
9 a4 IEEE TRANSACTIONS  ON ACOUSTICS,  SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 5 ,  OCTOBER 1984 

Jean Louis Nicolas was born  in Orleans, France, 
on January  17,  1942.  He received the Master's 
degree in mathematics, agrbgation, and Ph.D. 
degree from  the Ecole  Normale  Supkrieure, Paris, 
France, in  1962,1963,  and  1968, respectively. 

Between 1964  and  1977  he was successively 
Assistant at  the University of  Paris-Sorbonne, 
Professor at  the University of Sherbrooke, Sher- 
brooke, P.Q., Canada, and Lecturer at  the Uni- 
versity of Paris-Orsay. Since 1973  he has been 
Professor at  the University of Limoges, Limoges, 

France, where he directs a research team  on  computers  in  number  the- 
ory. He has  published over 30 research papers on number  theory,  many 
concerning optimization problems in integers. He has  also  published 
several survey papers on  the use of computers  in  arithmetic, factoriza- 
tion  methods,  and primality tests. Since 1982  he has been  the Dean of 
the  Faculty of Sciences of the University of Limoges. 

Dr. Nicolas is a  member of the  French Mathematics  Society  (of  which 
he was the Treasurer from  1976  to  1978), of the AmericanMathematics 
Society,  and of the Association  of Former Pupils of the Ecole  Normale 
Supkrieure. 

ARMA Model Maximum  Entropy  Power  Spectral 
Estimation 

MIGUEL A. LAGUNAS-HERNANDEZ, MEMBER, IEEE, M. EUGENIA SANTAMAR~A-PEREZ, 
STUDENT MEMBER, BEE, AND AN~BAL R. FIGUEIRAS-VIDAL, SENIOR MEMBER, IEEE 

Akfruct-In this paper we show that  the  appropriate selection of 
constraints  in  the variational formulation of  spectral estimation  leads to 
new models and more  freedom for the designer. We also  illustrate the 
relationships between the set of constraints  and  the underlying model 
in the procedure. 

The  rest of the paper  concentrates  on  obtaining maximum entropy 
ARMA models for spectral estimation, using cepstral constraints  and 
correlation constraints simultaneously. The nonlinearity that these 
kinds of  constraints  introduce is avoided by a  simple  linearization, that 
provides an  estimator which is easily implemented.  Finally, some  ex- 
amples  are given to illustrate  the  performance of the proposed method. 

T 
I. INTRODUCTION 

HE variational procedure  for spectral analysis consists of 
minimizing an objective function whch depends on  the 

estimator S(w), and that usually has the form JF[S(w)]  dw. 
This optimization is carried out under  a set of constraints 
which are frequently obtained  from  the periodogram P(w) = 
/X(w)/'/N of the recorded data  in  the standard  form 

1 "  
2n -n 

G[S(w)] exp (jmw) dw = - 5 G[P(w)] 

- exp (jmw) dw; 1 m 1 < Q. (1) 

Modifications of the periodogram, like the classical ones  pro- 
posed in [l] , can be used here. 
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The constraints that have been employed currently in spec- 
tral analysis procedures are those corresponding to G( .) = -, 
i.e., the biased correlation estimate. But we shall see in the 
sequel that  other possibilities can also be of interest. 

First, note  that  the constraints and their number serve to 
incorporate the specific knowledge we  have about  the signal 
under analysis to  the final estimator. Through these con- 
straints, we  use the information provided by the signal samples 
(N>> Q where N is the register length). This data  reduction 
from N signal data samples to Q (less than N )  constraints is an 
important drawback in  parametric spectral analysis. Under 
such a  reduction, it is  decisive to select the  type of constraints 
that reflects best the essential characteristics of the series 
under analysis. 

