
Arithmetic Operations within Memristor-Based
Analog Memory
Mika Laiho, Eero Lehtonen

Microelectronics Laboratory, University of Turku
Joukahaisenkatu 3-5, 20014 Turku, Finland

Email: {mlaiho, elleht}@utu.fi

Abstract—This paper describes how memristors could be used
as an analog memory and computing elements. The key idea
is to apply comparison and programming phases cyclically so
that the memristor can be programmed to a given conductance
level at a fixed voltage. It is further described how the cyclical
programming could be used in computing. A configuration
needed to copy the sum of conductances of two memristors into a
third one is described. It is further shown how the devices could
be configured so that addition and subtraction of positive and
negative analog conductances could be performed. The presented
memory structure requires a memristor model with a nonlinear
programming sensitivity (programming threshold) for proper
programming selectivity. A model of such a memristor is shown
and key simulations are presented.

I. INTRODUCTION

The existence of fourth passive circuit element, memristor
was formulated by Chua in 1971 [1], but it did not draw
much attention since a physical implementation was unavail-
able. After HP Labs published their experimental results of
TiO2-based memristors [2], there has been a strong interest
in using memristors for different nonvolatile memory appli-
cations. Mostly, memristors have been proposed to act as
digital memory elements, storing one bit of information, i.e.,
programming the memristor to either conducting (ON) or un-
conducting (OFF) states. However, it has been experimentally
shown that memristors can be programmed to intermediate
conducting states also [3]. It is not yet known how accurate the
programming can be since a finite number of mobile oxygen
vacancies participate in the channel forming; this could lead
to a discrete spectrum of possible conductance values for the
memristor. Therefore, this paper does not deal with the issue
of accuracy, but rather assumes that a sufficient accuracy is
available for a specific application.
When a CMOS process is complemented with memris-
tors by processing crossbar memristor arrays on top of the
CMOS stack, the resulting CMOS-memristor hybrid (CMOL)
technology offers exciting possibilities for, e.g., realization of
artificial neural networks [4]. The same applies to cellular neu-
ral/nanoscale networks (CNN) [5], arrays of locally connected
processing cells that are capable of powerful spatial-temporal
processing. A CNN complemented with cell level additions,
e.g., analog memory and arithmetic processing capabilities is
referred to as CNN universal machine (CNNUM). The analog
memories and analog arithmetic processing capabilities require
a lot of silicon area, so their realization with memristors

would significantly compress the overall cell area. Yet another
processor array that is based on local interaction, namely the
analog microprocessor (AµP) [6], could benefit from the use
of memristors. In the AµP, neighborhood interaction and local
arithmetic are all performed using analog current memories.
For example, addition of the contents of two memories is
carried out by reading out the currents of these simultaneously,
and writing the sum current to a third one.
In this paper, a memristor-based analog memory is pre-
sented. First, an appropriate memristor model that has a
nonlinear programming threshold is described. Then, it is
shown how addition and subtraction can be performed in
analog domain using the memristors.

II. MEMRISTOR MODEL FOR ANALOG MEMORY

For memory applications, it is required that a read-operation
does not destroy the data, or, if it does, the data can at
least be somehow restored. The memristor reported in [2]
gets programmed linearly, as charge is passed through the
device. Therefore, it is difficult to read the resistive memory
without affecting the contents. Some AC readout means could
provide a solution, but here a different approach is taken. The
resistance of the memristor reported in [3] exhibits a nonlinear
dependence on the voltage over the memristor. A strong
nonlinearity results effectively in a programming threshold:
the device can be operated either in programming or readout
mode depending on the voltage over the device. In this paper
a SPICE model introduced in [7], based on the experimental
data and model of [3] is used. In the model of [7], the current
through the memristor is

I = (b + Wn)β sinh(αV) + χ(exp(γV) − 1). (1)

