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ARNOLD DIFFUSION IN NEARLY INTEGRABLE

HAMILTONIAN SYSTEMS

CHONG-QING CHENG

Abstract. In this paper, Arnold diffusion is proved to be generic phenomenon in
nearly integrable convex Hamiltonian systems with three degrees of freedom:

H(x, y) = h(y) + ǫP (x, y), x ∈ T
3
, y ∈ R

3
.

Under typical perturbation ǫP , the system admits “connecting” orbit that passes
through any two prescribed small balls in the same energy level H−1(E) provided
E is bigger than the minimum of the average action, namely, E > minα.
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1. Introdution

For nearly integrable Hamiltonian systems, the set of KAM tori has a relatively
large Lebesgue measure in phase space. For systems with two degrees of freedom, it
implies the dynamical stability: all orbits are stable, the variation of actions stays
small for all the time as each 2-dimensional KAM torus separates the 3-dimensional
energy level. However, this is a special property of lower-dimensional space, KAM
torus of n-dimension does not separate (2n − 1)-dimensional energy level if n > 2.
It is conceivable that the complement of all n-dimensional invariant tori forms dense
and connected set in phase space. This would mean that by arbitrary small changes
of the initial states one would find orbits along which the action variables ultimately
escape. The underlying phenomenon is now called “Arnold diffusion”.

Conjecture ([Ar2, AKN]): The typical case in a higher-dimensional problems is
topological instability: through an arbitrarily small neighborhood of any point there
passes a phase trajectories along which the slow variables drift away from the initial
value by a quantity of order 1.

Since the celebrated example of Arnold [Ar1] was published half a century ago,
there are many works for the study of this problem. In recent years, it has become
clear that diffusion is a typical phenomenon in so called a priori unstable systems,
refer to [Be3, CY1, CY2, DLS, LC, Tr]. The a priori unstable condition guarantees the
existence of normally hyperbolic cylinder, from which one derives certain regularity
of the barrier functions. The genericity of the diffusion is obtained by using the
regularity [CY1, CY2]. There are also many works for the study of the problem, for
instance, see [Bs, BCV, Fo, DH1, DH2, GL, GR1, GR2, KL1, KL2, X, Zha].

General perturbation of integrable Hamiltonian is usually called a priori stable
system. A bit away from strong complete resonance in such systems, some pieces of
normally hyperbolic cylinder still exist and the method for a priori unstable system
can also be applied [BKZ, Be4]. For a priori stable systems with three degrees of
freedom, a notable difficulty occurs at the point of double resonance, around which
the cylinder for prescribed single resonance may disappear. The averaged system has
two homoclinic orbits associated with different classes in H1(T

2,Z). As the energy
decreases, the periodic orbit on the cylinder approaches these two homoclinic orbits
simultaneously. Thus, the transition chain in H1(T2,R) for the single resonance may
break. To solve this difficulty, Mather suggested a path in H1(T2,R) to cross double
resonance, along which one moves the cohomology class in the channel determined
by the prescribed homology class and switches it to the channel determined by one
of these two classes when it is getting close to the double resonance [Ma6].

In this paper, the path we choose to construct transition chain is different from that
suggested by Mather. We find an annulus surrounding the flat of double resonance in
H1(T2,R), which has a foliation of circles. Each of these circles is actually a transition
chains, possibly, of incomplete intersection. Although the annulus is not so thick, each
single resonance path extends into. It allows us to use one of these circles connecting
one single resonance path to another. In this way, we find a path of transition chain
along which the diffusion orbits are constructed by variational method.



4 C.-Q. CHENG

1.1. Statement of the main result. We consider nearly integrable Hamiltonian
systems with 3 degrees of freedom:

(1.1) H(x, y) = h(y) + ǫP (x, y), (x, y) ∈ T3 × R3,

where h is assumed to strictly convex, namely, the Hessian matrix ∂2h/∂y2 is positive
definite. It is also assumed that minh = 0, both h and P are Cr-function with r ≥ 8.

For E > 0, letH−1(E) = {(x, y) : H(x, y) = E} denote the energy level set, B ⊂ R3

denote a ball in R3 such that
⋃

E′≤E+1 h
−1(E′) ⊂ B. Let Sa,Ba ⊂ Cr(T3×B) denote

a sphere and a ball with radius a > 0 respectively: F ∈ Sa if and only ‖F‖Cr = a
and F ∈ Ba if and only ‖F‖Cr ≤ a. They inherit the topology from Cr(T3 ×B).

For perturbation P independent of y (classical mechanical system) we use the same
notation Sa,Ba ⊂ Cr(T3) to denote a sphere and a ball with radius a > 0

Let Ra be a set residual in Sa, each P ∈ Ra is associated with a set RP residual
in the interval [0, aP ] with aP ≤ a. A set Ca is said cusp-residual in Ba if

Ca = {λP : P ∈ Ra, λ ∈ RP }.

Let ΦtH denote the Hamiltonian flow determined byH. Given an initial value (x, y),
ΦtH(x, y) generates an orbit of the Hamiltonian flow (x(t), y(t)). An orbit (x(t), y(t))
is said to visit Bδ(y0) ⊂ R3 if there exists t ∈ R such that y(t) ∈ Bδ(y0) a ball centered
at y0 with radius δ.

Theorem 1.1. Given any two balls Bδ(x0, y0), Bδ(xk, yk) ⊂ T3 × R3 and finitely
many small balls Bδ(yi) ⊂ R3 (i = 0, 1, · · · , k), where yi ∈ h−1(E) with E > 0 and
δ > 0 is small, there exists a cusp-residual set Cǫ0 such that for each ǫP ∈ Cǫ0,
the Hamiltonian flow ΦtH admits orbits which, on the way between passing through
Bδ(x0, y0) and Bδ(xk, yk), visit the balls Bδ(yi) in any prescribed order.

This is the main result of the paper. It is generic not only in usual sense, but
also in the sense of Mañé, namely, it is a typical phenomenon when the system is
perturbed by potential.

The same result for time-periodic systems can be proved by using the same method.
The statement of the result is: for typical time-periodic perturbations of integrable
Hamiltonian with 2-degrees of freedom, the Hamiltonian flow admits orbits passing
through any prescribed two balls Bδ(x0, y0) and Bδ(xk, yk) in the phase space and
finitely many small balls Bδ(yi) ⊂ R2 (i = 0, 1, · · · , k) in the action variable space.
The proof is easier from technical point of view, one can see it in the proof.

Similar result was announced by Mather earlier [Ma4]. Recently, two other groups
(Kaloshin and Zhang, Marco [Mac]) announced, using different approach, a similar
result for time-periodic systems with two degrees of freedom.

The result obtained here is stronger than what was formulated in [Ar2]. By drop-
ping the requirement that orbit passes two prescribed balls in the phase space and
using the same construction, one can get an orbit that visits these balls Bδ(yi) ⊂ R3

(i = 0, 1, · · · , k) infinitely many times with any prescribed order, as it was announced
in [Ma4]. Indeed, as finitely many balls are given, there exists a path with finite length
passing through finitely many resonance layers and connecting any two of these balls
directly. It does not damage the cusp-residual property.
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1.2. Brief introduction of Mather theory. We use variational method to prove
the result, which is based on Mather theory. This theory is established for Tonelli
Lagrangian.

Definition 1.1. Let M be a closed manifold. A C2-function L: TM × T → R is
called Tonelli Lagrangian if it satisfies the following conditions:

Positive definiteness. For each (x, t) ∈M ×T, the Lagrangian function is strictly
convex in velocity: the Hessian ∂ẋẋL is positive definite.

Super-linear growth. We assume that L has fiber-wise superlinear growth: for
each (x, t) ∈M × T, we have L/‖ẋ‖ → ∞ as ‖ẋ‖ → ∞.

Completeness. All solutions of the Lagrangian equations are well defined for the
whole t ∈ R.

For autonomous systems, the completeness is automatically satisfied, since each
orbit entirely stays in certain compact energy level set.

Let ηc(x) denote a closed 1-form 〈ηc(x), dx〉 evaluated at x, with its first co-
homology class [〈ηc(x), dx〉] = c ∈ H1(M,R). We introduce a Lagrange multiplier
ηc = 〈ηc(x), ẋ〉. Without danger of confusion, we call it closed 1-form also.

For each C1 curve γ: R → M with period k, there is unique probability measure
µγ on TM × T so that the following holds

∫

TM×T

fdµγ =
1

k

∫ k

0
f(dγ(s), s)ds

for each f ∈ C0(TM × T,R), where we use the notation dγ = (γ, γ̇). Let

H∗ = {µγ | γ ∈ C1(R,M) is periodic of k}.
The set H of holonomic probability measures is the closure of H∗ in the vector space
of continuous linear functionals. One can see that H is convex.

For each ν ∈ H the action Ac(ν) is defined as follows

Ac(ν) =

∫

(L− ηc)dν.

It is proved in [Ma1, Me] that for each co-homology class c there exists at least one
invariant probability measure µc minimizing the action over H

Ac(µc) = inf
ν∈H

∫

(L− ηc)dν,

called c-minimal measure. Let Hc ⊂ H be the set of c-minimal measures, the Mather
set M̃(c) is defined as

M̃(c) =
⋃

µc∈Hc

suppµc.

The α-function is defined as α(c) = −Ac(µc) : H1(M,R) → R, it is convex, finite
everywhere with super-linear growth. Its Legendre transformation β : H1(M,R) → R
is called β-function

β(ω) = max
c

(〈ω, c〉 − α(c)).

It is also convex, finite everywhere with super-linear growth (see [Ma1]).
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Note that
∫

λdµγ = 0 for each exact 1-form λ and each µγ ∈ H∗. Therefore, for
each measure µ ∈ H one can define its rotation vector ω(µ) ∈ H1(M,R) such that

〈[λ], ω(µ)〉 =
∫

λdµ,

for every closed 1-form λ on M . For a closed curve γ: [0, k] →M its rotation vector
is defined as

[γ] =
γ̄(k)− γ̄(0)

k
,

where γ̄ stands for a curve in the lift of γ to the universal covering Rn. Let γk:
[0, k] →M be a closed curve such that [γk] = ωk and

1

k
A(γk) = inf

[γ]=ωk

1

k

∫ k

0
L(dγ(t), t)dt.

The curve determines a periodic orbit (γk, γ̇k) of φtL, the Lagrange flow determined
by the Lagrangian L, it supports an invariant measure µk whose rotation vector is
ωk. The measure µk is not necessarily minimal for β(ωk). Nevertheless, if we choose
a sub-sequence of closed curves {γki} such that

lim
ki→∞

1

ki
A(γki) = lim inf

k→∞
inf

[γ]=ωk

1

k

∫ k

0
L(dγ(t), t)dt,

and if [γki ] → ω, then

lim
ki→∞

1

ki
A(γki) = β(ω).

Clearly, there is at least one invariant measure µ such that µki ⇀ µ, and µ is a holo-
nomic probability measure with the prescribed rotation vector ω(µ) = ω. According
to the definition of holonomic measure, and due to the work in [Me], we have

β(ω) = inf
ν∈Hω

∫

ℓdν

where Hω is a set of holonomic probability measures with the given rotation vector
ω, not necessarily invariant for φtL.

The Fenchel-Legendre transformation Lβ: H1(M,R) → H1(M,R) is defined by
the following relation

c ∈ Lβ(ρ) ⇐⇒ α(c) + β(ρ) = 〈c, ρ〉.

The concept of semi-static curves is introduced by Mather and Mañé (cf. [Ma2,
Me]). A curve γ: R →M is called c-semi-static if in time-1-periodic case we have

[Ac(γ)|[t,t′]] = Fc((γ(t), t), (γ(t
′), t′))

where

[Ac(γ)|[t,t′]] =
∫ t′

t

(

L(dγ(t), t) − ηc(dγ(t))
)

dt+ α(c)(t′ − t),

Fc((x, t), (x
′, t′)) = inf

τ=t mod 1
τ ′=t′mod 1

hc((x, τ), (x
′, τ ′)),

in which

hc((x, τ), (x
′, τ ′)) = inf

ξ∈C1

ξ(τ)=x

ξ(τ ′)=x′

[Ac(ξ)|[τ,τ ′]].
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In autonomous case, the period can be considered as any positive number. Conse-
quently, the notation of semi-static curve in this case is somehow simpler

[Ac(γ)|(t,t′)] = Fc(γ(t), γ(t
′)),

where

Fc(x, x
′) = inf

τ>0
hc((x, 0), (x

′, τ)).

Convention: Let I ⊆ R be an interval (either bounded or unbounded). A continuous
map γ: I → M is called curve. If it is differentiable, the map dγ = (γ, γ̇): I → TM
is called orbit. When the implication is clear without danger of confusion, we use
the same symbol to denote the graph, γ := ∪t∈I(γ(t), t) is called curve and dγ :=
∪t∈I(γ(t), γ̇(t), t) is called orbit. In autonomous system, the terminology also applies
to the image: γ := ∪t∈Iγ(t) is called curve and dγ := ∪t∈I(γ(t), γ̇(t)) is called orbit.

A semi-static curve γ ∈ C1(R,M) is called c-static if, in addition, the relation

[Ac(γ)|(t,t′)] = −Fc((γ(t′), τ ′), (γ(t), τ))
holds in time-1-periodic case and

[Ac(γ)|(t,t′)] = −Fc(γ(t′), γ(t))
holds in autonomous case. An orbit X(t) = (dγ(t), tmod 2π) is called c-static (semi-

static) if γ is c-static (semi-static). We call the Mañé set Ñ (c) the union of c-semi-
static orbits

Ñ (c) =
⋃

{dγ : γ is c-semi static}
and call the Aubry set Ã(c) the union of c-static orbits

Ã(c) =
⋃

{dγ : γ is c-static}.

We use M(c), A(c) and N (c) to denote the standard projection of M̃(c), Ã(c) and

Ñ (c) from TM × T to M × T respectively. They satisfy the inclusion relation

M̃(c) ⊆ Ã(c) ⊆ Ñ (c).

It is showed in [Ma1, Ma2] that the inverse of the projection is Lipschitz when it is
restricted to A(c) as well as to M(c). By adding subscript s to N , i.e. Ns we denote

its time-s-section. This principle also applies to Ñ (c), Ã(c), M̃(c), A(c) and M(c)
to denote their time-s-section respectively. For autonomous systems, these sets are
defined without the time component.

On the time-1-section of Aubry set a pseudo-metric dc is introduced by Mather in
[Ma2], its definition relies on the quantity h∞c . Let

h∞c ((x, s), (x′, s′)) = lim inf
s=t mod 1
t′=s′ mod 1

t′−t→∞

hc((x, t), (x
′, t′)),

h∞c (x, x′) = lim inf
k→∞

hc((x, 0), (x
′, k)).

The pseudo-metric dc on Aubry set is defined as

dc((x, t), (x
′, t′)) = h∞c ((x, t), (x′, t′)) + h∞c ((x′, t′), (x, t)).

With the pseudo-metric dc one defines equivalence class in Aubry set. The equivalence
(x, t) ∼ (x′, t′) implies dc((x, t), (x

′, t′)) = 0, with which one can define quotient Aubry
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set A(c)/ ∼. Its element is called Aubry class, denoted by Ai(c), its lift to TM × T

is denoted by Ãi(c). Thus,

A(c) =
⋃

i∈Λ
Ai(c), Ã(c) =

⋃

i∈Λ
Ãi(c).

In [Ma5] Mather constructed an example with some quotient Aubry set homeomorphic
to an interval. However, it is proved generic in [BC] that, for system with n degrees of
freedom, each c-minimal measure contains not more than n+ 1 ergodic components.
In this case, each Aubry set contains at most n+ 1 classes.

The definition of semi-static curve as well as of Mañé set depends on which con-
figuration manifold under our consideration. Let π : M̄ → M be a finite covering,
a curve γ: R → M is said semi-static in M̄ if each curve in its lift γ̄ is semi-static
in M̄ . Accordingly, we define Ñ (c, M̄ ) (N (c, M̄ )) as the set containing all c-semi-
static orbits (curves) in M̄ . We use the symbol N (c) when M is defaulted as the
configuration manifold.

It is possible that πN (c, M̄ ) ) N (c,M). For instance, if N ⊂ M is a open region
such that H1(M,N,Z) 6= H1(M,Z), N ⊂ N and the lift of N in M̄ has more than
one connected component, then this phenomenon takes place. But we have

Proposition 1.1. Let π : M̄ →M be a finite covering space, then

πA(c, M̄ ) = A(c,M).

Proof. Pick up any x̄ ∈ πA(c, M̄ ) and any small δ > 0, by definition, there exists
sufficiently large T > 0 as well as a curve ξ̄ : [0, T ] → M̄ such that ξ̄(0) = ξ̄(T ) = x̄
and [Ac(ξ̄)] < δ. Let ξ denote the project of ξ̄ down to M , clearly, we have [Ac(ξ)] =
[Ac(ξ̄)] < δ. Let x = πx̄, clearly, x ∈ A(c). �

1.3. Outline of the proof. We use variational method to prove the result. Since the
work of Mather [Ma2, Ma3], the variational method has become a powerful tool for
the study of dynamical instability in positive definite Lagrange systems with multiple
degrees of freedom.

In the study of Arnold diffusion in a priori stable systems with three degrees of
freedom, mainly due to the work of Mather [Ma6], it has been widely known that the
main difficulty takes place near double resonance. To describe what puzzled us and
to explain the strategy of our proof, let us recall the example of Arnold and previous
study on a priori unstable systems.