On the  other  hand, in  consideration of the importance of 
the constraints  and their  number, it should be noted  that  the 
selection of the objective amounts  to deciding how to use this 
information: a good selection will make adequate use of the 
information concerning the  true spectral density provided by 
the data samples and represented in  the procedure by the  con- 
straints.  Then, we can say that this pair of choices are closely 
related:  a  certain objective will be  appropriate for a  certain set 
of constraints, and vice  versa. Objective and  constraints will 
determine some characteristics of the resulting estimate like 
resolution, low sidelobe level, bias in the spectral peaks, under- 
lying spectral model,  etc. We can conclude that  to select cor- 
relation  constraints is not necessarily the best procedure in 
every  case, especially if we keep in mind that we need to main- 
tain  the number of these  constraints below the number of 
available data samples (N) .  
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We shall introduce  an  example to show  the versatility we 
pointed out before  and the wide range of possibilities open here. 
Let  us  assume that  the objective is the  entropy  [2] J log S(w) 
dw and  let  us assume three different families of constraints, 

G [P(W)l = P(w> (2a) 

G [P(w)] = log P(w) (2b) 

G[P(w)l = P(w> * 1% {P(w)> (2c) 

in order to compare  the  corresponding results. 
The basic procedure, in  the  three cases,  is to form  the La- 

grangian and set its derivative equal to zero. Depending  upon 
the objective function, we obtain  the  following. 

The use of  2Q + 1 constraints (2a) with I m I < Q t 1 leads to 
the well-known  AR  model  for S(w). 

S(w) = p Q  b(m) - exp (-iwm) - 1 
m=1 1 

S(w) * (1 + log (S(w))) = [ 5 b(m) - exp (-iwm,-l . 

A set of  2Q  constraints  (2b) ( 1  m I < Q, m # 0) and  one  con- 
straint  (2a) m = 0 will result in an MA model 

Q 
S(w)= 1 - 2 ~b(m)-cos(mw) /a(O). 

A set of  2Q + 1 constraints  (2c) ( 1  m I < Q)  will  give an AR 
model  for S(w) (1 t log S(w)). 

m =-Q 

Clearly, there is not  any  reason in spectral estimation  prob- 
lems to restrict ourselves to an AR,  an MA, or  an  ARMAmodel 
of S(w); the designer can use these  models  for other  function of 
S(w). Such use of  noncorrelation  constraints increases the pos- 
sibilities of  parametric  and  nonparametric spectral analysis [6] . 

It is obvious that  the statistical stability and the degree of 
nonlinearity  introduced in  the spectral estimation  method have 
to be  considered in selecting the objective  and constraints. 

In the  next  section we  will explore the alternatives that can 
be  used to implement  maximum  entropy  without  forcing AR 
models. 

11. MAXIMUM ENTROPY ARMA MODELS 
Since  we  have indicated that cepstral and  correlation  con- 

straints  produce MA and AR models when  ,we maximize the 
entropy as objective, it would seem that  to impose  these  two 
families of  constraints  simultaneously will provide  an ARMA 
model.  The  reader  can see in  [3]  how  the  conditions 

when J log (S(w))  dw is maximized leads to  an ARMA  (Q,  Q) 
model,  where the cepstrum values contribute  to  the  estimator 
zeros  and the correlation values to  the poles. We can  represent 
the ARMA estimator in the form 

S(W) = A t  * T/Bf T (4) 

where 

A = [ I ,  4 1 > ,  * * ,de)] ( 5 4  

' B = [b(O), b(l), . . * , b(Q)l (5b) 

T =  [ 1 , 2  * COS (w), * - - , 2  * cos (Qw)] '. (5c) 

We would like to emphasize  two  points  with  respect to this 
result. 

First: as  was  said in the previous section, maximum entropy 
can  be  associated  with  non-AR  models. 

Second: we  are working  with 4Q + 1 constraints, with  which 
we can  introduce  more specific information  about  the signal 
process than with the  2Q t 1 correlation constraints. 

To  find  the  vectors A and B that satisfy (3a)  and  (3b)  and 
maximize the  entropy is a  nonlinear  problem that would re- 
quire  nonlinear  programming  or iterative methods  for  its solu- 
tion. These methods  would have unknown  convergence  condi- 
tions,  and  the difficulties would  increase if  we impose positivity 
on the resulting spectral estimate S(w). Thus, we  will explore 
here the alternative of linearizing the  problem,  introducing  a 
computational  procedure  that  needs  only  FFT's  and Levinson's 
algorithm to obtain  the spectral estimate. 

