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ARMENDARIZ PROPERTY OVER PRIME RADICALS

Juncheol Han, Hong Kee Kim, and Yang Lee

Abstract. We observe from known results that the set of nilpotent ele-
ments in Armendariz rings has an important role. The upper nilradical
coincides with the prime radical in Armendariz rings. So it can be shown
that the factor ring of an Armendariz ring over its prime radical is also
Armendariz, with the help of Antoine’s results for nil-Armendariz rings.
We study the structure of rings with such property in Armendariz rings
and introduce APR as a generalization. It is shown that APR is placed
between Armendariz and nil-Armendariz. It is shown that an APR ring
which is not Armendariz, can always be constructed from any Armen-
dariz ring. It is also proved that a ring R is APR if and only if so is
R[x], and that N(R[x]) = N(R)[x] when R is APR, where R[x] is the
polynomial ring with an indeterminate x over R and N(−) denotes the
set of all nilpotent elements. Several kinds of APR rings are found or
constructed in the precess related to ordinary ring constructions.

1. Introduction

Throughout this note every ring is associative with identity unless other-
wise stated. But every definition shown in this note can be applicable to
rings possibly without identity. Given a ring R (possibly without identity),
N∗(R), N∗(R), and N(R) denote the prime radical, the upper nilradical (i.e.,
sum of nil ideals), and the set of all nilpotent elements in R, respectively.
It is well-known that N∗(R) ⊆ N∗(R) ⊆ N(R). We use R[x] to denote
the polynomial ring with an indeterminate x over R. For f(x) ∈ R[x], let
Cf(x) denote the set of all coefficients of f(x). We use deg f(x) to denote
the degree of f(x). Denote the n by n full (resp., upper triangular) ma-
trix ring over R by Matn(R) (resp., Un(R)). Let Dn(R) denote the subring
{m ∈ Un(R) | the diagonal entries of m are all equal} of Un(R). Use eij for
the matrix with (i, j)-entry 1 and elsewhere 0. Zn denotes the ring of integers
modulo n.
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A ring is called reduced if it has no nonzero nilpotent elements. For a reduced
ring R, Armendariz [4, Lemma 1] proved that

ab = 0 for all a ∈ Cf(x), b ∈ Cg(x) whenever f(x)g(x) = 0

where f(x), g(x) ∈ R[x]. Based on this result, Rege et al. [29] called a ring
(possibly without identity) Armendariz if it satisfies this property. So reduced
rings are clearly Armendariz. This fact will be used freely in this note. A ring
is called Abelian if every idempotent is central. Armendariz rings are Abelian
by the proof of [1, Theorem 6] or [18, Corollary 8].

Antoine [2] called a ring R nil-Armendariz if ab ∈ N(R) for all a ∈ Cf(x) and
b ∈ Cg(x) whenever f(x)g(x) ∈ N(R)[x] for f(x), g(x) ∈ R[x]. Antoine showed
that Armendariz rings are nil-Armendariz in [2, Proposition 2.7]. But the
converse need not hold with the help of [2, Proposition 2.8] since Armendariz
rings are Abelian. Antoine also showed that if R is a nil-Armendariz ring, then
N(R) forms a subring of R, in [2, Theorem 3.2]. While, Kim et al. proved
that a ring R is nil-Armendariz if and only if ab ∈ N∗(R) for all a ∈ Cf(x), b ∈
Cg(x) whenever f(x)g(x) ∈ N∗(R) for f(x), g(x) ∈ R[x] in [22, Theorem 11].
Applying this result onto prime radicals, we will call a ring R Armendariz-over-

prime-radical (simply, APR) provided that

f(x)g(x) ∈ N∗(R)[x] implies ab ∈ N∗(R) for all a ∈ Cf(x) and b ∈ Cg(x),

where f(x), g(x) ∈ R[x]. So R is APR if and only if R/N∗(R) is Armendariz.
N0(R) means the Wedderburn radical (i.e., the sum of all nilpotent ideals) of
given a ring R.

Lemma 1.1. (1) [23, Lemma 2.3(5)] If a ring R is an Armendariz ring, then

N0(R) = N∗(R) = N∗(R).
(2) [2, Proposition 2.7] Armendariz rings are nil-Armendariz.

(3) [2, Theorem 3.5] A ring R is nil-Armendariz if and only if R/N∗(R) is

Armendariz.

(4) The class of Armendariz rings is closed under subrings (possibly without

identity) and direct products.

(5) If R is an Abelian ring, then R/N is also Abelian for every nonzero nil

ideal N of R.

(6) Let R be an APR ring. If f1, . . . , fn ∈ R[x] are such that f1 · · · fn ∈
N∗(R)[x], then a1 · · · an ∈ N∗(R) for all ai ∈ Cfi .

(7) If R is an APR ring, then N∗(R) = N∗(R).
(8) If a nil ring is APR, then it is a prime radical ring.

Proof. (4) is easily proved, and (5) is shown by [27, Proposition 3.7.2].
(6) The proof is quite similar to one of [1, Proposition 1], but we write

it for completeness. Let f1 · · · fn ∈ N∗(R)[x] for f1, . . . , fn ∈ R[x]. Then
f1(f2 · · · fn) ∈ N∗(R)[x], so a1b ∈ N∗(R) for any a1 ∈ Cf1 and b ∈ Cf2···fn

since R is APR. This yields a1(f2 · · · fn) ∈ N∗(R)[x] and (a1f2)(f3 · · · fn) ∈
N∗(R)[x]. Since R is APR and a1a2 ∈ Ca1f2 for a2 ∈ Cf2 , we have (a1a2)c ∈
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N∗(R) for c ∈ Cf3···fn . This yields a1a2(f3 · · · fn) ∈ N∗(R)[x]. Continuing, we
finally obtain that a1 · · · an ∈ N∗(R) for all ai ∈ Cfi .

(7) Let R be an APR ring. Then R̄ = R/N∗(R) is Armendariz by definition,
and soN∗(R̄) = N∗(R̄) by (1). ButN∗(R)/N∗(R) = N∗(R̄) = N∗(R/N∗(R)) =
0, entailing N∗(R) = N∗(R).

