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Resource management is an important component of a grid

computing infrastructure. The scalability and adaptability of

such systems are two key challenges that must be addressed.

In this work an agent-based resource management system,

ARMS, is implemented for grid computing. ARMS utilises

the performance prediction techniques of the PACE toolkit to

provide quantitative data regarding the performance of com-

plex applications running on a local grid resource. At the

meta-level, a hierarchy of homogeneous agents are used to

provide a scalable and adaptable abstraction of the system ar-

chitecture. Each agent is able to cooperate with other agents

and thereby provide service advertisement and discovery for

the scheduling of applications that need to utilise grid re-

sources. A case study with corresponding experimental re-

sults is included to demonstrate the efficiency of the resource

management and scheduling system.

1. Introduction

Grid technologies have emerged to enable large-

scale flexible resource sharing among dynamic virtual

organisations [13,14]. An essential component of grid

infrastructure software is the service layer, which acts

as middleware between grid resources and grid appli-

cations. This work considers the resource management

service, the component that provides efficient schedul-

ing of applications utilising available resources in the

grid environment [18]. Delivering such a service within

the high performance community will rely, in part, on
accurate performance prediction capabilities.

Previous research on the PACE (Performance Anal-

ysis and Characterise Environment) toolkit [20] can be

used to provide quantitative data concerning the per-

formance of sophisticated applications running on lo-

cal high performance resources. PACE can supply ac-

curate performance information for both the detailed

analysis of an application and also as input to resource

scheduling systems; this performance data can also be
generated in real-time. While extremely well-suited for

managing a locally distributed multi-computer, PACE

functions do not map well onto wide-area environ-

ments, where heterogeneity, multiple administrative

domains and communication irregularities increase the

complexity of the resource management process. There

are two key challenges that must be addressed:

– Scalability. A grid has the potential to encompass

a large number of high performance computing re-

sources. Each constituent of this grid will have its

own function, its own resources and environment.

These components are not necessarily fashioned

to work together in the overall grid. They may be

physically located in different organisations and

may not be aware of each others capabilities.

– Adaptability. A grid is a dynamic environment
where the location, type and performance of the

components are constantly changing. For exam-

ple, a component resource may be added to, or re-

moved from, the grid at any time. These resources

may not be entirely dedicated to the grid and there-

fore the computational capabilities of the system

will vary over time.

An agent-based resource management system for
grid computing, ARMS, is introduced to address the

above challenges. Software agents are recognised as

a powerful high-level abstraction for the modelling

of complex software systems [16]. An agent-based

methodology described in [5,8] is used to build large-

scale distributed software systems that exhibit highly

dynamic behaviour. It is intended that an entire system
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be built of a hierarchy of identical agents with the same

functionality. As such, agents are considered both ser-

vice providers and service requestors and the imple-

mentation of system functions is abstracted to the pro-

cesses of service advertisement and service discovery.

ARMS couples the performance prediction tech-

niques of the PACE toolkit with a scheduling algorithm

designed to manage a local grid resource. At the meta-

level, ARMS utilises the agent-based methodology de-

scribed in [7], where each agent acts as a representative

for a local grid resource and considers this resource to

be its high performance computing capability. Agents

cooperate to perform service advertisement and dis-

covery, thus providing the base services with which to

manage and schedule applications over available grid

resources. The performance of these agents can be

improved by using a number of different optimisation

strategies.

There are several solutions that currently address is-

sues of resource management and scheduling. These

include Globus [11], Legion [12], NetSolve [10], Con-

dor [21], Ninf [19] and Nimrod/G [2]. While many

of these projects utilise query-based mechanisms for

resource discovery and advertisement [18], this work

adopts an agent-based approach. This allows an agent

to control the query process and to make resource dis-

covery decisions based on its own internal logic as

opposed to relying on a fixed-function query engine.

Unlike Nimrod/G, in which the grid resource estima-

tion is performed through heuristics and historical in-

formation, the performance prediction capabilities of

grid resources in this research are achieved through the

integration of PACE.

