (s) = Fi (s) if s 5¿so, Fi' (so) = £r(so) ; then Fi' > Fi for r in 42. Let £r" = Fr
for every r where Fi' has not been defined; then it can easily be verified
that £=£" = £'.

This lemma is used in the proof of two important results.

6.3 Theorem. Let (T, â)=E(B,ê) ©r- -f/IIcr.E) $« is k-transitive, then
II(B,a)IT(S(r),â) Wr. is (2k + l)-transitive. i/II(B,à> ILsc-o.è) ^ßr. »s k-transi-
tive, so «IT(r,ê) ?5r>; ¿Äai is, the homomorphism h of 6.1 does not increase the
transitivity number.

IîFi = Fi= - - . =Fn,fi^fi^ ■ ■ ■ à/» by 5.1; hence there exist//, •••,/*'
such that/là// 2: • • • 2:/4' 2:/n. By 5.2 there exist £/',•••, F¿U such that
£1 >£/'>£/ > • • • >F¿ >Fl'+i>Fn; that is, the left-hand system is
(2¿ + l)-transitive. The proof in the other direction is of the same sort but
easier.

6.4 Theorem. 7/(r,2r)=2(B,e)©r,iÄe«n'(B,a)n(S(r,,a)^r.~n'(r,E)^r.
under the natural mapping h.

h is a homomorphism of the left-hand system on the right by 6.1 and 1.1.
By 6.2, hrx is a homomorphism of IT<r,&) *?L« onto JJ'is.è) IT(S<<-),á) ?r.;
hence by 1.1, h~x is a homomorphism of H'(r,Ê) ^ß™ ontojp:<B,È)IToS(r),£) ^r.-

6.5 Theorem. Let (T, a)=E<B.ä) ©>■• -Í/" (a) 9Î and all ©r are transitive
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and all ft, are k-transitive, or (b) if R is a finite set, then the mapping h is an
isomorphism ofW\T,Z) ft. andYL'iR.ë) IT'<.S(<-).à> ft.-

Under the first set of hypotheses by 5.15, H(S(D,è) ft-, is (¿+4)-transitive
for every r ; by 3.8 the right-hand system here is equal to the left-hand sys-
tem in the isomorphism of 6.4; this implies the desired isomorphism. If R is
finite, 3.8' can be used in place of 3.8 to give the same conclusion.

Under sufficient restriction h is an isomorphism of IT IT and Hz-

6.6 Theorem. If Si is a number suchthat £ = £' a«d if (T, â)=Z(B,à> ©r.
then

IT    IT ft. ~ IT ft.-
(B,ê)    iS(r),» (7\è)

The proof that hr1 is a homomorphism makes use of 1.6 and follows about
half way down the proof of 6.2. Using the notation of that proof we showed
that if r££i1J then £r>£r' ; by 1.6, Rx1)DDRx so £>£'.

To deal with contracted products we need the following lemma.

6.7 Lemma. If all ©r are transitive, H<B,è) ¿(©lO^IPcs.e) ©r.

Let ft = c(©r) and define 0 from H(B,ä) ©r onto H<B,s)C(©r) by <¡>f=g
if g(r) — c(f(r)), where c is the contraction mapping of ©r onto ft. If 0/1 = 0/2,
fi(r) à/s(r) è/i(r) for every r so that fx â/2 è/i in TLb.S) ©r! that is, 0/1 = 0/2
implies that c(fx)=c(f2) in II'rB.Ê) ©r- Define <3? from H(b,&) ft- by letting
$g be the element of IJ'cî.ï) ©>• which contains 0_1g; clearly $ maps
ÎI(B,È) ft- onto Hc(R,ä) ©r so we need only prove i> monotone. If gi>g2 in

H(B,ê) ft» take/,- in0-1(gi) and let r be a point such that /(r)5^/2(r) ; then
either gi(r)=g2(r) so fx(r)>fi(r)>fx(r) or gi(r)^g2(r) so there exists r'^r
such that gx(r')>g2(r'); this implies that/i(r')>/2(r') so/i>/2 in]T<B.S) ©>■;
hence by the definition of order in a contraction, <&gxi^&g2 in Hc(B,è) ©r if
gl>g2ÍnTI(B,fe) c(©r).

6.8 Corollary. IT'(B,fc) c(©r)>TTc(B,È) c(©r)>IT':(B,&) ©r.

Since Hc is already transitive and contracted, 1.1 and 6.7 imply that
TI'(k.è) c(@r)>ITc<B,Ê) ©r ano^   tnis   m   turn   implies   that IPcb.ë) c(©r)
>JT(B,ê>  ©r,S0lT'(B,à) c(©r)>IICCB,È) c(©r)>ITC(B,è)  ©r-

None of these homomorphisms need be isomorphisms ; note that if all @r
are numbers these conclusions are tautologies.

6.9 Theorem. Let (T, =ï)=Zcb.è) ©r- Then Ipc*,^ ITtsoo.îi) ft.
~ITc(r,ä> ft.- If Ris finite or if Si and all ©r are transitive and fts are k-transi-
tive,

IT   IT' ft. ~ IT ft.
(B.g)      (S(r),S) <r,ê)
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SO

ir ir^.>ir^.
(B,&)      (S(r),ä) <î\g)

The first isomorphism follows from 6.1 and 1.1 ; the second follows in the
same way from 6.5, and the homomorphism from this and 6.8.

The relations between products over 9Î and over subsystems of 9Î are not
very satisfactory.