(8) is an immediate consequence of (7). �

Comparing Lemma 1.1(1) and (7), one may conjecture that if R is an APR
ring, then N0(R) = N∗(R) = N∗(R). However there exists a counterexample
by [25, Example 2.4(2)].

Example 1.2. Let K be a field and K〈x, y〉 be the free algebra generated
by noncommuting indeterminates x, y over K. Following [25, Example 2.4(2)],
consider an infinite word w = yxyxxyxxxyxxxxyxxxxx · · · =

∏∞

i=1 yx
i, let

I be the ideal of K〈x, y〉 generated by the set of all words each of which is
not a subword of w, and R = K〈x, y〉/I. Then N∗(R) = RȳR = N∗(R) =
N(R), whence R is APR since R/N∗(R) is reduced. But ȳ /∈ N0(R) by the
computation in [25, Example 2.4(2)].

Recall that Armendariz rings are Abelian, so we get the following by Lemma
1.1(2), (5) and [2, Proposition 2.4].

Corollary 1.3. Let R be an Armendariz ring. Then R/N is Abelian and

nil-Armendariz for any nil ideal N of R.

The converse of Lemma 1.1(5) need not hold as we see in R = U2(A) over
a reduced ring A. Note that N = ( 0 A

0 0 ) is the only nonzero nil ideal of R.
R/N is Abelian but R is non-Abelian. If N is non-nil, then Lemma 1.1(5)
need not hold. Let F be a field and R = F 〈a, b〉 be the free algebra generated
by noncommuting indeterminates a, b over F . Then R is a domain (hence
Abelian). Let N be the ideal of R generated by a2 − a. Then clearly N is
non-nil, and R/N is non-Abelian as can be seen by ā2 = ā and āb̄ 6= b̄ā.

Theorem 1.4. (1) APR rings are nil-Armendariz.

(2) Armendariz rings are APR.

(3) For a ring R whose prime factor rings are Armendariz, the following

conditions are equivalent:
(a) R is APR;
(b) R/N∗(R) is a subdirect product of prime Armendariz rings;
(c) R/N∗(R) is a subdirect product of Armendariz rings.

Proof. (1) is obtained by Lemma 1.1(3), (7).
(2) Let R be an Armendariz ring. Then N∗(R) = N∗(R) by Lemma 1.1(1).

Let f(x)g(x) ∈ N∗(R)[x] for f(x), g(x) ∈ R[x]. Then we also have f(x)g(x) ∈
N∗(R). But since R is Armendariz, R is nil-Armendariz by Lemma 1.1(2) and
so Lemma 1.1(3) implies ab ∈ N∗(R) = N∗(R) for all a ∈ Cf(x) and b ∈ Cg(x),
entailing R is APR.
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(3) Let R be an APR ring whose prime factor rings are Armendariz. Then
R/N∗(R) is a subdirect product of prime Armendariz rings. The remainder is
obtained from the fact that the class of Armendariz rings is closed under direct
products and subrings. �

Here one may suspect that prime factor rings of Armendariz rings are also
Armendariz. However there exist examples erasing the possibility. Let R be
the domain of quaternions with integer coefficients (hence Armendariz). But
for any odd prime p ≥ 3, the ring R/pR is isomorphic to Mat2(Zp) by the
argument in [14, Exercise 2A]. Thus R/pR is not Armendariz for any prime
p ≥ 3.

We obtain the following by Theorem 1.4, Lemma 1.1(3), and [2, Theorem
3.2].

Corollary 1.5. (1) Let R be a ring. R is Armendariz ⇒ R/N∗(R) is Armen-

dariz ⇒ R/N∗(R) is Armendariz.

(2) If R is an APR ring, then N(R) forms a subring of R without identity.

Homomorphic images of Armendariz rings need not be Armendariz as above.
But we refer to another example provided by Anderson and Camillo [1, Example
10]. Following to them, let K be a field and R = K[s, t] be the polynomial
ring with commuting indeterminates s, t over K. Consider the factor ring S =
R/(s2R+ t2R). Then S is not Armendariz by the equality (s+ tx)(s− tx) = 0
with st 6= 0.

A ring R is called (von Neumann) regular if for each a ∈ R there exists
x ∈ R such that a = axa. Von Neumann regular rings are semiprime by [13,
Corollary 1.2]; hence a regular ring R is APR if and only if Armendariz if and
only if R is Abelian if and only if R is reduced with the help of Corollary 1.5(2)
and [13, Theorem 3.2].

Marks [28] called a ring R NI if N∗(R) = N(R). It is obvious that R is NI
if and only if N(R) forms a two-sided ideal if and only if R/N∗(R) is reduced.
NI rings are nil-Armendariz by [2, Proposition 2.1], but there exist Armendariz
(hence nil-Armendariz by Lemma 1.1(2)) rings which are not NI by [2, Example
4.8]. The following shows that the converse of Theorem 1.4(1) need not hold.

Example 1.6. We refer the ring in [19, Example 1.2]. Let S be a reduced
ring, n be a positive integer and Rn = U2n(S). Each Rn is an NI ring by [19,
Proposition 4.1(1)]. Define a map σ : Rn → Rn+1 by A 7→ (A 0

0 A ), then Rn

can be considered as a subring of Rn+1 via σ (i.e., A = σ(A) for A ∈ Rn).
Notice that D = {Rn, σnm}, with σnm = σm−n whenever n ≤ m, is a direct
system over I = {1, 2, . . .}. Set R = lim

−→
Rn be the direct limit of D. Then

R = ∪∞
n=1Rn, and R is an NI (hence nil-Armendariz) ring by [19, Proposition

1.1], and moreover N∗(R) = 0 by [21, Theorem 2.2(1)]. Thus R is not APR
by Lemma 1.1(7) since N∗(R) = {m = (mij) ∈ R | mii = 0 for all i} 6= 0. In
fact, consider polynomials f(x) = e11 + e12x, g(x) = e22 − e12x over R. Then
f(x)g(x) = 0, but e11e12 = e12 6= 0 and e12(−e22) = −e12 6= 0.
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The converse of Theorem 1.4(2) also need not hold by the following.

