
Arithmetic Operators Based on BSCB Representation 1 44th Asilomar Conf. Signals, Systems, and Computers
D. Torno and B. Parhami, Nov. 5, 2010 Pacific Grove, CA, November 7-10, 2010

Arithmetic Operators Based on the Binary Stored-Carry-or-Borrow Representation

Daniel Torno 1 and Behrooz Parhami 2

1 Exorand Technology, Orléans, France  d.torno@computer.org
2 Univ. of California, Santa Barbara, USA parhami@ece.ucsb.edu

Abstract

We introduce implementations of arithmetic operators based
on the binary stored-carry-or-borrow (BSCB) representation.
Several BSCB arithmetic elements, including full-adder,
ripple-carry adder, and carry-lookahead adder are
presented, followed by detailed design of an array multiplier.
In the latter design, the conventional initial AND matrix is
transformed and expressed with a redundant radix-2
representation. Each line of the resulting matrix is processed
by an accumulation operator with the BSCB representation.
Due to a specific property of the multiplication process, this
operator is simpler than a standard full-adder cell in terms of
gate count, while maintaining the same propagation latency.
The entire multiplier is implemented with only XOR and AND
gates, thus improving its testability and reliability.

1. Introduction

Redundant number representations allow fast addition by
eliminating the carry propagation chains [Aviz61]. Over the
years, many researchers have studied and improved upon
redundant representations [Parh90], [Phat94], [Taka02].
Redundant representations are used extensively in adder and
multiplier implementations, especially those based on the
carry-save or borrow-save form. As an example, we cite a
multiplication algorithm [Taka85] based on a redundant
number expression in radix 2 and the digit set {–1, 0, 1}.
Here, we use a redundant radix-2 “binary stored-carry-or-
borrow” (BSCB) expression with the digit set {–1, 0, 1, 2}.
Ours is similar to the SD3(+) format of Phatak et al. [Phat01],
but with a different encoding of the digit values.

Elsewhere [Torn09], we introduced half-, full-, ripple-carry,
and carry-lookahead adders for the BSCB representation, with
a main characteristic of having rather simple Reed-Muller
realizations. Some such designs are discussed here, along with
a similarly motivated array multiplier. Thanks to their regular
structure, array multipliers are VLSI-friendly. The
computation delay is proportional to operand widths, but this
drawback is counterbalanced by efficient support for
pipelining. Multiplier implementations using the carry-save
representation have been described in textbooks for at least
three decades [Hwan79], [Parh10]. A BSCB array multiplier
could be trivially implemented by using BSCB full-adder
cells, but the method described here is more efficient. First we
show that the matrix of partial products, generated by the
AND operation over the multiplier and multiplicand, can be
transformed into another matrix of BSCB numbers. Then, we

describe the accumulation process, which is similar to the
standard one, but with the results expressed in BSCB form.
Finally, we deduce Boolean equations for the output signals of
the accumulator cell, obtaining a rather direct implementation
using XOR and AND gates with the transformation of the
initial AND matrix into an XOR matrix. As an example of our
scheme, we describe the detailed design of a 5  5 array
multiplier, along with its performance, complexity, and
potential advantages.

2. BSCB Addition

Let capital letters denote integer variables and lowercase
letters stand for Boolean variables. Let S = A + B + C, with:

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

.222 .2

.222 .2

.222 .2

N n

N n

N n

N n

N n

N n

a a a aA
b b b bB

C c c c c













      


     


     

A BSCB expression of a three-operand sum can easily be
deduced from the carry-save expression. Let the sum Sn be
encoded by the Boolean variables rn+1 and un as follows:

Sn –1 0 1 2
rn+1 un 11 00 01 10

The BSCB representation expresses the addition result in the
range [–1, 2], a combination of the ranges for carry-save and
borrow-save representations.

The Boolean expressions for partial sum ns and carry ncy
for a standard carry-save full-adder are:
Carry-save addition:

1
. . .

n n n n

n n n n n nn

s a b c

cy a b c a c b

   


  

By assuming that for each position n, a carry was generated at
position n – 1, the partial sum un is complemented and the
“carry” signal rn+1 must have a positive action or a negative
one in case the assumption was wrong.
BSCB addition:

   1
.

n n n n

n n n n n

u a b c

a b b cr 

   


  

1nr 

nu
nb

na

nc
Fig. 1. Design of a BSCB full-adder.