6.10. If £l is a Subset OÍ 9Î,   (IIcB<l),è)  ©rMlIcB-BiD.ë)   ©r)>II(B,fe)  ©r-
This follows from 5.3.
6.11. If  £i  is   a  star  in   9t, LLb.è) ©r>II<B(i),è> ©r  and II<b,è> ©r

> (LT(B(1),S)  ©r) O (II(B-B(1),Ê) ©r).
The function <ï> such that $/(r) =/(r) in Ri is a homomorphism of

IT(B,ê) ©r onto n<B(u,è) ©r by 5.1. If <f> is defined by 4>f(r)=f(r) in R — Ru
then the map f+=ï($f, </>/) is a one-to-one correspondence between Hcb.ê) ©r
and (II(B(i),à) ©r) ° (IT(B-B(i).ä) ©r). By the first homomorphism stated,
*/2:í>/' if /Si/'; clearly if /2:/' and $/=$/', then 0/2:0/', so this mapping
is a homomorphism.

Note that, by 6.6, if (R, ^) = (RU ^)®(R-RU É) this last homomor-
phism is an isomorphism.

A number of special cases of these isomorphisms and homomorphisms are
very familiar. If we take 3t=(Ni, w), ©i=(iVi, w), ©2=(iv2, w), ©/ =(N2,w),
and ©/ =(Ni, w), then zZ(R.=) ©r~E(B,ë> <&i ~(N3, w). This fact, 6.6 and
a renumbering of the systems ^3r, give the associative law of ordinal multipli-
cation.

6.12. ^io(^2osp3)~(^l0$2)o^3.
In a similar way the associative law of cardinal multiplication is a special

case of 6.6.
Recall that <*•->© is the product IT(B.ä) ©r in which all ©r = ©;we shall

define ©<*.a> to be tr(<Ä'e>©). Taking 31 = (N2, w) and all 1ßr. = $, we have
from 6.6,

6.13. w^i'iß   o   (S(i),a)Sß~(s<i).^)©(S(2),aKß   an¿   os(2),â)çp. (siD.èjsp^

These are given for numbers in [l] but the factors on the left-hand side
of the first isomorphism are reversed.

From 6.5 we derive in the same way
6.14. <ß(S<2>.a)     O    SpWD,È),^pc,S(l),È)©(S(2).a)      ancj     sp(S(2),â).^(S(l),È)^,

m(S(2),S)+(«(«,S)i
If all ©r = © and all liBrs = <irj, 6.1 and 6.4 give
6.15. (B,â)((S,è)Çp)>. (B,a)0(S,a)çp anj  ((S,E)Cß)(Ä,ä),^Aß(ß,S)0(,s,ä)_

If 9Î is a number for which R = R', 6.6 gives
6.16. (B,e)((S,ä)Cp)^,(B,ä)0(s,ä)Cß_

From 6.5 we also see
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6.17. If 9Î is finite or if 9Î and © are transitive and ^J is ¿-transitive,
then ($<*.*>)(*.*>~Ç<*.*>°w.*> and c([c(fts^>)]<A-è>)> fl$<*.*>°<*.*>).

7. Ordinal exponentiation with numbers. Since many of the results of
[l ] are proved under the inaccurate assumption that ordinal powers of num-
bers are transitive, this section discusses the various statements made there.
These include a list of properties of ordinal exponentiation [l, §7], a set of
conditions necessary and sufficient that <*•->© be a lattice [l, Theorem 12]
and a list of closure properties [l, §13]. We shall test most of these statements
giving correct hypotheses and conclusions for three kinds of ordinal exponen-
tiation: <*■->© which we have defined to mean the ordered productH(R,Ä) ©r
when all ©, = ©; <g(B,ä) = tr((B,ä)(S) and (giutfri which will mean c(@<B'ä>)
=ctr(<*'Ä><§).

§7 of [l] gives a list of properties of ordinal exponentiation with num-
bers ; we shall give properties of <Ä'a>© in the notation of this paper but with
the numbering scheme used in [l ].

(45) @i~©2implies w<w.*>9t~w<».A>9land («■â)@1~(*.à)©2.
(46) ©,<©2 implies «*>©i<<*•*>©».
(47) <Ä<D.E>+(Ä(2),e)gj,^,((B<l),ä)@) . (<B(2),ä)@)_
(48) (BU),e)©(B(2),ä)(g,^,((B(2),S)|g) 0 ((B(l),ä)(g)_

(49) CS,*>(CS,*rç$)>.<*.*>°(S.i>$ and isomorphism holds if £ = £'.
(50) c^1).-)©^© and <*'*>(JVt, =)~(7Vi, =).
To these we add
(46') ©i<©2 implies that <*<»>.*>$<<*<».*>9l.
(48) is misstated in [l]; the interchange of order in the exponents is an

accidental result of the particular phrasing (used both here and in [l ]) of
the definitions of ordinal multiplication and exponentiation, [l ] claims iso-
morphism in (49) only in case both Si and © satisfy the ascending chain con-
dition. There is a typographical error in the last half of (50) in [l ].

7.1 Theorem. These properties hold for <Ä^)@. The analogues of (46) and
(46') fail for @(Ä.e), (49) becomes an isomorphism for all Si, © and ty ; the others
hold. The analogues of (46), (46') and (48) fail for ©K*.^» ; the homomorphism
holds in (49) ; (45), (47) and (50) hold.

For <Ä^>©, (45) and (50) are obvious and (46) and (46') are special cases
of 3.1 ; (47) and (48) come from 6.13; (49) comes from the first half of 6.15
and from 6.16.