In the example of Arnold, there exists a 2-dimensional cylinder in the phase space,
which is invariant and normally hyperbolic for the time-1-map determined by the
Hamiltonian flow. This cylinder is foliated into a family of invariant circles, each
of them has stable and unstable manifold which intersect each other transversally.
Consequently, the unstable manifold of some circle intersects the stable manifold of
other circles nearby, it implies the existence of a sequence of successively connected
heteroclinic orbits. This structure is called transition chain by Arnold. Diffusion
orbits are then constructed shadowing these heteroclinic orbits.

Such argument heavily depends on the geometric structure and variational method
turns out to have wider range of application. Let us interpret the proof by variational
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language. Each invariant circle is the Aubry set for certain cohomology class, the
stable as well as the unstable manifold is actually the graph of the differential of
the weak KAM solution. Expressed as the difference of backward and forward weak
KAM, the barrier function reaches its minimum at primary intersection points of these
two manifolds. These homoclinic orbits and the Aubry set constitute the Mañé set in
certain finite covering space. For positive definite systems, the transversal intersection
implies the minimality of the homoclinic orbits as well as local heteroclinic orbits,
along which the Lagrange action reaches the minimum among all those curves with
the same boundary conditions. The diffusion orbits are obtained by searching for
global minimizers which generate orbits shadowing a sequence of local heteroclinic
orbits.

The variational arguments still work even if there does not exist such nice geometric
structure, provided the following conditions are satisfied for each cohomology class

1, the Aubry set is lower dimensional: H1(M,A(c),Z) 6= 0;

2, the stable “manifold” intersects the unstable “manifold” transversally.

However, it turns out very difficult to verify whether the stable “manifold” inter-
sects the unstable “manifold” transversally for each cohomology class along a path of
first cohomology class. As uncountably many stable and unstable “manifolds” have
to be considered, one can not verify the genericity of the transversal intersection by
taking the intersection of countably many open-dense sets. One possible way is to
study some regularity of barrier functions with respect to some parameter, with which
one obtains the finiteness of Hausdorff dimensions of the set of barrier functions. As
such regularity is obtained in the case when a normally hyperbolic cylinder exists we
are succeeded in solving the problem in a priori unstable case [CY1, CY2, LC]. In
fact, the regularity was obtained in [CY1] only for those barrier functions for which
the minimal measure is supported on an invariant circle. It was extended in [Zho1] to
all other barrier functions, which allows us to construct diffusion orbits of which the
picture looks like what was constructed by Arnold, while in our previous work, the
constructed orbits keep close to the cylinder when they pass through strong resonance
(Birkhoff instability region). The “gap” problem was then solved.

Intuitively, diffusion orbits in a priori stable systems may be constructed along
some resonant path. In terms of rotation vector (first homology class), each point
on this curve satisfies at least one resonant condition for the system with 3 degrees
of freedom. In integrable systems, each resonant path corresponds to an invariant
cylinders without any hyperbolicity. Under generic perturbations, it breaks into many
pieces of normally hyperbolic cylinder, but may disappear around double resonant
points. It implies a bad consequence: we lost a handhold to get certain regularity of
barrier functions in suitable parameter. It then becomes unclear whether there is a
transition chain near double resonance.

In terms of first cohomology, strong double resonance corresponds to a convex disc
with size O(

√
ǫ) if the perturbation is of order O(ǫ), each piece of normally hyperbolic

cylinder corresponds to a channel which extends to a small neighborhood of the disc.
But it is unclear whether these channels are connected to the disc of double resonance.

The method we use to overcome this difficulty bases on following discoveries:
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First, each double resonant disc is surrounded by an annulus foliated into a family
of paths, along each of these paths, there is another invariant (a coordinate component
of the cohomology class) besides the average action. For each class in this annulus,
the intersection of stable “manifold” with unstable “manifold” is nontrivial although
it may not be transversal. This annulus has width of order O(ǫ).

Next, incomplete intersection of the stable and unstable “manifold” of an Aubry
set does not implies that it can not be connected to any other Aubry set nearby. It
does if they are c-equivalent.

Finally, the channels of normally hyperbolic cylinder reach to somewhere ǫ1+δ-close
to double resonant disc (δ > 0), i.e. it has overlap with the annulus. For each class
in the channel, the relative homology of the Aubry set is non-trivial.

Therefore, we are able to find a path close to prescribed one, for each class on the
path, the Aubry set is connected to another one nearby if the class is also on the
path. All of these connecting orbits are minimal in local sense. The diffusion orbits
are constructed shadowing these successively connected orbits.

We organize the proof in following way. Section 2 is used to establish the concept
of elementary weak KAM, with which one has simpler expression of barrier function.
It thus becomes easier to study genericity of transition chain. Section 3, 4 and 5 are
devoted to study the structure of Mañé set and of Aubry set. Since these sets are
symplectic invariants [Be2], we do it by studying the normal form which is put into
the appendix. The truncated Hamiltonian of the normal form is a system with two
degrees of freedom. In Section 3, we study the dynamics around the double resonance,
and the modulus continuity of the period on energy (average action). With these
preliminary works, normally hyperbolic cylinder is shown to get very close to the
double resonance in Section 4, the existence of annulus of c-equivalence is established
in Section 5. Section 6 is devoted to establish two types of local connecting orbits.
The local minimality of these local connecting orbits are naturally given, it enables
us to construct global connecting orbit shadowing these local connecting orbits. It
is obtained by searching for the minimizer of certain modified Lagrangian, which
is done in Section 7. Finally in Section 8, we verify the cusp-residual property of
the transition chain in nearly integrable Hamiltonian systems with three degrees of
freedom. Consequently, the main result of this paper is proved.

2. Elementary Weak KAM and Barrier

The concept of elementary weak KAM solution is introduced for c-minimal measure
with finitely many ergodic components, this condition has been shown to be generic
in [BC]. Each ergodic component µic determines a pair of elementary weak KAM u±c,i,
with which we introduce a barrier function

Bc,i,j = u−c,i − u+c,j.

With this formula, it is easier to show that, generically, the set argminBc,i,j\(A(c)+δ)
is totally disconnected. This property is crucial for the construction of diffusion orbits.

2.1. Elementary weak KAM. The concept of c-semi-static curves can be extended
to the curves only defined on R±, which are called forward or backward c-semi-static
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curves respectively. Usually one uses γ−c (t, x, τ): (−∞, τ ] → M to denote backward
c-semi-static curve such that γ−c (τ) = x, and uses γ+c (t, x, τ): [τ,∞) →M to denote
forward c-semi-static curve such that γ+c (τ) = x. In autonomous case, one uses the
notation γ±c (t, x) such that γ±(0, x) = x. Let

Ñ+(c) = {(x, ẋ, τ) ∈ TM × T : πxφ
t
L(z, τ)|[τ,+∞) is c-semi-static},

Ñ−(c) = {(x, ẋ, τ) ∈ TM × T : πxφ
t
L(z, τ)|(−∞,τ ] is c-semi-static},

where 0 ≤ τ < 1, πx(x, ẋ) = x denotes the standard projection along the tangent fiber
and φtL(x, ẋ, τ) denotes the orbit of the Lagrangian flow with the initial value (x, ẋ) at
the time τ . The corrsponding orbits are called forward (backward) semi-static orbit
set respectively. These two sets are upper semi-continuous for the cohomology class.

Proposition 2.1. (see [Bo]) If the Lagrangian L is of Tonelli type, for each point
(x, τ) ∈M×T, there is at least one γ±c (t, x, τ) which is forward (backward) semi-static
curve.

As both the ω-limit set of dγ+c and the α-limit set of dγ−c are in the Aubry set one
can define

W±
c =

⋃

(x,τ)∈M×T

{

x, τ,
dγ±c (τ, x, τ)

dt

}

,

and callW+
c the stable set,W−

c the unstable set of the c-minimal measure respectively.
If γ̇−(τ, x, τ) = γ̇+(τ, x, τ) holds for some (x, τ) ∈ M × T, passing through the point
(x, τ, γ̇−c (τ, x, τ)) the orbit is either in the Aubry set or homoclinic to this Aubry set.

When the Aubry set contains only one class, the stable as well as the unstable
set has its own generating function u±c such that W±

c = Graph(du±c ) holds almost
everywhere [Fa1, E]. These functions are weak KAM solutions, which are the fixed
points of so called Lax-Oleinik operator. We use u±c to denote the weak KAM solution
for the Lagrangian L−ηc, where ηc is a closed form with [ηc] = c. These functions are
Lipschitz, thus differentiable almost everywhere. At each differentiable point (x, τ),
(x, τ, ∂xu

−(x, τ)) uniquely determines backward c-semi static curve γ−x : (−∞, τ ] →M
such that γ−x (τ) = x, γ̇−x (τ) = ∂yH(x, τ, ∂xu

−(x, τ)). Similarly, (x, τ, ∂xu
+(x, τ))

uniquely determines forward c-semi static curve γ−x : [τ,∞) →M such that γ+x (τ) = x,
γ̇+x (τ) = ∂yH(x, τ, ∂xu

+(x, τ)).

Given a class c ∈ H1(M,R), we use {Ãi
c}i∈Λ ⊂ TM to denote the set of Aubry

classes, use {Ai
c}i∈Λ ⊂M to denote the projected set along the tangent fibers, where

Λ is the subscript set: Ã(c) = ∪i∈ΛÃi
c. We also use the notation M̃i

c = suppµic where

µic is an ergodic component of the c-minimal measure µc. Let Mi
c = πM̃i

c.

Proposition 2.2. ([Fa2]) Let u±c and u′±c be two weak-KAM solutions for c. Their
difference keeps constant when they are restricted on an Aubry class (u±c − u′±c )|Ai

c
=

constant.

Recall the definition of h∞c in the introduction. We use the symbol h∞L to denote
the quantity defined in the same way for L with c = 0, and drop the subscript L when
it is clearly defined. The quantity h∞c (z, z′) is a weak-KAM solution if we consider
it as the function of z or of z′. Let us consider the case that the c-minimal invariant
measure has finitely many ergodic components. In this case, this function has some
kind of continuity.
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Theorem 2.1. Let {Lδ} be a sequence of Lagrangian, converging to L in C2-topology
as δ → 0 when they are restricted on any bounded regions of TM × T. We assume
that the minimal measure for L consists of finitely many ergodic components µ1, µ2,
· · · , µm and the distance from (x, τ) ∈ Mi to the Aubry set for Lδ, d((x, τ),ALδ

) → 0
as δ → 0. Then

lim
δ→0

h∞Lδ
((x, τ), (x′, τ ′)) = h∞((x, τ), (x′, τ ′)).

Proof. We only need to prove it on the time-1-section, e.g. for τ = τ ′ = 0. So we
omit the notation for the component τ . For each ǫ > 0, there exists k > 0 such that
|h∞(x, x′)− hk(x, x′)| < ǫ. Let α and αδ denote the minimal average action of L and
Lδ respectively. Let γ

k: [0, k] →M be the curve such that γk(0) = x, γk(k) = x′ and

[AL(γ
k)] =

∫ k

0
L(dγk(t), t)dt + kα = hk(x, x′).

For any k′ > k, let ζ: [0, k′] →M be an absolutely continuous curve such that ζ(0) =

x, ζ(t− k′+ k) = γk(t) for t ∈ [k′− k, k′] and [ALδ
(ζ|[0,k′−k])] =

∫ k′−k
0 Lδ(dζ(t), t)dt+

(k′ − k)αδ = hk
′−k
Lδ

(x, x). Therefore, we have

[ALδ
(ζ)] ≤ hk

′−k
Lδ

(x, x) + hk(x, x′) + k|α− αδ|

+

∣

∣

∣

∣

∫ k

0
(L− Lδ)(dγ

k(t), t)dt

∣

∣

∣

∣

.

Since d(x,ALδ
|t=0) → 0 as δ → 0 we see that lim infk′−k h

k′−k
δ (x, x) → 0 as δ → 0.

Since α is continuous in the Lagrangian and ǫ is arbitrarily small we see that

lim sup
δ→0

h∞Lδ
(x, x′) ≤ h∞(x, x′).

So, in order to complete the proof, we only need to show

(2.1) lim inf
δ→0

h∞Lδ
(x, x′) ≥ h∞(x, x′).

Let γkℓδ : [0, kℓ] →M be a curve such that γkℓδ (0) = x, γkℓδ (kℓ) = x′ and

[Aδ(γ
kℓ
δ )] = hkℓLδ

(x, x′) → h∞Lδ
(x, x′),

where kℓ → ∞ is a sequence of integers. Let Oǫ(S) denote the ǫ-neighborhood of the
set S. For small ǫ > 0, there exist some j with 1 ≤ j ≤ m, an integer kj ∈ [0, kℓ] and

xj ∈ Mj
0 = Mj|t=0 such that γkℓδ (kj) ∈ Oǫ(xj) provided kℓ is sufficiently large.

Let us consider those ergodic components of minimal measure for L of which the

support is approached by dγkℓδ as δ → 0: {dγkℓ} ∩Oǫ(M̃j) 6= ∅. We number some j

as j1 if some x1 ∈ Mj1
0 exists such that γkℓδ (k1) ∈ Oǫ(x1) and for each k < k1, γ

kℓ
δ (k)

does not fall into ǫ-neighborhood of any Mj
0. Let k′1 ≥ k1 be the integer such that

γkℓδ (k′1) ∈ Oǫ(x1) and γ
kℓ
δ (k) /∈ Oǫ(x1) for all k > k′1. We number some j2 6= j1 if some

k2 > k′1 and some x2 ∈ Mj2
0 exists such that γkℓδ (k2) ∈ Oǫ(x2), let k

′
2 ≥ k2 be the

integer such that γkℓδ (k′2) ∈ Oǫ(x2) and γkℓδ (k′) /∈ Oǫ(x2) for all k > k′2. Inductively,

one obtains xi ∈ Mji
0 (i = 1, 2 · · ·m′ ≤ m) and

0 ≤ k1 ≤ k′1 ≤ · · · ≤ km′ ≤ k′m′ ≤ kℓ.
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Obviously, there exist small ε = ε(ǫ) > 0 and large integer K = K(ǫ) such that

|kj − k′j−1| ≤ K, ∀ kℓ → ∞
provided |Lδ − L| < ε. Otherwise, there would exist also an ergodic component ν of
the minimal invariant measure such that ν 6= µj for all 0 ≤ j ≤ m, but it is absurd.

Given small ǫ > 0, let kℓ be the integer such that |hkℓLδ
(x, x′)− h∞Lδ

(x, x′)| < ǫ. Let

x̄j = γkℓδ (kj), x̃j = γkℓδ (k′j), we choose an absolutely continuous curve ζj: [0, k
j
ℓ ] →M

such that ζj(0) = x̄j, ζj(k
j
ℓ ) = x̃j and [A(ζj)] = hk

j
ℓ (x̄j , x̃j). As x̄j, x̃j ∈ Oǫ(xj) we

can choose sufficiently large kjℓ such that

|hkjℓ (x̄j , x̃j)| < Cǫ,

where C = C(L) is a constant depending on L only. As ‖x̄j − x̃j‖ ≤ 2ǫ, for any
positive integer i we have

hiLδ
(x̄j , x̃j) > −Cǫ.

For any large integer k′ ∈ Z with k′ ≥ k, we construct an absolutely continuous curve
ζ: [0, k′] →M joining x with x′ such that

ζ(t) =

{

γkℓδ (t− τj−1), if k′j−1 + τj−1 ≤ t ≤ kj + τj−1,

ζj(t− kj − τj−1), if kj + τj−1 ≤ t ≤ k′j + τj

where τj =
∑j

=1(k

ℓ − k′ + k), k

′ = kℓ + τm′ . The action of L along this curve is
easily estimated

hk
′
(x, x′)− hkLδ

(x, x′) ≤ [A(ζ)]− hkLδ
(x, x′)

≤ 2m′(Cǫ+K|α− αδ|)

+

m′
∑

j=1

∣

∣

∣

∣

∣

∫ kj

k′j−1

(L− Lδ)(dγ
ℓ
δ(t), t)dt

∣

∣

∣

∣

∣

.

As |kj − kj−1| ≤ K, and K is independent of δ when δ is sufficiently close to 0, we
see that the inequality (2.1) holds. This completes the proof. �

Corollary 2.1. Let {ci} be a sequence of cohomology classes such that ci → c. The
c-minimal measure is assumed consisting of finitely many ergodic components µ1c , µ

2
c ,

· · · , µmc , (x, τ) ∈ Mj
c and d((x, τ),M(ci)) → 0 for some 0 ≤ j ≤ m, as ci → c. Then

lim
ci→c

h∞ci ((x, τ), (x
′, τ ′)) = h∞c ((x, τ), (x′, τ ′)).

From the proof one can see that the function h∞c is lower semi-continuous in c if
the c-minimal measure is assumed to have finitely many ergodic components:

lim inf
c′→c

h∞c′ (z, z
′) ≥ h∞c (z, z′).

Let us introduce the concept of elementary weak KAM solution if the c-minimal
measure has finitely many ergodic components. One can choose finitely many non-
negative functions gi: M × T → R such that its support has no intersection with
a small neighborhood of Mi

c and the minimal measure for the Lagrangian Lc,i,ǫ =
Lc + ǫgi is uniquely supported on Mi

c. By the theory of weak KAM ([Fa2]), there is
exactly one pair of weak KAM solutions denoted by u±c,i,ǫ and

h∞Lc,i,ǫ
(z, z′) = u−c,i,ǫ(z

′)− u+c,i,ǫ(z).
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Let z ∈ Mi
c, in virtue of Theorem 2.1, one has h∞Lc,i,ǫ

(z, z′) → h∞c (z, z′) as ǫ → 0.