To this end, we first impose the  autocorrelation constraints. 
Then, we search  for  a set of linear equations  that corresponds 
to  the cepstral constraints  and  that  provides  an  approximate 
(and  simple) solution. 

111. IMPOSING CORRELATION CONSTRAINTS 
We obtain  the  correlation values to be  imposed as the  Q + 1 

first points  of  the  IDFT  of  the  periodogram.  The rest of 
the  autocorrelation  sequence is extrapolated  by  the  applied 
procedure. 

Let us assume that  the  autocorrelation sequence  of  an ARMA 
model  whose  magnitude  corresponds to the  desired  estimator 
is completely  known.  Then, we  have 

A(z)/B(z) = N z )  (6)  
where 

A(z )  = 1 + 4 4 )  (2-4 t 24) 
Q 

q = 1  

B(z) = b(0) + b(q) * (2-4 + 2 4 )  
Q 

q = 1  
(7b) 

R(z )  = r(0) + 2 r(4) * (2-4 + zq. (7c) 
q = l  

From (6), we can  obtain  the following relationships among 
a( .  ), b( e ) ,  and r ( .  ) (see [4] ): 

1 = b(0) * r(0) 4- 2 ' b(m) * r(m) (sa) 
Q 

(3 b) m =  1 
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(8a) and (8b) can be rewritten  in the form  denoted by and 

A = R . B  (9) P(w> = exp c(0) + 2 c (q )  cos ( 4 w j  
m 

(1 6 )  
where q=1  

Note that (9) represents Q + 1  equations  with 2Q t 1  un- 
knowns; thus, we need Q more equations to find  these  un- 
knowns and these Q equations will  be obtained from  the 
cepstral constraints. 

On the  other  hand,  the number of autocorrelation values 
used in (9) is greater than Q t 1. As already shown, not all of 
them have to be  known, but we do have this  information  from 
the periodogram. A different possibility is to use the correla- 
tion causal image proposed by Cadzow [ 5 ]  which formulate 
the correlation  constraints using only Q t 1  correlation lags. 
We will select here the first possibility, using the required 
number of points  from the IDFT of the periodogram, although 
this number will be greater than  the number of correlation 
constraints. 

IV. IMPOSING CEPSTRAL CONSTRAINTS 
We will try  to impose the Q cepstral constraints  in an approx- 

imate  form by means of the following linear equations: 

with ce(0) and ce(q), 14 I > Q, the cepstrum values extrapo- 
lated by the procedure we use to obtain S(w). It is not diffi- 
cult to prove [3] that  (14) can be rewritten  in  a  form which 
reveals that cepstrum  constraints can be expressed as a data- 
dependent window acting on  the periodogram; i.e., 

- 

where 

m 

C(w) = Z(0) t 2 * Z(4) + cos (4w) (1 8) 
q=1 

and 

C(4) = c e ( d  - 4 4 ) .  (1 9) 

Now, the problem consists of obtaining an estimate ?(w) of 
c(w), in  order to use 

P(w> = ~ ( w )  . exp [?(w>l (20) 

a(q)  = b(0) * ~ ( 4 )  + 5 b(m) [?(m + 4)  + ?(I m - 9 /)I ; for evaluating R. 
* 

m=t Before doing so, it is worth gaining more insight into  the role 
(1 1) of cepstrum constraints  in parametric spectral estimation. 

When  we relate cepstrum  and  autocorrelation, we can obtain 
q = l , Q  

where ?( .) is a pseudocorrelation function  to be defined later. the following formula: 
In order to maintain the formulation equivalent to  the corre- 

lation  constraints [see (9)] , the set (1 1) is extended  with  a new 
coefficient $(O) in such a way that  (12) results, dc(m) 1 

dr(n) 2n P(w> 
- = - $: (2) . exp {i. (m - n)  w) - dw. 