For ©<Ä.ä)> (45) and (50) are obvious again (since © is transitive). That
(46) fails is clear; let @ = (7V, w*)®(N, w); then ©<Ar.«'> has the universal
ordering while (N, w)<I'-w) does not. That (46') fails follows from the systems
@(jv,w) and ©wœ-) with the same © as before. (47) and (48) follow from
6.14; (49) follows from 6.17.

For ©KB,ë)]) (45) and (50) are still obvious (since @ is a number) and
the same examples show that (46) and (46') fail to hold. To prove that (48)
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fails to hold it suffices to show that (N2, hi)«^.«)] 0 (N2, w)t(^(D,-)i ¡s not
isomorphic to (N2;w)UNm-')®(N'w)l. Toshow this note that the left-hand side
is an ordinal product of numbers; the system (Ni, up) ft») Was discussed in
3.5b from which we can see that (N2, w)i(N-w^~(N, w)®(Nu =)®(N, w*).
From the one-sided distributive law at the end of §2 we see that
(Nit w)i<w-"» o (Ni, w)t<Ar(1>'-)]~{(iV, w) o ©} ©©+{(/Y, w*) o ©} where
©=(iV2, w)lll,w-~)1~(Ni, w); since (N, w) o (N2, w)~(N, w) and (N, w*)
o (Ni, w)~(N, w*), we see that the first system is isomorphic to (N, w) + ©
+ (N, w*). Since (Ni, =)®(N, w)~(N, w), the second system is isomorphic
to (N, w) ffi (Ni, = ) ffi (N, w*) ; this system is not isomorphic to the first.

Some remarks may be made; many other systems could have been used
in place of (Ni, = ) in this example and the proof that the two sides are not iso-
morphic could then be carried through in much the same way. Also it is
rather simple to show that if R2 = R2', then ©l(Ä(i).&)©«(2),Ä))^/(©[(Ä(2).a)])
o (@t(Ä(i),fe)]); that is, (48) holds with this extra hypothesis. (47) for
(g[(B,^)] follows from the same result for ©<Ä'e> and from the following lemma.

7.2 Lemma. If 31 and © are transitive, c(9î-©)~c(9î)-c(©).

The mapping c(r, s)<=±(c(r), c(s)) is an isomorphism.
Let us turn next to conditions under which the ordinal power is a lattice ;

recall that a lattice is a number in which every pair of elements si and s2
have a least upper bound Si\/s2 and a greatest lower bound Si/\s2. The con-
ditions of [l, Theorem 12] are not sufficient without the extra hypothesis
R = R' but they are necessary.

In the terminology of [l ] a chain is a simply ordered number ; that is, a
number in which every two elements are comparable. A semi-root is a number
in which the set of successors of every element is a chain. The conditions
(l)-(3) below are those of [l, Theorem 12]; that they are not sufficient is
shown by the example (N'w)(N2, w) which satisfies both (1) and (3) but not
N = N'. The sufficiency proofs of [l] can be carried through with the extra
hypothesis £ = £' but are meaningless without it since "critical values" need
not exist.

7.3 Theorem. <-R^i<Bis a lattice if and only if (a) <& = (NU =)or (b) R = R'
and one of the following conditions holds: (1) © is a bounded lattice; (2) © is a
lattice and 9Î is a cardinal ; (3) © is a chain and 3t a semi-root.

If <*■->© is a lattice, it is a number; by 4.17, © is a cardinal number
or R = R'. If @ is a cardinal, it can not have two distinct elements or there
would be two elements of <*•->© with no upper bound so ©~(iVi, =) if © is a
cardinal. If R = R', suppose that 9Î is a cardinal and that/=/iV/2; for each
r in 9Î it is clear that/(r) is an upper bound of/i(r) and/2(r) ; it is a least upper
bound because any other upper bound can be used to define a function /'
which is also an upper bound of the /,-. Therefore least upper bounds exist
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in © and by a dual argument we see that © is a lattice. If £ = £' and © is not
a chain, there exist two incomparable elements si and s2 in ©. Let r0££(1)
and define/i(r)=/2(r) if r?¿r0,/<(ro)=s<; iff=f{\/f2,/(r0) is clearly an upper
bound of the s,-. As before we see that it must be a least upper bound so siVs2
exists if the s,- are incomparable ; however if one follows the other, then the
larger one is a least upper bound of the two so SiVs2 always exists. A dual
argument shows that @ must be a lattice. Moreover if r is a terminal element
of the set of predecessors of ri and if./,(ri) are incomparable, f(r) must be
smaller than any other element of © if /=/iV/¡; hence if © is not a chain
and 9î is not a cardinal, © has a smallest element 0 ; dually there is a largest
element 1 so © is a bounded lattice if it is not a chain and Si is not a cardinal
number. If © is a chain but not a bounded lattice, Si must be a semi-root,
for let rx and r2 be incomparable elements of Si and let Si>s2; define /i(ri)
=/2(r2)=s2 and/i(r2)=/2(ri)=si, fx(r)=f2(r) for all other r in £. If r0 is a
terminal element in {r\ r<rx and r<r2] and/=/iV/2, then/(r) would have
to be the smallest element of ©. Dually © would have a largest element con-
trary to the assumption that © is not a bounded lattice. Hence the set of
common predecessors of rx and r2 has no terminal elements; since £ = £', the
set is empty, so any two successors of a given element must be comparable.