Since gi = 0 in the neighborhood of Mi
c, u

+
c,i,ǫ(z) remains unchanged as ǫ→ 0. Thus,

there is a Lipschitz function u−c,i such that u−c,i,ǫ → u−c,i as ǫ→ 0. Clearly this u−c,i is a

weak-KAM solution for Lc. Similarly, we can see that u+c,i,ǫ → u+c,i as ǫ → 0.

Definition 2.1. (elementary weak-KAM solution). Assume that the minimal
measure for Lc consists of finitely many ergodic components µ1c , µ

2
c , · · · , µmc . A weak

KAM solution u±c,i of Lc is called elementary for µic if u
±
c,i = limǫ→0 u

±
c,i,ǫ where u

±
c,i,ǫ

is the weak KAM solution of Lc,i,ǫ, of which the minimal measure µ = µic is uniquely
ergodic and Lc,i,ǫ → Lc as ǫ→ 0.

It is not necessary that u±c,i is a pair of conjugate weak KAM. Clearly, if (x, t) ∈ Mi
c

u−c,i(x
′, t′) = h∞c ((x, t), (x′, t′)) + u+c,i(x, t),

u+c,i(x
′, t′) = u−c,i(x, t)− h∞c ((x′, t′), (x, t)).

These elementary weak KAM solutions generate all weak KAM solutions in the
following sense.

Proposition 2.3. Assume the minimal measure consists of m ergodic components.
For each weak KAM solution u±, there exist m′ (m′ ≤ m) constants d±1 , · · · , d±m′

and m′ open domains D±
1 , · · · ,D±

m′ such that they do not overlap each other, M =

∪1≤i≤m′D̄±
i and

(2.2) u±|D±
i
= u±i + d±i , ∀1 ≤ i ≤ m′.

Proof. It is deduced from the Lipschitz property of u− that it is differentiable almost
every where. Let x be a point where u− is differentiable, du−(x) determines a unique
backward semi static orbit dγic: (−∞, 0] → M whose α-limit set is in certain Aubry

class Ãi
c. By definition we have

u−(x)− u−(γic(−t)) =
∫ 0

−t
Lc(dγ

i
c(s), s)ds + α(c)t.

Let tk → ∞ such that γic(−tk) → x′ ∈ Ai
c, it follows from Proposition 2.2 that

(2.3) u−(x) = h∞c (x′, x) + u+(x′) = u−c,i(x) + di.

If x∗ ∈ M is another point where du−(x∗) determines a backward semi-static orbits

whose α-limit set is also contained in Ãi
c, we then obtain (2.3) for u−(x∗) with the

same di. All these points constitute a set connected with Ai
c. There are not more

than m connected sets such that (2.2) holds. �

Theorem 2.2. Let ci → c be a sequence of cohomology and assume that the minimal

measure consists of finitely many ergodic components for each ci and c. Let M̃j
ci, M̃j

c

be the support for the ergodic minimal measure µjci and µjc respectively, let u−ci and

u−c be the corresponding elementary weak KAM solution. If µjci ⇀ µjc as ci → c, then
u−ci → u−c in C0-topology.

Proof. It follows from the continuity of h∞c (x, x′) in c shown in Theorem 2.1 and the
definition of the elementary weak KAM solution. �
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In terms of conjugate pair of weak KAM solution, one has a definition of Mañé set
in [Fa2]. For the purpose of this paper, we would like to use elementary weak KAM
solution. Recall the definition of the barrier function in [Ma2]:

B∗
c (x) = min

ξ,ζ∈M0(c)
{h∞c (ξ, x)− h∞c (x, ζ) + h∞c (ξ, ζ)}.

If the minimal measure consists of finitely many ergodic components, we introduce
barrier functions in terms of elementary weak KAM solutions: given z = (x, τ) ∈
M × T, we set

(2.4) Bc,i,j(z) = u−c,i(z)− u+c,j(z).

which measures the minimum of the action along those curves passing through z and

joining Mi
c to Mj

c. For autonomous systems, this barrier function is independent of
time. Obviously, each c-semi static curve corresponds to a minimum of u−i,c − u+j,c if

its α-limit set intersects M̃i
c and its ω-limit set intersects M̃j

c.

2.2. Minimal homoclinic orbits to Aubry Set. To extend the concept of elemen-
tary weak KAM solution to universal covering space, let us reveal some properties of
minimal homoclinic orbit to Aubry set.

Given a curve γ: R → M , we call dγ = (γ, γ̇) a homoclinic orbit to some Aubry

set Ã if it does not stay in the Aubry set, but its ω-limit set as well as the α-limit
set is contained in the Aubry set:

α(dγ) ⊆ Ã and ω(dγ) ⊆ Ã.
Correspondingly, we call γ homoclinic curve. The existence of homoclinic orbits to
Aubry sets has been studied in a few papers, see [Bo, Be1, Cui, Zhe, Zho2].

The existence of homoclinic orbits is closely related to the issue whether the Čech
homology group H1(M,A,R) is non-trivial (H1(M × T,A,R) for time-periodically
dependent Lagrangian). It is defined as the inverse limit limA⊂U H1(M,U,R), where
U is an open neighborhood of A. There exists a small open neighborhood U0 of A
such that rankH1(M,U,R) = rankH1(M,A,R) provided U ⊆ U0.

Let M̄ be a covering of M such that π1(M̄ ) = ker(H : π1(M) → H1(M,R)) where
H denotes the Hurewicz homomorphism. The group of Deck transformation of this
covering space is

H = im(H : π1(M) → H1(M,R)).

Let U be an open neighborhood of A such that rankH1(M,U,Z) = rankH1(M,A,R).
Let K = i∗H1(U,Z) ⊂ H and G = H/K, then G is a free Abel group. To each orbit

(γ, γ̇): R →M homoclinic to Ã, an element [γ] ∈ G is associated.

If the group G is non-trivial, there is a flat F of the α-function containing the
cohomology class. A set F ⊂ H1(M,R) is called flat if the function α is affine when
it is restricted on F, not affine for any set properly contains F. The dimension of this
flat is not smaller than r = rankH1(M,A,Z) and the Aubry set is the same for all
classes in the interior of F (see [Ms]).

In this paper, we are interested in so-called minimal homoclinic orbits. Let M̌ be
a covering manifold of M such that π1(M̌ ) = π1(U). A curve γ: R →M is called M̌
semi-static if the lift of γ to M̌ , γ̌: R → M̌ is semi-static. A homoclinic orbit dγ is
called minimal if the lift γ̌: R → M̌ is semi-static.
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Theorem 2.3. If there is only one Aubry class and rankH1(M,A,R) = r > 0, then
there are at least r + 1 minimal homoclinic orbits. If M(c) ) M(c′) for c ∈ ∂F and
c′ ∈ intF, then there are infinitely many c-minimal homoclinic orbits.

The existence of at least r+1 homoclinic orbits is proved in [Be1], they are actually
minimal. The infinity of minimal homoclinic orbits are proved in [Zhe, Zho2]. Let
us briefly describe how to find these r + 1 minimal homoclinic orbits. Given a point
x ∈ A and g ∈ G, we denote by ξk: [−k, k] →M the minimizer of

hkg(x) = inf
ξk(−k)=ξk(k)=x

[ξk]=g

∫ k

−k
L(ξk(s), ξ̇k(s))ds+ 2kα

Obviously, the set {‖ξ̇k(t)‖ : t ∈ [−k, k]} is uniformly bounded for k ∈ Z+. Because

of positive definiteness of L, the set {‖ξ̈k(t)‖ : t ∈ [−k, k]} is also uniformly bounded
for each k. Let

h∞g (x) = lim inf
k→∞

hkg(x),

there exists a subsequence of kj such that h
kj
g (x) → h∞g (x). The quantity h∞g keeps

constant on each Aubry class. By diagonal extraction argument we can find a subse-
quence of ξkj which C1-uniformly converges, on each compact interval, to a C1-curve
γ: R → M . In this sense, γ: R → M is called an accumulation point of {ξkj}. Each

accumulation point is M̌ semi-static and there is at least one accumulation point γ1
with non-zero homology [γ1] 6= 0.

As the relative homology of the Aubry set is non-trivial, some a > 0 exists such
that h∞g ≥ a holds for each class g ∈ G and hg → ∞ as |g| → ∞. Therefore, for each
g ∈ G, there are finitely many accumulation points of {ξkj} with non-zero homology,

denoted by γ1, · · · , γi. Clearly
∑i

j=1[γj ] = g. As G is r-dimensional, at least r + 1
geometrically different minimal homoclinic orbits exist.

Let us look at these homoclinic orbits from another point of view. For certain
finite covering manifold, the lift of the Aubry set has several connected components
(several Aubry classes). These Aubry classes are connected by semi-static orbits [CP].
The projection of these semi-static orbits are nothing else but minimal homoclinic
orbits. For a finite covering manifold π̃: M̃ → M , the fiber π̃−1x contains finitely
many points. For a closed curve φ: [0, 1] → M such that φ(0) = φ(1) = x, there is
a lift of φ̄ such that φ̄(0) = x̄0 ∈ π̃−1x. By the monodromy theorem, φ̄(1) ∈ π̃−1x is
uniquely determined by its class [φ] ∈ π1(M). Let g1, g2, · · · , gr be the generators of

G, φ1, φ2, · · · , φr be closed path so that [φi] = gi, φi(0) = x for i = 1, 2, · · · , r. If M̃
is chosen so that φ̄i(0) = x̄0 and φ̄i(1) 6= φ̄j(1), there will be at least 2r Aubry classes
for this covering manifold. Among the semi-static orbits connecting different Aubry
classes for the covering manifold, there are at least r + 1 orbits whose projection is
different from each other.

Let Gm ⊂ G be defined such that g ∈ Gm if and only if some minimal homoclinic
orbit dγ exists such that [γ] = g. We say that there are k-types of minimal homoclinic
orbits if Gm contains exactly k elements.

Theorem 2.4. If M = Tn, H1(M,A,Z) 6= 0 and A contains a set homeomorphic to
Tn−1, there exist exactly two types of minimal homolcinic orbits.
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Proof. In this case G = Z. By the condition, we can assume that each standard
generator ei ∈ H1(T

n,Z) with i > 1 can be represented by a closed curve in A. Let
g = ke1 with k > 1. If there is a minimal homoclinic orbits (γ, γ̇) such that [γ] = g,

there must be some points x = γ(t0) ∈ A but (γ(t0), γ̇(t0)) /∈ Ã.

As x ∈ A, there is a unique vector v such that (x, v) ∈ Ã. Given any ǫ > 0, there
is static curve ξ: R →M and s0 < s1 such that ξ(s0), ξ(s1) are in ǫ-neighborhood of

x, ‖ξ̇(s0)− v‖ < ǫ, ‖ξ̇(s1)− v‖ < ǫ and [A(ξ)|[s0,s1]] < ǫ.

Let τ−1 = t0 − t− > 0, τ+2 = t+ − t0 > 0, τ+1 = s+0 − s0 > 0 and τ−2 = s1 − s−1 > 0
be suitably small numbers. We join γ(t−) to ξ(s+0 ) by the curve ζ1: [−τ−1 , τ+1 ] → M
which minimizes the action

[A(ζ1)|[−τ−1 ,τ+1 ]] = inf
ζ(−τ

−
1

)=γ(t−)

ζ(τ+1 )=ξ(s+0 )

∫ τ+1

−τ−1
L(ζ(s), ζ̇(s))ds + (τ+1 + τ−1 )α,

and join ξ(s−1 ) to γ(t
+) by the curve ζ2: [−τ−2 , τ+2 ] →M which minimizes the action

[A(ζ2)|[−τ−2 ,τ+2 ]] = inf
ζ(−τ

−
2

)=ξ(s−
1

)

ζ(τ+
2

)=γ(t+)

∫ τ+2

−τ−2
L(ζ(s), ζ̇(s))ds + (τ+2 + τ−2 )α.

We define a continuous curve γ′: R →M by

γ′(t) =































γ(t), t ∈ (−∞, t−],

ζ1(t−∆1), t−∆1 ∈ [−τ−1 , τ+1 ],

ξ(t−∆2), t−∆2 ∈ [s+0 , s
−
1 ],

ζ2(t−∆3), t−∆3 ∈ [−τ−2 , τ+2 ],

γ(t−∆4), t−∆4 ∈ [t+,∞),

where ∆1 = t− + τ−1 , ∆2 = t− + τ−1 + τ+1 − s+0 , ∆3 = t− + τ−1 + τ+1 − s+0 + s−1 + τ−2
and ∆4 = t− + τ−1 + τ+1 − s+0 + s−1 + τ−2 + τ+2 − t+. By exploiting the curve shorten
lemma in Riemannian geometry as did in [Ma2] we find that

[A(γ)|[t−,t+]] + [A(ξ)|[s0,s+0 ]∪[s−1 ,s1]
] > [A(ζ1)|[−τ−1 ,τ+1 ]] + [A(ζ2)|[−τ−2 ,τ+2 ]]

if ξ(s0) = ξ(s1) = x and ξ̇(s0) = ξ̇(s1) = v 6= γ̇(t0). As x ∈ A, (ξ(s0), ξ̇(s0)),

(ξ(s1), ξ̇(s1)) can be arbitrarily close to (x, v) by choosing suitable s0 and s1, this
inequality still hold in our case. Note that the quantity [A(ξ)|[s0,s1]] can be arbitrarily
close to zero, we see that

[A(γ)|[t−1,t1]] > [A(γ′)|[t−1,t1+∆4]]

if t−1 < t− and t1 > t+. As [γ′] = [γ], this property contradicts the fact that γ is
minimal. On the other hand, from Theorem 2.3, we obtain the existence of 2 minimal
homoclinic orbits. This completes the proof. �

For each class g ∈ G, we define

hkg(x, x) = inf
ξ(0)=ξ(k)=x

ξ∈C1,[ξ]=g

∫ k

0
L(ξ(s), ξ̇(s))ds + kα,

h∞g (x, x) = lim inf
k→∞

hkg(x, x).
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It is easy to see that h∞g (x, x) → ∞ as ‖g‖ → ∞. Indeed, it follows from the fact
H1(T

n,A,Z) 6= 0 that h∞g (x, x) > 0 for any g 6= 0. If h∞g (x, x) remains bounded
as ‖g‖ → ∞, there would be a minimal measure whose support is obviously not

contained in Ã, but it is absurd.

If the Aubry set contains only one class, as a function of x, h∞g (x, x) keeps constant
on the Aubry set. So it makes sense let h∞g = h∞g (x, x) for x ∈ A. Obviously, one has

h∞g1+g2 ≤ h∞g1 + h∞g2 .

and

Proposition 2.4. If there is an infinite sequence {gi} ⊂ G such that

h∞gi+gi′ < h∞gi + h∞gi′ ,

then Gm contains infinitely many elements.

The definition of hkg(x, x) can be extended hkg(x, x
′) for x 6= x′. Let us recall that

the covering space π̌: M̌ →M = Tn is defined such that π1(M̌) = π1(U), where U is a
open neighborhood of A ⊂ Tn so that H1(M,U,R) = H1(M,A,R). Let D = {x̄ : x̄i ∈
[0, 1)} ⊂ Rn be the fundamental domain for Tn and use the same symbol to denote
its projection to M̌ as well. For each closed path φ: [0, 1] → M , there is a unique
curve φ̌ in the lift of φ such that φ̌(0) ∈ D. Because of the monodromy theorem,
φ̌(1) ∈ M̌ is uniquely determined by the homological type [φ] ∈ H1(T

n, U,Z).

For a curve ξ: [0, k] → M with ξ(0) = x, ξ(k) = x′, we denote by ξ̌ the curve in
the lift of ξ such that ξ̌(0) ∈ D. We say [ξ] = g if [φ] = g holds for any closed curve
φ such that φ̌(0) ∈ D and φ̌(1) = ξ̌(k). Therefore, the following is well-defined:

hkg(x, x
′) = inf

ξ(0)=x

ξ(k)=x′

[ξ]=g

ξ∈C1

∫ k

0
L(ξ(s), ξ̇(s))ds + kα,

h∞g (x, x′) = lim inf
k→∞

hkg(x, x
′).

Clearly, h∞g (x, x′) → ∞ as ‖g‖ → ∞. Indeed, let x̌, x̌′ ∈ D such that π̌x̌ = x, π̌x̌′ = x′,

let ζ̌: [0, 1] → M̄ be a straight line such that ζ̌(0) = x′, ζ̌(1) = x and denoted by ζ
the projection of ζ̌ down to M , we obviously have that

hk+1
g (x, x) ≤ hkg(x, x

′) + [A(ζ)]

holds for each class g. As [A(ζ)] is a finite number, we verify the claim.

Proposition 2.5. There exists positive number a > 0 such that h∞g (x, x′) ≥ ‖g‖a
holds for each (x, x′) ∈ Tn × Tn and for large ‖g‖.

Proof. Obviously, there exists a positive number a′ > 0 such that hTg (x, x) ≥ a′ holds
for each g 6= 0 and each T > 0. If the proposition does not hold, for any small ǫi > 0
there would exists gi and Ti such that

hTgi(x, x) ≤ ǫi‖gi‖, ∀T ≥ Ti.

Let γi: [0, Ti] →M be the minimizer of hTigi (x, x). Let 0 = ti,0 < ti,1 < · · · < ti,mi
= Ti

be a sequence so that γi(ti,j) ∈ U and H1(T
n, U,Z) ∋ [γi|[ti,j ,ti,j+1]] 6= 0 and there does

not exist t′ ∈ (ti,j, ti,j+1) such that γi(t
′) ∈ U , both [γi|[ti,j ,t′]] 6= 0 and [γi|[t′,ti,j+1]] 6= 0.
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There are two possibilities for this sequence. Either some ti,j < ti,j+1 exists such
that ti,j+1 − ti,j → ∞ as i→ ∞ or ti,j+1 − ti,j remains bounded for all i, j.

