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ARITHMETIC ON SUPERELLIPTIC CURVES

S. D. GALBRAITH, S. M. PAULUS, AND N. P. SMART

Abstract. This paper is concerned with algorithms for computing in the
divisor class group of a nonsingular plane curve of the form yn = c(x) which
has only one point at infinity. Divisors are represented as ideals, and an
ideal reduction algorithm based on lattice reduction is given. We obtain a
unique representative for each divisor class and the algorithms for addition
and reduction of divisors run in polynomial time. An algorithm is also given
for solving the discrete logarithm problem when the curve is defined over a
finite field.

1. Introduction

There is great interest in algorithms for computing in the divisor class group of
an algebraic curve. Algorithms for general curves have been given by Coates [5],
Huang and Ierardi [10] and Volcheck [22], but they tend not to be very suitable for
practical implementation.

More efficient algorithms may be obtained if one restricts to a less general class
of curves. The case of hyperelliptic curves (i.e., quadratic function fields) has been
handled very successfully by Cantor [4] and Scheidler, Stein and Williams [18] (also
see Paulus and Rück [16]). Some algorithms for cubic function fields have been
given by Scheidler and Stein [19] and [20]. A specific case of genus three cubic
extensions has been given by Barreiro, Cherdieu and Sarlabous [3] using geometric
methods. An algorithm for general plane curves has also been recently given by
Hess [9]. A method, using Groebner bases, for plane curves with a single rational
point at infinity has been given by Arita [2]. This paper will give an algorithm for
computing with the following class of curves, which is a subset of those considered
by Arita.

Definition 1. Let k be a field. Let c(x) ∈ k[x] be a monic polynomial of degree δ
such that gcd(c(x), c′(x)) = 1 (where c′(x) is the formal derivative of c(x)). Let n
be an integer such that gcd(n, δ) = 1 and gcd(n, char k) = 1. Then the curve

C : yn = c(x)

is called a superelliptic curve.
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If c(x) is not monic, then (since gcd(n, δ) = 1) a change of variable can be
made to obtain a monic equation. If n is odd, then all our results hold for fields of
characteristic two. We tend to take n, δ ≥ 3 since otherwise the curve is hyperelliptic
and can be handled by other means.

We show that there is a unique representative for each divisor class and we give
algorithms for addition and reduction of divisors which run in polynomial time.
The approach of this paper uses the representation of the divisor class group of the
curve as an ideal class group. Our algorithm is the same as Cantor’s algorithm [4]
in the case n = 2, and for fixed n has complexity O(g2) just as Cantor’s algorithm
does. The main tool for larger values of n is a lattice reduction algorithm which
provides an ideal reduction process similar to that used for computations with
algebraic number fields.

Most of the results given in this paper apply to the more general case of a
nonsingular plane curve with a single point at infinity. We make some comments
about this at the appropriate places.

The paper is structured as follows. In Section 2 we recall some results about
divisor class groups, ideal class groups, and superelliptic curves. In Section 3 we
indicate the representation and computations on ideals which we borrow from the
number field case. We also give a strategy for reducing ideals. In Section 4 we show
how a variation of a lattice reduction algorithm due to A. Lenstra can be used as
an ingredient for our ideal reduction method. In Section 5 we restrict to the case
where k is a finite field and we modify the algorithm of Adleman, De Marrais and
Huang [1] to obtain a heuristic method for solving the discrete logarithm problem
in the divisor class group of a superelliptic curve in expected subexponential time.

2. Divisor class groups of superelliptic curves

Details of algebraic curves, their function fields, and divisor class groups can be
found in [8], [21]. In particular we use the notation Div0

k(C) for the set of degree
zero divisors on the curve C which are defined over k, and the notation Pic0

k(C) for
the divisor class group Div0

k(C) modulo principal divisors.
It is important to have a unique representative for each divisor class. The fol-

lowing result shows that such a representative exists for any curve C, over any field
k, as long as there is a k-rational point on the curve.

Theorem 1. Let C be a nonsingular curve over a field k of genus g with a given
k-point, P∞. Let D ∈ Div0

k(C). Then there is a unique effective divisor over k of
minimal degree 0 ≤ m ≤ g such that E −mP∞ is equivalent to D.