If (a) holds, «.a>©~(JVi, =). if (a) is false and (b) holds, take/; in
(B'-)©; then © is a lattice in all cases in (b) so g(r)=fx(r)\/f2(r) is defined
for each r in£. Let£,-= [r\ there exists r'^r for which g(r')>fi(r')}. Then in
R-Ei-Ei let f(r)=fi(r)=f2(r); if r£(£<1)-£2)U(£21)-£i)U(£(11)n£21)),
let/(r) =g(r). If r is a cardinal, this defines/ everywhere and it is clear that
/ is a least upper bound of the/,-. If © is a bounded lattice, define/(r) =0 for
every r where it is not yet given; then/>/¿ for f=fi=f2 in R — Ei — E2,f>fi
in Ef-Et, f>f2 in £^'-£i and />both /,- in E^C^E^. Since (£iW£2)<x)
= (£?)-£2)U(41)-£i)U(£(11,n41)), every point where/(r) was defined
to be 0 is below a point r' where/(r')>/¿(r'), i =1,2; hence /e/¿. If/'è/< it
can now be shown that /' â/so /=/i V/2 ; dually we can provide /1 A/2 so <fi.a>@
is a lattice if © is a bounded lattice. If © is a chain and Si a semi-root each r
in £iW£2 has a unique successor r' in (£iW£2)(1). £(11,^£21) is empty, for
fi(r')>fi(r')>fi(r') is impossible in a chain. If r'EE^-Ei and r^r', let
f(r)=h(r); if r'CE^-Ex and r^r', let f(r) =/(r). This defines/ every-
where and it is easily seen to be a least upper bound for the fi. A dual argu-
ment gives fx A/2.

7.4 Corollary. ©<B.â> is a lattice if and only if <A.è>© is a lattice.

By 4.17, <B><-R'-) is a number if and only if © is a cardinal or £ = £'; in
either of these cases ©<*■*>=* <*•->©. Hence ©<*•-> is a lattice if and only if
(*,S>@ ¡s a lattice.

Conditions under which ©kb.^)] ¡s a lattice are more difficult to prove;
we give a sequence of lemmas containing various necessary or sufficient con-
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ditions and then combine them in 7.10 into one set of conditions both neces-
sary and sufficient that (g>[<Ä.->i be a lattice.

7.5 Lemma. If © has no terminal or initial elements and if 31 has no termi-
nal elements, then ©!'*.->! is a lattice isomorphic to (Ni, =).

If/i and/2 are any two elements of <Ä'->© it is easy to construct/ so that
fi>f>f2, for there must exist two disjoint cofinal subsets £i and £2 in 9Î
and we need only take f(r) <fi(r) if r££i and/(r)>/2(r) if rEE2. Hence
/i> 'fi and by a dual argument/2 > '/i so c(/i) =c(/2) in ©[<*•*>] ; that is, ©lfB-S)l
contains only one element.

7.6 Lemma. If © has neither terminal nor initial elements and 31 has a termi-
nal element ithat is, if R' is not empty), then ©t<Ä.a>l/^<Ä'.s)(g~©[<*'.a>l.

As in 6.11 define $ from <*■-'© onto <fi'.à>© by $/=/' if f'(r)=f(r) for r
in £',/' not defined elsewhere; 6.11 asserts that $ is a homomorphism. 4.17
shows that (*'■->© is a number so <*'.e>©~©t(Ä'.*>J. if <£/2: <ï>/2, as in 7.5
there exists/ such that/!>/>/2 over R — R'; defining /=/i in R' we have
/iè/à/2; that is, /ià'/2 if $/ie*/2. Hence c(fi) = c(f2) íf íft-f/j and
c(fi)^c(f2) if 3>/i2:<i>/2. Let '^(c(f)) = $/; by 1.1, ^ is a homomorphism of
©tCB.ê)] onto (B',^)(g. we have just shown that ^_1 exists and is a homomor-
phism so the lemma is proved.

7.7 Corollary. If (a) © is a lattice with neither initial nor terminal ele-
ments and (R', 2: ) is a cardinal or (b) if © is a chain with neither initial nor
terminal elements and (£', 2:) is a semi-root, then ©l<B.a>l is a lattice.

This follows from 7.6 and 7.3.

7.8 Lemma. If ©[(*•£>] is a lattice and if 9i has a terminal element or ©
has a terminal or initial element, then © is a lattice ; moreover, if © has either a
terminal or initial element, then (a) © is a bounded lattice or (b) © is a chain
and {r\ r<ri and r<r2} has no terminal elements when ri and r2 are incompara-
ble, or (c) {r\ r<ri and r<r2} has no terminal elements for any choice of rlf r2
in R.

If rER{1) and c(f) = c(fi)\/c(J2), it is clear that/(r) must be a least upper
bound of/i(r) and/2(r) ; that is, Si\A2 must exist for every pair of points in ©.
Dually 5i A^2 exists so © is a lattice.

By duality we may assume without loss of generality that © contains an
initial element sa. If si and s2 are comparable in ©, then SiVs2 and SiAs2 ob-
viously exist; if the s¿ are not comparable, take r0 in 3t and for i= 1, 2 define
fi(ro) = Si, fi(r) = so if r^r0. Then if c(f) = cifi) Ac(ft), ft\fi so f(r) = s0 if r does
not precede or equal r0. Hence/(ro) </.(r0) and the points s,- have a common
lower bound. If/,(r0) =5 and/,(r) = s0 if r¿¿rü, then f.^fi whenever s isa lower
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bound of the s,-; hence/(r0)>s if s is a lower bound of the s,- so/(r0) is a great-
est lower bound of the s,- and SiA-S2 exists in ©.