Arithmetic Operators Based on BSCB Representation 2 44th Asilomar Conf. Signals, Systems, and Computers
D. Torno and B. Parhami, Nov. 5, 2010 Pacific Grove, CA, November 7-10, 2010

For a 4-bit adder, let incy and outcy be the input and output
carries. We define propagate and generate terms pn and qn:

1 00
, ,

n n n nn inn
withqp q cya b b a b

      ,

A 4-bit carry-lookahead adder is expressed by:

0 0

1 1 1 0 0

2 2 2 1 1 1 0 0

3 3 3 2 2 2 1 1 2 1 0 0

3 3 3 3 2 2 3 2 1 1

3 2 1 0 0

.

. . .

.

.

. . . .

in

out

p cys
qq ps a

q p q p p qs a

q p q p p q p p p qs a
cy p q p p q p p p qa

p p p p q

  

   

    


    


   

 


This structure is very similar to that of a standard carry-
lookahead adder and can thus be readily extended to wider
operands in the same way with group propagate and generate
signals. For a ripple-carry adder cell, we introduce 1nh  , a
signal propagated from cell n – 1 to cell n (Fig. 2). Then, the
equations for a ripple-carry implementation can be deduced
from the previous equations:

 
1 1

1

:
.

n n n n nn n

n nn n nn n

with
q qs a h b a

pp q a bh h

 



      
 

   

The testability of the proposed BSCB implementations is
improved over standard implementations. In the case of a
carry-lookahead adder [Kaji97], a set of 8 test vectors is
sufficient to detect all single stuck-at faults, thanks to the first
stage being composed only of XOR gates.

3. BSCB Mutiplication

Let the multiplier (X) and multiplicand (Y) be N bits wide:
1 2 1 0

1 2 1 0
.2 .22 .2N N

N Nx x x xX
 

 
    

1 2 1 0

1 2 1 0
.2 .22 .2N N

N N
y y y yY

 

 
    

Let the product be a 2N-bit binary number denoted by P:
2 1 2 2 1 0

2 1 2 2 1 0
.2 .22 .2N N

N N
p p p pP

 

 
    

Assuming the initial AND matrix is computed (see the upper
part of Fig. 3), we consider an area of bits set to the value 1
(gray shaded) and generated by the product of bits xk to xk+n–1

with bits yl to yl+m–1.

The summation of this area A gives following result:
1 1 1 1

.2 . .2 2 . 2
i k n i l m i k n i l m

i i i i
i i

i k i l i k i l

x yA
           

   

   
    
   
   

   1 1 1 12 2 2 . 2 2 2k n k k l m l l

A
           

   1 1 0 1 1 02 . 2 2 2 . 2 2 2k l n m

A
        

 02 . 2 2 2 2k l n m m n

A
    

The upper matrix can be transformed into the lower matrix,
where the considered area is represented by two rows in the
lower matrix, the other rows being zero. The first row is
comprised of 3 areas A1, A2 and A3 having respective sums:

2 2

1 2 3
1 1

2 , 2 , 2
i i l k n i l k

i i i

i l k n i l k i
A A A

       

       

     

ns

nb

na

1nh 

nh

1na 

Fig. 2. Design of a BSCB ripple-carry adder.

For the second row, the 3 areas are A4, A5 and A6:
2 2

4 5 6
1 1

2 , 2 , 2
i i l m k n i l m k

i i i

i l m k n i l m k i
A A A

         

         

      
The summation of areas A1 to A6 gives the same value A, as
justified in the following:

1 1

1 4
1 1

2 2 2 2
i i

i i l m k n l k n

i l k n i l m k n
A A

 
      

        

     
2 2

1 1

3 6
2 2 2 2

i l k i l m k
i i l m k l k

i i
A A

      
    

 

      
2

1 1

2
1

2 2 2
i l k n

i l k n l k

i l k
A

   
    

  

    
2

1 1

5
1

2 2 2
i l m k n

i l m k n l m k

i l m k
A

    
      

   

  
1 1 1 16

1 1 1 1
1

2 2 2 2
2 .