A number of recent grid projects have utilised

existing distributed computing technologies such as

CORBA [24] and Jini [1]. For example, the work

described in [23] makes use of CORBA Lightweight

Components to provide a new network-centred reflec-

tive component model which allows distributed appli-

cations to be assembled from independent binary com-

ponents distributed on the network. The work de-

scribed in [15] is a computational community that sup-

ports the federation of resources from different organ-

isations; this system is designed and implemented in

Java and Jini. While CORBA and Jini are well suited

to their original design goals, they are not designed for

developing high performance computing applications,

and as mentioned in [14], such technologies only enable

resource sharing within a single organisation.

An agent-based grid computing project is described

in [22]. This work on an “Agent Grid”, integrates ser-

vices and resources for establishing multi-disciplinary

problem solving environments. Specialised agents con-

tain behavioural rules which can be modified based

on their interaction with other agents and the environ-

ment in which they operate. In contrast, ARMS uses

a hierarchy of homogenous agents for both service ad-

vertisement and discovery, and integrates these with

a performance prediction based scheduler. A detailed

introduction to this research can be found in [9].

The paper is organised as follows: the PACE toolkit

is summarised in Section 2; the ARMS implementation

is presented in Section 3; Section 4 describe a case

study with corresponding experimental results and the

paper concludes in Section 5.

2. The PACE toolkit

The main components of the PACE toolkit [4] are

shown in Fig. 1. A core component of PACE is a perfor-

mance specification language (PSL) which describes

the performance aspects of an application and its paral-

lelisation. A corresponding Hardware Modelling and

Configuration Language (HMCL) is used to capture the

definition of a computing environment in terms of its

constituent performance model components and con-

figuration information. The workload information and

the component resource models are combined using an

evaluation engine to produce time estimates and trace

information of the expected application behaviour.

The performance prediction capabilities of PACE

are demonstrated using the ASCI kernel application

Sweep3D [3]. Table 1 shows the validation of the PACE

model of Sweep3D against the code running on an SGI

Origin2000 shared memory system. The accuracy of

the prediction results are evaluated as follows:

Error =
Prediction – Measurement

Measurement
× 100%.

The maximum prediction error for this application is

11.44%, the average error is approximately 5%.

The key features of the PACE toolkit include: good

level of predictive accuracy (approximately 15% max-

imum error), rapid evaluation time (typically seconds

of CPU time) and a method for cross-platform compar-

ison. These capabilities provide the basis for the appli-

cation of PACE to dynamic grid environments consist-

ing of a number of heterogeneous systems [17].
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Fig. 1. The main components of the PACE toolkit include application tools, resource tools, and an evaluation engine. The rapid execution of
PACE models lends itself to on-the-fly dynamic steering as well as traditional off-line performance prediction.

3. ARMS implementation

ARMS couples the agent-based methodology with

the PACE performance prediction techniques in the im-
plementation of grid resource management. The detail

involved in this process is described below.

3.1. ARMS architecture

An overview of the ARMS architecture is illustrated

in Fig. 2. The main components of this architecture
include grid users, grid resources, ARMS agents and a
performance monitor and advisor (PMA).

3.1.1. Grid users

There are a number of different categories of user
of a grid computing environment. The grid users in
Fig. 2, and who represent the main focus of this work,

are considered to be scientists, who develop scientific
high performance applications and use them to solve

large problems in grid computing environments.
The user-side software primarily includes the PACE

Application Tools. When a parallel application is de-

veloped, a corresponding application model is also pro-
duced. PACE performance modelling is an automated

process, targeted at the non-professional performance
engineer. When an application is submitted for execu-
tion, an associated performance model should also be

attached.
Another component included in a grid request is the

cost model, describing the user requirements concern-

ing the application execution. This would include, for

example, the deadline for the application to complete.

Although there are a number of other metrics appropri-

ate in this context, the current focus of this work is on

execution time.

3.1.2. Grid resources

A grid resource provides high performance comput-

ing capabilities for grid users and might include super-

computers, or clusters of workstations or PCs.

In this system, PACE is used to create a hardware

characterisation template that provides a model of each

hardware resource. This characterisation is derived

from computational and communication benchmarks

which can be rapidly evaluated to provide dynamic per-

formance data. The PACE hardware model is integral

to the service information which is advertised across

the agent hierarchy.