We show next that if there exist Si and s2 with no common upper bound
and if r0£9î, there exists an element ri>r0 such that r = ri if r>r0. Define
/,- as before and let c(g)=c(fx)\/c(f2) ; then gè/< and g(r0) can not follow both
/i(/o) and/2(r0) so there exists ri>r0 such that g(ri)>s0. If r>r0, let fr(r)>s0
andfr(r') = So if r'^r; then/r is an upper bound for the/< so/r>'g; hence if
r' does not precede or equal r>r0, then g(r')=s0. Since g(ri)>So, it follows
that ri ^ r if r > r0 ; that is, there is a first proper successor ri of r.

Now for i=l, 2 define//(ri)=s< and//(r)=s0 if r^rx; let c(f') = c(f{)
/\c(fí); then by the second paragraph of this proof/'(r) = s0 if r does not
precede or equal rlt while/'(n) =SiAs2 so/'(ri) <s,-, i=l, 2. r0 is a terminal
element in the set of predecessors of rx ; hence it is easily seen that/(r0) must
follow every other element of @, for if/,'(r0) = s and ft (rx)=SxAs2 and
/.' (0 =Sq for all other r, /,' is a lower bound of the // so /' à '/.' for every s
in ©. Since/,'(r)=/'(r) if r>r0 and since/'(r) is an initial element of © if
r>ri, we see that/'(r0)^// (r0)=s if s£©. This proves that the assumption
that Si and s2 have no upper bound eventually enables us to construct an up-
per bound ; this contradiction proves that every pair of elements of © has
an upper bound.

Knowing this we return to the functions fi defined in the second para-
graph of this proof and let c(g) = c(fx)\/c(f2) ; then define/» (r0) = s and fa(r)=s0
if r^r0;/,^/< if s>Si so, as before, g(s)^s if s is an upper bound of the s,-;
hence g(r0) = Sx\/s2 and we have proved that © is a lattice. Incidentally we
have also shown that if © is not a chain {r| r<r0} can not have a terminal
element unless © has a largest element. Since So is an initial element of the
lattice @, So is a smallest element in ©, so in this case © is a bounded lattice.

Similarly, if ri and r2 are incomparable and © is not isomorphic to (Nx, = )
but {r| r<n and r <r2} has a terminal element, then there exist s2>Si in ©;
define/i(ri)=/2(r2)=S2,/i(r2)=/2(ri) = Si and/¿(r) = s0 elsewhere. Then c(f)
= e(fx)\/c(fi) implies that /(rt-)>/3_,(ri) so f(r0) must be a smallest element
of © ; the dual proof with /1A/2 shows that there must also be a largest ele-
ment in © ; that is, that © is a bounded lattice.

Note that in a semi-root two incomparable elements ri and r2 have no com-
mon predecessors so {r\ r Oi and r<r2\ inevitably has no terminal elements ;
if Si = (TV, w) © (ÍV2, = ), Si is the simplest system with this last property which
is not a semi-root.

7.9 Lemma. If © is a bounded lattice, then ©[<B,ê>l is a bounded lattice.

To prove this we shall work in ©<B'à) instead and shall there construct
for a given pair of functions fx and f2 an / such that /è/i while if /'&•'/<>
i=l and 2, then/'^'/also ; then c(f) will be a least upper bound of c(f/). Let
g(r)=fi(r)Vfi(r) and let £,= {r\ g(r')=fi(r') for every r'^r} ; then £<-£?.
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Let E = R-(Ei-E2)D-(E2-Ei)D-(ExnE2) and suppose rG£(1); then if r
has any successor r' in 9Î, r'EEi(~\Ei so g(r') =fi(r') =/2(r') ; define/(r) =g(r)
inE^andletf(r)=0inE^D-E<-1\Letf(r)=fi(r)iirEEioriírE(Ei-E3-i)D
- (E3-í-Eí)d andletf(r) =0 iî rE(Ei-Ei)Dr\(Ei-Ei)D. Let A=E-E^D;
then 4 has no terminal elements and there exist cofinal subsets A < of 4 such
that g(r)>fi(r) for each r in 4,-. Hence/3_i(r)>0 and/,(r)<l for every r
in 4¿; since each 4< has two disjoint cofinal subsets it follpws that/ can be
defined in 4 so that/i>/>/2>/>/i over 4. Hence />/,■ over £.

If/'2r'/¿ for *=»1 and 2, since/=/,• over£,-,/'>'/over £iU£2; a similar
argument shows that /'è'/ over (£,■ — £3_,)D. Clearly /'à/ over £(1) and
hence over £(1)ß ; in 4, /' = *f\ 2r '/ so /' — '/ everywhere. Passing to the con-
traction this shows that c(f)=c(fi)\/c(fi) ; a dual construction would produce
c(fi)Ac(fi).

7.10 Theorem. ©t<B.ë>] {s a lattice if and only if one of the following cases
holds: (1) © is a bounded lattice. (2) © has neither terminal nor initial elements
and either (a) 9Î has no terminal elements or (b) R' is not empty and <B'.ä>(g is a
lattice (see 7.3 for these conditions). (3) © is a lattice with a terminal or initial
element but not both and either (c) © is a chain and the set {r\ r<ri and r <r2}
has no terminal elements if ri and r2 are incomparable, or (d) the set defined in
(c) has no terminal elements no matter how ri and r2 are related in 3t.

Necessity of these conditions follows easily from the preceding lemmas;
assume ©[<*•£>] a lattice. If 9Î has a terminal element © is a lattice by 7.8;
this proves the necessity of (2) if © has neither terminal nor initial elements.
If © has one or the other, 7.8 again gives (1) or (3).