In the first case, let µi = dγi|∗[ti,j ,ti,j+1]
νi where νi is a probability measure evenly

distributed on the interval [ti,j, ti,j+1]. By weak∗-compactness a probability measure
µ exists such that µi ⇀ µ. Clearly, µ is invariant for the Lagrange flow,

∫

Ldµ = 0
and the support of µ is not contained in the Aubry set. But it is absurd.

In the second case, one has mi ≥ C‖g‖. By choosing sufficiently small neighbor-
hood U of A, the distance d(γi(ti,j),A) < ǫ can be sufficiently small. As there is only
one Aubry class, there is a closed curve ζ and a sequence of time t′j (j = 0, 1, · · · ,mi)

such that [A(ζ)] < ǫ and d(ζ(t′j), γi(ti,m−j)) < ǫ. Let ζ ′j be the minimizer connecting

γi(ti,j) to γj(ti,j−1), we have |[A(ζ ′j)] − [A(ζ|[t′i,j−1−t′i,j ])]| ≤ C ′ǫ, where the constant

depends only on the Lagrangian. By construction, the curve γi|[ti,j−ti,j−1] ∗ ζ ′j is a

closed curve with [γi|[ti,j−ti,j−1] ∗ ζ ′j] 6= 0 and [A(γi|[ti,j−ti,j−1] ∗ ζ ′j)] > a′. Therefore,

hTig (x, x) ≥ hTig (x, x) + [A(ζ)]− ǫ

≥
∑

j

[A(γi|[ti,j−ti,j−1] ∗ ζ ′j)]− (CC ′‖g‖ + 1)ǫ

≥ C‖g‖a′ − (CC ′‖g‖ + 1)ǫ.

It contradicts the assumption. This proves the proposition in the case that x = x′.

For x 6= x′, we use a straight line connecting x′ to x. The action along this line is
bounded. Therefore the proposition is also true for x 6= x′. �

2.3. Globally elementary weak KAM solutions. For the configuration space Tn,
each weak KAM solution is 1-periodic in xi for i = 1, 2, · · · n, where (x1, x2, · · · , xn) =
x denotes the configuration coordinate. If a finite covering of Tn is considered to be
configuration space, weak KAM solution may not be 1-periodic for each coordinate.

We assume that the minimal measure contains finitely many ergodic components
µ1c , µ

2
c , · · · , µmc for the cohomology class c. In this case, the elementary weak KAM

solution for each µic is well-defined. The lift of µ
i
c to a finite covering kTn may contain

several ergodic components. For instance, if M ⊂ {|x1| ≤ δ} × Tn−1, then there are
two ergodic components in the lift of M for 2T×Tn−1. However, there are cases that
the minimal measure is always uniquely ergodic for any finite covering manifold, for
instance, if the measure is supported on a KAM torus.

Given k = (k1, k2, · · · , kn) ∈ Zn with ki ≥ 1 for each i = 1, 2, · · · , n, we define
an equivalence relation ∼k in Rn: we say x ∼k x

′ if xi − x′i = 2jki for some j ∈ Z
(i = 1, 2, · · · n). Clearly, πk: Mk = Rn/ ∼k→ Tn is a finite covering of Tn. In the
following, we shall also use the symbols: π∞,k: R

n →Mk and π∞: Rn → Tn to denote
the projection. For a bounded domain Ω ⊂ Rn, if the topology of π∞,kΩ ⊂ Mk is
trivial, we use the same symbol to denote its projection Ω := π∞,kΩ.

Let M∞ and Mk be the lift of Mather set M to the universal covering space
as well as to Mk respectively. The connected components are denoted by Mi

∞ and
Mi

k correspondingly. Obviously, the unit cube D = [0, 1)n intersects finitely many
connected components of M∞, denoted by Mi

∞ with i = 0, 1, · · · , im (im ≥ m).
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Let dk = min{k1, k2, · · · kn}. Some RD > 0 exists such that for any k ∈ Zn with

dk ≥ RD, π∞,kMi
∞ 6= π∞,kMj

∞ holds for 0 ≤ i, j ≤ im and i 6= j. In this case, we

use the notation Mj
k = π∞,kMj

∞ for 0 ≤ j ≤ im. Let u±k,j denote the elementary

weak KAM for Mj
k with respect to the configuration manifold Mk.

Lemma 2.1. For each bounded region Ω ⊂ Rn, there exists RΩ > 0 such that for any
k, k′ ∈ Zn with dk, dk′ ≥ max{RΩ, RD},

u±k,j|Ω = u±k′,j|Ω + constant

holds for each j = 0, 1, · · · , im.

Proof. We only need to study the case that the minimal measure is uniquely ergodic.
If there are finitely many ergodic components, we obtain this result by perturbing
the Lagrangian so that it is uniquely ergodic and applying Theorem 2.1.

Each weak KAM solution for Tn is a weak KAM solution for any Mk. If the
lift of the minimal measure to any finite covering space is still uniquely ergodic, the
elementary weak KAM solution remains the same.

Let us consider the case that there are more than one connected component in Mk

with dk ≥ RD. Remember Mj
k = π∞,kMj

∞ for 0 ≤ j ≤ m where Mj
∞ intersects the

fundamental domain [0, 1)n. Considered as a function defined in Rn, the elementary

weak KAM solution u−k,j determined by Mj
k is ki-periodic in the i-th coordinate. By

the definition of elementary weak KAM solution, a sequence of functions u−k,j,ǫ exists

such that u−k,j,ǫ → u−k,j as ǫ → 0, where u−k,j,ǫ is the weak KAM solution for the

Lagrangian Lk,ǫ : TMk → R. This Lagrangian satisfies the following conditions:

1, it is the same as L when it is restricted on the tangent bundle of a neighborhood

U of Mj
k, i.e. Lk,ǫ|TU = L|TU ;

2, the minimal measure is uniquely ergodic whenever ǫ 6= 0, supported on Mj
k;

3, Lk,ǫ → L as ǫ→ 0.

Starting from each x ∈Mk, there exists at least one backward semi-static curve for

Lk,ǫ, γk,x,ǫ: (−∞, 0] with γk,x,ǫ(0) = x. Clearly, πα(dγk,x,ǫ) ∩Mj
k 6= ∅. Let ti → ∞

be the sequence so that γk,x,ǫ(−ti) → x0 ∈ Mj
k, let α stand for the average action,

then we have

(2.5) u−k,ǫ(x)− u−k,ǫ(x0) = lim
ti→∞

∫ 0

−ti
Lk,ǫ(dγk,x,ǫ(s))ds + tiα.

Again, the lift of Mj
k to the universal covering space may contain many connected

components, denoted by Mj,ℓ
∞ , among which only Mj,0

∞ intersects the fundamental
domain D.

Let Dk = {x̄ : x̄i ∈ [−ki, ki)} ⊂ Rn so that π∞,k: Dk → Mk is an injection and
π∞,kDk = Mk. Let x̄ ∈ Dk be the points such that π∞,kx̄ = x. Let γ̄k,x̄,ǫ be the
lift of γk,x,ǫ to the universal covering space so that γ̄k,x̄,ǫ(0) = x̄. It is possible that

πα(dγ̄k,x̄,ǫ) ∩Mj,0
∞ = ∅. The curve may approach to another connected component

of Mj,ℓ
∞ . Let Ωd = {x : maxi |xi| ≤ d} ⊂ Rn. Note that Lk,ǫ is a small perturbation
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of L. In virtue of Proposition 2.5 we claim that γ̄k,x̄,ǫ approaches to Mj,0
∞ provided

x̄ ∈ Ωd, ǫ is suitably small and dk is sufficiently large. Let us assume the contrary, i.e.
γk,x̄,ǫ approaches to another connected component of M∞. In this case, ‖[πkγk,x̄,ǫ]‖
would be sufficiently large provided dk is sufficiently large. By Proposition 2.5 the
action of L along πkγk,x̄,ǫ

∫

L(dπkγk,x̄,ǫ(t), t)dt ≥ ‖[πkγk,x̄,ǫ]‖a

with certain a > 0. As Lk,ǫ is a small perturbation of L, the action of Lk,ǫ along
πkγk,x̄,ǫ would approach infinity as dk → ∞. The absurdity verifies the claim.

The set {γ̇k,x,ǫ(0)} is compact as ǫ → 0. For each accumulation point v, there is
a subsequence of ǫ → 0 such that γ̇k,x,ǫ(0) → v. The initial value (x, v) uniquely
determines an orbit (γk,x, γ̇k,x) of L. The curve γk,x: (−∞, 0] → Mk is a backward
semi-static curve for L which may not approach to Mk,0. When ǫ → 0, γk,x,ǫ may
approach not only one but a family of semi-static curves for L including the curves
connecting different connected components of Mk. More precisely, there might be

several connected componentsMi0
k = Mj

k,Mi1
k , · · · ,Miı

k and semi-static curves γℓ,ℓ+1

of L forMk (ℓ = 0, 1, · · · ı−1) such that πα(dγℓ,ℓ+1)∩Miℓ
k 6= ∅, πω(dγℓ,ℓ+1)∩Miℓ+1

k 6=
∅, πα(dγk,x)∩Miı

k 6= ∅ and each γℓ,ℓ+1 is approached by γk,x,ǫ as ǫ→ 0. These curves
have their natural projection down to Tn, denoted by the same symbol.

We define the quantity Ai,j : Mi ×Mj → R

(2.6) [Ai,j(xi, xj)] = inf
γ(0)=xi
γ(k)=xj
k∈Z+

∫ k

0
L(dγ(s))ds + kα.

By definition of weak KAM, for almost every point x, (x, ∂xu
−
k,ǫ(x)) uniquely deter-

mines a backward semi-static curve γk,x,ǫ. Since this semi-static curve approaches to
several curves: γk,x,ǫ → γ1,2 ∗ · · · ∗ γı−1,ı ∗ γk,x we obtain that

u−k,0(x)− u−k,0(x0) = lim
ti→∞

∫ 0

−ti
L(dγx(s))ds + tiα(2.7)

+

ı−1
∑

i=0

[Aji,ji+1(xi, xi+1)]

where ti → ∞ is a sequence such that γk,x(−ti) → xı ∈ Mk,iı , xj ∈ Mk,ij .

For each x ∈ Ωd, the backward semi-static curve γk,x,ǫ approaches to Mj
k provided

dk is sufficiently large. For different k, k′ satisfying this condition, γk,x,ǫ and γk′,x,ǫ
may converge to different curves, γk,x,ǫ → γ0,1 ∗ · · · ∗ γı−1,ı ∗ γk,x and γk′,x,ǫ → γ′0,1 ∗
· · · ∗ γ′ı′−1,ı′ ∗ γ′k,x as ǫ → 0. But the action of L along γ0,1 ∗ · · · ∗ γı−1,ı ∗ γk,x is the

same as along γ′0,1 ∗ · · · ∗ γ′ı′−1,ı′ ∗ γ′k,x. Indeed, the action of Lk,ǫ along γ̃k,x,ǫ is almost
the same as the action of Lk′,ǫ along γ̃k′,x,ǫ provided the perturbation is sufficiently
small. Therefore, we obtain from the formula 2.7 that

ūk,0|Ω = ūk′,0|Ω + constant

if both dk and dk′ are sufficiently large. �



22 C.-Q. CHENG

Definition 2.2. The function ūi : R
n → R is called globally elementary weak KAM

solution for Mj
∞ if for each bounded domain Ω ⊂ Rn, there exists RΩ > 0 such that

for any k ∈ Zn with dk ≥ RΩ,

ūk,j|Ω = ūj |Ω + constant

holds for each elementary weak KAM solution ūk,j: Mk → R for Mj
k.

From Lemma 2.1, we obtain the existence of a globally elementary weak KAM

solution for each Mj
∞.

To investigate the properties of globally elementary weak KAM solution, let us
consider a special case first, namely, the Mather set contains a connected component
homeomorphic to Tn−1. In this case, each Mi divided Rn into two parts, denoted by
R− and R+.

Theorem 2.5. If the Mather set contains a connected component contains a Mi
∞

homeomorphic to Tn−1, then the globally elementary weak KAM solution ū±i : R
n → R

has a decomposition

ū±i = v±i + w±
i ,

where v±i is periodic and w±
i is affine when they are restricted in the half space R+

as well as in another half space R−.

Proof. We only need to consider the case that the minimal measure is uniquely er-
godic, as we did in the proof of Lemma 2.1. According to Theorem 2.4, there are
exactly two types of minimal homoclnic orbits to the Aubry set, we pick up two
representative elements γ−, γ+: R → Tn. Let

h± = lim inf
t±i →∞

∫ t+i

−t−i
L(dγ±(t), t)dt+ (t−i + t+i )α,

where t±i is chosen such that γ±(t
+
i ) → 0 and γ±(−t−i ) → 0.

As the set Mi is co-dimension one, we are able to number all connected components
by Mi

∞ (i = · · · − 1, 0, 1, 2, · · · ) such that any path from Mi−1
∞ to Mi+1

∞ must pass
through Mi

∞. Denote by Πi the strip bounded by Mi
∞ and Mi+1

∞ . M0
∞ separates

Rn into two parts, denoted by D− and D+ such that M−1
∞ ⊂ D− and M1

∞ ⊂ D+.

Let γ̄± denote a curve in the lift of γ± to Rn such that α(dγ̄±) ⊂ M̃0
∞. Then,

either ω(dγ̄−) ⊂ M̃−1
∞ , ω(dγ̄+) ⊂ M̃1

∞, or ω(dγ̄+) ⊂ M̃−1
∞ , ω(dγ̄−) ⊂ M̃1

∞. We only
need to study one case, let’s say, the first case.

Given a bounded domain Ω ⊂ Rn. From the definition of globally elementary weak
KAM solution, we see that

ū−0 |Ω = u−k,0|Ω
whenever dk is suitably large. Clearly, the function ū0 is periodic when it is restricted
Ω ∩Πi, i.e. u

−
k,0(x) = u−k,0(x

′) if x′ − x ∈ Zn and x, x′ ∈ Ω ∩Πi.

For each x ∈ Ω ∩ Πi with i > 0, there exists at least one point x0 ∈ Ω ∩ Π0 such
that x − x0 ∈ Zn. By definition, we find that u−k,0(x) = u−k,0(x0) + ih+. Obviously,

u−k,0(x) = u−k,0(x0) + (1 + i)h− if x ∈ Ω ∩Πi with i < 0.
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Pick up a point x0 ∈ M0
∞. For each non-zero integer vector k ∈ Zn, the point

x = x0 + k stays in certain Mi
∞. Along the ray x = x0 + tk with t > 0, we define

v−0 (x) =

{

u−0 (x)− u−0 (x0)− tih+, if i > 0;

u−0 (x)− u−0 (x0)− tih−, if i > 0,

Clearly, u−0 − v−0 is affine and v−0 is periodic when they are restricted in D− as well
as in D+. �

Given an ergodic component of a minimal measure with higher co-dimensions, it
is unclear what condition guarantees the decomposition of the globally elementary
weak KAM solutions. It appears closely related to the problem whether there are
infinitely many types of minimal homoclinic orbits to the Aubry class.

Proposition 2.6. Let u±i be the globally elementary weak KAM solution for Mi.
Then, u±i remains bounded on the whole ray {x0+tg : t ∈ R+} for each g ∈ H1(Ai,Z),

where Ai ⊃ Mi is an Abury class; for g ∈ H1(M,A,Z)/K, u±i grows up linearly, or
asymptotically linearly on the ray {x0 + tg : t ∈ R+}.

Proof. For arbitrarily large t, there exists x ∈ Mi
∞ such that dist(x0 + tg, x) ≤ 2 and

Mi
∞ ∩D 6= ∅ where D is the unit cube containing the origin. Let x∗ = π∞x, ξ̄ be a

curve connecting x∗ to x, ξ = π∞ξ̄, then [ξ] ∈ H1(A,Z). By definition,

inf
[ξ]∈H1(A,Z)

inf
ξ(0)=ξ(k)

k∈Z+

∫ k

0
L(dξ(t), t)dt = 0

it proves the first conclusion.

For the second, one can see from Proposition 2.5 that it grows up at least linearly.
Given g ∈ H1(M,Ai,Z)/K finitely many elements g0, g1, · · · , gr ∈ H1(T

n,Z) exists
such that for each g =

∑r
i+0 jigi with ji ∈ Z+. Thus,

h∞g (x, x) ≤
r

∑

i=0

jih
∞
gi (x, x).

For each π∞x ∈ Mi, [x− x∗] = g, we have

u(x)− u(x∗) = h∞g (π∞x, π∞x).

This completes the proof. �

3. Dynamis around fixed point

Given a Tonelli Lagrangian L: TTn → R, let c0 ∈ argminα. Any minimal measure
with zero-rotation vector must be c0-minimal measure. In this section we study the
dynamics around the Mather set for the class c0. The motivation comes from following
argument.

Let us consider the normal form of a nearly integrable Hamiltonian

H(p, q) = h0(p) + ǫP (p, q), (p, q) ∈ Rd × Td.

around a complete resonant point. Let ω(y) = ∇h0(y) denote the frequency vector
of the unperturbed system. A frequency ω is called complete resonant of (minimal)
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period T if Tω ∈ Zd and tω /∈ Zd for each t ∈ (0, T ). By finitely many steps of KAM
iteration and one step of linear coordinate transformation on torus, one obtains a
normal form of nearly integrable Hamiltonian (see Appendix A)

H̃(x̃, ỹ) = h̃(ỹ) + ǫZ̃(x, ỹ) + ǫR̃(x̃, ỹ)

where x̃ = (x, xd), ỹ = (y, yd), (x, y) ∈ Td−1 × Rd−1, H̃ is well-defined in (x̃, ỹ) ∈
Td ×Bd(ỹ

∗), ∂h̃(ỹ∗) = (0, ωd) and ǫR̃ is a higher order term.