3.1.3. ARMS agents

Agents comprise the main components in the sys-

tem; the agents are organised into a hierarchy and are

designed to be homogenous. Each agent is viewed as

a representative of a grid resource at a meta-level of

resource management. This means that an agent can

therefore be considered a service provider of high per-

formance computing capabilities. The service informa-

tion of each grid resource can be advertised within the

agent hierarchy (in any direction) and agents can coop-

erate with each other to discover available resources.
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Table 1

PACE model validation on an SGI Origin 2000. If the application has a data set of

15 × 15 × 15 and is allocated to 9 processors (organised into a 3 × 3 processor

array), each processor holds a total of 5 × 5 × 15 data elements. Note that the

results for single processor input are not included because there are many special
configurations which are not included in the current performance model for the

sequential code

Data size 2D Proc. Array Prediction (s) Measurement (s) Err (%)

15 × 15 × 15 1 × 2 4.73037 4.440255 6.53

2 × 2 2.59659 2.584936 0.45

2 × 3 1.8373 1.812252 1.38

2 × 4 1.51869 1.609818 −5.66

3 × 3 1.3399 1.343736 −0.29

3 × 4 1.10918 1.164072 −4.72

4 × 4 0.907100 1.002728 −9.54

25 × 25 × 25 1 × 2 22.9501 20.780170 10.44
2 × 2 12.1537 11.619632 4.60

2 × 3 7.83574 7.893481 −0.73

2 × 4 6.02865 5.979522 0.82

3 × 3 5.52498 5.532116 −0.13

3 × 4 4.24959 4.469564 −4.92

4 × 4 3.36453 3.537966 −4.90

35 × 35 × 35 1 × 2 69.3858 64.832165 7.02

2 × 2 36.1978 33.097098 9.37
2 × 3 22.1074 21.160975 4.47

2 × 4 16.3181 16.137180 1.12

3 × 3 15.3466 15.272606 0.48

3 × 4 11.3211 11.451001 −1.13

4 × 4 8.84226 9.984213 −11.44

50 × 50 × 50 1 × 2 217.398 228.893311 −5.02

2 × 2 112.307 102.285787 9.80

2 × 3 65.6201 67.278086 −2.46
2 × 4 46.7591 49.534483 −5.60

3 × 3 45.1373 47.289627 −4.55

3 × 4 32.1438 34.796392 −7.62

4 × 4 24.8468 24.800020 0.20

Each agent utilises Agent Capability Tables (ACTs)

to record service information of other agents. An ACT

item is a tuple containing an agent ID and correspond-

ing service information – all performance related in-

formation of a grid resource which can be used in the

estimation of its performance.

An agent can choose to maintain different ACTs cor-

responding to the different sources of service informa-

tion: T ACT is used to record service information of

local resources; L ACT is used to record service in-

formation received from lower agents in the hierarchy;

G ACT to record information from the upper agent in

the hierarchy; finally, C ACT is used to store cached

service information.

There are two methods of maintaining ACT co-

herency – data-pull and data-push, each of which occur

periodically or can be driven by system events:

– Data-pull – An agent asks other agents for their

service information either periodically or when a

request arrives.

– Data-push – An agent submits its service informa-
tion to other agents in the system periodically or
when the service information is changed.

An agent uses the ACTs as a knowledge base. This is
used to assist in the service discovery process triggered
by the arrival of a request. Service discovery involves
querying the contents of the ACTs in the order: T ACT,
C ACT, L ACT and G ACT. If an agent exhausts the
ACTs, and does not obtain the required service infor-
mation, it can submit the request to its upper agent or
terminate the discovery process.

The PACE evaluation engine is integrated into each
agent. Its performance prediction capabilities are used
for local resource management in the scheduling of
parallel applications over available local processors.
The evaluation engine is also used to provide support
to the service discovery process.

The agent system aims to bridge the gap between
grid users and resources and in so doing, allows the effi-
cient scheduling of applications over available grid re-
sources. An agent can select different strategies of ser-
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Fig. 2. ARMS architecture. The main components include users, resources, agents and an agent performance monitor and advisor (PMA).

vice advertisement and discovery, the choice of which

may lead to different performance outcomes.