Example 1.7. Let T be any commutative ring and R = U2(T ). Then N∗(T ) =

N∗(T ) = N(T ) by a well-known fact, and so N∗(R) =
(

N∗(T ) T

0 N∗(T )

)

. Thus

R/N∗(R) ∼= T/N∗(T )⊕ T/N∗(T ) and so R/N∗(R) is a reduced (hence Armen-
dariz) ring. This implies that R is APR. But R is not Armendariz since it is
non-Abelian.

As we see in Example 1.7, Un(A) is APR when given a ring A satisfies the
property that A/N∗(A) is reduced. But Matn(A) cannot be APR for n ≥ 2
over any ring A because Matn(A)/N∗(Matn(A)) cannot be Abelian.

Birkenmeier et al. [8] used the term 2-primal to define a ring with such
property as A, i.e., a ring R is 2-primal if and only if N∗(R) = N(R) if and
only if R/N∗(R) is reduced. Thus Un(A) is APR if A is a 2-primal ring for
n = 1, 2, . . .. It is obvious that 2-primal rings are NI, but the converse need
not hold by Birkenmeier et al. [9, Example 3.3], Marks [28, Example 2.2], or
[19, Example 1.2].

Thinking of Un(A) being APR over a 2-primal ring A, one can conclude
that APR rings need not be Abelian. This is compared with the fact that
Armendariz rings are Abelian. Abelian rings are also need not be APR by the
following.

Example 1.8. We refer the ring in [21, Theorem 2.2(2)]. Let S be a reduced
ring, n be a positive integer and Rn = D2n(S). Each Rn is a 2-primal ring
by [8, Proposition 2.5]. Define a map σ : Rn → Rn+1 by A 7→ (A 0

0 A ), then
Rn can be considered as a subring of Rn+1 via σ (i.e., A = σ(A) for A ∈ Rn).
Notice that D = {Rn, σnm}, with σnm = σm−n whenever n ≤ m, is a direct
system over I = {1, 2, . . .}. Set R = lim

−→
Rn be the direct limit of D. Then

R = ∪∞
n=1Rn, and R is an Abelian ring by [16, Lemma 2]. However N∗(R) = 0

by [21, Theorem 2.2(2)], so this yields that R is not APR by [24, Example 3].
In fact, let f(x) = e13 + (−e12 + e13)x and g(x) = e24 + (e24 + e34)x in R[x],
then f(x)g(x) = 0 but e13(e24 + e34) = e14 6= 0, entailing that R/N∗(R) ∼= R
is not Armendariz.

Recall that a regular ring R is APR if and only if Armendariz if and only if
R is Abelian if and only if R is reduced. A ring R is usually called π-regular if
for each a ∈ R there exist a positive integer n and b ∈ R such that an = anban.
Regular rings are clearly π-regular. So one may ask whether Abelian π-regular
rings are APR or not. However the answer is negative by the following. Let
S be a division ring in Example 1.8. Then R in Example 1.8 is an Abelian
π-regular ring by the argument in [20, Example 1.5]. But R is not APR by
Example 1.8.

Recall that the class of Armendariz rings is closed under subrings. So one
may naturally ask whether subrings of APR rings are APR. However, in fact,
we do not know of any example of an APR ring that has a non-APR subring.
We raise this argument as a question.
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Question. Is the class of APR rings closed under subrings?

But we next examine some kinds of subrings that inherit the APR property.
Let R be a ring. Following [27], a ∈ R is strongly nilpotent if any sequence a0 =
a; a1 ∈ a0Ra0; a2 ∈ a1Ra1; · · · ; an+1 ∈ anRan; · · · becomes zero ultimately.
By [27, Proposition 3.2.1], N∗(R) is the set of all strongly nilpotent elements
of R.

Proposition 1.9. Let R be an APR ring and S be a subring (possibly without

identity).
(1) If N∗(S) ⊆ N∗(R), then S is APR.

(2) If S is a proper ideal of R, then S is APR as a ring without identity.

(3) If R is an NI ring, then S is APR.

(4) If e2 = e ∈ R is central in R, then eR is APR.

Proof. (1) Assume N∗(S) ⊆ N∗(R). Let f(x)g(x) ∈ N∗(S)[x] for f(x), g(x) ∈
S[x]. Then f(x)g(x) ∈ N∗(R)[x] by assumption. Since R is APR, ab ∈ N∗(R)
for all a ∈ Cf(x) and b ∈ Cg(x). The inclusion S ∩N∗(R) ⊆ N∗(S) is naturally
obtained from the elementary fact that the prime radical is the set of all strongly
nilpotent elements. This yields S∩N∗(R) = N∗(S), combining the assumption
N∗(S) ⊆ N∗(R). So we have ab ∈ N∗(S). Thus S is APR.

(2) If S is an ideal of R, then N∗(S) ⊆ N∗(R) through a simple computation,
so S is APR by (1).

(3) LetR be NI. ThenN∗(R) = N(R). But since R is APR, N∗(R) = N∗(R)
by Lemma 1.1(7), entailing N∗(R) = N∗(R) = N(R). So R is 2-primal, and
this yields that S is 2-primal (hence APR) by [8, Proposition 2.2]. But we here
take another proof, using only a result in this note.

Since R is APR, N(R)[x] = N(R[x]) by Theorem 2.1(2) to follow, so this
yields N(S)[x] ⊆ S[x] ∩N(R[x]) = N(S[x]). Next let f(x)g(x) ∈ N∗(S)[x] for
f(x), g(x) ∈ S[x]. Then

f(x)g(x) ∈ N∗(S)[x] ⊆ N(S)[x] ⊆ N(S[x]) ⊆ N(R[x]) = N(R)[x] = N∗(R)[x]

by the result above. But since R is APR, we get ab ∈ N∗(R) for all a ∈ Cf(x)

and b ∈ Cg(x). This yields ab ∈ S∩N∗(R) ⊆ N∗(S), concluding that S is APR.

(4) Assume that e2 = e ∈ R is central in R. Note eR ∩ N∗(R) =
eN∗(R). Given eb ∈ eR, consider a sequence eb0, eb1, eb2, . . . , ebn, . . . with
eb0 = eb, eb1 ∈ eb0Reb0 = eb0eReb0, eb2 ∈ eb1Reb1 = eb1eReb1, . . . , ebn ∈
ebn−1Rebn−1 = ebn−1eRebn−1, . . .. Then this is eventually zero if eb ∈ N∗(eR).
Thus eb ∈ N∗(R), so eb ∈ eR ∩N∗(R) = eN∗(R), entailing N∗(eR) ⊆ eN∗(R).
Consequently N∗(eR) = eN∗(R), and thus eR is APR by (1). �

We denote the direct product (resp. direct sum) by
∏

(resp. ⊕).