Proof. If D is principal, then obviously m = 0 and E = 0. If D is not principal,
then l(D) = 0. Consider the difference l(D+ (m+ 1)P∞)− l(D+mP∞) ≥ 0. The
Riemann-Roch theorem shows that this difference is

l(κ−D − (m+ 1)P∞) + (m+ 1) + 1− g − (l(κ−D −mP∞) +m+ 1− g) ,

where κ is the canonical divisor. This difference is equal to l(κ−D− (m+1)P∞)−
l(κ−D −mP∞) + 1. Now, l(κ−D − (m+ 1)P∞) ≤ l(κ−D −mP∞). It follows
that the values of l(D +mP∞) increase with m in steps of only 0 or 1.

Let m be the unique smallest positive integer such that l(D+mP∞) = 1 and let
f be any nonzero function f ∈ L(D+mP∞). Then for E := (f)+D+mP∞, one has
that E−mP∞ = D+ (f). The uniqueness of E is clear since l(D+mP∞) = 1.
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We now list some properties of superelliptic curves which we will require.

Proposition 2. Let C be a superelliptic curve over a field k as in Definition 1.
Then

1. C is nonsingular as an affine curve.
2. There is only one point, P∞, at infinity on the normalisation of C and this

point is defined over k.
3. The genus of C is 1

2 (n− 1)(δ − 1).
4. The integral closure of k[x] in the function field k(C) is

O := k[x, y]/(yn − c(x)).

Proof. The proof of 1 is trivial, while 2 follows from repeatedly blowing up the point
at infinity on the projective model. The genus can be calculated using the Hurwitz
formula (see Fulton [8, pp. 8-36]). Finally, property 4 follows from Stichtenoth [21,
III.5.12].

The next result is well known from the hyperelliptic case. It applies to any curve
over k which has a single point at infinity that is k-rational.

Proposition 3. Let C/k be a curve which has a single k-rational point on the
normalization at infinity, let O denote the integral closure of k[x] in k(C), and let
Cl(O) be the ideal class group of O, then Cl(O) ∼= Pic0

k(C) as groups.

Proof. It is standard to identify prime ideals of O with prime divisors on C which
do not lie over the infinite place of k[x]. The mapping from a divisor D =

∑
p
npp

to an O-ideal a =
∏

p 6 |∞ pnp induces a group homomorphism from the divisor class
group to the ideal class group.

Since there is only one point at infinity this map has trivial kernel. Also, since
the point at infinity is k-rational, the cokernel is also trivial.

Note that divisors of the form E−mP∞, where E is an effective divisor of degree
m whose support does not contain P∞, correspond to integral ideals of degree m.
Therefore Theorem 1 implies that in every ideal class of O there is a unique integral
ideal of minimal degree.

Definition 2. The unique integral ideal of minimal degree in an O-ideal class is
called the reduced ideal in the class.

The following sections are concerned with computations involving these ideals.

3. Arithmetic on ideals

3.1. Representation of ideals. It is necessary to have a good representation for
the ideals under consideration. Following the number field case (see Cohen [6,
Section 4.7]) we will represent integral O-ideals as k[x]-modules in Hermite Normal
Form (HNF). The details follow immediately from [6] so we merely state the final
result.

Proposition 4. Every integral O-ideal a can be represented as a k[x]-module with
basis of the form

{a1,1(x), a2,2(x)y + a2,1(x), . . . , an,n(x)yn−1 + an,n−1(x)yn−2 + · · ·+ an,1(x)},
where the ai,j(x) ∈ k[x] and where deg aj,i(x) < deg ai,i(x) for all 1 ≤ i < j ≤ n.
This basis is unique and it has the further property that ai+1,i+1(x)|ai,i(x) for all
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1 ≤ i < n. The norm of the ideal a is Nk(C)/k(x)(a) =
∏n
i=1 ai,i(x) ∈ k[x]. The

degree of the ideal a is deg(a) = degx(Nk(C)/k(x)(a)).