2 2 2 2

m n n mi
l k

i n m n m
i

A
    



    


   
       



 
6

0

1

2 . 2 2 2 2
i

l k m n n m

i
i

A


 



   

Figure 4 shows how an 8  8 AND matrix example is
transformed into the new matrix E.

12k n 2

12l

2l

... 2k 2...

...

0

12l m 

2l m

12l m 

0

0

0

0

0

0

0

0

0

0

0

...

...

... ...

0 1

... ...

0 0

...

0

0

0

0

...

...

0

0

0

0

...

...

...

22k 

0

0

0

...

...

00 1

... ...

... 1

1

1

1

...

12k n 2

12l

2l

... 2k n 2k 2
...

...

0

12l m 

2l m

12l m 

1

0

0

1

0

0

1

0

0

1

0

...

...

... ...

1 1

... ...

0 0

...

1

0

1

0

...

...

1

0

1

0

...

...

...

0

1

0

...

...

...

... ...

...

1

...

...

...

22k n 

0

...

0

...

...

12k

0

...

...

...

0

0

0

0

0

0

...

...

...

...

22k n 

...

12k 

0

...

...

...

22k 

1

11

1

...

2k n

...

Fig. 3. Transformation of an AND area.

Arithmetic Operators Based on BSCB Representation 3 44th Asilomar Conf. Signals, Systems, and Computers
D. Torno and B. Parhami, Nov. 5, 2010 Pacific Grove, CA, November 7-10, 2010

0x

0

i

E1

i

E2

i

E3

i

E4

i

E5

i

E6

i

E 1

i

E 

1x
0

y

1
y

2
y

3
y

4
y

5
y

6
y

7
y

8
y

2x3x4x5x6x7x

Fig. 4. Transformation of an example AND matrix.

It should be noted that the resulting matrix includes one row
and one column more than the initial matrix.

We intend to compute the summation of the transformed
matrix (named E) by using the BSCB digit set {–1, 0, 1, 2}.
Carry-free addition of two BSCB numbers is known to be
impossible. We thus consider the addition of accumulated
values expressed in the digit set {–1, 0, 1, 2} with values of
the matrix E expressed in the digit set {–1, 0, 1}. In matrix E
of Fig. 4, three different areas are added: area A, area B (gray
shaded), and area C. The two others at the extreme left and
right sides (left blank) have always a zero sum. The three lines
SumA, SumB, SumC show the summation result of the three
respective areas. The SumA (respectively, SumC) line is
composed of values between 0 and 1 (0 and –1); these two
cases will be treated further. We now focus on the summation
process for SumB. Let Ei be the ith row of the transformed
matrix and let Li be the ith iteration of the accumulated sum.
The initial accumulated sum L0 is initialized with the value E0

of the first row of the transformed matrix. We introduce a
transfer digit Ti from the set {–1, 0, 1} whose value is related
to Li: a carry (respectively, borrow) is propagated to the next
stage n + 1 if the accumulated value is 2 (respectively, –1).
The resulting accumulated sum of iteration i + 1 is defined
by: 1 1

1 1
2 *

i i i i i

n n n n nL L T T E
 

 
   

The matrix E is not composed of random values, but of values
related to x and y values, thus resulting in a regular structure
of values within the digit set {–1, 0, 1}. According to the E
values we examine how the accumulated sum is computed.

Let 1
1

i
nE 


be the value at row i + 1 and column n + 1 of the

matrix E, and let 1
1

i
ne 


and
1iZ 

be two Boolean variables such

that: 1

11 1 1

i

in n i i i i
y y ye x z



   
   

1
1

i
nE 
 can be expressed in the digit set {–1, 0, 1} according to:

1

1

i

nE


 –1 0 1
1

1

i

ne


 1iz  11 x0 01

To perform the sum computation, we distinguish accumulated

values i
nL and E matrix values 1

1
i
nE 
 in terms of their respective

values i
ne with initial values 0 0

1n nL E  .