Corollary 1.10. Let Ri be rings for i ∈ I. Then
∏

i∈I Ri (⊕i∈IRi) is APR

if and only if Ri is APR for all i ∈ I, where ⊕i∈IRi is a ring possibly without

identity.
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Proof. It is simply shown that N∗(
∏

i∈I Ri) =
∏

i∈I N∗(Ri) and N∗(⊕i∈IRi) =

⊕i∈IN∗(Ri), entailing
∏

i∈I
Ri

N∗(
∏

i∈I
Ri)

∼=
∏

i∈I
Ri

N∗(Ri)
and ⊕i∈IRi

N∗(⊕i∈IRi)
∼= ⊕i∈I

Ri

N∗(Ri)
.

So the proof is obtained by Proposition 1.9(4) and the fact that (⊕i∈IRi)[x] ∼=
⊕i∈IRi[x] and (

∏

i∈I Ri)[x] is isomorphic to a subring of
∏

i∈I Ri[x]. �

As a special case of Corollary 1.10, we have that a ring R is APR if and only
if eR and (1 − e)R are both APR for a central idempotent e of R.

We next find a kind of shape of an ideal I of a ring R so that R/I can be
APR. The following is comparable with [2, Proposition 2.4].

Proposition 1.11. Let R be a ring and I be an ideal of R with I ⊆ N∗(R).
Then R is APR if and only if so is R/I.

Proof. Let R̄ = R/I. Note N∗(R)
I

= N∗(R̄). Suppose that f(x), g(x) ∈ R[x]

satisfy f(x)g(x) ∈ N∗(R)[x]. Then f̄(x)ḡ(x) ∈ N∗(R̄)[x]. Since R/I is APR, it
follows that āb̄ ∈ N∗(R̄) for all a ∈ Cf(x), b ∈ Cg(x). This yields ab ∈ N∗(R).
The proof of the converse is similar. �

Proposition 1.11 need not hold when I * N∗(R) as we see in the following.
LetK be a field and R1, R2 beK-algebras. R1∗KR2 denotes the ring coproduct
of R1 and R2 (see Antoine [2] and Bergman [6, 7] for details).

Example 1.12. (1) The first construction is essentially due to [2, Theorem
4.7]. Let K be a field and A be a K-algebra. Let C = K[b] be the polynomial
ring with an indeterminate b over K, and I be the ideal of C generated by bn

for n ≥ 2. Set B = C/I and R = A ∗K B. Then the following conditions are
equivalent by [2, Theorem 4.7], [22, Theorem 1.1], and Theorem 1.4:

(1) R is Armendariz;
(2) R is APR;
(3) R is nil-Armendariz;
(4) A is a domain and U (A) = K\{0};
(5) N(R) forms a subring of R, where U (A) means the group of units in A.

Next we use the ring in [22, Example 1.2(2)]. Let K be the field of integers
modulo 2 and C = K[a] the polynomial ring with an indeterminate a over K.
Let D = K[b] be the polynomial ring with an indeterminate b over K. Let J be
the ideal of D generated by b2. Set A = C ⊕ C and B = D/J . Identify b with
its image for simplicity. Then b2 = 0. Put R = A ∗K B. Then U (A) = K\{0}
but A is not a domain; hence R is not APR by the preceding result. In fact,
letting

f(x) = b(a, 0) + b(a, 0)bx and g(x) = (0, a)− b(0, a)x ∈ R[x],

f(x)g(x) = 0 but b(a, 0)b(0, a) is non-nilpotent (i.e., b(a, 0)b(0, a) /∈ N∗(R)).
Note that A ∗K D is reduced and R = A∗KD

I
, I 6= 0, and N∗(A ∗K D) = 0

where I is the ideal of A ∗K D generated by J .
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(2) Let A be a semiprime APR ring and R = A ⊕ Matn(A) with n ≥ 2.
Then N∗(R) = 0. Letting I = 0⊕Matn(A), we have an APR ring R

I
∼= A. But

R is not APR by Corollary 1.10. Note I * N∗(R).

Homomorphic images of APR (even if reduced) rings need not be APR by
Example 1.12(1).

In the following we find a criterion by which we can find APR homomorphic
images. Huh et al. showed in [18, Theorem 11] that if R/I is an Armendariz
ring and I is a reduced ring (without identity), then R is Armendariz, where
R is a ring and I is a proper ideal of R. In this situation, R need not be
Armendariz when I is Armendariz but not reduced, as can be seen by U2(A)
over a reduced ring A. But R will be shown to be APR in such a case as in
the preceding argument.

Theorem 1.13. Let R be a ring and I be a proper ideal of R with N∗(R) ⊆ I.
If R/I is an Armendariz ring and I is a 2-primal ring (without identity), then
R is APR.

Proof. Suppose that R̄ = R/I is Armendariz and I is 2-primal. From N∗(R) ⊆
I, we have N∗(R) ⊆ N∗(I). Since I is an ideal of R, N∗(I) ⊆ N∗(R) and so
N∗(R) = N∗(I). Since I is 2-primal, I/N∗(R) is reduced.

Let f(x)g(x) ∈ N∗(R)[x] for f(x) =
∑m

i=0 aix
i, g(x) =

∑n

j=0 bjx
j ∈ R[x].

ThenN∗(R) ⊆ I implies f(x)g(x) ∈ I[x], and since R/I is Armendariz, aibj ∈ I
for all i, j.

We apply the proof of [18, Theorem 11], and proceed by induction on m.
If m = 0, then we are done, so suppose m ≥ 1. From f(x)g(x) ∈ N∗(R)[x],
a0b0 ∈ N∗(R).

Here assume that a0bl /∈ N∗(R) for some l. Take s ∈ {1, 2, . . . , n} such that s
is the smallest one with respect to the property a0bs /∈ N∗(R). So a0bk ∈ N∗(R)
for all k ∈ {0, . . . , s− 1}. Now consider a product

(as−kbk)(a0bs)
2 = as−kbk(a0bs)a0bs.