& R . B  (1 2) 

where 

A^= [a^(O),a(l), . . * , a(Q)]' (13) This formula is obtained by differentiating (15) with respect 

and R is formed  from ?( - )  as R was obtained  from r( e )  in to r(n) ,  

(10). 
Matrix R is found in  a  form similar to  that used to compute 

R from P(w), but starting  from  a modified periodogram &w) 
yet  to be selected. In order to make this selection,  let us  as- 
sume that we know the estimate S(w) satisfying dl the cepstral 
constraints; then, we can write 

Q 

q=1  [ S(w) = exp ce(0) + 2 * c(4) * cos (qw) 

(1 4) 
q> Q 

(22) 

Then, since P(w) is the discrete Fourier transform of r( -), 
(21) follows. 

Let us underline the following two facts. 
1) Since P(w) is nonnegative, (21) reaches its maximum 

value when n is equal to m ;  i.e., a cepstrum coefficient mainly 
depends on  the corresponding autocorrelation coefficient. 

2)  Equation  (21) confirms the earlier comment relative to 
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the  contribution  of  the  cepstrum  depending essentially on zero 
locations, since l/P(w) is the integrand  of (21). 

Due to these  facts, we propose to estimate c(4) in the follow- 
ing manner : 

F(O) = estimate  of [ce(o) - c(o)] = a! * r ( ~ )  (234  

?(4) = estimate  of [ce(4) - c(q)] = a! - r (4) ;  4 = 1, N 

where N is the  number  of  data  points,  and 

l n  
= Jr  [W(w)l * dw, (24) 

%paramter denoting the increment  ratio.  Then, we can  obtain 
C(w) by using  (?3a)-(23c) with  a  formula  equivalent to (18), 
and  computing P(w) %cording t o  (20). This  procedure allows 
us to compute  matrix R. 

v. APPLYING THE  PROPOSED METHOD 
Given the sets of  equations (9) and  (12) for correlation  con- 

straints  and  cepstrum Constraints, respectively, we  can subtract 
them to form 

(R- R ) * B = E  (25) 

where 

E = [ ~ ( o ) -   a ( O ) , o ; . . , ~ ] ~ .  

2) Use the  DFT  to  obtain 

P(Z) = DFT [r(m)] , I = 0 , N  - 1 

F(Z)/a!=DFT [?(m)], I = O , N -  1 

where 

r(O), m = 0 

?(m) = r(m), Q t 1 < /ml < N  L otherwise. 
3)  Compute a! and ? ( I )  in the  form 

1 [1/W)1 
I =  0 

and  normalize ? ( I )  between 0 and 10 

P(z) = P(I) exp [?(I)] . 
4) Compute  the first Q t 1 values of 

IDFT [?(I) - P(Z)] . 
5) Apply the Levinson algorithm to  the previous Q t 1 

values to obtain 

Q 

q=1 

D(z )=  1 t 4 4 )  * 2-4.  

6) Filter the data  record to obtain A(z)  according to  the 

7) Form the  spectralestimator as 
procedure  reported in [4]. 

S(w), = A(w)/ P ( w >  * D*(w)l* 

Then,  computing  vector B j s  equivalent to solving an all-pole 
problem,  but  working  with R - R. Thus, we can  use  Levinson’s 
algorithm to obtain D(z),  which is related to B(2z) by B(z)  = We present  here  some results from different simulations 
(D(2) . D(l/z))A  This is possible because - R is a carried out in order to check the validity of the proposed 
matrix, since C(w) is normalized to be greater than  zzro,  in  scheme. 
order to guarantee the positiveness of  the  function P(w) - 

vious reasons to say that c(w) has to be positive. Therefore, 
the above  procedure is  suggested to allow  the useAof  Levin- 

malized to be  within 0 and 10  in  the examples).  From several 
examples carried out by thz  authors,  it can be concluded that spectral 
high dynamic ranges for C(w) will increase the  “cosmetic” The  considered cases are as follows. 

resolution  of  the resulting spectral estimate.  This  dynamic a) AR signal model,  with  denominator 1 - 2.762-’ t 

range is limited  by  software  constraints in  the  exponentiation 
of  the  function ?(w) involved in computing p(w). Simulta- 

b)  The same plus  white noise, SNR = 5 dB. The  estimator is 

neously, the use of Levinson’s algorithm  ensures  a  nonnegative 
result for B(w). c) Two  coherent sinusoids having normalized  frequencies 

0.2  and  0.215  with signal-to-noise ratio  of  20 dB each.  The 

Kay [41; in this  way, we guarantee  the  nonnegative  character d) ARMA signal model: (1 o.92-6)/(1 - o.9z-6). The esti- 
of the resulting estimate. mator is ARMA (10, 10). 