Table I. Accumulation cases.

0

1

1

1

i

nE


 1iz 

1

1

i

ne




1
(1)

ii

n neL 


1 1
i i

n n
orL L   0 2

i i

n n
orL L 

1

1

0

0

1

1

0

0

0

1

1

2

0

2

1

1

0

2

1

1

1

0

1

0

0

1

1

1

0

0

1

1

0

0

101 101

210210

1
(1)

ii

n neL 


1
(0)

ii

n neL 


1
(0)

ii

n neL 


1i

nL


The underlying recurrence relation is defined as:

 

 
1

1

0 0,1,2
, :

1 1,0,1

i i

nn

i i

nn

i n if
e L

e L





   
 

   

 

 

1 1

1

1 1

1

0 0,1,2
:

1 1,0,1

i i

nn

i i

nn

then
e L

e L

 



 



   


   

It comes from the relation:
1

11

i i

in ne e z



  1

1 1 1
()

i

n n i n ii i i i
y y y ye x x



   
     

Cases in striped boxes never occur (they are “don’t cares”).

The recurrence relation allows the BSCB accumulation of all

cases over the matrix by keeping the accumulated sum in the

digit set {–1, 0, 1, 2}.

The accumulated value 1
i
nL  is expressed according to the

following encoding, where
i

nr and
1

i
nu 

are Boolean variables:

1
i
nL  –1 0 1 2

i
nr 1

i
nu  11 00 01 10

For the parity
1i

nu 
(resp., the carry-or-borrow

1
1

i
nr

), Table I is

transformed into the Karnaugh map of Table II (resp., III).

Table II. Parity Karnaugh map.

0

1

1iz 

1

1

i

ne




1

0

0

1

1

0

0

1

1

0

1

0

0

1

1

0

0

1

1

0

0

11

0

0

1

0

1

0

1

010011

01

10
i

nr

i

nu

1

i

nu 010011 10

1i

nu


Arithmetic Operators Based on BSCB Representation 4 44th Asilomar Conf. Signals, Systems, and Computers
D. Torno and B. Parhami, Nov. 5, 2010 Pacific Grove, CA, November 7-10, 2010

Table III. Carry-or-Borrow Karnaugh map.

0

0

1iz 

1

1

i

ne




0

0

0

1

0

0

0

1

1

0

0

1

1

0

0

0

1

0

0

0

0

01

0

0

1

0

1

0

1

010011

01

10
i

nr

i

nu

1

i

nu 010011 10

1

1

i

nr




The accumulation operation is :

   

1

1

11

1 1 1
.

i i i

n in n

i ii i

n i n n n

u u r z

e ur z r







  

   


  

The following “don’t care” cases are not possible:

1
i

nr  and
1

1
i

nu 
 and 1

11
0

i

ine z



 

1
i

nr  and
1

0
i

nu 
 and 1

11
1

i

ine z



 

This can be synthezised by the equation:

 1

1 1 1
. 0

i ii

n i n ne ur z


  
  

Or with a substitution:  1
. 0

i ii

n n ne ur 
 

This equation is a corollary of the recurrence relation. At each
stage i the accumulated sum Ln–1 (in terms of the Boolean
variables rn and un–1) not only expresses the sum but it also
conveys information about the multiplier and the multiplicand
values through the relations:

1
2

i

nL 
 (1

i

nr  and
1

0
i

nu 
) only if: 0

n i i
yx 

 

1
1

i

nL 
  (1

i

nr  and
1

1
i

nu 
) only if: 1

n i i
yx 

 

This property can be used to check the correctness of all
accumulated sums.
Figure 6 shows a 5 bit by 5 bit implementation of the BSCB
multiplication process described above. There are 3 different
stages, detailed in Fig. 5:

INIT cells process the initial values,
ACC cells compute the accumulated sums,
RCA cells convert from BSCB to standard binary form.

The left side of the matrix (area SumA in Fig. 4) is added by
setting the

i
nu input of the left diagonal of the ACC cells to yi.