Letting c = bk(a0bs)a0, c ∈ I and c2 = bk(a0bs)(a0bk)(a0bs)a0 ∈ N∗(R), so
c ∈ N∗(R) (hence (as−kbk)(a0bs)

2 ∈ N∗(R)) since I/N∗(R) is reduced.
The coefficient of the term of degree s in f(x)g(x) ∈ N∗(R)[x] is a0bs +

a1bs−1 + · · ·+ asb0 = a0bs +
∑s−1

k=0 as−kbk ∈ N∗(R) (letting av = 0, bw = 0 for
some v, w if necessary). Multiplying (a0bs)

2 to this sum on the right side, we
obtain

(a0bs +

s−1
∑

k=0

as−kbk)(a0bs)
2 = (a0bs)

3 + p ∈ N∗(R)

for some p ∈ N∗(R) by the preceding result. Then (a0bs)
3 ∈ N∗(R), and this

yields a0bs ∈ N∗(R) since I/N∗(R) is reduced. This induces a contradiction,
and hence a0bj ∈ N∗(R) for all j. Thus we have a0g(x) ∈ N∗(R)[x], so (a1x+
· · ·+ amxm)g(x) ∈ N∗(R)[x]. This yields (a1 + · · ·+ amxm−1)g(x) ∈ N∗(R)[x].
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Letting f1(x) = a1 + · · ·+ amxm−1, f1(x)g(x) ∈ N∗(R)[x] with deg f1(x) =
m = 1. So, by the induction hypothesis, we get ahbj ∈ N∗(R) for all h, j with
1 ≤ h ≤ m. Consequently aibj ∈ N∗(R) for all i, j. �

Let A be a 2-primal ring and R = Un(A). Then R is APR by Theorem
2.1 to follow. But we here apply Theorem 1.13 to show R being APR. Let
I = {m = (mij) ∈ R | mii ∈ N∗(A) for all i}. Then I = N∗(R), and R/I is
reduced (hence Armendariz) since A is 2-primal. Moreover I is a 2-primal ring
since I = N∗(R) implies N∗(I) = I, whence R is APR by Theorem 1.13.

As another application of Theorem 1.13, consider the Armendariz (hence
APR) ring in [2, Example 4.10]. Let K be a field and A = K〈a, b〉 be the free
algebra generated by noncommuting indeterminates a, b over K. Let H be the
ideal of A generated by ab, and write B = A/H . Next let I be the ideal of
B generated by b̄ and write R = B/I. Then R is isomorphic to K〈a〉 = K[a]
which is a domain. Moreover N(I) = Rb̄āR with (Rb̄āR)2 = 0 such that
I/N(I) is isomorphic to K〈b〉 = K[b] which is a domain. Thus R is APR by
Theorem 1.13.

Any finite dimensional algebra need not be APR as can be seen by Matn(A)
(n ≥ 2) over any (finite) ring A. We next investigate some basic form of finite
APR rings. We use the term “minimal” to mean “having smallest cardinality”.
GF (pn) denotes the Galois field of order pn.

Proposition 1.14. (1) Every minimal noncommutative APR ring is isomor-

phic to U2(Z2).
(2) Every minimal non-Armendariz APR ring is isomorphic to U2(Z2).

Proof. Eldridge proved that a finite ring is commutative if it has a cube free
factorization in [12, Theorem], and that if a ring A is of order p3, p a prime, then
A ∼= U2(GF (p)) in [12, Proposition]. Thus every minimal noncommutative ring
is isomorphic to U2(Z2). But U2(Z2) is 2-primal (hence APR), so this yields
that every minimal noncommutative APR ring is isomorphic to U2(Z2).

Next assume that the order of a finite ring R is 4. Then R is commutative
by [12, Theorem]. Indeed, we can obtain by applying the proof of [12, Lemma]
that R is isomorphic to GF (22) or Z2 ⊕ Z2 when R is semiprimitive; and R is
isomorphic to Z4 or D2(Z2) when R is non-semiprimitive. But every case is
Armendariz with the help of [24, Proposition 2] and [29, Proposition 2.1].

Therefore we must conclude that every minimal non-Armendariz APR ring
is isomorphic to U2(Z2). �

Proposition 1.15. (1) Let R be a left or right Artinian ring. Then R is APR

if and only if R is 2-primal.

(2) Suppose that every prime factor ring of a ring R is left and right Noe-

therian. Then R is APR if and only if R is 2-primal.

Proof. It suffices to show that if R is APR, then R is 2-primal.
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(1) By hypothesis, R/N∗(R) is semisimple Artinian. If R is APR, then
R/N∗(R) is Armendariz (hence Abelian by [18, Corollary 8]), so this yields
that R/N∗(R) is a finite direct product of division rings. Thus R is 2-primal
since R/N∗(R) is reduced.

(2) Let R be APR. Then R/N∗(R) is a subdirect product of prime Armen-
dariz rings R/Pi by Theorem 1.4(3), letting N∗(R) = ∩i∈IPi. Here every R/Pi

is reduced (hence a domain) by [1, Theorem 7] since R/Pi is left and right
Noetherian by hypothesis. This yields that R/N∗(R) is reduced, entailing that
R is 2-primal. �

Every minimal APR ring must be 2-primal by Proposition 1.15, thinking of
Proposition 1.14. If given a ring R is left and right Noetherian, then R is APR
if and only if R is 2-primal by Proposition 1.15(2).

2. More examples

In this section we argue about ordinary ring extensions (e.g., polynomial
rings) over APR rings. R[[x]] denotes the power series ring with an indetermi-
nate x over a ring R. Let X denote a nonempty set of commuting indetermi-
nates over R. The polynomial ring with X over R is denoted by R[X ], writing
R[x] when X = {x}.

Theorem 2.1. (1) A ring R is APR if and only if so is R[X ].
(2) If a ring R is APR, then N(R[X ]) = N(R)[X ].