Since ∂yd h̃(ỹ
∗) = ωd 6= 0, there exists some function Y (x, y, τ) solving the equation

H̃(x,−τ, y, Y (x, y, τ)) = E provided E > minαH̃ , which defines a time-periodic
Hamiltonian system with (d− 1)-degrees of freedom. Here τ = −xd plays the role of
time. One can write

Y (x, y) = h(y) + ǫZ(x, y) + ǫR(x, y, τ)

where ǫR is a higher order term of ǫ and ∂h(y∗) = 0, i.e. the complete resonance
reduces to zero frequency. Omitting the higher order term, one obtains Hamiltonian
with d− 1 degrees of freedom

Ȳ (x, y) = h(y) + ǫZ(x, y).

It determines a Lagrangian we shall study in this section.

3.1. Flat of the α-function. By definition, a subset is called a flat of certain α-
function if, restricted on this set, the α-function is affine, and no longer affine on any
set properly containing the flat. As α-function is convex with super-linear growth,
each flat is a convex and bounded set. Given an n-dimensional flat F, a subset in ∂F
is called an edge if it is contained in a (n − 1)-dimensional hyperplane. Since each
flat is convex, each edge is also convex.

Theorem 3.1. Given a class c0 ∈ H1(Tn,R), if the minimal measure is uniquely
ergodic, supported on a hyperbolic fixed point, then there exists an n-dimensional flat
F0 ⊂ H1(Tn,R) such that this point supports a c-minimal measure for all c ∈ F0.

Remark: The condition of this theorem does not exclude topological non-triviality
of the Aubry set. An example is the product of n pendulums. The Aubry set covers
the whole torus Tn if the Lagrangian L is replaced by L− 〈c, ẋ〉 with c being on the
boundary of the flat.

Proof. By translation one can assume that the fixed point is at (x, ẋ) = (0, 0), by
adding a closed 1-form and a constant to the Lagrangian, one can assume c0 = 0 and
L(0, 0) = 0.

To each closed curve ξ: [−T, T ] → Tn with ξ(−T ) = ξ(T ) a first homology class
[ξ] = g ∈ H(Tn,Z) is associated. We consider the quantity

A(g) = lim inf
T→∞

inf
ξ(−T )=ξ(T )

[ξ]=g

∫ T

−T
L(dξ(t))dt.

By the condition assumed on L, one has that A(g) ≥ 0 for any g 6= 0. There exist at
least n+1 irreducible classes gi ∈ H(Tn,Z) and n+1 minimal homoclinic orbits dγi
such that A([gi]) = A(γi) [Be1]. Clearly, H1(T

n,Z) can be generated by the homology
classes of all minimal homoclinic curves over Z+.
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We abuse the notation g to denote homology class g ∈ H1(T
n,Z) or to denote a

point g ∈ Zn. For each curve γ̄T : [−T, T ] → Rn with γ̄T (−T ) = 0 and γ̄T (T ) = g,
one has

A(g) = lim inf
T→∞

inf
ξ̄(−T )=0
ξ̄(T )=g

∫ T

−T
L(dξ̄(t))dt.

Recall the definition of globally elementary weak-KAM and note that the point x = 0
is the support of the minimal measure. Let u−0 (u+0 ) denote the backward (forward)
globally elementary weak-KAM for M0 = {x = 0}, we have

A(g) = u−0 (g)− u−0 (0), A(−g) = u+0 (0) − u+0 (g).

By setting u−0 (0) = u+0 (0), we claim

(3.1) A(g) +A(−g) = u−0 (g)− u+0 (g) > 0.

The quantity A(g) is achieved may not by a curve connecting the origin to g ∈ Zn,
but may by the conjunction of several curves γ̄1 ∗ γ̄2 ∗ · · · ∗ γ̄m. Let γ̄i: R → Rn

denote a curve (i = 1, · · · ,m), the conjunction implies that γ̄i(−∞) = γ̄i−1(∞). Let
γi = π∞γ̄i, where π∞ : Rn → Tn denotes the standard projection. In this case,
γ1, · · · , γm are minimal homoclinic curves such that g =

∑m
i=1[γi]. By the definition

of elementary weak-KAM, each γ̄i is a (u−0 , L)-calibrated curve. Let gi =
∑i

j=1[γj ].

Obviously, some large t0 > 0 exists such that (γ̄i(t), ˙̄γi(t)) stays in the local stable
manifold of the point (x, ẋ) = (gi, 0) whenever t ≥ t0. Therefore, some constant Ci
exists such that

(3.2) u−0 (γ̄i(t)) = u+gi(γ̄i(t)) + Ci, ∀ t ≥ t0,

where we use u−gi and u+gi to denote the globally elementary-KAM based on x = gi.

Clearly, u+gi and u
−
gi generate the local stable and unstable manifold around the point

(x, ẋ) = (gi, 0) respectively.

Because that u±gi is L-dominate function, for x ∈ Bδ(gi) with suitably small δ > 0
we have (see Theorem 5.1.2 in [Fa2])

(3.3) u+gi(x)− u+gi(gi) ≤ u±0 (x)− u±0 (gi) ≤ u−gi(x)− u−gi(gi).

Remember that u−0 ≥ u+0 . If

A(g) +A(−g) = u−0 (g)− u+0 (g) = 0,

substituting u+gi in (3.3) by the expression in (3.2) we see that some t0 exists so that

u+0 (γ̄m(t)) = u−0 (γ̄m(t)), ∀ t ≥ t0.

Here, t0 is chosen so that γ̄m(t)) ∈ Bδ(gm) for t ≥ t0. Since u+0 is an L-dominate
function and γ̄i is a (u−0 , L)-calibrated curve for each 1 ≤ i ≤ m,

u+0 (γ̄i(t0))− u+0 (γ̄i(t1)) ≤
∫ t0

t1

L(dγ̄i(s))ds,

u−0 (γ̄i(t0))− u−0 (γ̄i(t1)) =
∫ t0

t1

L(dγ̄i(s))ds

hold for any t1 ≤ t0. This induces that u−0 (γ̄m(t)) = u+0 (γ̄m(t)) holds for all t ∈ R,
and induces in turn the inequality for i = m− 1,m− 2, · · · , and finally we have

u−0 (γ̄1(t)) = u+0 (γ̄1(t)), ∀ t ∈ R.
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Since u−0 (x) ≥ u+0 (x) holds in a small neighborhood of 0

u−0 (γ̄1(t)) = u+0 (γ̄1(t)), ∀ t ∈ R.

On the other hand, as the fixed point {x = 0} is hyperbolic, some δ > 0 exists such
that

u−0 (x)− u+0 (x) > 0, ∀ x ∈ Bδ(0)\{0},
if we set u−0 (0) = u+0 (0). This contradiction proves the formula (3.1).

Let
G0 = {g ∈ H1(T

n,Z) : ∃ γ : R → Tn s.t. [γ] = g, A(γ) = 0}.
G0 is said to generate a rational direction g ∈ Zn over Z+ if there exist k, ki ∈ Z+

and gi ∈ G0 such that

kg =
∑

kigi.

It is an immediate consequence of the formula (3.1) that once G0 generates a ratio-
nal direction g ∈ Zn over Z+, then it can not generate the direction −g over Z+.
Therefore, the set

spanR+
G0 = {Σaigi : gi ∈ G0, ai ≥ 0}

is a cone properly restricted in half space. Thus, there exists an n-dimensional cone
C0 such that

〈c, g〉 > 0, ∀ c ∈ C0, g ∈ spanR+
G0.

Since the minimal measure for zero cohomology class is supported on the fixed
point, Ñ (0) is composed of those minimal homoclinic orbits along which the action
equals zero. According to the upper semi-continuity of Mañé set in cohomology class,
any minimal measure µc is supported by a set lying in a small neighborhood of these
homoclinic orbits if |c| is very small. Consequently. we have ρ(µc) ∈ spanR+

G0, where

ρ(µc) denotes the rotation vector of µc.

Let us consider a cohomology class c such that −c ∈ C0 and |c| ≪ 1. We claim that
the c-minimal measure is also supported on the fixed point. Indeed, if it is not true,
we would have positive average action of L: A(µc) > 0, since the minimal measure
for zero class is assumed unique and supported on the fixed point. By the choice of
c one has that 〈c, ρ(µc)〉 < 0. Thus, one obtains

Ac(µc) = A(µc)− 〈c, ρ(µc)〉 > 0 = Ac(µ),

it deduces absurdity. For this class c, the action of the Lagrangian Lc = L − 〈c, ẋ〉
along any minimal homoclinic curve γ is positive,

A(γ)− 〈c, [γ]〉 > 0,

namely, the Aubry set for this class is also a singleton. Consequently, µc′ is also
supported on this point if c′ is sufficiently close to c. This verifies the existence of
n-dimensional flat. �

Eigenvalues of the fixed point

Let us consider the eigenvalues of the fixed point by assuming the hyperbolicity,
denoted by λi (i = 1, 2, · · · , 2n). Under the hyperbolic assumption, half of these have
positive real part, other half have negative real part. In general, these eigenvalues
may have non-zero imaginary part. But in nearly integrable systems, all eigenvalues
are real.
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Proposition 3.1. If the Lagrangian is a small perturbation of integrable one L =
ℓ(ẋ)+ǫP (x, ẋ) where ℓ is positive definite in ẋ, then for generic P and for sufficiently
small ǫ, all eigenvalues at the fixed point are real and different.

Proof. Let A = ∂2ẋẋL, B = ∂2xẋP , C = ∂2xxP evaluated at the fixed point. As the
minimal measure is supported on a fixed point, C is positive definite. We consider the
linearized equation and assume the solution with the form of x = ξ exp

√
ǫλt, then

(3.4)
∣

∣λ2A−√
ǫλ(B −Bt)− C

∣

∣

n×n = 0.

Let A0 = ∂2ẋẋℓ, evaluated at the fixed point. For generic C, all solutions of the
equation

(3.5)
∣

∣λ2A0 − C
∣

∣

n×n = 0.

are real and different from each other: λ = ±λ1,±λ2, · · · ,±λn, λi 6= λj if i 6= j.
Since (3.4) is a small perturbation of (3.5), all solutions of (3.4) are different, and
consequently, real. If there was a complex solution λ = σ + iω, ±σ ± iω would
be solution also, which is guaranteed by the Hamiltonian structure. It implies the
existence of more than 2k solutions, but it is absurd. �

The shape of the flat

Here, we are concerned about the flat F0 = Lβ(0). It is a n-dimensional flat if the
c-minimal measure is supported on the hyperbolic fixed point for each c ∈ intF0. By
coordinate translation, we assume it is at the origin: (ẋ, x) = (0, 0). Correspondingly,
in canonical coordinates the fixed point is also at the origin (x, y) = (0, 0). Let
(ξ±i , η

±
i ) denote the eigenvector for ±λi, where ξ±i is for the x-coordinates, η±i is for

the y-coordinates. We assume

1, all eigenvalues are real number and different;

2, all minimal homoclinic curves approach to the fixed point in the direction ξ±1 as
t→ ∓∞.

The condition 1 is obviously generic. To see the genericity of the condition 2, let
us remind reader that there is, generically, at most one minimal homoclinic curve for
each homology class. By further perturbation, it approaches to the fixed point in
the direction of ξ±1 . Since there are countably many homology classes at most, the
genericity is obtained.

For θ > 0 and ξ ∈ Rn\{0}, we define a cone

C(ξ, θ) = {x ∈ Rn : |〈x, ξ〉| ≥ θ‖ξ‖‖x‖},
and let

C(ξ, θ, d) = {x ∈ C(ξ, θ) : ‖x‖ = d}.
Proposition 3.2. Assume that (x, y) = (0, 0) ∈ {H−1(0)} is a hyperbolic fixed point
for ΦtH, where all eigenvalues are real and different:

Spec{J∇H} = {±λ1, · · · ,±λn; 0 < λ1 < · · · < λn}.
Let (ξ±i , η

±
i ) denote the eigenvector for ±λi, where ξ±i is for the x-coordinates, η±i is

for the y-coordinates. Let (x(t), y(t)) ⊂ {H−1(0)} be an orbit such that x(t) passes
through a ball Bδ(0) ⊂ Rn, x(−T ) ∈ ∂Bδ(0), x(T ) ∈ ∂Bδ(0) and x(t) ∈ intBδ(0) for
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all t ∈ (−T, T ). Then, for suitably small δ > 0 and θ = 1
2 , there exist sufficiently

large T0 > 0 such that for T ≥ T0 one has

(x(−T ), x(T )) /∈ C(ξ+1 , θ, δ)× C(ξ−1 , θ, δ).

For T → ∞, one has

x(−T ) ∈ C(ξ+i , 1− o(δ), δ) or x(T ) ∈ C(ξ−j , 1− o(δ), δ).

for certain i, j 6= 1.

Proof. By certain symplectic coordinate transformation, the Hamiltonian is assumed
to have the normal form

H(x, y) =
n
∑

i=1

1

2

(

y2i − λ2i x
2
i

)

+ P3(x, y)

where P3 = O(‖(x, y)‖3) is a higher order term. By the method of variation of
constants, we obtain the solution of the corresponding Hamilton equation

xi(t) =e
−λit(b−i + F−

i ) + eλit(b+i + F+
i ),(3.6)

yi(t) =− λie
−λit(b−i + F−

i ) + λie
λit(b+i + F+

i ),

where b±i are constants determined by boundary condition and

F−
i =

1

2λi

∫ t

0
eλis(λi∂yiP3 + ∂xiP3)(x(s), y(s))ds,

F+
i =

1

2λi

∫ t

0
e−λis(λi∂yiP3 − ∂xiP3)(x(s), y(s))ds.

Substituting (x, y) with the formula (3.6) in the Hamiltonian we obtain a constraint
for the constants b±i :

(3.7) H(x(t), y(t)) = −2

n
∑

i=1

λ2i b
−
i b

+
i + P3((b

+
i + b−i ), λi(b

+
i − b−i ))

Let us estimate the size of the constants c±i by the boundary conditions x(T ) =
(x+1 , x

+
2 , · · · , x+k ) ∈ ∂Bδ(0), x(−T ) = (x−1 , x

−
2 , · · · , x−k ) ∈ ∂Bδ(0) and assuming

(3.8) min{|x−1 |, |x+1 |} ≥ δ

2
.

For θ = 1/2, (x(−T ), x(T )) ∈ C(ξ−1 , θ, δ) × C(ξ+1 , θ, δ) implies (3.8) holds. Since
the curve x|[−T,T ] stays inside of the ball Bδ(0) and T is sufficiently large, the orbit
(x, y)|[−T,T ] stays near the stable and unstable manifold of the fixed point. Note

P = O(‖(x, y)‖3), we obtain from the theorem of Grobman-Hartman that

x−i =b−i e
λiT + b+i e

−λiT + o(δ),(3.9)

x+i =b−i e
−λiT + b+i e

λiT + o(δ).

For sufficiently large T > 0, it deduces from the assumption (3.8) that

|b±1 | ≥
δ

3
e−λ1T ,

and

|b±i | ≤ 2δe−λiT , ∀ i = 2, · · · , k.
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Since λ1 < λi for each i ≥ 2, |b±i | ≪ |b±1 | if T is sufficiently large. In this case, we
obtain from (3.7) that

|H(x(t), y(t))| > |λ21b+1 b−1 | > 0.

It contradicts the assumption that (x(t), y(t)) ∈ {H−1(0)}. Let T → ∞, one easily
sees the last conclusion. �

This proposition tells us following fact. In the energy level {H−1(0)} there does
not exist such an orbit passing through Bδ(0) in the way that it enters into the ball
in a direction close to ξ+1 and leaves in a direction close to ξ−1 .

Theorem 3.2. Let F0 = Lβ(0) be an n-dimensional flat of the α-function. Each
minimal homoclinic curve γ is assumed approaching to the fixed point in the direction
of the eigenvectors corresponding to the smallest eigenvalue

lim
t→±∞

γ̇(t)

‖γ̇(t)‖ =
ξ∓1

‖ξ∓1 ‖
,

all eigenvalues are assumed real and different. It is also assumed that, for each c ∈ F0

(including the boundary), the minimal measure is uniquely supported on the hyperbolic
fixed point. Then, there exists a finite set

HF0 = {g1, g2, · · · , gm} ⊂ H1(T
n,Z)

such that [γ] ∈ HF0 if γ is a minimal homoclinic curve. Consequently, the flat F0 is a
polygon with finitely many edges, denoted by E1, · · · ,Em. Each edge Ei is associated
with a homological class gi such that A(c) is composed by minimal homoclinic curves
with homological type gi if c is in the interior of Ei and

〈c− c′, gi〉 = 0, ∀ c, c′ ∈ Ei.

Proof. As the minimal measure is uniquely ergodic and supported on a point for each
class in F0, the Mañé set consists of homoclinic orbits and the point itself.

For each class c ∈ ∂F0, we claim that the Mañé set contains at least one homoclinic
orbit. Otherwise, for each class c′ /∈ F0 very close to c, the homology of the Mañé
set is trivial, the same as that for c. It is guaranteed by the upper semi-continuity of
Mañé set in cohomology class. It follows that 〈c, ρ(µc)〉 = 〈c′, ρ(µ′c)〉 = 0 and

−α(c′) = A(µc′)− 〈c′, ρ(µ′c)〉 ≥ A(µc) = −α(c).
However, as c′ /∈ F0, one has α(c′) > α(c). The contradiction verifies our claim.