3.1.4. ARMS PMA

A special agent, illustrated in Fig. 2, is capable of

modelling and simulating the performance of the agent

system while the system is active. This is known as the

performance monitor and advisor (PMA) of the system.

Unlike facilitators or brokers in classical agent-based

systems, the PMA is not central to the rest of the agent

system. It neither controls the agent hierarchy nor

serves as a communication centre in the physical and

symbolic sense. If the PMA ceases to function, the

agent system has no operational difficulties and con-

tinues with ordinary system behaviour. Efficiency im-

provements to the agent system are only made possible

through the modelling and simulation mechanism built

into the PMA. The PMA also avoids any one agent in

the system becoming a single system bottleneck.

Statistical data is monitored from each of the agents

and input to the PMA for performance modelling. The

performance model is processed by the simulation en-

gine in the PMA so that new optimisation strategies

can be chosen and the performance metrics improved.

The process of simulation allows a number of strategies

to be explored until a better solution is selected. The

selected optimisation strategies are then returned and

used to reconfigure the agents in the system. A detailed

account of the structure and function of the PMA can

be found in [6].

3.2. ARMS agent structure

The agent structure in ARMS is shown in Fig. 3.

Each layer has several modules, which cooperate with

each other to perform service advertisement, service

discovery, and application execution. The three layers

are discussed below.

The communication layer of each agent performs

communication functions and acts as an interface to the

external environment. From the communication mod-

ule, an agent can receive both service advertisement and

discovery messages. It interprets the contents of each

message and submits the information to corresponding

modules in the coordination layer of the agent. For ex-

ample, an advertisement message from another agent

will be directly sent to the ACT manager in the agent

coordination layer. The communication module is also

responsible for sending service advertisement and dis-

covery messages to other agents.

There are four components in the coordination layer

of an agent: the ACT manager, the PACE evaluation

engine, a scheduler and a matchmaker. These work

together to make decisions as to how an agent should

act on the receipt of messages from the communication

layer. For example, the final response to a service

discovery message would involve application execution

on the local resource or the dispatching of the request

to another agent.

The main functions of local resource management in

an agent include application management, resource al-
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Fig. 3. ARMS agent structure. The greyscale of the arrows indicate three main processes: service advertisement, service discovery and application
execution.

location and resource monitoring. Application execu-
tion commands are sent from the coordination layer to

the local agent manager, these commands include the

scheduling information for an application (start time,
allocated processor ids etc.). The Application Manage-

ment part of the system is also responsible for manag-
ing the queuing of applications that have been sched-

uled to be executed on the locally managed resources.
At the start time an application is dispatched to the Re-

source Allocation component. Resource allocation in-

cludes wrappers for different application execution en-
vironments including MPI and PVM; it is at this stage

that the application is actually executed on the local
scheduled processors. Another important component

of local resource management is resource monitoring.
This is responsible for controlling the PACE benchmark

programs which are executed on the local resource and
from which corresponding resource models are dynam-

ically created. The resource monitor is also responsi-

ble for communicating other resource and application
information between the application management and

resource allocation modules. It also coordinates all
the collected information concerning local resources

into service information which is then reported to the
T ACT in the coordination layer of the agent.

These agent functions are described in detail below.

In particular, the implementation of the agent coordina-
tion layer is emphasised and the four main components

of the scheduling algorithm are documented.

3.2.1. ACT manager

The ACT manager controls agent access to the ACT

database, where service information regarding grid re-

sources is located. Figure 4 illustrates the content of

this service information.

Consider a grid resource with n processors where

each processor Pi has its own type tyi. A PACE hard-

ware model can be used to describe the performance

information of a processor. The processors of a grid

resource can be expressed as follows:

P = {Pi|i = 1, 2, . . . , n}

ty = {tyi|i = 1, 2, . . . , n}.

Let m be the number of applications that are running,

or being queued to be executed on a grid resource.