7.9 gives the sufficiency of (1) and 7.5 and 7.6 prove sufficiency of (2).
In case (3) by duality we may consider only the case in which © has an initial
element. If/,G©(Ä'-\/can be constructed just as in 7.9 since © has a zero
element; the proof that c(/) = c(/i)Vc(/2) can be repeated in the same way.
The extra hypotheses (c) or (d) are needed to construct a greatest lower bound
for the fi. For this we set h(r) =/i(r) A/2 M and let £,= [r\ fi(r') = h(r') for
every r' — r} and in £,• define f(r)= h(r)=fi(r). As in the previous construc-
tion letf=R-(Fi-F2)D-(F2-Fi)D-(FiC\Fi) and define f(r)=h(r)=fi(r)
Aftir) if rEF^; define f(r)=f((r) if rE(Fi-F3-i)D-(F3-{-£,)D. In
F—F(1)D we can intertwine/,/ and/2 as we did in the set 4 of the preceding
proof. This defines / everywhere except in F(1)D — Fil) and (Fi — F2)D
r\(F2-Fi)D; if © is a chain, F<*> is empty; if © is not a chain F™D-F™
has no terminal elements, for r a terminal element of this set would imply
that there exists r' in £(1) such that r is a terminal element of the set of prede-
cessors of r' ; this is prevented by (d) with ri = r2 = r'. In either case (c) or (d)
(Fi — Fi)Di\(F2 — Fi)D has no terminal elements for if r0 is in this set there
exists rx in £x — £2 and r2 in £2 —£1 such that r0E {r| rOi and r<r2} ; since
this set has no terminal elements r0 can not be a terminal element of the origi-
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nal set. In (F^D-F^)yj[(Fi-F2)Dr\(F2-Fi)D] define/(r) in any way so
long as it is not zero or one ; then for every /' such that /' á '/«■ we have /' 5á '/
over this set ; if/' ^'f{ it is then clear that/' a1/ over £, so c(f)=c(fx)Ac(f2)-
This proves that @t(s»I is a lattice.

All that remains is to check the list of closure properties given in [l,
p. 294]. Recalling that ©(Ä■-> is a number if and only if @<fi.^) = <Ä.S)<g we
can deal with the first two cases together ; the result are collected in the follow-
ing table.

Property of <fi.ä>© Necessary and sufficient condition on Si and ©
( = ©(«.*>)

(1) Cardinal © a cardinal.
(2) Chain @~(7V1, =) or Si and © chains and £ = £'.
(3) Ordinal @~(7Vi, = ) or © an ordinal and Si a finite ordinal.
(4) Bounded number ©~(7Vi, =) or © bounded and £ = £'.
(5) Finite number @~(7Vi, =) or © and St finite.
(6) Lattice See 7.3.
(7) Complete lattice ©~(7Vi, =) or ©  a complete lattice and £ = £'.

The proofs can safely be left to the reader, but we wish to use the suffi-
ciency proof of (7) again so we give it in the next paragraph. The necessity
proofs follow almost immediately from 3.9 and 3.10. [l ] also mentions "stri-
ated" numbers ; the condition for them is probably all right since it includes
finiteness of Si which implies £ = £'. In [l ] no condition is given for ordinals
and the condition given for lattices is a much worse approximation to the
truth on this subject than is [l, Theorem 12].

If £ = £' and © is a complete lattice, let/p, />££, be any set of elements
of <*•->©; then for r in £(1) define/(r) = Vpe/>/p(r). Then for any r such that
f(r) is defined over the set £r of all proper successors of r and /ä/p over £r
for allp, definePr= {p\ fP(r')=f(r') for all r'>r] ; let f(r) = VPep(,)/f(r) if
Pr is not empty, let/(r)=0 if Pr is empty. Then /è/p over (r)u; since
£ = £' = Ux<mo) £(X), this process defines /on all of £ by transfinite induction
so that/è/p over £ for every p. If f' = all fv and r is a point where/'(r) does
not follow or equal f(r), Pr can not be empty since /(r)^0; then /'â/p
=/over Er so that either there exists r'>r with f'(r') >/(/') or/'(/') =fP(r') for
all p in PT and r' in £r; in the second case f'(r) > VugPtri/pW =/(>■)■ Hence
/'si/ over £ and /= Vpgp/P; a dual argument would produce Ap£p/p so
(B,ë)(g ¡s a complete lattice. The necessity proof uses the usual embedding
argument.

The corresponding conditions for ©t<Ä.s>i are vaguely reminiscent of these
but more complicated ; for example, compare 7.3 and 7.10. In the proofs cer-
tain elementary facts related to 3.9. and 3.10 are quite useful. Recall that in
this section Si and © are assumed to be numbers.

7.11. If Si has a terminal element, © <©t<B,â)]_
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Choose r0 in £(1) and s0 in ©; as in 3.1 define fs(r0) =s, f,(r) =sQ if r^r0.
Then the map <£ such that 3?(s) = c(fs) is an isomorphism of © into ©t<R.-)J.

7.11'. If © has a terminal or initial element, ©<©I(B'-".
Choose r0 in R and sQ an initial or terminal element of © and define /,

and í> as in 7.11 ; then/s= '/*' if and only if s = s' so <£ is an isomorphism.
7.12. If there exists an initial element So in © and a point Si>So, then

$<(g[(B,è)]_

Dehne fr(r)= si, fr(r')= so if r'j±r; then frW = 'frm if and only if ri = r2;
defining <j>(r)=c(fr) we see that 0 is an isomorphism of 9Î into @t<B>*>I.

7.12'. If © has a terminal element Si and an element So<Si and if
9i*=(£, à), then9î*<©[(A'è».

We define <j> in the same way with this choice of the s¡.
By means of these facts we are able to prove the conditions given in the

table below ; we sketch the proofs since they are generally worse than the
corresponding proofs for (*.->©. In the table below (£) stands for the condi-
tion that © has neither initial nor terminal elements and 9? has no terminal
elements; (7) stands for the condition that @~(iVi, =).