Here W is the state variable of the memristor [2] and the
constants α, β, χ, γ and b depend on the physical properties
of the component. The time derivative of the state variable W

is modeled as
dW

dt
= a · f(W) · V q, (2)

where a is a constant, f : [0, 1] → R is a window function [2]

f(W) = 1 − (2x − 1)2p (3)

where p is a positive integer. The state derivative depends on
the q’th power of V , making a proper programming threshold
for large values of q. In the simulations of this paper a q

2010 12th International Workshop on Cellular Nanoscale
Networks and their Applications (CNNA)

978-1-4244-6678-8/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: ASTAR. Downloaded on May 06,2010 at 07:34:14 UTC from IEEE Xplore. Restrictions apply.

of 13 was used. Figure 1 shows Eldo simulations (Eldo is a
commercial variant of SPICE) of the memristor model. The
simulations are carried out with slightly larger β, χ and a

compared to [7] in order to increase the current level and slow
down the programming. The left subfigure shows voltage over
the memristor, along with the memristor state variable W as
a function of time. It is obvious that small voltages over the
memristor do not affect W which demonstrates the existence
of a proper programming threshold (about 1.8V). The subfig-
ure on the right shows the current-voltage characteristics of a
memristor showing a proper signature of a memristive device.
It should be emphasized that it is not aiming to be an accurate
physical model of [3] but rather the aim is at reproducing the
general characteristics/behavior of a memristor. Also, it should
be noted that here the state variableW is hard limited between
0.05 and 0.95. This avoids the problems in the extremes ofW
described in [8].

0 0.5 1 1.5

x 10
−6

−2

−1

0

1

2

V
m

e
m

 (
s
o

lid
),

 W
 (

d
a

s
h

e
d

)

time (s)

−2 −1 0 1 2

−2

−1

0

1

2

x 10
−4

I m
e
m

V
mem

Figure 1. Memristor characteristics simulated using SPICE model.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
x 10

−6

I m
e

m
 a

t
V

m
e

m
=

0
.5

V

W

Figure 2. Simulated memristor current Imem with varying W at a constant
voltage over memristor Vmem

III. MEMRISTOR MEMORY

The memristor I/V curve of Figure 1 reveals that the current
through the memristor is highly nonlinear (combination of

hyperbolic sine and exponential characteristics). Therefore,
readout voltage over the memristor should always be the same
when using the memristor as an analog memory. A further
consequence of the nonlinearity is that it is not straightforward
to control the instant when programming of the memristor has
reached the target value. The situation is analogous to using
programming floating gate- based analog memory elements
that rely on successive application of programming and moni-
toring phases [9]. In the monitoring phase the current through
the memristor is read at a constant voltage. Figure 2 shows
the simulated memristor current Imem with varying W at a
constant voltage over memristor Vmem of 0.5V.
Figure 3 shows the schematic of the memristor- based
analog memory/arithmetic computing unit. It shows six mem-
ristors, controlled with node voltages V1- V6. These nodes
can be set to high impedance state, or be programmed to
voltages V DDP , V DDR, V SSR and V SSP . These voltages
are programmed to 2, 1.5, 0.5 or 0 V, respectively, while the
analog ground level GND is at 1V. The schematic also shows
a number of switches and resistor R0 that can be used to write
a reference resistance value to a memristor, or can be used to
read out a memristance value by converting the schematic to
an inverting operational amplifier.

m1

V1 V2

m2

V3

m3

m4 m5 m6

-

+

RO

V4 V5 V6

s1a

s2

s4

s5

s6

cts3

s7a

ctct

s7b

GND

s1b

V7

VDDP

VSSP

Vout

GND

IN

Figure 3. Memristor-based analog memory/computing unit.