Proof. (1) LetR be an APR ring. Then R/N∗(R) is Armendariz, so R
N∗(R) [X ] ∼=

R[X]
N∗(R)[X] is also Armendariz by [1, Corollary 3]. Note N∗(R)[X ] = N∗(R[X ])

by [26, Theorem 10.19], so this yields that R[X]
N∗(R)[X] =

R[X]
N∗(R[X]) is Armendariz.

This implies that R[X ] is APR.
Conversely let R[X ] be APR. Then R[X ]/N∗(R[X ]) is Armendariz, so
R

N∗(R) [X ] is also Armendariz by the argument above. It is obvious that sub-

rings of Armendariz rings are Armendariz. This implies that R/N∗(R) is Ar-
mendariz, entailing that R is APR.

(2) Let R be an APR ring. Then R[x] is APR by (1). Moreover R and R[x]
are both nil-Armendariz by Theorem 1.4(1). Thus N(R[x]) = N(R)[x] by [2,
Theorem 5.3]. Consider R[x, y] for x, y ∈ X . By the preceding result, we have

N(R[x, y]) = N(R[x])[y] = N(R)[x][y] = N(R)[x, y].

So we obtain N(R[X0]) = N(R)[X0] inductively for any finite subset X0 of X .
This yields N(R[X ]) = N(R)[X ]. �

The converse of Theorem 2.1(2) need not hold as can be seen by Example
1.6. Let R be the ring in Example 1.6. Then R is not APR, but N(R[X ]) =
N(R)[X ] with N(R) = {m = (mij) ∈ R | mii = 0 for all i}.

Corollary 2.2 ([8, Proposition 2.6]). If R is a 2-primal ring, then so is R[X ].
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Proof. Let R be a 2-primal ring. Then R is APR, so N(R[X ]) = N(R)[X ] by
Theorem 2.1(2). This yields N(R[X ]) = N(R)[X ] = N∗(R)[X ] = N∗(R[X ])
by [26, Theorem 10.19]. �

However Theorem 2.1(1) is not valid for power series rings. To see that, we
use the construction and computation in [15, Example 1.1].

Example 2.3. (1) Let F be a field, V be a (left) vector space over F with
an infinite basis {v1, v2, . . . }, and A be the endomorphism ring of V over F .
Following to [15, Example 1.1], let A1 = {f ∈ A | rank(f) < ∞ and f(vi) =
a1v1 + · · · + aivi for i = 1, 2, . . . with aj ∈ F} and, R be the F -subalgebra
of A generated by A1 and 1A. Then R is 2-primal (hence APR) by the
argument in [15, Example 1.1]. Let f(x) = e12x + (e34 + e56)x

2 + · · · +

(Σ2n−1
−1

i=0 e(2n+2i−1)(2n+2i))x
n + · · · and g(x) = e23x + (e45 + e67)x

2 + · · · +

(Σ2n−1
−1

i=0 e(2n+2i)(2n+2i+1))x
n+ · · · in R[[x]]. Then f(x)2 = 0 = g(x)2. If R[[x]]

is APR, then f(x) + g(x) is also nilpotent by Theorem 1.4(1) and [2, Theorem
3.2], but f(x) + g(x) /∈ N(R[[x]]) by the computation in [15, Example 1.1], a
contradiction. Thus R[[x]] is not APR.

(2) We use [3, Example 1]. Let K be a field and A = K〈a, b〉 be the free
algebra generated by noncommuting indeterminates a, b over K. Let I be the
ideal of A generated by b2 and R = A/I. Then R[[x]] is not nil-Armendariz by
[3, Example 1], and so it is not APR by Theorem 1.4(1).

The following is proved by [15, Proposition 1.2], but here we argue about
another kind of proof, observing the structure of power series rings concerning
the APR property.

Proposition 2.4. If R is a 2-primal ring with nilpotent N∗(R), then R[[x]] is
APR.

Proof. Let R be a ring. First note that N∗(R[[x]]) ⊆ N∗(R)[[x]] by [17, Corol-
lary 1.2]. Here ifN∗(R) is nilpotent, then N∗(R[[x]]) = N∗(R)[[x]]. Let R[[x]][y]
denote the polynomial ring with an indeterminate y over R[[x]]. Then

N∗(R[[x]][y]) = N∗(R[[x]])[y] = N∗(R)[[x]][y] ⊂ N∗(R)[y][[x]],

since A[[x]][y] ⊂ A[y][[x]] for any ring A, where x, y are commuting indetermi-
nates over A.

Now let f(y)g(y) ∈ N∗(R[[x]])[y] for f(y), g(y) ∈ R[[x]][y]. Then f(y)g(y) ∈
N∗(R)[y][[x]]. We can express f(y), g(y) by

f(y) =

∞
∑

i=0

si(y)x
i, g(y) =

∞
∑

j=0

tj(y)x
j with si(y), tj(y) ∈ R[y] for all i, j.

So

f(y)g(y) =

∞
∑

k=0

(
∑

i+j=k

si(y)tj(y))x
k.



984 JUNCHEOL HAN, HONG KEE KIM, AND YANG LEE

If R is a 2-primal ring, then R/N∗(R) is reduced and this yields that

R

N∗(R)
[y][[x]] ∼=

R[y]

N∗(R)[y]
[[x]] ∼=

R[y][[x]]

N∗(R)[y][[x]]

is reduced. Thus si(y)tj(y) ∈ N∗(R)[y] for all i, j by [23, Lemma 2.3](1) since
f(y)g(y) ∈ N∗(R)[y][[x]]. But R is APR, so ab ∈ N∗(R) for all a ∈ Csi(y) and
b ∈ Ctj(y). This yields that αβ ∈ N∗(R)[[x]] = N∗(R[[x]]) for all α ∈ Cf(y) and
β ∈ Cg(y) since a and b are also coefficients of sum-factors of terms of f(y) and
g(y) respectively. �

Note that N∗(R) in Example 2.3 is not nilpotent.
Based on Theorem 2.1(1), it is also natural to examine the APR property

for the cases of skew polynomial rings and differential polynomial rings. But
we will also find counterexamples in both cases. Let R be a ring, σ be an
endomorphism of R, and δ be a σ-derivation of R. In this situation, the Ore

extension R[x;σ, δ] of R usually means the ring obtained by giving R[x] with
the new multiplication xr = σ(r)x + δ(r) for r ∈ R. when δ = 0, R[x;σ, 0] is
written by R[x;σ] and called an a skew polynomial ring. When σ is the identity
map, R[x; 1, δ] is written by R[x; δ] and called a differential polynomial ring.