Property of ©1<Ä.->1 Necessary and sufficient conditions on © and 9Î
(1) Cardinal (£) or © is a cardinal.
(2) Ordinal (£) or (I) or © and 9Î ordinals such that either © is

unbounded or 9Î is finite.
(3) Chain (£) or (I) or © a chain without terminal or initial

elements, 9Î' a chain or 31 and © chains.
(4) Bounded (£) or (I) or © bounded or R' empty and any initial

element of © precedes all other elements of © and
any terminal element of © follows all other ele-
ments of ©.

(5) Finite (£) or (I) or 9Í and © finite.
(6) Lattice See 7.10.
(7) Complete lattice (£) or (I) or © a complete lattice or © or ©* is an

ordinal while every element of 9Î has a unique
smallest proper successor.

(1) —» If 9Î or © has a terminal element, (g<(g[<B.-)l so © is a cardinal.
<— is obvious.

(2) —► If 9Î or ©has a terminal element, ©<©!(*■->] ; hence © is an ordi-
nal and has an initial element so 9ï<©(B'-) if © is not isomorphic to (Ni, =)■
If in addition © has a terminal element, 9i*<@[<fi'-)I so 9Î is a finite ordinal.
<— is straightforward although the proof in the next to the last case is rather
long.

(3) —» If 9Î has a terminal element, ©<©[(*-è>i so © is a chain;if © has
neither terminal nor initial elements and (£) fails to hold, then ©!<*■->]
~(B\à)(g so © and 9Î' are chains by case (2) of the discussion of (Ä'-J©. If
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© has either a terminal or initial element and © is not isomorphic to (TVi, = ),
then 9Î or Si*<©[<*■->! so © and 9î are chains. <— is obvious for all but the
last condition and there it follows from the fact that any two elements of
(gCB.fe) are comparable.

(4) —>• If 9Î has a terminal element r0, let c(fx) and c(f2) be the smallest and
largest elements of ©(<Ä'S>] ; using the notation of the proof of 7.11 we have
for every s that c(fi)à#(s)fcc(f,) or/i £'/.£*/, so/i(r.)fc s è/i(r0) for
every s. Hence © is bounded. If © has an initial element s0, then the func-
tion /o for which/o(r)=s0 for all r is an initial element of ©<A'à> soc(j0) must
be the smallest element of ©t<B.->i; hence s0 is the smallest element of ©.
Dually any terminal element of © must be the largest element of ©.

<— If © is bounded, the obvious functions define upper and lower bounds
in ©t(B,S)]_ jf (g ancj gj have no terminal elements and if there is a smallest
element s0 such that s^s0 for all s in ©, let f(r) be chosen greater than s0
for every r ; then c(f) is the largest element in ©[<B.è>l and c(f0) is the smallest
element so ©[(*•->! is bounded. Dually if © has a largest element but no
initial element, ©[<*■->! is again bounded.

(5) —» If £' is not empty or if © has an initial or terminal element,
(g<(g[(B,è)] so <g ¡g finite. If © is a cardinal number, gic.-il/vis^ignihich
is finite if and only if 9î is also finite; if © is not a cardinal number, 7.12
shows that 9î<@[(B'a)1 so St is finite. «— is obvious.

(6) has been given in 7.10.
(7) —> If £' is not empty, the embedding $ of 7.11 can be used to show

that © is a complete lattice. If £' is empty, and (£) and (7) are false, sup-
pose that © has an initial element s0 ; by the argument in (4), s0 must be the
smallest element of © and an extension of an argument used in 7.10 shows
that Ap£p sp must exist for all choices of sp in ©. If © is not bounded the
same argument shows that every element r0 of St has a unique smallest proper
successor ri>r0; as in 7.10 we see that © must be a chain in this case. If Sx
is any element of @, let />(r0)=s, /s(/i)=si, and f,(r)=s0 for all other r;
if © is unbounded and f= ' all /„ either /(ri)>Si or f(r)>s0 for some r>ru
If// (ri)=s and /,' (r) =s0 for all other r, // >/,- for every s' and every s>Si.
If c(f) = V«es c(f,), then/(r) = so if r does not precede or equal n, and /(rx) ^s
if s>Si; that is, Si has a unique smallest proper successor if © is unbounded.
Since © is also a chain in which every set has a greatest lower bound, we see
that © is an (unbounded) ordinal. A dual argument starting from the as-
sumption that © has a terminal element but no initial element gives instead
the conclusion that ©* is an ordinal.

<— (£) or (7) implies that ©f<Ä--)i~(iVri, =), a complete lattice. If ©
is a complete lattice let 0 and 1 be its smallest and largest elements and
take/p, pCP, in ©<Ä--). We shall construct in a stepwise fashion an / in
©<*.*> such that f=' all fp while /'è1 all/„ implies that/'£«/. Let
£ip= (H /p(r') = l for every r'^r}, let £i= {r| fp(r')=0 for every p in P
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and every r'l>r} ; define/(r) = l in \JpGp Eip, f(r)= 0 in £1. Let 4i = £ — £1
— Upgp £ipand in 4/ define/ as in the proof of (7) of the preceding table;
that is, if f(r') is defined for all r'>r, let Pr= \p\ fv(r')=f(r') for all r'>r]
and let/(r) = VPgP(r)/P(r) if Pr is not empty, let/(r)=0 if Pr is empty. Let
A1—4/ =R2 and in R2 repeat the same process; that is, if R\ and A\, \<ce,
have been defined, let £a = rix<a(4x—4x'); if / was defined in R — Ra, let
£«= {r| rERa, and for every p either there exists r'>r, r'ER<*, for which
/(r')>/P(r') or fp(r')=f(r') for every successor r' of R which lies in R — Ra
and fp(r')=0 for every r'2rr which lies in Ra} ; let Eap= \r\ rERa and
/P(r') = l if r' = r and r'G£« and fp(r')=f(r') if r'>r and r'G£-£„}. De-
fine/(r) = l in Upgp£ap, f(r) = 0 in £a; let 4« = £„ — £a — Upgp £„p and
define/(r) in AJ as in 4/. This construction yields a decreasing sequence
(probably transfinite) of subsets Ra of R such that /2:/p over R — Ra for each
/> and a. There will exist a smallest a0 such that Ra(0) = Ra(o)+i so Ra(0)=Ra
if a^ao and/2t/p for every p over R — flaSa«» i?a = £ —£«(0).