Approached by minimal periodic curves, each minimal homoclinic curve γ stays in
certain Aubry set:

∪t∈Rγ(t) ⊂ A(c), ∀ c ∈ lim
δ↓0

Lβ(δ[γ]) ⊂ F0.

where the limit is in the sense of Hausdorff.

If HF0 contains infinitely many elements, there would be infinitely many minimal
homoclinic curves γ1, γ2 · · · γk · · · such that [γi] 6= [γj ] provided i 6= j. Thus we have
two possibilities.

1, a neighborhood Bd(0) of the fixed point exists such that each minimal homoclinic
curve γ hits the sphere ∂Bd(0) exactly twice, i.e. ∃ t− < t+ such that γ(t) ∈ Bd(0)
for all t ∈ (−∞, t−] ∪ [t+,∞) and γ(t) /∈ Bd(0) for all t ∈ (t−, t+);
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2, for any small d > 0, there are infinitely many minimal homoclinic curves
γi1 , γi2 · · · passing through the sphere ∂Bd(0) in finite time, i.e. ∃ t− < t−0 < t+0 < t+

such that γ(t) ∈ Bd(0) for all t ∈ (−∞, t−]∪ [t−0 , t
+
0 ]∪ [t+,∞) and γ(t) /∈ Bd(0) holds

for some t ∈ (t−, t−0 ) as well as for some t ∈ (t+0 , t
+).

Let us study the first possibility. Denote by t−i < t+i the time when the minimal
homoclinic curve γi hits the sphere ∂Bd(0). For each γi, there is a segment γi|(t−i ,t+i )

staying outside of Bd(0). Each dγi|(t−i ,t+i ) generates a probability measure µi on TT
n

such that
∫

fdµi =
1

|t+i − t−i |

∫ t+i

t−i

f(dγi(s))ds

holds for each continuous function f : TTn → R. As all these curves have different
homology class, ‖[γi]‖ → ∞ as i→ ∞. As the speed along these curves are uniformly
bounded, we have

|t+i − t−i | → ∞, as i→ ∞.

Let ci ∈ ∂F0 be the class such that γi ⊂ A(ci) and let c∗ ∈ ∂F0 be an accumulation
point of {ci}, some invariant probability measure µ∗ exists such that µi ⇀ µ∗, it
is c∗-minimal. Clearly, µ∗ is not supported on the fixed point, it contradicts the
assumption that the minimal measure is always uniquely ergodic for each c ∈ F0.

Let us study the second possibility. In this case, for suitably small δ > 0, there
is an infinite sequence of homoclinic curves γi and correspondingly the sequence of
time t−i < t+i such that γi(t) ∈ Bδ(0) for each t ∈ [t−i , t

+
i ], γi(t

±
i ∓ ǫ) /∈ Bδ(0) and

|t+i − t−i | → ∞ as i→ ∞. Indeed, if |t+i − t−i | remains bounded, one can choose δ′ < δ
such that these curves hit the sphere ∂Bδ′(0) twice only. It is the first case again. By
using Proposition 3.2, we find that some θ > 0 exists such that one of the inequalities
in the following holds for each i

(3.10)
∥

∥

∥

γ̇i(t
−
i )

‖γ̇i(t−i )‖
− ξ+1

‖ξ+1 ‖
∥

∥

∥
> θ,

∥

∥

∥

γ̇i(t
+
i )

‖γ̇i(t+i )‖
− ξ−1

‖ξ−1 ‖
∥

∥

∥
> θ

provided i is sufficiently large. It implies that there exists some minimal homoclinic
curve γ as well as some eigenvector ξ−k1 or ξ+k2 with k1 6= 1 and k2 6= 1 such that at
least one of the following holds

lim
t→−∞

γ̇(t)

‖γ̇(t)‖ =
ξ+k2

‖ξ+k2‖
, lim

t→∞
γ̇(t)

‖γ̇(t)‖ =
ξ−k1
‖ξ−k1‖

.

This leads to a contradiction to the assumption, then verifies the finiteness of HF0.

Let γ, γ′ be two minimal homoclinic curves contained in the Aubry set A(c), A(c′)
respectively. Let Γ = {ξc + (1 − ξ)c′ : ξ ∈ [0, 1]}. If Γ intersects the interior of F0,
then [γ] 6= [γ′]. Indeed, by definition we have

A(γ)− 〈c, [γ]〉 = 0, A(γ′)− 〈c, [γ′]〉 ≥ 0;

A(γ′)− 〈c′, [γ′]〉 = 0, A(γ)− 〈c′, [γ]〉 ≥ 0,

it follows from [γ] = [γ′] that A(γ) = A(γ′). Consequently,

0 = ξ(A(γ)− 〈c, [γ]〉) + (1− ξ)(A(γ′)− 〈c′, [γ′]〉)
= A(γ)− 〈ξc+ (1− ξ)c′, [γ]〉
= A(γ′)− 〈ξc+ (1− ξ)c′, [γ′]〉.
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It implies that both γ and γ′ lie in the Aubry set for ξc + (1 − ξ)c′. On the other
hand, the Aubry set for each class in the interior of F0 contains the fixed point only.
The contradiction implies that [γ] 6= [γ′]. Therefore, F0 is a polygon with exactly m
edges, each edge corresponds to one homology type of minimal homoclinic curve.

Let γ be a minimal homoclinic curve lying in the Aubry set for c ∈ intEi. Then,
one has A(γ) − 〈c, [γ]〉 = 0. As the Aubry set remains the same for all classes in the
interior of the edge, one has A(γ)−〈c′, [γ]〉 = 0 for each c ∈ intEi. Consequently, one
has 〈c − c′, [γ]〉 = 0 for all c, c′ ∈ intEi. As it is (n − 1)-dimensional, each edge Ei
determines a unique homology class gi such that [γ] = gi if γ is a minimal homoclinic
curve lying in the Aubry set. �

3.2. Modulus of continuity in terms of energy. Let γ0 be a minimal homoclinic
curve approaching to the fixed point in the direction of ξ± corresponding to the
smallest eigenvalue ±λ1, let E0 be a edge of F0. In this subsection we assume that

1, for each c ∈ F0, the Mather set contains exactly one fixed point (x, ẋ) = (0, 0);

2, for each c ∈ intE0, the Aubry set consists of the fixed point and one minimal
homoclinic curve γ0: A(c) = ∪t∈Rγ0(t) ∪ {0};

3, there exist a sequence of positive numbers νi ↓ 0 and sequence of ergodic minimal
measure µi such that ρ(µi) = νi[γ0], and A(c) = suppµi for each c ∈ intLβ(νi[γ0]).

By definition, there exists an elementary weak KAM for each µi corresponding to
the energy Ei = α(Lβ(νi[γ0])). The main purpose of this section is to study the
modulus of continuity of some functions in terms of energy at E = 0.

Dependence of the average speed on energy.

According to Birkhoff’s ergodic theorem, there is an orbit dζi: R → Tn of φtL in
the Mather set such that

1

2T
A(ζi|[−T,T ]) → A(µi) and

1

2T
(ζ̄i(T )− ζ̄i(−T )) → ρ(µi) as T → ∞,

where ζ̄i stands for a lift of ζi to the universal covering space. By the upper semi-
continuity of Mañé set, the curve ζi passes through the ball Bδ(0) infinitely many
times if νi is small. Denoted by t+i,k and t−i,k the time when ζi enters and leaves the

ball respectively, i.e ζi(t) ∈ Bδ(0) for each t ∈ [t+i,k, t
−
i,k], ζi(t

±
i,k ∓ δ) /∈ Bδ(0). Clearly,

|t−i,k − t+i,k| → ∞, as Ei → 0.

If ζi is a periodic curve, some ti > 0 exists so that t+i,k+1 = t−i,k+ ti holds for all k ∈ Z.

Let t+, t− ∈ R such that the minimal homoclinic curve γ0 enters Bδ(0) at t = t+

and leaves Bδ(0) at t = t−. By the upper semi-continuity of Mañé set one has

(ζi(t
±
i,k), ζ̇i(t

±
i,k)) → (γ0(t

±), γ̇0(t
±)).

As each minimal homoclinic curve approaches to the fixed point in the direction ξ±1 ,

(3.11)
∥

∥

∥

ζ̇i(t
±
i,k)

‖ζ̇i(t±i,k)‖
− ξ∓1

‖ξ∓1 ‖
∥

∥

∥
<

1

4
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holds if δ > 0 is suitably small and t−i,k − t+i,k is suitably large.

Each segment ζi|[t+
i,k
,t−
i,k

] solves the Hamilton equation. In the coordinates of normal

form, it is given by Eq. (3.9) and the integral constants b±i satisfy the constraint (3.7).
The condition (3.11) induces the following

1

2
δe−λ1|t

−
i,k

−t+
i,k

|/2 ≤ |b±1 | ≤ 2δe−λ1 |t
−
i,k

−t+
i,k

|/2.

For small δ > 0 and sufficiently large |t−i,k − t+i,k|, we have

|b±j | ≤ 2δe−λj |t
−
i,k

−t+
i,k

|/2, ∀ j = 2, · · · , n,

|P3((b
+
j + b−j ), λj(b

+
j − b−j ))| ≤ Ce−3λ1|t−i,k−t

+
i,k|/2

where the constant C depends only on the function P3. So, for suitably small δ > 0
and sufficiently large |t−i,k − t+i,k|, we obtain from (3.7) that

Ei =
∣

∣

∣
− 2

n
∑

j=1

λ2jb
+
i b

−
i + P3((b

+
j + b−j ), λj(b

+
j − b−j ))

∣

∣

∣

≥1

2
λ21δ

2e−λ1|t
−
i,k

−t+
i,k

| − 8
n
∑

j=2

λ2jδ
2e−λj |t

−
i,k

−t+
i,k

| − Ce−3λ1|t−i,k−t
+
i,k

|/2

≥1

4
λ21δ

2e−λ1|t
−
i,k−t

+
i,k |

Under the same condition, Ei is obviously upper bounded by

Ei =
∣

∣

∣
− 2

n
∑

j=1

λ2jb
+
i b

−
i + P3((b

+
j + b−j ), λj(b

+
j − b−j ))

∣

∣

∣

≤8λ21δ
2e−λ1|t

−
i,k

−t+
i,k

| + 8

n
∑

j=2

λ2jδ
2e−λj |t

−
i,k

−t+
i,k

| + Ce−3λ1|t−i,k−t
+
i,k

|/2

≤9λ21δ
2e−λ1|t

−
i,k

−t+
i,k

|.

Therefore, we find the dependence of speed on the energy

(3.12) |t−i,k − t+i,k| =
1

λ1
| lnEi| −

2

λ1
| ln δ| + τi,k

where τi,k is uniformly bounded for each k ∈ Z:

1

λ1
(2 ln λ1 − 2 ln 2) ≤ τi,k ≤

1

λ1
(2 lnλ1 + 3 ln 3).

Obviously, t+i,k+1 − t−i,k → t+ − t− as i→ ∞, some E0 > 0 exists such that

1

2
(t+ − t−) ≤ t+i,k+1 − t−i,k ≤ 2(t+ − t−), if Ei ≤ E0.

Set τ0 =
2
λ1
| ln 3λ1|+ 2(t+ − t−), one has

(3.13)
∣

∣

∣

1

ν i
− 1

λ1

∣

∣

∣
ln
Ei
δ2

∣

∣

∣

∣

∣

∣
≤ τ0.

Recall the meaning of νi: νi[γ0] is the rotation vector of the minimal measureµi.
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3.3. Around the two-dimensional flat. In this section we restrict ourselves to the
special case that the system has two degrees of freedom: n = 2. The task of this
section is to study the structure of the Mather sets as well as of the Mañé sets in a
neighborhood of the resonant point. Under the coordinate transformation (A.6), it
corresponds to a fixed point.

Since each Aubry set is a Lipschitz graph over the configuration manifold which
is two dimensional here, each orbit in an Aubry set has to be parallel to any other
orbit in the same set in the sense that these curves do not intersect each other. On
the other hand, for autonomous system, β(λω), regarded as the function of λ ∈ R, is
differentiable at each λ 6= 0 (see [Ms]). Thus, we have

Proposition 3.3. Assume that L is an autonomous Tonelli Lagrangian defined on
T2. For each non-zero rational vector, the Mather set consists of periodic orbits with
the same rotation vector.

Each minimal measure with zero-rotation corresponds to the minimum of the α-
function. There are two nondegenerate cases for the set of minimal point F0 ⊂
H1(T2,R). We call a case nondegenerate if it persists under small perturbation.

1, F0 is a two-dimensional flat. Typically, for each class in the interior of F0, the
minimal measure is supported on a fixed point, or a shrinkable periodic orbit (γ, γ̇),
i.e. [γ] = 0. The fixed point (periodic orbit) is of hyperbolic type.

2, F0 is one-dimensional. Typically, the minimal measure is supported on two
periodic orbits (γ−, γ̇−) and (γ+, γ̇+) with the property:

[γ−]/‖[γ−]‖ = −[γ+]/‖[γ+]‖.

The set F0 is a singleton only when the α-function is differentiable at this point.
Otherwise, the β function can not have a two-dimensional flat. In this case, the
Mather set contains two circles with different rotation direction, but it violates the
Lipschitz property.

Let us study the first case and assume that 0 ∈ intF0, the point (x, ẋ) = (0, 0)
supports the minimal measure. Then, A(c) = {0} for all c ∈ intF0. The study is
similar if it is supported on a shrinkable closed orbit.

Given the α as well as the β-function, let us recall the Fenchel-Legendre transfor-
mation Lβ : H1(M,R) → H1(M,R) is defined as

Lβ(ω) = {c : α(c) + β(ω) = 〈c, ω〉}.
Let

∂∗F0 = {c ∈ ∂F0 : M(c)\{x = 0} 6= ∅}, ΩF0 = L
−1
β (∂∗F0),

it may be non-empty. Here is an example:

L =
1

2
ẋ21 +

λ2

2
ẋ22 + V (x)

where |λ| 6= 1, the potential satisfies the following conditions: x = 0 is the minimal
point of V only; there exist two numbers d > d′ > 0 such that for any closed curve
γ: [0, 1] → T2 passing through the origin with [γ] 6= 0 one has

∫ 1

0
V (γ(s))ds ≥ d;
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V = d′ + (x2 − a)2 when it is restricted a neighborhood of circle x2 = a with a 6= 0

mod 1. In this case, ∂F0 ∩ {c2 = 0} = {c1 = ±
√
2d′}. Indeed,

L± c1ẋ1 =
1

2
(ẋ1 ± c1)

2 +
λ2

2
ẋ22 + V (x)− 1

2
c21,

the Mather set for c = (±
√
2d′, 0) consists of the point x = 0 and the periodic curve

x(t) = (x1,0 ∓
√
2d′t, a).

Clearly, the set ∂∗F0 is closed with respect to F0. If it is non-empty, the existence of
infinitely many M̄ -minimal homoclinic orbits has been proved in [Zhe, Zho1]. These
orbits are associated with different homological classes. If ∂∗F0 = ∅, there are at
least three minimal homoclinic orbits to the fixed point.

The existence of homoclinic orbit to some Aubry set is closely related to the exis-
tence of the flat of the α-function.

Lemma 3.1. Given c, c′ ∈ F, let cλ = λc+ (1− λ)c′. Then

Ã(c) ∩ Ã(c′) = Ã(cλ), ∀ λ ∈ (0, 1).

Proof. Using argument in [Ms], for any curve γ: R →M , we have

[Acλ(γ|I)] = λ[Ac(γ|I)] + (1− λ)[Ac′(γ|I)], ∀ I ⊂ R.

As both λ > 0 and 1− λ > 0, one has that [Ac(γ)] = [Ac′(γ)] = 0 if [Acλ(γ)] = 0. �

Lemma 3.2. Let F0 be a 2-dimensional flat, the Mather set is a singleton for each
class in the interior of F0, let Ei be an edge of F0, then

A(c′) ) A(c)

holds for c′ ∈ ∂F0 (∂Ei) and c ∈ intF (intEi) respectively.

Proof. As the Mather set is a singleton for each c ∈ intF0, each orbit in the Aubry
set is either the fixed point itself, or a homoclinic orbit to the point with zero first
homology. Indeed, let [γ] denote its first homology of the homoclinic curve γ in the
Aubry set, then

∫ ∞

−∞
L(dγ(t))dt − 〈c, [γ]〉 = 0

holds for each c ∈ intF0. It follows that 〈c − c′, [γ]〉 = 0 for c, c′ ∈ intF0. Since F0

shares the same dimension of the configuration space, [γ] = 0. In fact, for classical
mechanical system, the Aubry set consists of the fixed point only for c ∈ intF0. If
c′ ∈ ∂F0\∂∗F0, as shown in the proof of Theorem 3.2, the Aubry set A(c′) contains
at least one minimal homoclinic curve with non-zero first homology. If c′ ∈ ∂∗F0, the
certain c′-minimal measure µc′ exists with ρ(µc′) 6= 0. In both cases, A(c′) ) A(c) if
c ∈ intF0.

Let Ei be an edge. For c ∈ intEi, the Aubry set contains one or more homoclinic
curves, all of them share the same homology class, denoted by g(Ei) which is of course
non-zero. If M(c) contains other curves, these curves also share the same rotation
vector as 〈c− c′, g(Ei)〉 = 0 holds for c, c′ ∈ intEi.