The right side of the matrix (area SumC) is added by using a
dedicated right diagonal of cells with

i
ne set to 1iy  .

1

1nr 

1
y nx

1

nu

0z0z

1

1

i

nr




1i

nu


1iz  1

i

ne 

i

nu
i

nr

n
p

i

nu
i

nr 1

i

nu 

1i

nr


1

1

i

nr




Fig. 5. INIT, ACC, and RCA cells.

Propagation delay for an implementation without pipelining:
The propagation delay of the ACC cell is equivalent to two
XOR gates, thus identical to the propagation delay of a
standard full-adder (also two XOR gates for the worst case
path depending on the technology and the design). An N-bit
standard array multiplier is realized with (N – 1)2 full-adders
and the propagation delay from the partial product to final
stage (RCA or CLA) is equivalent to 2(N – 1) gates.The
propagation delay of the BSCB array multiplier is equivalent
to 2N gates, that is, 2 gates more than the standard array
multiplier whatever the operand widths.
Propagation delay for an implementation with pipelining:
The BSCB array multiplier is suitable for pipelined VLSI
implementation and should allow an equivalent or better
throughput over the standard one, given that the propagation
delay of the standard full-adder is two or three gates (worst
cases: two XOR gates or one XOR gate and two NAND gates,
depending on the technology) instead of two XOR gates for
the BSCB ACC cell.
A 5  5 array multiplier is shown in Fig. 6. In spite of the
overhead due to the extra row and diagonals of ACC cells,
beginning with operand width of 16 bits, the BSCB array
multiplier needs fewer gates (Table IV), because the ACC cell
is realized with 4 gates instead of 5 gates for the standard
full-adder (assuming that only 2 inputs gates are used and that
all kinds of gates have the same complexity in term of area).
Testability of the cells is improved by the use of XOR and
AND gates. For all cells (INIT, ACC, RCA) we obtain a
100% coverage for single stuck-at faults with 4 test vectors.

Table IV. Binary and BSCB array multipliers compared.

4. Conclusion

New implementations of binary adders were proposed based
on the binary stored-carry-or-borrow representation. It seems
that this BSCB representation leads rather directly to Reed-
Muller implementations of all known types of adders (half-,
full-, ripple-carry, carry-lookahead adders). A direct
advantage of this kind of implementation is that the testability
is improved over known implementations due to the use of
XOR gates, as demonstrated by prior work. A related
drawback is that the rise in switching activity leads to an
increase in power consumption.

A number of areas merit further exploration. One is the
derivation of new designs of XOR gates. A second area is that
of incorporating fault tolerance features in the adder designs.
For example, carry-lookahead adders might be checked

Arithmetic Operators Based on BSCB Representation 5 44th Asilomar Conf. Signals, Systems, and Computers
D. Torno and B. Parhami, Nov. 5, 2010 Pacific Grove, CA, November 7-10, 2010

through parity prediction. It is evident that the parities of the
two inputs can be used to generate the parities of the signals
generated by the first XOR stage in the adder. A third area for
further investigation is implementation with reversible logic,
perhaps using the method of parity preservation [Parh06] for
fault tolerance. These adders are particularly suitable for
reversible-logic implementation due to the fact that more than
3/4 of their circuits consist of XOR gates.

We also presented an array multiplier based on the BSCB
representation. Like ordinary array multipliers, our design is
VLSI-friendly and easily pipelined, with the added benefit of
simpler cells and lower overall latency. The multiplication
process is very similar to the process of the standard array
multiplier. Accumulation operations are performed without
carry propagation, but all intermediate accumulated sums are
expressed in the BSCB redundant representation instead of the
carry-save representation. Our architecture shows two main
characteristics: (1) The standard initial AND matrix is
replaced with an XOR matrix, and (2) A recurrence relation
between the XOR products and the partial accumulated sums
makes the implementation simpler and more reliable.

References

[Aviz61] A. Avizienis, “Signed-Digit Number Representations for
Fast Parallel Arithmetic,” IRE Trans. Electronic
Computers, Vol. 10, pp. 389-400, 1961.