Note that the divisor consisting of a k-rational point (x0, y0) corresponds to the
ideal whose basis is {x−x0, y−y0, y

2−y2
0, . . . , y

n−1−yn−1
0 }. Similarly, to calculate

the points in the support of a divisor given the HNF ideal representation, one would
first find the irreducible factors of the polynomials ai,i(x). The polynomial a1,1(x)
determines the x-coordinates of the points in the divisor while the other terms give
information about the corresponding y-values and multiplicities.

3.2. Multiplication of ideals. The next step in providing an explicit arithmetic
on ideals is to explain how to multiply two ideals. This is once again the same as
the number field case (see Cohen [6, Section 4.7.1]). Given two ideals with bases
{b1, . . . , bn} and {b′1, . . . , b′n}, we compute all products bib′j and write them in terms
of the standard basis {1, y, . . . , yn−1} for k(C)/k(x). We then reduce the resulting
n × n2 matrix over k[x] into HNF using an analogue of Algorithm 2.4.5 of Cohen
[6].

We now estimate the complexity (in terms of operations in k) of this ideal mul-
tiplication process. Suppose that all entries bi,j(x) in the bases {bi} and {b′i} are
polynomials over k[x] of degree bounded by B. The first step of computing all bib′j
takes O(n2 · n2 · (B2 + 2Bδ)) operations in k. The resulting matrix has size n× n2

and its entries are polynomials of degree bounded by 2B + δ.
The HNF algorithm on an N1 ×N2 matrix involves at most N1N2 iterations of

computing an extended greatest common divisor and taking a linear combination of
two columns. One problem with HNF computations is that the intermediate steps
can cause the size of the matrix entries to grow very large. This can be avoided
by working modulo the determinant of the matrix (see Cohen [6] Section 2.4.2). In
our application, since we begin with ideals represented in HNF, the determinant
of the matrix can be easily calculated. Hence we will assume that all operations
are performed modulo the determinant and we will write M for the degree of the
determinant. An extended greatest common divisor of two polynomials of degree
bounded by M can be performed in O(M2) operations. Therefore the total com-
plexity of the HNF algorithm in this case is O(N1N2(M2 +N1M

2) = O(N2
1N2M

2).
When reducing a product of ideals we will have N1 = n and N2 = n2.

3.3. Ideal reduction strategy. We now consider the process which computes the
unique integral ideal of smallest degree in a given class. First we recall the strategy
used in the number field case.

In the number field case an ideal a is reduced by finding a small element α ∈ a

and defining the reduction to be b := a/(α), which is a fractional ideal such that
1 ∈ b. One drawback with this approach is that the reduction process is not
necessarily unique. This problem is not so serious as one can determine that two
“reduced” ideals b1 and b2 are equivalent by reducing b1b

−1
2 to a principal ideal.

A more serious drawback of this reduction method is that it does not seem to be
possible to give a useful bound on the degree of the resulting “reduced” ideal.

For these reasons we propose a different strategy for the reduction of ideals which
is motivated by the following elementary result.

Lemma 5. Let a be an integral ideal of O. Let α be an element of a of minimal
degree and define b := (α)/a. Then b is the reduced ideal in the class of a−1.
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Proof. First note that b is an integral ideal which is equivalent to a−1. Minimality
of the degree of b is then clearly equivalent to the minimality of the degree of α.

Ideal reduction algorithm.
Input: A k[x]-module basis for an integral O-ideal a.

1. Compute an integral ideal a′ which is equivalent to the ideal a−1.
2. Find an element α ∈ a′ of minimal positive degree.
3. Output a basis for the ideal b := (α)/a′ in Hermite Normal Form (HNF).
We now give further details on how to implement these three steps.

3.4. Computing the inverse of an ideal. One method to compute a′ is to take∏
σ 6=1 aσ where σ runs over elements of the Galois group of k(C)/k(x) (which is a

cyclic group of order n). We choose a generator σ by fixing an nth root of unity ζn
and imposing the action σ(y) = ζny. To calculate a basis for aσ from a basis for
a, simply multiply each ai,j(x) by ζj−1

n . Note that the intermediate calculations
involve extending the ground field from k to k(ζn), though the final result is defined
over k. It is clear that a′ is an integral ideal in the ideal class a−1.