Each application Aj has two attributes – scheduled start

time tsj and end time tej . The applications of a grid

resource can then be expressed as follows:

A = {Aj |j = 1, 2, . . . , m}

ts = {tsj|j = 1, 2, . . . , m}

te = {tej|j = 1, 2, . . . , m}.

Let MAj be the set of processors that are allocated

to application Aj :

MA = {MAj |j = 1, 2, . . . , m}

MAj = {Pil
|l = 1, 2, . . . , kj},
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Fig. 4. Service information in ARMS. Each processor is described using the corresponding PACE resource model. The scheduled start and end
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where kj is the number of processors that are allocated

to application Aj . Let M be a 2D array, which de-

scribes the mapping relationships between resources

and applications using boolean values.

M = {Mij |i = 1, 2, . . . , n; j = 1, 2, . . . , m}

Mij =

{

1 if Pi ∈ MAj

0 if Pi /∈ MAj

3.2.2. PACE evaluation engine

In ARMS, a request for service discovery involves

finding an available grid resource for an application.

The request information is composed of the PACE ap-

plication model am, which includes all of the perfor-

mance related information of an application Ar. The

application model is one of the inputs to the PACE

evaluation engine found in an agent.

The requirements of an application is specified using

a cost model. This model includes metrics such as the

deadline for the execution of an application, t req , and

is used as one of the inputs to the matchmaker part of

the agent system.

The PACE evaluation engine has two inputs, firstly

the application model (am) from the service discov-

ery request, and secondly the resource information

(ty) from the ACT manager. Using this information,

the PACE evaluation engine can produce performance

prediction data including the expected execution time

(exet) necessary for the application to be executed on

the given resource.

exet = eval(ty, am)

Rather than running the application on all the avail-

able processors of a grid resource P , an application can

be executed on any subset of processors P (note that

P cannot be the empty set Φ). This is expressed as

follows:

∀P ⊆ P, P �= Φ, ty ⊆ ty, ty �= Φ,

evet = eval(ty, am).

The output of the PACE evaluation engine (exet)
forms one of the inputs to the scheduler of the agent.

Another input to the scheduler is the application infor-

mation from an ACT item.

3.2.3. Scheduler

An ACT item acts as a view of a grid resource that is

remote to the agent. An agent can however still sched-

ule the required application execution based on this in-

formation of a resource. The function of the scheduler

is to find the earliest time at which the application will

terminate, a function described by the ACT item tsched.

tsched = min
∀P⊆P,P �=Φ

(

ter

)

The application has the possibility of being allocated

to any selection of processors comprising a grid re-

source. The scheduler considers all these possibilities

and chooses the earliest end time for the execution.

This end time – equal to the earliest possible start time

plus the total execution time – is described as follows:

ter = tsr + exet.

The earliest possible start time for application Ar to

be executed on a selection of processors P , is defined

as the time at which all of these processors become

free. If all of these processors are already idle, then the

application can be executed immediately. This figure

can be expressed as follows:
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Fig. 5. Case study: agent hierarchy. The agent at the head of the hierarchy is S1, which has three lower agents, S2, S3 and S4. Agent S2 has no
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tsr = max

(

t, max
∀i,Pi∈P

(tdi)

)

,

where tdi is the latest free time of processor Pi. This is

equivalent to the maximum end time of the applications

that are allocated to process Pi:

tdi = max
∀j,Mij=1

(tej).

In summary, tsched can be calculated as follows:

Tsched = min
∀P⊆P,P �=Φ

(

max

(

t, max
∀i,Pi∈P

(

max
∀j,Mij=1

(tej)

))

+ exet

)

.

It is not necessarily the case that scheduling all pro-

cessors to an application will achieve higher perfor-

mance. For example, the start time of application exe-

cution may be earlier if only a number of processors are

selected; similarly, the execution of some applications

may take longer if too many processors are allocated to

the task.

The scheduling algorithm described above is used

in the implementation of ARMS. The complexity of

the algorithm is determined by the number of possible

processor selections:

C1

n + C2

n + . . . + Cn
n = 2n − 1.