£a(o) may be empty; if it is not empty it has certain useful properties.
£a(o) is empty; hence (a) if rERa(o), there exists p such that/(r') =fP(r') for
each r' in (r)y — RaW and there exists r' in (r)ui~\Ra(o) such that fp(r')>0.
Each £«(o)P is empty; hence (b) for every p and every r in £„(o) such that
fP(r') =f(r') for every r' in (r)1' —i?a(0) there exists r' in (r)!7r^£a(o) such that
/p(r')<l; hence the set (r)unRamr\{r'\fp(r')<l} is cofinal in (r)unRa(0).
4^(0) is empty; hence (c) £««» has no terminal elements.

/was so defined that/2: all/p over R — £a(0)- Let 5 and £a(0)—£ be cofinal
subsets of (£„(0),â) and define f(r)>0 on £, f(r)<l on £a(0) —£. Then (b)
and (c) can be used to show that/2: ' all/p over all of R. This shows that c(f)
is an upper bound for the c(fp) ; to prove it a least upper bound we must show
that/' = ' all/p implies that/' 2: /.

To carry this through requires two induction arguments (which we shall
omit) to prove the following statements: (d) Iff— ' all/p over R — Ra(0), then
f'^f over R-Ra{0). (e) If £ is a star in R-Ra(0), if/'2:/"2:/over £, and if
f"(r)>f(r) for some r in £, then there is an r' = r such that f'(r')>f(r').
Now if F= {r\f'(r)>f(r)}-RaW and iiG=RaW-FD, we see that/'2:/over
R-G. H rEG, by (a) there is a /> such that/=/p in (r)u-G and/p(r')>0 for
some r' in (r)u(~\G. Now/'2: '/p so by 1-transitivity there exists/" for which
/'>:/"2:/p. In (r)^-G we have f =fP=f so/=/'2:/"^/ over (r)^-G. By
(e),/'=/"=/ over (r)u — G. Hence there must exist ri in (r')u(~\G such that

/"(ri)>0, and therefore there exists r2 in (rO^HG such that f'(r2) >0. This
proves that {r|/'(r)>0} is cofinal in G so, by (c),/'2j'/ over G. Hence
/'è'/overall/v.

From this we see that c(f) = Vpqp cifp) ; the usual dual argument would
give Apgp c(fp) so ©[(*•->! is a complete lattice.

In case © is an unbounded ordinal with smallest element 0 and every
element r0 of 9Î has a unique smallest proper successor, this construction for/
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can be used with minor modifications noting that every Eap must be empty ;
a useful fact in the proof that Vpgpc(/)can be constructed is that in such
an St, £' = U„Gtf £<"> for every £C£.

8. Appendix on the calculus of relations. In their monumental work Prin-
cipia mathematica, Whitehead and Russell devote several sections to proper-
ties of certain addition and multiplication operations among relations. Since
they take the very natural attitude that a function is not defined unless its
class of arguments is defined, and since a relation is a yes-or-no valued func-
tion of two variables, in their notation they speak not of the ordered system
(£, P), where £ is a set and P a binary relation in £, but merely of the rela-
tion P itself. Since almost no one ever reads the Principia for its mathematics
and since the discussion on the arithmetic of relations begins about the mid-
dle of vol. 2, we include in this section a sketchy outline of the definitions
given there together with a comparison with the operations of this paper;
however this will be translated to the notation of this paper.

Their definition of sum given in §162 is isomorphic under this trans-
lation to that of §2; their Theorem 162.34 is their form of the general as-
sociative law 2.17. In §172 a product of relations is defined which is not
equivalent to that used here. For ordered systems their definition is equiv-
alent to a different ordering of those same functions which are the ele-
ments of H(B,S) ©>•; define Eg' in IT'(B.ê) ©r by/i^'/2 if and only if there
exists r0 such that/i(r0)>/2(ro) in ©r(0) while /i(r)=/2(r) if r>r0. If St is a
chain, then = ' is included in > ; if 9Î is not a chain, ^ ' and ^ need not be
related; in fact, note thatH'(B,_) ©r=IT(B,u) ©r soU' and H may be ex-
ceedingly unlike when (£, ^) is not a chain.

It may be noted that the discussion in the Principia is pointed toward
relations which are there called "series" ; the corresponding ordered systems
are chains. For such systems IT' is a number but need not be a chain ; in
fact, it generally turns out to be a cardinal sum of chains. In contrast to this
property of TI',IT(fl,ê) ©r need be neither transitive nor antisymmetric, but
if 9Î and ©r are chains, thenYL'vt.è) ©r is always a chain. If St is not a chain,
IT' is usually intransitive as is H.
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