[Hwan79] K. Hwang, Computer Arithmetic: Principles,
Architecture and Design, Wiley, pp. 69-96, 1979.

[Kaji97] S. Kajihara and T. Sasao, ”On the Adders with
Minimum Tests,” Proc. 5th Asian Test Symp., 1997.

[Parh90] B. Parhami, “Generalized Signed-Digit Number
Systems: A Unifying Framework For Redundant
Number Representation,” IEEE Trans. Computers, Vol.
39, pp. 89-98, January 1990.

[Parh06] B. Parhami, “Fault-Tolerant Reversible Circuits,”
Proc. 40th Asilomar Conf. Signals, Systems, and
Computers, 2006, pp. 1726-1729.

[Parh10] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford, 2nd ed., 2010.

[Phat94] D. S. Phatak and I. Koren, ”Hybrid Signed-Digit
Number Systems: A unified Framework for Redundant
Number Representations With Bounded Carry
Propagation Chains,” IEEE Trans. Computers, Vol. 43,
pp. 880-891, August 1994.

[Phat01] D. S. Phatak, T. Goff, and I. Koren, “Constant-Time
Addition and Simultaneous Format Conversion Based
on Redundant Binary Representations,” IEEE Trans.
Computers, Vol. 50, pp. 1267-1278, November 2001.

[Taka85] N. Takagi, H. Yasuura, and S. Yajima, ”High-Speed
VLSI Multiplication Algorithm with a Redundant
Binary Addition Tree,” IEEE Trans. Computers, Vol.
34, pp. 789-796, September 1985.

[Taka02] N. Takagi, “Multiple-Value-Digit Number Representa-
tions in Arithmetic Circuit Algorithms”, Proc. 32nd
IEEE Int’l Symp. Multiple-Valued Logic, 2002.

[Torn09] D. Torno, “Reed-Muller Adders Based on Binary Stored
Carry or Borrow Representation,” Proc. 18th Int’l
Workshop Post-Binary ULSI Systems, pp. 56-65, 2009.

[Zimm98] R. Zimmermann, Binary Adders Architecture for Cell-
Based VLSI and Their Synthesis, Hartung-Gore, 1998.

Fig. 6. Design of a 5  5 BSCB array multiplier.

1
y 4x

0z
0z

3x 2x 1x 0x

2z

0
p

1
p

2
p

3
p4

p
5

p6
p

7
p

8
p

9
p

3z

4z

5z

1
y

3
y

4
y

1

2r
1

3r
1

4r
1

5r
1

1u
1

2u
1

3u
1

4u

2

2r
2

3r
2

4r
2

5r
2

6r
2

2u
2

3u
2

4u
2

5u

3

3u
3

4u
3

5u
3

6u
3

3r
3

4r
3

5r
3

6r
3

7r

4

4u
4

5u
4

6u
4

7u
4

4r
4

5r
4

6r
4

7r
4

8r

2
y

3
y

3z

2z
2

y

0z

4z

5z
4

y

0
y

1
y

0z

4
y

3
y

4
y

2

6e
2

5e
2

4e
2

3e
2

2e

ACC

INIT

3

7e
7

6e
3

5e
3

4e
3

3e

4

4e
4

5e
4

6e
4

7e
4

8e

5

4u
5

5u
5

6u
5

7u
5

4r
5

5r5

6r
5

7r
5

8r
5

9r
5

8u

4

2u
4

3r
4

3u

3

2u
3

2r
3

1u

2

1u

RCARCARCARCA

5

3u

INITINITINIT

ACCACCACCACC

ACC ACCACCACCACC

ACC ACCACCACCACC

ACCACCACCACCACC

6

6r 6

5r
6

7r
6

8r
6

9r

4x 3x 2x 1x 0x

nx
i

y
i

n ie 

Row signals generation

Exor matrix generation

ix

i
y

ix

Inversion of x for last
stage

i
y

2
y

2

1r
2

0u

1

1r
1

0u
INIT

1
y

ACC

ACC

ACC

ACC

0

2z

0

3z

4z

RCA

4
y

Inversion of y for
diagonal