It is therefore essential that the evaluation engine

supplied with PACE is efficient. During each schedul-

ing process, the evaluation function can be called 2n−1
times. Even in the situation where all the processors

of a grid resource are of the same type, the evaluation

function still needs to be called n times. PACE eval-

uation can be performed very quickly to produce pre-

diction results on the fly; this is a key feature of PACE

which enables the toolkit to provide service discovery

support for ARMS.

Table 2

Case study: resources. Each resource is composed of 16 processors

(for SGI) or hosts (for Sun), and each host is of the same type

Agent Resource type #Processors/Hosts

S1 SGI Origin 2000 16

S2 SGI Origin 2000 16

S3 Sun Ultra 10 16

S4 Sun Ultra 10 16

S5 Sun Ultra 1 16
S6 Sun Ultra 5 16

S7 Sun SPARCstation 2 16

S8 Sun SPARCstation 2 16

3.2.4. Matchmaker

The matchmaker in an agent is responsible for com-

paring the scheduling results with the cost model at-
tached to the request. The comparison results lead to

different decisions on agent behaviours.
In terms of application execution time, if treq �

tsched, then the corresponding resource can meet the
users requirement. If the corresponding ACT item is in
the T ACT, a local resource is available (and capable)

of executing the application. In this case the application
execution command is sent to the local manager in the

agent, or the agent ID of the corresponding ACT item
is returned and the agent dispatches the request to the
agent via the agent ID.

If treq < tsched, the corresponding resource cannot
meet the requirement of the user. The agent contin-

ues to look up other items in the ACTs until the avail-
able service information is found. If there is no further
service information available in the ACTs, the agent

may submit or dispatch the request to upper or lower
agents. This instantiates further service discovery gov-

erned by the service discovery strategy implemented
by the agent.

ARMS demonstrates how an agent-based methodol-

ogy coupled with the prediction capabilities of PACE,
provides a system of resource management for grid

computing. A case study of this system is given below.
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4. A case study

In this section experimental results are documented

which show how ARMS schedules applications onto

available resources. There are two main parts in the

design of the experiments. ARMS is configured to

include agents, resources and agent behaviour strate-

gies. The sending of application requests (via ‘virtual

users’) is automated, this is so that execution requests

can be sent to ARMS with varying frequencies, thus

simulating different workloads on the system.

4.1. System design

There are 8 agents in the experimental system. The

agent hierarchy is shown in Fig. 5. Each agent repre-

sents a local grid resource and information describing

the capabilities of the resources is shown in Table 2.

The SGI multi-processor is the most powerful resource,

followed by the Sun Ultra 10, 5, 1 and the SparcStation.

In the experimental system, the T ACT, L ACT and

G ACT are used in each agent. T ACTs are main-

tained by event-driven data-push service advertisement.

L ACTs are updated once every 10 seconds using a

periodical data-pull. G ACTs are updated once every

30 seconds using a periodical data-pull. All agents use

the same strategy except S1, which found at the head

of the agent hierarchy, does not maintain a G ACT.

Table 3

Case study: requirements. For example, a required execution time

for the application sweep3d will be chosen at random between 4 s

and 200 s, when a request is sent to ARMS

Application Minimum Maximum

requirement (s) requirement (s)

sweep3d 4 200

fft 10 100

improc 20 192
closure 2 36

jacobi 6 160

memsort 10 68

cpi 2 128

Table 4
Case study: workloads. For example, experiment No. 2 lasts ap-

proximately 7 minutes. During this period, a total of 149 requests

are sent to ARMS; one request is sent every 3 seconds on average

Experiment no. 1 2 3 4

Minimum request interval (s) 1 1 1 1

Maximum request interval (s) 7 5 3 1

Average frequency (s/app) 4 3 2 1

Experiment last time (min) 7 7 7 5

Total application number 109 149 215 293

4.2. Virtual users

The applications used in the experiments are typical

scientific computing programs; these include sweep3d,

fft, improc, closure, jacobi, memsort and cpi. Each

application is modelled and evaluated using the PACE

toolkit. The performance evaluation results against the
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Fig. 7. Experimental results: No. 2 @ S4. In the experiment No. 2, 27 of the 149 requests are scheduled to be executed using the resource of S4.