This method involves n − 1 iterations of the ideal multiplication process. It is
also necessary to perform an HNF reduction at each step to prevent the matrices
from becoming too large. Note that the norm of the ideal and the determinant
of the matrix representation are easy to keep track of, but that they grow quite
large: if the initial ideal has determinant of degree M , then by the final stage the
determinant has degree (n− 1)M .

An alternative method to compute a′ which does not require extending the
ground field is to use the following strategy (Cohen [6, Section 4.8.4]). Precom-
pute an n × n matrix T = (Trk(C)/k(x)(yi+j))

n−1
i,j=0. Also precompute the different

which is known in this case to be the principal ideal (yn−1) (see Neukirch [13, Satz
III.2.4]).

Given an ideal a, represented as a matrix A in HNF, compute the matrix (AtT )−1

as a matrix in k(x) (i.e., the entries will be ratios of polynomials in k[x]). The
columns can be taken as a basis for a k[x]-module, say b. Multiplying b by the dif-
ferent (yn−1) gives an ideal a′ which is equivalent to a−1 (see Cohen [6, Proposition
4.8.19]).

We now compare these two ideal inversion strategies. A major problem with
algorithms such as these is the growth of the entries of the matrices. As we have
seen in subsection 3.2, this can be controlled in the case of multiplication of ideals
by working modulo the discriminant. The authors are not aware of any similar
technique for matrix inversion. Hence our discussion will focus on the first strategy
for ideal inversion. In practice, particularly in those cases where k(ζn) is a large
degree extension of k, the second method may be useful.

Theorem 6. Let a be an integral O-ideal of degree bounded by M represented in
HNF. Let d = [k(ζn) : k]. Then the first strategy above for computing a′ requires
O((n− 1)3n4M2d2) operations in k.

Proof. The algorithm performs the ideal multiplication and HNF algorithms of sub-
section 3.2 a total of n−1 times. Note, however, that the degree of the determinant
grows from M to M ′ = (n − 1)M in the course of the algorithm. Also note that
the basic arithmetic operations (i.e., multiplication, addition, etc.) now take place
in k(ζn).
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For the ideal multiplication algorithm we have B, δ ≤M ′, and so the complexity
is O(n4(M ′)2d2) operations in k. For the HNF reduction we have N1 = n,N2 = n2,
so the complexity is also O(n4(M ′)2d2) operations in k. The result follows.

3.5. Remaining steps. To perform the second step of the algorithm, we proceed
as follows. The ideal a′ is represented as a k[x]-module of rank n. For small
values for n the smallest element can be found by classical algorithms (reduction of
quadratic forms when n = 2 and Voronoi’s algorithm when n = 3). For larger values
of n we propose using lattice reduction techniques. The details and complexity
statement are given in Section 4.

The third step looks as if it requires another ideal division. However, notice
that (α)/a′ = (α)a/Nk(C)/k(x)(a). We already have Nk(C)/k(x)(a) so this step just
involves multiplying the ideal a by the function f(x, y) := α/Nk(C)/k(x)(a). Any
denominators in the function f(x, y) must occur in all entries of the HNF repre-
sentation of a so the division is straightforward. The final task is to ensure that
the output ideal is represented in HNF. The complexity of this step is therefore
dominated by the HNF reduction.

For some applications the goal of divisor reduction is to find an element of the
Riemann-Roch space, i.e., to find a function f such that D1 = D2 + (f) (where D2

is the original divisor and D1 is the reduced divisor). Observe that the function
f(x, y) defined in the previous paragraph is such a function.

3.6. Complexity of addition in the divisor class group. We now return to
the context of the divisor class group of a superelliptic curve. We are given two
divisors of the form E1 −m1P∞, E2 −m2P∞ represented as ideals a1, a2, and we
know that deg(ai) = mi ≤ g. To perform the addition in the divisor class group,
we first multiply the two ideals to obtain an integral ideal a. We then perform the
ideal reduction process to obtain an ideal a3 corresponding to the unique reduced
divisor E3 −m3P∞. The ideal a is a product of two ideals of degree bounded by g,
so the determinant of the associated matrix has degree less than M = 2g.