Let c′ ∈ ∂Ei and c ∈ intEi, one chooses c∗ ∈ ∂F0\Ei arbitrarily close to c′. As
the straight line connecting c to c∗ passes through the interior of F0, we obtain from
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Lemma 3.1 that A(c) ∩A(c∗) = A(c0) with c0 ∈ intEi. For any curve ζ contained in
A(c∗)\A(c0), it follows from the formulation

0 =

∫

(L(dζ(t))− 〈c∗, ζ̇〉)dt =
∫

(L(dζ(t))− 〈c, ζ̇〉)dt+ 〈c− c∗, [ζ]〉

that 〈c − c∗, [ζ]〉 6= 0 holds. We claim [ζ] 6= g(Ei). Let us assume the contrary and
consider the case that ζ is a homoclinic curve and A(c) contains a homocilinic curve
γ. In this case, by assuming that α(c) = 0 for c ∈ F0, we have

∫ ∞

−∞
L(dζ)dt− 〈c∗, [ζ]〉 = 0,

∫ ∞

−∞
L(dγ)dt− 〈c, g(Ei)〉 = 0.

Since the class c∗ is not on the straight line containing Ei, we have 〈c∗− c, g(Ei)〉 6= 0.
If 〈c∗ − c, g(Ei)〉 > 0 we would have

∫ ∞

−∞
L(dγ)dt− 〈c∗, [γ]〉 =

∫ ∞

−∞
L(dγ)dt− 〈c, [γ]〉 − 〈c∗ − c, g(Ei)〉 < 0

If [ζ] = g(Ei) and 〈c∗ − c, g(Ei)〉 < 0 we would have
∫ ∞

−∞
L(dζ)dt− 〈c, [ζ]〉 =

∫ ∞

−∞
L(dγ)dt− 〈c∗, [ζ]〉+ 〈c∗ − c, g(Ei)〉 < 0

Both cases are absurd as α(c) = α(c∗) = 0. Because [ζ] 6= g(Ei), some x∗ ∈ A(c∗)
remains far away from A(c). Let c∗ → c′, the accumulation point of these points does
not fall into A(c), it implies A(c′) ) A(c). The proof is similar if ξ as well as γ is a
curve lying in the Mather set. �

Recall the definition of Gm in the section 2: a first homology class g ∈ Gm if and
only if there exists a minimal homoclinic orbit dγ such that [γ] = g. Let Gm,c ⊂ Gm
be defined such that g ∈ Gm,c if and only if there exists a minimal homoclinic orbit dγ

in Ã(c) such that [γ] = g. We say that there are k-types of minimal homoclinic orbits

in Ã(c) if Gm,c contains exactly k elements. For an edge we define Gm,Ei
= Gm,c for

each c ∈ intEi, from the proof of Lemma 3.2 one can see that it makes sense.

Theorem 3.3. Let F0 be a two dimensional flat, M(c0) is a singleton for c0 ∈ intF0.
Let Ei denote an edge of F0 (not a point), then

1, either Ei ∩ ∂∗F0 = ∅ or Ei ⊂ ∂∗F0;

2, if Ei ∩ ∂∗F0 = ∅, then Gm,Ei
contains exactly one element, if Ei ⊂ ∂∗F0, all

curves in M(Ei)\{0} have the same rotation vector;

3, if c ∈ ∂Ei and c /∈ ∂∗F0 then Gm,c contains exactly two elements;

4, if Ei,Ej ⊂ ∂∗F0, then either Ei and Ej are disjoint, or Ei = Ej;

5, if Ei ⊂ ∂∗F0, M(c) = M(c′) holds for c ∈ ∂Ei and c
′ ∈ intEi.

Proof. For the conclusion 1, as A(c) = A(c′) if c, c′ ∈ intEi [Ms], we only need to
consider c ∈ ∂Ei. If it is not true, there would exist an invariant measure µc, not
supported on the singleton and minimizing the action

∫

Ldµc − 〈ρ(µc), c〉 = −α(c),
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but not minimizing the c′-action for c′ ∈ intEi. As the configuration space is T2, the
Lipschitz graph property of Aubry set will be violated if the rotation vector of the
measure ρ(µc) is not parallel to g ∈ Gm,Ei

. So, 〈ρ(µc), c− c′〉 = 0 holds for c′ ∈ intEi,
thus µc also minimizes the action for c′ ∈ intEi. This leads to a contradiction. Since
∂∗F0 is closed, once intEi ⊂ ∂∗F0, then whole edge is also contained in ∂∗F0.

The conclusion 2 follows from the fact that 〈c−c′, [γ]〉 = 0 holds for any c, c′ ∈ intEi
and any γ ∈ A(c), the conclusion 3 follows from that A(c) ! A(c′) if c′ ∈ intEi.

If the conclusion 4 was not true, for the cohomology class in Ei∩Ej the Mather set
would contain two closed circles with different homology, but it violates the Lipschitz
graph property of Aubry set. With the same reason we have the conclusion 5. �

By this theorem, each edge Ei ⊂ ∂∗F0 aslo uniquely determines a class g(Ei) so
that for each c ∈ intEi, the rotation vector of each c-minimal measure has the form
νg(Ei) (ν > 0). For brevity, we also use the notation M(Ei) = M(c) for c ∈ Ei.

Figure 1. Ei ⊂ ∂∗F0, M(Ei) = {0} ∪ {γ}. The blue curve is in A(c)
for c at one end point of Ei, the red curve is in A(c′) for c′ at another
end point of Ei.

Given two homology classes g, g′ ∈ H1(T
2,Z), we call them adjacent if g ∈ Gm,E,

g′ ∈ Gm,E′ , E∩∂∗F0 = ∅, E′∩∂∗F0 = ∅, E and E′ are adjacent. The special topology
of two-dimensional torus induces some restrictions on adjacent homologies.

Lemma 3.3. Let E,E′ ⊂ ∂F0\∂∗F0 be two adjacent edges and assume c ∈ E ∩ E′. If
(m,n) = g ∈ Gm,E and (m′, n′) = g′ ∈ Gm,E′ , then one has that m′n−mn′ = ±1.

Proof. The Aubry set Ã(c) contains homoclinic orbits with two two classes (m,n)
and (m′, n′), both are irreducible. Guaranteed by the Lipschitz graph property, these
curves intersect each other only at the fixed point. In the universal covering space
R2, each curve in the lift of the homoclinic curves are determined by the equation

mx1 + nx2 = k, m′x1 + n′x2 = k′.

The solution of the equations corresponds to the intersection point which are lattice
points in Z2 for any (k, k′) ∈ Z2. To guarantee this property, the necessary and
sufficient condition is mn′ −m′n = ±1. �

For each indivisible homological class 0 6= g ∈ H1(T
2,Z), either Lβ(λg) /∈ ∂F0 for

any ν > 0, or some λ0 > 0 exists such that Lβ(λ0g) ∈ ∂∗F0.

In the first case, Lβ(λg) → ∂F0\∂∗F0 as λ ↓ 0, at least one periodic curve γλ ⊂
M(c) exists for c ∈ Lβ(λg) with λ > 0. It is impossible that d(c,Lβ(λg)) → 0 holds
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for c ∈ ∂∗F0, as in that case certain c-minimal measure µc would exist so that ρ(µc)
is not parallel to [γ]. It will violate the Lipschitz property. Generically, (γλ, γ̇λ) is
hyperbolic and Lβ(λg) is an interval if λ > 0. If g ∈ Gm,Ei

, then Lβ(λg) approaches
to certain edge Ei. If g = kigi + ki+1gi+1 with indivisible (ki, ki+1) ∈ Z2

+, gi ∈ Gm,Ei
,

gi+1 ∈ Gm,Ei+1 , Ei and Ei+1 are two adjacent edges. As λ ↓ 0, the interval will
shrink to a vertex where Ei is joined to Ei+1, and we have a sequence of closed orbits
{dγλ} = {∪t(γλ(t), γ̇λ(t))}. Its Kuratowski upper limit set is obviously in the Aubry
set for certain c ∈ ∂F0\∂∗F0, thus, consists of minimal homoclinic orbits to the fixed
point. As c approaches to the vertex, the Mather set approaches to a set of figure
eight:

M(c) → γi ∗ γi+1,

where γℓ ⊂ A(Eℓ) is a minimal homoclinic orbit such that [γℓ] = gℓ for ℓ = i, j.

Figure 2. For each c on the red line in the channel, the Aubry set is
a closed orbit in the cylinder, it approaches to a curve of figure eight.

To be more precise, let us study this phenomenon in the finite covering space
M̄ = k̄1T× k̄2T where k̄m = kigim+ ki+1gi+1,m for m = 1, 2 if we write gj = (gj1, gj2)
for j = i, i + 1. Let σ: {1, 2, · · · , ki + ki+1} → {i, i+ 1} be a permutation such that
the cardinality #σ−1(i) = ki and #σ−1(i+ 1) = ki+1. The lift of homoclinic curve
γi as well as γi+1 to M̄ contains several curves, not closed. Pick up one curve γ̄σ(1)
in the lift of γσ(1), it determines a unique curve γ̄σ(2) such that the end point of γ̄σ(1)
is the starting point of γ̄σ(2), and so on. See Figure 3. We are going to show below

Figure 3. [γ1] = (1, 0), [γ2] = (1, 1), k1 = 1, k2 = 2. For each class c
on the red line, ρ(µc) = λ([γ1] + 2[γ2]). The solid blue line represent
a periodic curve, the solid purple line represent the conjunction of the
minimal homoclinic curves. The dashed lines represent the image of
the Deck-transformation.

that there exists a unique permutation σ such that one Aubry class in A(c, M̄ )

Ai(c, M̄ ) → γ̄σ(1) ∗ γ̄σ(2) ∗ · · · ∗ γ̄σ(ki+ki+1)
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as c approaches to the vertex along the path in the channel. As the minimal curve
γλ is periodic with the homological class [γλ] = kigi + ki+1gi+1, the permutation σ:
Z → {i, i+1} is (ki+ ki+1)-periodic. Since ki is prime to ki+1, we have ki = ki+1 = 1
if ki = ki+1.

Lemma 3.4. The permutation is uniquely determined by ki and ki+1. If ki > ki+1,
the following holds for j = 1, · · · , ki + ki+1

σ(j + j0) = i, if (aj) 6= 0;

σ(j + j0) = i+ 1, if (aj) = 0.

Proof. By the assumption, there exists only one minimal homoclinic curve γj such
that [γj ] = gj for j = i, i+1. Because of the lemma 3.3, we can assume that gi = (1, 0)
and gi+1 = (0, 1) by choosing suitable coordinates on T2. We choose two sections I−

and I+ in a small neighborhood of the origin such that, emanating from the origin,
these homoclinic curves pass through I− and I+ successively before they return back
to the origin as t→ ∞. In the section I± we choose disjoint subsections I±i and I±i+1

such that the curve γj passes through I
±
j for j = i, i+ 1.

Let γλ be the minimal periodic curve with rotation vector λg. For small λ > 0,
γλ falls into a small neighborhood of these two homoclinic curves. So it has to pass
either through I±i or through I±i+1. Let t

±
ℓ be the time for γλ passing through I± with

· · · < t−ℓ−1 < t+ℓ < t−ℓ < t+ℓ+1 < · · · , and it does not tough these sections whenever

t 6= t±k . By definition, the period of the curve equals t±k1+k2−t
±
0 . If the curve intersects

I+i at t+ℓ and intersects I−i+1 at t−ℓ , then the segment γλ|[t−
ℓ−1,t

+
ℓ
] keeps close to γi and

γλ|[t−ℓ ,t+ℓ+1]
keeps close to γi+1, so one has γλ(t

−
ℓ−1) ∈ I−i and γλ(t

+
ℓ+1) ∈ I+i+1. As

the curve γλ is minimal, it does not have self-intersection. Thus, once there exists
t±j such that γλ(t

+
j ) ∈ I+i and γλ(t

−
j ) ∈ I−i , then there does not exist t±j′ such that

γλ(t
+
j′) ∈ I+i+1 and γλ(t

−
j′) ∈ I−i+1. Therefore, there is a set J ⊂ {1, 2, · · · , ki + ki+1}

with cardinality #(J) = ki − ki+1 such that for j ∈ J one has γλ(t
±
j ) ∈ I±i , for j /∈ J

one either has γλ(t
+
j ) ∈ I+i and γλ(t

−
j ) ∈ I−i+1 or has γλ(t

+
j ) ∈ I+i+1 and γλ(t

−
j ) ∈ I−i .

By introducing coordinate transformation on T : T2 → T2 such that T∗g = g
∀ g ∈ H1(T

2,Z), let us think the curve Tγλ as a straight line projected down to the
unit square, a fundamental domain of T2. Starting from a point zh0 = (x0, 0), the line
successively reaches to the points zh1 = (x1, 0), · · · , zhm = (xm, 0), · · · , zhki = zh0 where

xm = (x0 +mki+1/ki mod 1, 0) with small x0 > 0. To connect the point (xm−1, 0)
to the point (xm, 1), the curve Tγλ does not touch the vertical boundary lines if

[

(m− 1)
ki+1

ki

]

=
[

m
ki+1

ki

]

,
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where [a] denote the largest integer not bigger than the number a, and it has to pass
through the vertical lines at some point zvm = (0 mod 1, ym) if

[

(m− 1)
ki+1

ki

]

+ 1 =
[

m
ki+1

ki

]

.

We define an order ≺ for these ki + ki+1 points such that zhj ≺ zhk iff j < k and

zhj ≺ zvj+1 ≺ zhj+1 iff [jki/kj+1] + 1 = [(j + 1)ki/kj+1].

Returning back to the original coordinates, the curve γλ falls into a neighborhood
of the curves γi and γi+1, intersects the horizontal line Γh = T−1{(x1, x2) : x1 = 1

2

mod 1} at T−1zhj and intersects the vertical line Γv = T−1{(x1, x2) : x2 = 1
2 mod 1}

at T−1zvj , [Γh] = gi+1 and [Γv] = gi. Naturally, the map T induces the order among

these points: T−1zh,vj ≺ T−1zh,vℓ if and only if zh,vj ≺ zh,vℓ . If the curve passes the

point T−1zhj at t ∈ (t−j , t
+
j+1), the segment γλ|[t−j ,t+j+1]

falls into a neighborhood of γi,

otherwise, it falls into a neighborhood of γi+1. In this way, we obtained a unique
permutation σ up to a translation. �

In the second case, some λ0 > 0 exists such that Lβ(λg) ∈ ∂∗F0. It is typical
that certain edge Ei exists such that Lβ(λg) = Ei ⊂ ∂∗F0, the c-minimal measure is
supported on a hyperbolic periodic orbit for each c ∈ Ei. Thus, there is a channel C
endding at Ei such that the family of periodic orbits ∪c∈CM̃(c) constitutes a normally
hyperbolic cylinder.

Figure 4. For each c ∈ C, the Aubry set is a closed orbit in the
cylinder (in purple), the closed circle in blue is in the Aubry set for
c ∈ F0 ∩ C, the closed orbit in green is not global minimum.

In the following, we shall study the dynamics on certain energy level of truncated
normal form H(x, y, y3) = E. Since one obtains the condition ∂y3H 6= 0 from the
normal form, some function y3 = Y (x, y) solves the equation H = E. Treat Y (x, y)
as the new Hamiltonian and let τ = −x3 be the time, one obtains a system with two
degrees of freedom, which is equivalent to the dynamics on the energy level {H−1(E)}.
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Theorem 3.4. For the Hamiltonian H(x, y, xn, yn) we assume that ∂ynH 6= 0 on
{H−1(E)}∩{yn ∈ [y−n , y

+
n ]}. Let yn = Y (x, y, τ) be the solution of H = E (τ = −xn).

Let αH and αG be the α-function for LH and LG respectively, where

LH(x, xn, ẋ, ẋn) = max
y,yn

〈(ẋ, ẋn), (y, yn)〉 −H(x, y, xn, yn),

LY (x, y, τ) = max
y

〈ẋ, y〉 − Y (x, y, τ),

Then for αY (c) ∈ [y−n , y
+
n ] we have (c, αY (c)) ∈ α−1

H (E).

Proof. Let c̃ = (c, αY (c)), γ̃ = (γ, γn), x̃ = (x, xn) and ỹ = (y, yn). Let γ be c-minimal
curve for the Lagrange flow φtLF

, γ̃ is then c̃-minimal curve for the Lagrange flow φtLH

if γn = xn and γ̃ is re-parameterized τ → t. If x = x(τ) is a solution of φtLF
, one

obtains y = y(τ) from the Hamiltonian equations. Since H(x̃(t), ỹ(t)) ≡ E, we find

[AY (γ)] =

∫

(〈dx

dτ
, y − c

〉

− yn + αY (c)
)

dτ

=

∫

(〈 ˙̃x, ỹ − c̃〉 −H + E)dt

= [AH(γ̃)].

This completes the proof. �

Let π3 : R
3 → Rn−1 be the projection π3x̃ = x. By this theorem, π−1

3 : H1(T2,R) →
αH(E) is a homeomorphism for c ∈ F0 + d, the d-neighborhood of the flat F0. Thus,
what we obtained in this subsection have their counterpart in the energy level set
{H−1(E)} where the class c̃ ∈ π−1

3 (F0 + d) ∩ α−1
H (E).

4. Normally hyperboli invariant ylinder

In this section, normally hyperbolic invariant cylinder is proved to exist in certain
neighborhood of double resonant point. It uses the normal form which is obtained in
the appendix where several steps of KAM iteration and one step of linear coordinate
transformation were carried out. All these coordinate transformations are symplectic.
Since Aubry set and Mañé set are symplectic invariants [Be2], it is good enough to
study these objects by considering the normal form.