The latest 16 applications are also illustrated using the Gantt chart according to the scheduling information in the list above.

SGI Origin2000 can be found in Fig. 6. The run time of

the applications on other platforms is greater than that

of the SGI Origin2000, the general trend however is

similar and therefore these figures are not documented.

An application execution request for one of the seven

test applications is sent at random to an agent. Addi-
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Table 5

Experimental results: the distribution of applications on agents. In ex-

periment No. 2, 27 application execution requests are scheduled onto the
resources of agent S4 (this conforms to the results shown in Fig. 7) cor-

responding to 19 percent of the total 149 requests. 5 requests (3 percent

of the total) are not scheduled onto any resource and end unsuccessfully

Agent Experiment number

1 2 3 4

No. % No. % No. % No. %

S1 13 12 27 19 45 21 45 15

S2 13 12 15 10 27 13 42 14

S3 15 14 20 13 27 13 38 13

S4 14 13 27 19 31 14 39 13

S5 10 9 15 10 20 9 28 10

S6 13 12 17 11 23 11 31 11
S7 14 13 12 8 16 7 26 9

S8 14 13 11 7 17 8 24 8

Failed 3 2 5 3 9 4 20 7

Total 109 100 149 100 215 100 293 100

Table 6

Experimental results: service discovery. In experiment No. 2, the re-

sources for 114 application execution requests are satisfied by the agent

they are submitted to first; representing 77 percent of the total 149 re-

quests. Three agents are involved in 2-step service discovery. The first

agent receives the request from the user, a second acts as a go-between
to a third agent at which the corresponding resource is found

Step Experiment number

1 2 3 4

No. % No. % No. % No. %

0-step 106 97 114 77 143 66 199 68

1-step 3 3 24 16 38 18 29 10

2-step 0 0 11 7 31 15 53 18

3-step 0 0 0 0 3 1 12 4

Total 109 100 149 100 215 100 293 100

tionally, the required execution time for the application

is also selected randomly from a given domain, this can

be found in Table 3.

The automatic users are configured to send requests

at different frequencies. Table 4 documents four ARMS

experiments whose design is based on the varying

workloads of the system. The interval at which re-

quests are sent is chosen randomly from a given do-

main, this results in a different average frequency of

requests for each experiment. The experimental results

are discussed in the following section.

4.3. Experimental results

Experiment No. 2 lasts approximately 7 minutes.

During this period 149 requests are sent to ARMS and

scheduled on the eight available resources. An exam-

ple agent view is given in Fig. 7. The detailed results

for the other agent views and experiments are not given

but are summarised as statistical data included in Ta-

bles 5 and 6, and illustrated in Figs 8 and 9 respectively.

The curves in the figures show the trend of application

distribution when the system workload increases; this

detail is discussed:

Experiment No. 1

In experiment No. 1, one request is sent every 4

seconds on average. Application execution requests

are sent out to the agents randomly, ensuring that each

agent should receive approximately the same number

of requests from the users. In this experiment the sys-

tem workload is light relative to the capabilities of the

resources (even for the resources associated with agents

S7 and S8). The results show that 97 percent of ap-

plications require 0-step resource discovery, i.e. the

majority of the requests are met by the agents to which

the requests first arrive. Almost no service discovery

is required between agents. This results in an average

distribution of applications to agents and the number of

requests that end unsuccessfully is very small.
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Fig. 8. Experimental results: application execution distribution on agents when system workloads increase. The percent of failed requests for

each experiment are also shown; note that these increase with the system workload.

Experiment No. 2

When the system workload becomes heavier, many
requests that S7 and S8 cannot meet are submitted to
their upper agent S4. This leads to a heavy workload
on S4 (19% of total application executions). The re-
sources provided by agents S5 and S6 are more pow-
erful. However, they still cannot meet all the requests
from users. Some of the requests are submitted to their
upper agent S3, this also leads to a heavy workload
on S3, though less so than on S4. Consequently there
is a dramatic increase in the number of 1-step service
discovery processes.