Figure 4 shows a simulation in which the conductance
value of RO is copied to memristor m1. In this operation
the control signals s1b and s7a ON. Prior to programming,
m1 has been programmed to a low conductance state. The
programming proceeds so that in the monitoring phase S4 is
ON, whereas S6 is OFF. Once the operational amplifier output
Vout is stable, this voltage is sampled with S3 to the capacitor.
The capacitor voltage ct controls whether programming occurs
(node IN is pulled to V DDP or the targeted level has been
reached (node IN is pulled to GND through switch S4. In
the simulation, V7=V SSR. Since RO is 200kΩ (5µS) and
programming stops when Vin equals GND, both RO and m1

end up with the same conductance value. The top subfigure
of Figure 4 shows how voltage over m1 alternates between
programming and monitoring phases. The memristor voltage
ends at 0.5V. Each programming cycle increases the voltage

Authorized licensed use limited to: ASTAR. Downloaded on May 06,2010 at 07:34:14 UTC from IEEE Xplore. Restrictions apply.

at Vin as m1 becomes more conductive. The second subfigure
shows that current throughm1 (and RO) ends up with a value
of 2.5µA, corresponding to 5µS since memristor voltage is
0.5V . Also shown in the figure is ct that goes low when
the targeted value has been reached. The lowest subfigure of
Figure 4 demonstrates that the W of the memristor ends up
at a value of approximately 0.7.

0 0.5 1 1.5

x 10
−6

0

0.5

1

1.5

2

0 0.5 1 1.5

x 10
−6

0

1

2

3
x 10

−6

0 0.5 1 1.5

x 10
−6

0

0.5

1

1.5

2

2.5

C
T

0 0.5 1 1.5

x 10
−6

0.2

0.4

0.6

0.8

W

time (s)

IN

V
1

I
resistor

I
mem

Figure 4. Memristor characteristics simulated using SPICE model.

It should be noted that when the programming ends, (ct
goes LO) the voltages over all memristors are constant if
V DDR − GND = GND − V SSR. Summing currents of
resistive components with a fixed voltage is the same as
summing their conductances. The operation of the circuit
during summing of two conductances can be observed from
Figure 3. In this example the sum of conductances of m4

and m5 is written to m1. It is assumed that memristor m1 is
initially programmed to low conductance (OFF) state. Figure
3a) shows the monitoring phase. If gm4 + gm5 > gm1 (g
stands for the conductance), control voltage ct will be HI.

The voltage stored at ct determines whether programming will
take place in the subsequent programming phase. If ct is HI,
V DDP − V SSP = 2V will appear over the memristor. A
sequence of monitoring and programming cycles assures that
gm1 ≥ gm4 + gm5. The amount of programming during one
cycle (step size) can be reduced by shortening the duration of
a programming cycle, or lowering V DDP . If the step size is
small enough, gm1 ≈ gm4 + gm5.

a)

m1

VDDR

m2 m3

m4 m5 m6

-

+
ct

GND

Z Z

ZVSSRVSSR

b)

m1 m2 m3

m4 m5 m6

-

+
ct

ctct

GND

VDDP

VSSP

Z Z

Z Z Z

GND

Figure 5. Processing example: sum of conductances. a) Monitoring phase.
b) Programming phase.

If one wants to be able to sum both positive and neg-
ative numbers, the memristor memories can be configured
as with the analog microprocessor [6]. In this case each
analog memory is composed of two memristors as shown
in Figure 6a). The upper memristor of a memory is always
programmed to the middle of the conductance range, whereas
the lower conductance can be programmed between low and
high conductance states. Figure 6b) shows a copy operation
between memories. The conductance values of the memory
on the left are 0.5 and 0.3, representing the number -0.2. In
the copy operation, this values is inverted analogously to the
current memories the analog microprocessor [6].
Figure 7 shows an addition operation where the sum of
memory 1 and memory 2 is written to memory 3. Note that
the sum value is inverted as in Figure 6.
In the analog microprocessor there is a binary weighted
array of current mirrors that can be used to perform multi-
plication and division operations. Since memristors are two-
terminal devices, they cannot be used as controllable sources.
Conductance values could be multiplied by integer numbers
by repeatedly summing conductance values. However, mul-

Authorized licensed use limited to: ASTAR. Downloaded on May 06,2010 at 07:34:14 UTC from IEEE Xplore. Restrictions apply.