We now consider the first step of the ideal reduction process. Let d = [k(ζn) : k].
Putting the estimates above into Theorem 6 gives a total of O(n7g2d2) operations
in k to construct the integral ideal a′.

We now consider the second step of the ideal reduction process. The lattice we
reduce using the methods of Section 4 has entries of degree bounded by 2(n− 1)g,
and so Proposition 12 shows that the complexity of the lattice reduction is O(n7g2).
Therefore the total complexity is dominated by the process of step one and we have
proved the following result.

Theorem 7. Let d = [k(ζn) : k]. The complexity of the addition algorithm for
reduced divisors in the divisor class group of a superelliptic curve C over a field k
is O(n7d2g2) operations in k. This is polynomial time in terms of the input size.

Algorithms for addition in the divisor class group of a curve have often been
described for curves in families with a fixed value for n (e.g., hyperelliptic curves or
cubic function fields). We observe that if n is fixed, then our complexity is O(g2)
which is the same as the hyperelliptic case.

Due to considerations of space, our analysis has been very crude. It is likely that
the algorithm would perform much better than this in practice. We note that the
methods of this section are completely general. The reduction strategy we have
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proposed could be applied to ideal class groups of any order in the function field of
any algebraic curve.

4. Finding an element of minimal degree

In this section we give a method for finding an element of minimal positive
degree in an integral O-ideal. Once again our approach is motivated by the number
field situation (Cohen [6, Section 6.5]). In that case the strategy is to consider the
embeddings of the number field into C and then perform lattice reduction using the
usual absolute value as a notion of size. The function field analogue of Minkowski’s
geometry of numbers was developed by Mahler [12]. In our case we use the fact
that k(C) may be embedded in a certain field of Puiseux series. We also use the
fact that Puiseux series are equipped with a norm which arises from the natural
extension of the valuation at infinity to the completion of k(C).

Definition 3. Let K be a field and n a positive integer. Then

K〈x1/n〉 :=

{
m∑

i=−∞
aix

i/n | ai ∈ K, am 6= 0

}
is called the field of Puiseux series. The norm of an element of K〈x1/n〉 is defined
to be

∣∣∑m
i=−∞ aix

i/n
∣∣ := m/n.

We will now recall how to embed k(C) into such fields.

Proposition 8. Let C be a superelliptic curve over k with equation yn = c(x). Let
kn := k(ζn) be the field extension of k containing the nth roots of unity. Then there
exist n distinct elements ρ1, . . . , ρn ∈ K := kn〈x1/n〉 such that ρni = c(x). The n
distinct choices y 7→ ρi induce n distinct homomorphisms Ψi from k(C) to K.

For the proof see Walker [23] or [17, Theorem 9]. The elements ρi differ from
each other only by powers of ζn.

The embeddings of elements of k(C) into K give rise to an embedding of ideals
in the following way. Let a be an O-ideal and consider the map Ψ : a→ Kn given
by

Ψ : α =
n−1∑
j=0

aj(x)yj 7−→ (Ψ1(α),Ψ2(α), . . . ,Ψn(α)) =

n−1∑
j=0

aj(x)ρji


i=1,... ,n

.

The following result is then immediate.

Proposition 9. The image of a under Ψ is a k[x]-module in Kn of rank n. In
other words, Ψ(a) is a lattice in Kn over k[x].

We may define a norm on Kn by

‖(α1, . . . , αn)‖ := max
i=1,...,n

{|αi|}.

Recall that our goal is to find an element α ∈ a of smallest degree. Therefore, the
following easy result is important.

Proposition 10. Let α be an element of an O-ideal a. Then

deg(α) = n‖Ψ(α)‖.
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The strategy for solving our problem is now clear: finding α ∈ a of minimal
degree is equivalent to finding the shortest vector in the lattice Ψ(a) ⊂ Kn with
respect to the norm on Kn. The shortest vector can be efficiently found using a
modified version of the lattice reduction algorithm due to A. Lenstra [11] (also see
[15]). We note that in this case it is known that the lattice reduction algorithm
always yields a minimum of the lattice (unlike in the number field case where it
can only be proven that a rather small vector is found).