The  corresponding results are shown in Figs. 1-4.  Note  that 
steps. usually the peaks at  the SPD are narrower in the estimate than 

in the  actual spectrum.  This effect seems to be associated to 
the cepstrum  constraints  in MEM that, even in  the case of all- 

V. SOME EXAMPLES 

In all examples, we  use 256  data signal  samples. 
P(w). This normalization is reasonable, but  there are no  ob- The selected experiments are ‘“1 emaustive, Of course, 

since a  complete  comparison to  the  currently  reported  methods 
for spectral analysis would  require  an  enormous  quantity  of 

algorithm, forcing the unknown behavior of c(w) (nor- graphic results. Nevertheless, we  have selected significant ex- 
periments, to prove the interest of  the proposed  procedure  for 

3 . 8 1 ~ - ~  - 2 . 6 5 ~ ~ ~  t 0 . 9 2 ~ - ~ .  The  estimator is ARMA (5,5). 

A(w) can  be computed  by using the procedure  proposed  by estimator is ARMA (15, 15). 

We can summarize the proposed  method in the following 

1) Compute r(m) from the  data as follows: 

1 N - m  
r(m) = - c x(n + m) * x(n). pole processes under  test,  tend to give the poles closer to the 

N n = o  unit circle in  the estimate than their actual locations. More 
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Fig. 1. Case a): 1) actual pure AR(5); 2) ME with  correlation  and  cep- 
strum constraints ARMA (5,5). 
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Fig. 2. Case b): 1) actual pure AR(5)  without  showing  the  noise  level 
which  produces  an ARMA (5.5) random process; 2) ME estimate  with 
correlation  and  cepstrum  constraints ARMA (10, 10). 

specifically, since cepstrum  constraints  stem  from the estimate the case of Fig. 2 with SNR equal to  10 dB, and  the average 
for c(w), the  authors realize that  the  bandwidth of  the poles (Fig.  5(b), dashed line) compared to  the actual AR spectrum 
in  the resulting estimate decreases as the dynamic range of the (continuous line) without noise. It  is worthwhile to  note  that 
normalized C(w) increases. Finally, Fig. 5(a) shows the vari- this  plot reflects the  compromise  between variance and  the 
ance of the  estimate  for 20 trials of signal corresponding to resolution that  the procedure  exhibits in all the examples; other 
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Fig. 3. Case c): 1) actual pure tones  at 20 dB signal-to-noise ratio; 
2) ME estimate  with  autocorrelation  and  cepstrum  constraints ARMA 
(15, 15). 
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Fig. 4. Case d): 1) actual ARMA ( 6 , 6 ) ;  2) ME esthate  with  autocorre- 
lation and cepstrum  constraints ARMA (10,lO). 

compromises could be obtained by  changing the dynamic range spectral analysis that  opens new possibilities and generalizes 
for the estimate  of C(w). previous methods. 

Starting  from this discussion, and following the lines of 
Vi. CONCLUSIONS previous works, we  have considered an ARMA model that 

We have presented a discussion about  the use of the objec- maximizes the  entropy  under simultaneous  correlation  and 
tive function  and  constraints  in variational approaches to cepstrum  ,constraints by introducing  some reasonable approxi- 
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Fig. 5 .  (a)  Same  example  as Fig.  2, SNR equal to  20 dB, with  20 trials 
of data  records 256  samples  each. (b) Averaged (---) and  actual 
AR spectrum  without noise (-). 

mation. The  use of  cepstrum  constraints in order to locate ing courses in electronics,  network  analysis  and  synthesis,  communica- 
Zeros of the  model is emphasized. Finally, Some examples tions,  and  applications Of signal processing.  During 1981-1982 he was 

on leave with  a  Fullbright  grant at  the  Department of Electrical Engi- 
neering,  University of Colorado. Boulder. His research  activities have serve to  show the performance  of  this particular method. 
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