V1

m1

m4

V4

g1=0.5

g4=0.3

V2

V5

g2=0.5

g5=0

V1

m1

m4

V4

g1=0.5

g2=[0,1]

m2

m5

g5=0.7

(initially)

a) b)

-0.2 0.2

memory 1 memory 2

Figure 6. a) memristor-based memory that can store both positive and
negative values. b) inversion (multiplication by -1) takes place when contents
of memristor memory is copied to another.

g3=0.5

g6=0

g6=0.2

(initially)

V1

m1

m4

V4

g4=0.3

g1=0.5 m2 g2=0.5

m5 g5=1

V2

V5

m3

m6

V3

V6

-(-0.2 + 0.5) = -0.3

memory 1 memory 2 memory 3

Figure 7. Addition of the contents of two memristor memories and the
storage of the results to a third one. Note that the result is inverted as in the
copy operation of figure 6.

tiplication and division by noninteger numbers is a topic of
future research.

IV. CONCLUSIONS

In this paper we showed how memristors could be used
as analog memories and used for computing. A cyclical
programming method was proposed that automatically stops
the programming when the correct conductance value has been
reached. A two-memristor configuration was proposed to be
used as a memory element so that addition operations of
both positive and negative numbers could be performed. Key
simulations of the circuit were carried out using Eldo circuit
simulator. The memristor model used in the simulations has
a proper programming threshold that is needed in selective
programming of the memristive devices.

ACKNOWLEDGMENTS

This work was funded by the Academy of Finland (131295),
Nokia foundation, and the GETA graduate school.

REFERENCES

[1] L. O. Chua, “Memristor - The Missing Circuit Element”, IEEE Transac-
tions on Circuit Theory, vol. 18, no. 5, pp. 507-519, 1971.

[2] D. Strukov, et al., “The Missing Memristor Found”, Nature, vlo. 453, pp.
80-83, May 2008.

[3] J. Yang, et al., “Memristive Switching mechamism for metal/oxide/metal
nanodevices”, Nature Nanotechnology, Vol. 3, July 2008.

[4] Ö. Turel, et al., “Neuromorphic Architectures for Nanoelectronic Cir-
cuits”, International Journal of Circuit Theory and Applications”, Vol.,
32, pp. 277-302, 2004.

[5] L.O.Chua, L.Yang, “Cellular Neural Networks: Theory”, IEEE Transac-
tions on Circuits and Systems-I, vol.35, no.10, pp.1257–1272, Oct. 1988.

[6] P.Dudek and P.J.Hicks, "A CMOS General-Purpose Sampled-Data Ana-
logue Microprocessor", IEEE International Symposium on Circuits and
Systems, ISCAS 2000, Geneva, Switzerland, vol.II, pp.417-420, May
2000.

[7] E. Lehtonen, M. Laiho, “CNN Using Memristors for Neighborhood
Connections”, submitted to IEEE Cellular Nanoscale Networks and their
Applications, 2010.

[8] Z. Biolek, D. Biolek, V. Biolkova, “SPICE Model of Memristor with
Nonlinear Dopant Drift”, 2009.

[9] A. Bandyopadhyay, G.J. Serrano, P. Hasler “Adaptive Algorithm Using
Hot-Electron Injection for Programming Analog Computational Memory
Elements Within 0.2% of Accuracy Over 3.5 Decades”, IEEE Journal of
Solid-State Circuits, Vol. 41, Issue 9, pp. 2107 - 2114, Sept. 2006.

Authorized licensed use limited to: ASTAR. Downloaded on May 06,2010 at 07:34:14 UTC from IEEE Xplore. Restrictions apply.