The system is configured so that the agent at the
head of the agent hierarchy, S1, represents the most
powerful computing platform (a multi-processor SGI
Origin2000). There are some application requests that
have time-critical requirements and which are only met
using the SGI Origin2000. These requests are also
submitted from S4 or S3 to S1. This leads to a heavy
workload on S1 and also increases the process of 2-
step service discovery. The agent S2 also represents
a powerful resource (as that of S1) and also meets the
requirements of the requests it receives from the users.
However, S2 is topologically distant from the other
agents and as a result S2 remains under utilised.

Experiment No. 3

The system workload is increased further. The dra-
matic decrease in the percentage of application execu-

tions on S4 indicates that this local resource has reached

capacity. Many of the requests submitted from S7 and

S8 have to be passed to S1, this leads to a dramatic in-

crease of the number of 2-step discovery processes. The

number of 1-step discovery processes also increases

and 3-step discovery processes begin to emerge. More

application executions are scheduled onto the agent S2.

All of these indicate that service discovery among the

agents becomes more active when the system workload

increases.

Experiment No. 4

This experiment represents a heavy workload. The

decrease in the percentage of application executions

on S1 indicates that the local resource S1 also reaches

capacity; this also signals an increase in the number

of failed requests. The number of 1-step discovery

processes decreases, while 2-step and 3-step service

discovery processes increase. All of these indicate that

the whole system has reached its capacity and so more

complex service discovery processes are common. In

this situation, the distribution of applications over the

agents appears well balanced. The workload of the

agents also mirrors the computing capabilities of their

resources. The agents S1 and S2, which represent the

most powerful resources in the experiment system, are

assigned more applications, this is followed by S3, S4,
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Fig. 9. Experimental results: service discovery. When the system workload increases, the number of 0-step service discovery decreases and
those corresponding to more complex service discovery processes increase.

S6 and S5. Only a small number of requests are met at

the agents S7 and S8.

The results show that the coupling of performance

prediction and agent-based service advertisement and

discovery is effective for the management and schedul-

ing of grid resources.

Scalability and adaptability are two key challenges in

grid resource management. The case study described

in this paper is far from grid-sized. However, the exper-

imental results demonstrate that the agents in ARMS

only need communicate with their neighbouring agents.

The process of service discovery is achieved through

the transitive closure of these step-wise requests, a fea-

ture which makes it possible for the system to scale

when the grid environment becomes large.

Another important factor which allows ARMS to

achieve high performance, is the capability of agents to

adjust their service advertisement and discovery strate-

gies in order to adapt to the highly dynamic grid en-

vironment. The choice of different strategies impacts

on the service discovery performance of the overall

system; results of which are discussed in [6].

5. Conclusions

In this paper an agent-based grid resource manage-

ment system, ARMS, is implemented using a hierar-

chy of homogenous agents coupled with a performance

prediction toolkit. Experimental results are included,
demonstrating the efficiency of ARMS in the schedul-
ing of grid applications over available grid resources.

Future work is underway on a practical imple-
mentation of this grid resource management sys-
tem. A transaction-based performance modelling tech-
nique [25,26] is under development which can be used
to achieve remote performance prediction more effi-
ciently. A prediction-driven distributed grid resource
scheduler is also being developed based on an iterative
heuristic algorithm. The supporting agent system is
now Java based and agent cooperation is implemented
via an XML agent communication language.
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components: a model for distributed component-based het-

erogeneous computation, in: Proceedings of 7th International

Euro-Par Conference, LNCS 2150, Manchester, UK, 2001,

pp. 845–854.

[24] D. Slama, J. Garbis and P. Russell, Enterprise CORBA, Pren-
tice Hall, 1999.

[25] D.P. Spooner, J.D. Turner, J. Cao, S.A. Jarvis and G.R. Nudd,

Application characterisation using a lightweight transaction

model, in: Proceedings 17th Annual UK Performance Engi-

neering Workshop, Leeds, UK, 2001, pp. 215–225.

[26] J.D. Turner, D.P. Spooner, J. Cao, S.A. Jarvis, D.N. Dillen-

berger and G.R. Nudd, A transaction definition language for

Java application response measurement, J. Computer Resource

Management 105 (2002), 55–65.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