The above strategy can be adapted to the problem of reducing ideals in any
function field. However, a drawback with this method is that computations with
Puiseux series are required. In the case of superelliptic curves we can avoid com-
putations with Puiseux series due to the following observation.

Theorem 11. Let C/k be a superelliptic curve and let O be as above. Let α =∑n−1
j=0 aj(x)yj ∈ O. Then

‖Ψ(α)‖ = max
j
{degx(aj(x)) + δj/n}.

Proof. It is easy to see that all |ρi| = δ/n. Therefore, each term ‖Ψ(aj(x)yj)‖ =
degx(aj(x)) + δj/n. Now, since (δ, n) = 1, each of these values is in a different
class in 1

nZ/Z. It follows that there can be no cancellation of terms, and the result
follows.

This is an important result as it shows that we do not actually need to compute
with Puiseux series or to extend the ground field to k(ζn). Instead we can perform
the lattice basis reduction process directly on the k[x]-module representation of the
ideal a and merely “pretend” that we are working in a lattice of Puiseux series.

We now give some details of the lattice reduction algorithm in this case. The
lattice we are trying to reduce is the O-ideal a, which is given as a k[x]-module via
a basis {b1, . . . , bn}. The lattice is endowed with a norm (which we will also denote
by ‖·‖) via the Puiseux embedding above. Each bi can be written as

∑n−1
j=0 bi,j(x)yj

and Theorem 11 shows that the norm of bi is ‖bi‖ = maxj{degx(bi,j(x)) + δj/n}.
To compute the determinant of the lattice, we consider the modified vectors

b′i = (bi,0(x), bi,1(x)xδ/n, ..., bi,n−1(x)x(n−1)δ/n).

Definition 4. The determinant of the lattice a (denoted d(a)) is the determinant
of the n × n matrix B′ over k[x] which has the modified vectors b′i as rows. The
orthogonality defect of a basis {b1, . . . , bn} for a (denoted OD(b1, . . . , bn)) is defined
to be

n∑
i=1

‖bi‖ − degx d(a) ∈ 1
n
Z.

It is easy to see that OD(b1, . . . , bn) ≥ 0. The usual notion of a reduced basis [11]
also applies with these modified notions and so we make the following definition.

Definition 5. The basis {b1, . . . , bn} for a is reduced if OD(b1, . . . , bn) = 0.

The lattice reduction algorithm of [11] and its complexity analysis can therefore
be easily adapted to the current setting. We do not give the details here.

Proposition 12. Let b1, . . . , bn be vectors in k[x]n corresponding to a basis for an
ideal a as above. Let B be a bound on the degrees of all entries bi,j(x) and let S be a
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bound on the number of values for
∑n

i=1 ‖bi‖. Then the lattice reduction algorithm
computes a reduced basis in time

O(n3 ·B · S).

In the case of reduction of divisors on a superelliptic curve we apply the lattice
reduction algorithm to the ideal a′ which has degree less than (n−1)g. To deduce the
complexity of lattice reduction in this case we use the very crude bounds B = O(ng)
and S = n2B = O(n3g) (since ‖bi‖ must be multiplied by n to become integer
valued) and obtain a complexity of O(n7g2).

5. The discrete logarithm problem

We now restrict to the case where k is a finite field Fq. In this case Pic0
Fq(C) is

a finite group. Suppose that D1 is a divisor class in Pic0
Fq(C) and that D2 lies in

the subgroup generated by D1. We will assume that the order of the divisor D1

in Pic0
Fq(C) is known and, for simplicity, that it is a prime L. Then the discrete

logarithm problem is to find an integer λ such that D2 = λD1. The discrete
logarithm problem arises in the context of cryptography using algebraic curves.