In the following we see that skew polynomial rings over APR rings need not
be APR.

Example 2.5. Let A be a domain and R = A⊕A. Then R is reduced, so APR.
Consider the automorphism σ(a, b) = (b, a) of R and the skew polynomial ring
R[x;σ]. Then R[x;σ] is semiprime by the computation in [10, Example 3.1].
Write S = R[x;σ] and let

f(t) = (1, 0)x+ (1, 0)t and g(t) = (1, 0)x2 − (0, 1)xt ∈ S[t],

where S[t] is the polynomial ring with an indeterminate t over S. Then
f(t)g(t) = 0 but (1, 0)x(0, 1)x = (1, 0)x2 6= 0. Since N∗(S) = 0, S is not
APR.

In the following we see that differential polynomial rings over APR rings
need not be APR.

Example 2.6. We use the ring and argument in [5, Example 11]. Let R =
Z2[t]/t

2Z2[t] is commutative (hence APR), where Z2[t] is the polynomial ring
with an indeterminate t over Z2. Following [5, Example 11], define a derivation
δ of R by δ(t + I) = 1 + I, where I = t2Z2[t]. Then R[x; δ] ∼= Mat2(Z2[x

2])
by the argument in [5, Example 11]. However Mat2(Z2[x

2]) cannot be APR by
the argument after Example 1.7.

Thinking of Theorem 1.4(3) and the fact that subdirect products of Ar-
mendariz rings are Armendariz, one may conjecture that subdirect products of
APR rings are also APR. We will answer this in the negative. The following is
similar to [20, Lemma 2.1].
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Proposition 2.7. Let R be a ring and n be a positive integer.

(1) R[x]/xnR[x] is APR if and only if so is R.

(2) R[[x]]/xnR[[x]] is APR if and only if so is R.

Proof. (1) Let E = R[x]/xnR[x]. Then N∗(E) = N∗(R)+xR[x]
xnR[x] obviously, so

R
N∗(R)

∼= E
N∗(E) . This completes the proof. The proof of (2) is quite similar to

(1). �

One may compare Proposition 2.7(1) with [1, Theorem 5]. In the following,
we use the constructions in [15, Example 1.1] and [20, Example 2.2].

Example 2.8. Let R be the ring in Example 2.3. Then R is APR but R[[x]]
is not APR by the argument in Example 2.3. Following to [20, Example 2.2],

define a homomorphism σ : R[[x]] →
∏∞

n=1
R[[x]]

xnR[[x]] with σ(f(x)) = (f(x) +

xnR[[x]])∞n=1. Since the kernel of σ is zero, R[[x]] is a subdirect product of
R[[x]]

xnR[[x]] ’s. Since R is APR, so is each R[[x]]
xnR[[x]] by Proposition 2.7(2); hence

R[[x]] is a subdirect product of APR rings. However R[[x]] is not APR.

Proposition 2.9. Let R be a ring and M be a multiplicative monoid consisting

of central regular elements in R. Then R is APR if and only if so is M−1R.

Proof. Let R be APR and E = M−1R. Note N∗(E) = M−1N∗(R). Let
f(x)g(x) ∈ N∗(E)[x] for f(x) =

∑m
i=0 αix

i, g(x) =
∑n

j=0 βjx
j ∈ E[x]. Here we

can assume that αi = aiu
−1, βj = bjv

−1 with ai, bj ∈ R for all i, j and u, v ∈
M . Then f(x)g(x) =

∑m
i=0

∑n
j=0 αiβjx

i+j =
∑m

i=0

∑n
j=0 aibju

−1v−1xi+j =

(
∑m

i=0

∑n
j=0 aibjx

i+j)(uv)−1 ∈ N∗(E)[x], so we get
∑m

i=0

∑n
j=0 aibjx

i+j ∈

N∗(R)[x]. Since R is APR, aibj ∈ N∗(R) for all i, j and so αiβj = aiu
−1bjv

−1 =
aibju

−1v−1 ∈ N∗(E). Thus E is APR. The converse is obtained by Proposition
1.9(1). �

The ring of Laurent polynomials in x, coefficients in a ring R, consists of
all formal sums

∑n

i=k mix
i with obvious addition and multiplication, where

mi ∈ R and k, n are (possibly negative) integers; written by R[x;x−1].

Corollary 2.10. A ring R is APR if and only if R[x] is APR if and only if

R[x;x−1] is APR.

Proof. Let M = {1, x, x2, . . .}. Then M is a multiplicative monoid consisting
of central regular elements in R[x]. Note that R[x;x−1] = M−1R[x]. So the
proof is obtained from Theorem 2.1 and Proposition 2.9. �

Recall that Matn(A) (n ≥ 2) cannot be nil-Armendariz over any ring A.
Indeed, considering polynomials f(x) = e11 − e12x, g(x) = (e21 + e22) + (e11 +
e12)x in Matn(A)[x], then f(x)g(x) = 0 but e11(e11 + e12) = e11 + e12 /∈
N(Matn(A)), entailing that Matn(A) is not nil-Armendariz. So Theorem 1.4(1)
implies that Matn(A) is not APR. But we can find some kinds of APR subrings
of Matn(A) in the following.
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Theorem 2.11. Given a ring R the following conditions are equivalent:
(1) R is APR;
(2) Un(R) is APR;
(3) Dn(R) is APR.

Proof. The proof is obtained from Lemma 1.1(4), Corollary 1.10, and the fact
that a ring A is APR if and only if A/N∗(A) is Armendariz. In fact we get
N∗(Un(A)) = {m = (mij) ∈ Un(A) | mii ∈ N∗(A)} and N∗(Dn(A)) = {m =
(mij) ∈ Dn(A) | mii ∈ N∗(A)}, so Un(R)/N∗(Un(R)) is the direct product of

n-copies of R/N∗(R) and Dn(R)
N∗(Dn(R))

∼= R
N∗(R) . �

Theorem 2.11 also shows that an APR ring which is not Armendariz, can
always be constructed from any Armendariz ring.