In this section we describe how the algorithm due to Adleman, De Marrais and
Huang [1], which was developed for hyperelliptic curves, can be modified to apply
to superelliptic curves. The algorithm is an index calculus method and so the main
process involves generating relations amongst elements of a “factor base”. The
central idea behind [1] is to find these relations by considering the decomposition
of principal divisors coming from functions of the form

φ = a(x) + b(x)y.

The algorithm of this section uses exactly the same strategy. Before describing the
details, it is necessary to study the support of the principal divisor (φ).

Proposition 13. Let C/Fq be a superelliptic curve yn = c(x) and let D(x) be the
discriminant of the extension Fq(C)/Fq(x). Let φ be the function a(x)+b(x)y where
a(x) and b(x) are coprime elements of Fq[x]. The principal divisor (φ) is of the
form E − (degE)P∞ where E is an effective divisor. A prime p(x) of Fq[x] lies in
the support of the divisor E if and only if p(x) divides

Nφ = NFq(C)/Fq(x)(φ) = a(x)n + (−1)nc(x)b(x)n.

Suppose p(x) is a prime of Fq[x] such that p(x)|Nφ and gcd(p(x),D(x)) = 1. Then
there is at most one prime divisor p lying above p(x) in the support of (φ) and this
prime divisor has ep = fp = 1 (where ep and fp are the ramification and residue
class degrees, respectively).

Proof. First observe that the poles of the function φ occur at the point at infinity
on C. It remains to deal with the zeroes of the function φ.

That the primes in the support divide Nφ is clear. Those with gcd(p(x),D(x)) =
1 necessarily have ep = 1. It remains to prove that fp = 1 and that at most one
prime divisor above any such p(x) appears.

Let p be any prime divisor over p(x) such that φ is zero on p. Over an alge-
braic closure of Fq we can think of the divisor p as a sum of points (x0, y0). Since
φ = a(x) + b(x)y is zero at each (x0, y0), it follows that y0 = −a(x0)/b(x0) and
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thus it is not possible to have two different points (x0, y0) for the same x0. Further-
more, it follows that y0 ∈ Fq(x0), which means that fp = (O/p : Fq[x]/(p(x))) =
(Fq(x0, y0) : Fq(x0)) = 1.

Finally, suppose that the point (x0, y0) has multiplicity greater than one above
the point x0 of the x-line. In this case x0 would be a root of D(x) and, since all
Galois conjugates of x0 would have the same property, p(x)|D(x).

This result shows that decomposing (φ) is easy: simply factor Nφ into irre-
ducibles,

∏
pi(x)ti . For those pi(x) which do not divide D(x) we set r(x, y) =

y−
(
a(x)b(x)−1(mod pi(x))

)
and observe that the prime divisor (pi(x), r(x, y)) lies

in the support of φ with multiplicity ti. Divisors for which p(x) divides D(x) are
seen to have fp = 1 and can only appear with multiplicity one.

Proposition 13 implies that only relations involving ramified prime divisors and
those with residue class degree one can be found using this method. Therefore, the
factor base is taken to consist only of prime divisors with these properties. It is
important that the factor base generate the full divisor class group so we need the
following modified version of Theorem 2 of Müller, Stein and Thiel [14].

Theorem 14. Let C be any curve over Fq. Define next_prime(x) to be the small-
est prime p ≥ x. The divisor class group of C is generated by the set of prime
divisors of residue class degree one whose degree is less than d, where

d := next_prime
(
max

{
n+ 1, 2 logq(4g − 2)

})
.

Proof. The proof of this result is a slight adaption of the proof in [14] (though
note that we use the notation fp for the residue class degree rather than the total
degree). We assume, for a contradiction, that the statement is false and we let χ
be a nontrivial character on Pic0

Fq(C) which is trivial on the group generated by
the prime divisors in question.

Let
∏ † denote the product over all prime divisors other than those of residue

degree one and degree less than or equal to qd. We obtain, as in [14],
2g−2∏
i=1

(1− ωi(χ)u) =
∏2g
i=1(1− ωiu)

(1− u)(1− qu)

∏
† 1− udeg p

1− χ(p)udeg p
.

Taking the logarithmic derivative of this equation and equating coefficients of ud−1

gives

−
2g−2∑
i=1

ωi(χ)d = −
2g∑
i=1

ωdi + (1 + qd) +A where A =
∑

+(deg p)(χ(p)d/deg p − 1)

and the sum
∑+ is over all prime divisors of degree dividing d and of residue class

degree greater than one. The argument in [14] gives the required contradiction as
long as A = 0.

Since d is prime, the only divisors in the last sum must be of degree d or 1. But
they cannot be of degree one since deg p ≥ fp > 1. So the sum is over all divisors of
degree d and of residue class degree greater than one. Now, again since d is prime,
the residue class degree is equal to d, but this is impossible since the residue class
degree must be ≤ n. Hence the sum is empty and A = 0.

We now give some further details of the algorithm, though our presentation
is sketchy since the basic idea is very similar to [1] whilst a good implementation
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would include numerous techniques which are well known from research on factoring
algorithms such as the number field sieve. The input consists of a superelliptic curve
C/Fq of genus g and two divisors D1 and D2 of prime order L.

The first step is to construct the factor base F . We define a number S1 =
c1(δ logq(δ))1/2 where c1 is a constant whose value is chosen to optimise the running
time of the algorithm. The set F consists of

• all prime divisors of C above the primes p(x) of Fq[x] which divide the dis-
criminant D(x) (equivalently, divide c(x)).
• all unramified prime divisors of residue class degree equal to one which lie

above a prime p(x) of Fq[x] of degree less than or equal to S1.

Note that there are some “automatic” relations between some of these factor base
elements which arise from the splitting and ramification behaviour. These relations
should be added to the relation matrix.

The second step is to “smooth” the initial divisors D1 and D2 so that they are
expressed in terms of elements of F . This is more complicated than in [1] since
the supports of the Di may contain primes which do not have residue class degree
one and so we cannot possibly smooth them using functions of the form φ. To deal
with this we take random combinations D = m1D1 + m2D2 in the divisor class
group until the support of D consists entirely of residue degree one places, clearly
this step requires our earlier algorithm for adding divisors. We could repeat until
the divisor D actually decomposes entirely over F (as in the Hafner-McCurley style
algorithm). However, the strategy we propose is to simply add the prime divisors
in the support of D to F and find relations by sieving (by using an analogue of the
lattice sieve method of the NFS factoring algorithm).

Once a few relations have been found which link D1 and D2 to the factor base,
it remains to find a full set of relations amongst elements of F . This is done by
attempting to decompose random functions φ, as in [1]. This step can be speeded
up by using a sieving operation like the one described in [7]. Once enough relations
have been found then sparse linear algebra modulo L is performed to obtain the
solution to the discrete logarithm problem.

It is clear that, if it terminates, the algorithm will give a solution to the discrete
logarithm problem. Justifying why the algorithm terminates is less easy since it
might not be possible to generate a full set of relations by considering functions of
the form φ = a(x) + b(x)y. For this reason a practical implementation would take
several different functions θ such that k(x, θ) = k(C) and sieve over functions of
the form a(x) + b(x)θ (one then needs a slightly more general form of Proposition
13). Indeed, this provides a natural way to parallelise the algorithm.

The analysis of the complexity of the algorithm relies on heuristic statements
regarding the smoothness of the polynomials Nφ. Rather than give the details
we merely state the complexity as a conjecture. A more precise statement is the
subject of further research by the authors.

Conjecture 1. Let n and q be fixed. Then there exists a constant c > 0 such
that, for all sufficiently large δ, the algorithm proposed above will solve the discrete
logarithm problem on any superelliptic curve over Fq (of degrees n and δ as in
Definition 1) in expected time

O(exp
(
c
√

log(qg) log log(qg)
)
).
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In terms of the size of the original discrete logarithm problem (which is in a
subgroup of size L) we observe that this algorithm is most useful when L is of size
close to qg.

We note that the results in this section can be applied to the case of the divisor
class group of any plane curve with a single point at infinity. Hence it is reason-
able to conjecture that a suitable modification of the above method would give a
subexponential time algorithm for solving the discrete logarithm problem on any
nonsingular plane curve over Fq with a single point at infinity.
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