The same idea as in the proof of Theorem 2.11 can be used to prove the fol-
lowing. As in [29, Definition 1.3], for a commutative ring R with an endomor-
phism σ and R-module M , we define the skewtrivial extension of R by M and
σ to be the ring R⊕M with multiplication (r1,m1)(r2,m2) = (r1r2, σ(r1)m2+
r2m1) where ri ∈ R and mi ∈ M . (r,m) can be expressed by ( r m

0 r ), and the

product can be expressed by (r1,m1)(r2,m2) =
(

r1r2 σ(r1)m2+r2m1

0 r1r2

)

.

Proposition 2.12. (1) Let R1, R2 be rings and R1
MR2

an (R1, R2)-bimodule.

Then
(

R1 M
0 R2

)

is APR if and only if both R1 and R2 are APR.

(2) Let R be a commutative ring with an endomorphism σ and R-module M .

Then R is APR if and only if so is the skewtrivial extension of R by M and σ.

Let R be an algebra (with or without identity) over a commutative ring
S. Due to Dorroh [11], the Dorroh extension of R by S is the Abelian group
R ⊕ S with multiplication given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2)
for ri ∈ R and si ∈ S.

Theorem 2.13. Let R be an algebra over a commutative domain S where R
is assumed to have the identity.

(1) R is APR if and only if so is the Dorroh extension D of R by S.
(2) R is Armendariz if and only if so is the Dorroh extension D of R by S.

Proof. Note that s ∈ S is identified with s1 ∈ R, so R = {r + s | (r, s) ∈ D}.
This yields N∗(D) = N∗(R)⊕ 0 through a simple computation.

(1) Let R be APR and suppose that f(x)g(x) ∈ N∗(D)[x] for f(x) =
∑m

i=0 aix
i, g(x) =

∑n

j=0 bjx
j ∈ D[x]. Write ai = (αi, si), bj = (βj , tj) for

all i, j. Assume that there exist i, j such that si 6= 0 and tj 6= 0. Say that i0
and j0 are the smallest such integers. Then the coefficient of xi0+j0 of f(x)g(x)
is (p, s0t0) for some p ∈ R, a contradiction since (p, s0t0) /∈ N∗(D). Thus si = 0
for all i or tj = 0 for all j. Write f(x) = f1(x)+f2(x) and g(x) = g1(x)+g2(x)
with

f1(x) =

m
∑

i=0

(αi, 0)x
i, f2(x) =

m
∑

i=0

(0, si)x
i,
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g1(x) =

n
∑

j=0

(βj , 0)x
j , g2(x) =

n
∑

j=0

(0, tj)x
j .

Suppose that si = 0 for all i, i.e., f2(x) = 0. Then we have

f(x)g(x) = f1(x)g1(x) + f1(x)g2(x)

=

m+n
∑

i+j=0

(αiβj , 0)x
i+j +

m+n
∑

i+j=0

(αitj , 0)x
i+j

=

m+n
∑

i+j=0

(αi(βj + tj), 0)x
i+j ∈ (N∗(R)⊕ 0)[x].

Since R is APR, αi(βj+tj) ∈ N∗(R) for all i, j. This yields aibj = (αi, 0)(βj , tj)
∈ N∗(D) for all i, j.

The computation for the case of g2(x) = 0 is similar. Thus D is also APR.
Next since N∗(R) = N∗(D) through the inclusion map r 7→ (r, 0) for r ∈ R,

Proposition 1.9(1) completes the proof.
(2) The proof is similarly obtained by letting f(x)g(x) = 0 in place of

f(x)g(x) ∈ N∗(D)[x]. �

Next we examine the case of R being assumed to do not have the identity.
In this case the Dorroh extension D, in Theorem 2.13, means a ring extension
to attach an identity to R; hence we cannot use the fact that s ∈ S is identified
with s1 ∈ R and R = {r + s | (r, s) ∈ D}.

Proposition 2.14. Let R be an algebra over a commutative domain S where

R is assumed to do not have the identity. If the Dorroh extension D of R by

S is APR, then so is R.

Proof. We will show that N∗(R) ⊕ 0 = N∗(D). This yields that if D is APR,
then R is APR by Proposition 1.9(1) since N∗(R) = N∗(D) through the inclu-
sion map r 7→ (r, 0) for r ∈ R. Every nilpotent element in D is clearly of the
form (a, 0), so we get N∗(R)⊕ 0 ⊇ N∗(D). To show the converse inclusion, let
z1 = a ∈ N∗(R) and v1 = (a, 0) ∈ D. Consider a sequence

w1 = v1d1v1, w2 = w1d2w1, . . . , wk+1 = wkdkwk, . . .

for k = 1, 2, . . ., where every dk (j = 1, 2, . . .) is taken arbitrarily in D. Say
dk = (rk, sk). Then

w1 = (ar1a+ as1a, 0) = (ab1, 0) = (e1a, 0),

where b1 = r1a+ s1a, e1 = ar1 + as1;

w2 = (ab1r2e1a+ ab1s2e1a, 0) = (a(b1r2e1 + b1s2e1)a, 0),

write z2 = a(b1r2e1 + b1s2e1)a ∈ aRa = z1Rz1;

w3 = (z2r3z2 + z2a3z2, 0) = (z2b2, 0) = (e2z2, 0),
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where b2 = r3z2 + a3z2, e2 = z2r3 + z2a3;

w4 = (z2b2r4e2z2 + z2b2s4e2z2, 0) = (z2(b2r4e2 + b2s4e2)z2, 0),

write z3 = z2(b2r4e2 + b2s4e2)z2 ∈ z2Rz2.
Proceeding in this manner, we obtain a sequence in R

z1, z2, . . . , zm, zm+1, . . . with zm+1 ∈ zmRzm and w2m = (zm+1, 0).

But z1 ∈ N∗(R), so zl = 0 for some l ≥ 1. This yields w2(l−1) = 0, entailing
v1 = (a, 0) ∈ N∗(D). Thus N∗(R)⊕ 0 ⊆ N∗(D), so we now have N∗(R)⊕ 0 =
N∗(D). �

We actually do not know whether the converse of Proposition 2.14 is true.

Question. Let R be an algebra over a commutative domain S where R is
assumed to do not have the identity. Is D APR when R is APR?
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