4.1. Homogenized Hamiltonian. The normal form of the Hamiltonian takes the
form

(4.1) H = h̃(ỹ) + ǫZ̃(x, ỹ) + ǫR̃(x̃, ỹ),

where x̃ = (x, x3) = (x1, x2, x3) and ỹ = (y, y3) = (y1, y2, y3). Since h is positive
definite, a unique curve exists along which ∂yh = (0, 0). This curve passes through

the energy level {h−1(Ẽ)} transversally at a unique point ỹ0. As Ẽ > minα, one has
∂y3h(ỹ0) = ω3 6= 0. By coordinate translation, we assume ỹ0 = 0.

As the dynamics we are going to study is restricted on an energy level {H−1(Ẽ)},
it can be reduced to a system with two and half degrees of freedom. Since ω3 6= 0,
the equation H(x̃, ỹ) = Ẽ uniquely determines a smooth function y3 = y3(x, y, x3)
in certain neighborhood of y3 = 0. Treating −ω3y3 = Y as a new Hamiltonian and
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ω−1
3 x3 = τ as a new time variable, we obtain a time-periodic system with two degrees

of freedom. Correspondingly, we have the normal form

(4.2) Y (x, y, τ) = h(y) + ǫZ(x, y) + ǫR(x, y, τ)

where h(0) = 0, ∂yh(0) = 0 and ǫR is as small as ǫR̃.

Each k ∈ Z2 determines a resonant curve Γk = {y ∈ R2 : 〈k, ∂yh(y)〉 = 0}.
Normally hyperbolic cylinder is searched when y varies along this curve. Recall that
the normal form remains valid in the domain {‖y‖ ≤ O(ǫκ)} (16 < κ ≤ 1

3 ). The
√
ǫ-

neighborhood of the curve is covered by as many as O(ǫ−κ+
1
2 ) small balls with radius

O(
√
ǫ). Given a ball centered at y = yj ∈ Γk, by rescaling variables y − yj =

√
ǫp,

s =
√
ǫτ , one obtains an equivalent Hamiltonian equation

dx

ds
=
ωj√
ǫ
+Ajp+

(∂h(
√
ǫp)

ǫ∂p
− ωj√

ǫ
−Ajp

)

+
∂Z

∂p
+
∂R

∂p
,

dp

ds
= −∂Z

∂x
− ∂R

∂x

which corresponds to the Hamiltonian

Gǫ =
1√
ǫ
〈ωj, p〉+

1

2
〈Ajp, p〉+ Vj(x) + Zǫ(x,

√
ǫp) +Rǫ(x,

√
ǫp, s/

√
ǫ)

where ωj = ∂h(yj), Aj = ∂2h(yj), Vj(x) = Z(x, yj) and

Zǫ =
1

ǫ
h(yj +

√
ǫp)− 1√

ǫ
〈ωj, p〉 − 〈Ajp, p〉+ Z(x,

√
ǫp+ yj)− Z(x, yj).

According to Appendix A, one has Zǫ = O(
√
ǫ) and ‖Rǫ‖C2 = O(ǫ3σ−2ρ), where the

C2-norm is with respect to (x, p) only. To guarantee the covering property shown in
the appendix, one choose σ = 1

7 , so we have 3σ − 2ρ = 1
21 > 0. Obviously, one has

Proposition 4.1. Each orbit (x(s), p(s)) of the Hamiltonian flow ΦsGǫ
uniquely deter-

mines an orbit (x(τ), y(τ)) = (x(s/
√
ǫ), yj+

√
ǫp(s/

√
ǫ)) of ΦτG. If Gǫ(x(s), p(s)) = Eǫ

and G(x(τ), y(τ)) = E, then E = ǫEǫ.

The Hamiltonian Gǫ is a small perturbation of the homogenized Hamiltonian

Ḡ =
1√
ǫ
〈ωj, p〉+

1

2
〈Ajp, p〉+ Vj(x),

which determines the Lagrangian

L̄ =
1

2

〈

A−1
j

(

ẋ− ωj√
ǫ

)

, ẋ− ωj√
ǫ

〉

− Vj(x).

Let us first consider the case when yj = 0, it follows that ωj = 0. The variable y
is restricted in the domain ‖y‖ ≤ K

√
ǫ, where the higher order term is bounded by

‖Rǫ‖C2 = O(ǫ5σ−
1
6 ) (see (A.1)). Correspondingly, let A = Aj and V = Vj for yj = 0:

Ḡ =
1

2
〈Ap, p〉+ V (x), L̄ =

1

2
〈A−1ẋ, ẋ〉 − V (x).

For this Hamiltonian system, the maximal point of V determines a stationary solution
which corresponds to a minimal measure of L̄, where the matrix

(

0 A
−∂2xV 0

)

has 4 real eigenvalue ±λ1,±λ2. By translation of coordinates, it is generic that
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(H1): V attains its maximum at x = 0 only, the Hessian matrix of V at x = 0 is
negative definite. All eigenvalues are different: −λ2 < −λ1 < 0 < λ1 < λ2.

Such a hypothesis leads to certain hyperbolicity of minimal homoclinic orbits. Let
us consider the case: for c ∈ ∂F0 the Aubry set A(c) = ∪t∈Rζ(t), where ζ: R →M is
a minimal homoclinic curve. By the assumption H1, the fixed point z = (x, y) = 0
has its locally stable manifoldW+ as well as the locally unstable manifoldW−. They
intersect each other transversally at the origin. As each homoclinic orbit entirely stays
in the stable as well as in the unstable manifolds, along such orbit their intersection
can not be transversal in the standard definition, but transversal module the curve:

TxW
− ⊕ TxW

+ = TxH
−1(E)

holds for x is on minimal homoclinic curves. Without danger of confusion, we also
call the intersection transversal.

If we denote by Λ+
i = (Λxi,Λyi) the eigenvector corresponding to the eigenvalue λi,

where Λxi and Λyi are for the x- and y-coordinate respectively, then the eigenvector
for −λi will be Λ−

i = (Λxi,−Λyi). it is also a generic condition that

(H2): with each g ∈ H1(T
2,Z), there is at most one minimal orbit associated,

the stable manifold intersects the unstable manifold transversally along each minimal
homoclinic orbit. Each minimal homoclinic orbit approaches to the fixed point along
the direction Λ1: γ̇(t)/‖γ̇(t)‖ → Λx1 as t→ ±∞.

Recall the set ∂∗F0. If c ∈ ∂∗F0 ⊂ ∂F0, the c-minimal measure consists of two or
more ergodic components. Because of Theorem 3.3 and the countability of homology
classes of all homoclinic curves, we have another generic condition

(H3): For each c ∈ ∂∗F0, the Aubry set does not contain minimal curve homoclinic
to the origin (fixed point).

4.2. Cylinder for truncated Hamiltonian: near double resonance. Let us
start with a Hamiltonian with two and half degrees of freedom:

(4.3) Gǫ =
1

2
〈Ap, p〉+ V (x) + Zǫ(x, p) +Rǫ(x,

√
ǫp, s/

√
ǫ)

where (x,
√
ǫp, s/

√
ǫ) ∈ T2 × R2 × T, Zǫ = O(

√
ǫ), ‖Rǫ‖C2 = O(ǫ5σ−

1
6 ) (see Theorem

A.1) where the C2-norm is with respect to (x, p). Recall the homogenized Hamiltonian
as well as the homogenized Lagrangian

Ḡ(x, p) =
1

2
〈Ap, p〉+ V (x), L̄(x, ẋ) =

1

2
〈A−1ẋ, ẋ〉 − V (x)

where ẋ = dx
ds .

By the assumption (H1), the fixed point (x, ẋ) = 0 = M̃(c) each c ∈ F0 which is a
2-dimensional flat. As classified before, for each c ∈ ∂F0\∂∗F0 the Aubry set consists
of minimal homoclinic orbits plus the fixed point.

Given an irreducible class g ∈ H1(T
2,Z), it is not necessary that some minimal

homoclinic curve γ exists such that [γ] = g. Let us consider the c-minimal measure for
c ∈ Lβ(νg) with ν > 0. As we shall see later, it is generic that the minimal measure
is supported on at most two periodic orbits, denoted by dγν , both are hyperbolic,
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namely, it has the stable and unstable manifold. These periodic orbits constitute a
two-dimensional cylinder. However, it appears not reasonable to assume the normal
hyperbolicity for Φs

Ḡ
in usual sense as the speed along the orbit may undergo large

variation, especially, when it is very close to some homoclinic orbit. Therefore, one
can not see the separation of the spectrum of DΦs

Ḡ
in normal and in tangent direction.

As the first step, let us study the case when c→ ∂F0.

There are two cases alternatively as ν decreases: Lβ(νg) → ∂F0 as ν decrease to
zero, or ∃ ν0 > 0 such that Lβ(ν0g) ∈ ∂F0.

In the first case, the cohomology class approaches to some edge Ei ⊂ ∂F0\∂∗F0

or to some vertex where two adjacent edges Ei,Ei+1 ⊂ ∂F0\∂∗F0 joint together.
Under the hypothesis (H2), for class c in the interior of the edge, the Aubry set A(c)
contains exactly one minimal homoclinic curve and the point of the origin. Let γj be
the minimal homoclinic curve related to Ej for j = i, i+1, it determines the minimal
homoclinic orbit (xi(s), pi(s)) ⊂ Ḡ−1(0). Denote by gj = [γj ] the homology class. If
g = gi, γν → γi as ν decreases to zero. If there exist two positive integers ki, ki+1

such that g = kigi + ki+1gi+1, the curve xν approaches to the set ∪t∈Rxi(t) ∪ xi+1(t)
(figure eight) as ν → 0, folding ki and ki+1-times along xi and xi+1 respectively.

The periodic curve γν determines a periodic orbit (γν , yν) in the phase space. It
stays in certain energy level set H−1(E). For g = kigi + ki+1gi+1 and suitably small
E > 0, by the study in Section 3.2 (Eq.(3.12)), the period T is related to the energy
by the formula

T = T (E, g) = τE,g −
1

λ1
(ki + ki+1) lnE

where τE,g → kiτE,gi + ki+1τE,gi+1 as E → 0, both τE,gi and τE,gi+1 is bounded.

To study the dynamics around the minimal homoclinic orbits zℓ = (xℓ, pℓ) (ℓ =
i, i + 1), we use a new canonical coordinates (x, p) such that, restricted in a small
neighborhood of z = 0, one has the form

Ḡ =
1

2
(p21 − λ21x

2
1) +

1

2
(p22 − λ22x

2
2) + P3(x)

where P3(x) = O(‖x‖3). Without losing generality, we assume xℓ,1(s) ↓ 0 as s→ −∞,
xℓ,1(s) ↑ 0 as s → ∞ and ẋℓ(s)/‖ẋℓ(s)‖ → (1, 0) as s → ±∞. Here the notation is
taken as granted: xℓ = (xℓ,1, xℓ,2). We choose 2-dimensional disk lying in Ḡ−1(E)

Σ∓
E,δ = {(x, p) ∈ R4 : ‖(x, p)‖ ≤ d, Ḡ(x, p) = E, x1 = ±δ}.

Because of the special form of Ḡ, one has

Σ∓
0,δ = {x1 = ±δ, p21 + p22 − λ22x

2
2 = λ21δ

2 − 2P3(±δ, x2), ‖(x, p)‖ ≤ d}.
Let W− (W+) denote the unstable (stable) manifold of the fixed point which entirely
stays in the energy level set Ḡ−1(0). If P3 = 0, the tangent vector of W− ∩ Σ−

0,δ has

the form (0,±1, 0,±λ2). So, the tangent vector of W− ∩ Σ−
0,δ takes the form

v−δ = (vx1 , vx2 , vp1 , vp2) = (0,±1, p1,δ ,±λ2 + p2,δ) ∈ Tz−
δ
(W− ∩ Σ−

0,δ)

where both p1,δ and p2,δ are small.

Denote by T±
δ,ℓ the time when the homoclinic orbit zℓ(s) passes through Σ±

0,δ. As

∂y1Ḡ > 0 holds at the point zℓ ∩ {x1 = ±δ}, both homoclinic orbits zi(s) and zi+1(s)
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approach in the same direction to the fixed point, the section Σ+
0,δ as well as Σ−

0,δ

intersects these two homoclinic orbits transversally. Let z±δ,ℓ denote the intersection

point of zℓ(s) with Σ±
0,δ. In a small neighborhood of that point Bε(z

−
δ,ℓ), one obtains

a map Ψ0,δ: Σ−
0,δ ∩ Bε(z−δ,ℓ) → Σ+

0,δ in following way, starting from a point z in this

neighborhood, there is a unique orbit which moves along zℓ(s) and comes to a point
Ψ0,δ(z) ∈ Σ+

0,δ after a time approximately equal to T+
δ,ℓ − T−

δ,ℓ.

Let us fix small D > 0. There exists C0 > 1 (depending on D) such that

C−1
0 ≤ ‖DΨ0,D(z

−
D,ℓ)|T (W−∩Σ−

0,D)‖, ‖DΨ−1
0,D(z

+
D,ℓ)|T (W+∩Σ+

0,D)‖ ≤ C0

holds for both ℓ = i and ℓ = i+ 1. Clearly, one has C0 → ∞ as D → 0.

As the homoclinic curves approach to the origin in the direction of (1, 0) in x-space,
for small δ ≪ D, there exists a constant µ1 > 0 such that µ1 ↓ 0 as D → 0 and

1

λ1 + µ1
ln

(D

δ

)

≤ T−
D,ℓ − T−

δ,ℓ, T
+
δ,ℓ − T+

D,ℓ ≤
1

λ1 − µ1
ln

(D

δ

)

.

The Hamiltonian flow Φt
Ḡ

defines a map Ψ−
0,δ,D: Σ−

0,δ → Σ−
0,D and a map Ψ+

0,δ,D:

Σ+
0,D → Σ+

0,δ: emanating from a point in Σ−
0,δ (Σ

+
0,D) there exists a unique orbit which

arrives Σ−
0,D (Σ+

0,δ) after a time bounded by the last formula.

Restricted in the ball BD, let us consider the variational equation of the flow Ψs
Ḡ

along the homoclinic orbit zj(s). It follows from the normal form of the homogenized
Hamiltonian Ḡ that the tangent vector (∆x,∆p) = (∆x1,∆x2,∆p1,∆p2) satisfies the
variational equation

(4.4) ∆ẋi = ∆pi, ∆ṗi = λ2i∆xi −Ψ1i(xℓ(s))∆x1 −Ψ2i(xℓ(s))∆x2, i = 1, 2

where Ψij = ∂xi∂xjP3. Clearly, |Ψij(xℓ(s))| ≤ C1‖xℓ(s)‖ with C1 > 0 if ‖xℓ(s)‖ is
small. Since the homoclinic orbit approaches to the fixed point in the direction of
(ẋ, ṗ) = (1, 0, λ21, 0), one has

De−(λ1+µ1)(s−T+
D,ℓ) ≤ ‖x(s)|[T+

D,ℓ
,∞)‖ ≤ De−(λ1−µ1)(s−T+

D,ℓ).

For the initial value ∆z(T+
D,ℓ) = (∆x(T+

D,ℓ),∆p(T
+
D,ℓ)) satisfying the condition

|〈∆z(T+
D,ℓ), v

−
δ 〉| ≥ 2/3‖∆z(T+

D,ℓ)‖‖v−δ ‖
(v−δ = (0,±1, p1,δ ,±λ2 + p2,δ)) one obtains from the hyperbolicity that

C−1
2 ‖∆z(T+

D,ℓ)‖e
(λ2−µ1)(T+

δ,ℓ
−T+

D,ℓ
) ≤ ‖∆z(T+

δ,ℓ)‖ ≤ C2‖∆z(T+
D,ℓ)‖e

(λ2+µ1)(T
+
δ,ℓ

−T+
D,ℓ

)

holds for some constant C2 > 1 depending on λi as well as on P . Therefore, for each
vector v ∈ Tz+D

Σ+
0,D which is nearly parallel to Tz+D

(W− ∩ Σ+
0,D): |〈v, v′〉| ≥ 2

3‖v‖‖v′‖
holds for v′ ∈ Tz+D

(W− ∩ Σ+
0,D) we obtain from the last two formulae that

C−1
2

(D

δ

)

λ2
λ1

−µ2 ≤ lim
‖v‖→0

‖DΨ+
0,δ,D(z

+
D,ℓ)v‖

‖v‖ ≤ C2

(D

δ

)

λ2
λ1

+µ2
.

Similarly, one has

C−1
3

(D

δ

)

λ2
λ1

−µ2 ≤ ‖DΨ−
0,δ,D(z

−
δ,ℓ)|T

z
−
δ

(W−∩Σ−
0,δ)

‖ ≤ C3

(D

δ

)

λ2
λ1

+µ2
,

where C3 > 1 also depends on λi as well as on P , µ2 > 0 and µ2 → 0 as D → 0.
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By the construction, the 2-dimensional disk Σ−
0,δ intersects the unstable manifold

W− along a curve. Let Γ−
δ,ℓ ⊂W−∩Σ−

0,δ be a very short segment of the curve, passing

through the point z−δ,ℓ. Pick up a point z∗ℓ on the homoclinic orbit zℓ far away from the

fixed point and take a 2-dimensional disk Σ∗
ℓ ⊂ Ḡ−1(0) containing the point z∗ℓ and

transversal to the flow Φs
Ḡ
in the sense that Tz∗

ℓ
Ḡ−1(0) = span(Tz∗

ℓ
Σℓ, J∇Ḡ(z∗ℓ )). The

Hamiltonian flow Φs
Ḡ

sends each point of Γ−
δ,ℓ to this disk provided it is close to z−ℓ .

In this way, one obtains a map Ψ−,∗
δ,ℓ : Σ

−
0,δ → Σ∗

ℓ . Let Γ
−,∗
δ,ℓ = Ψ−,∗

δ,ℓ Γ
−
δ,ℓ. According to

the assumption (H2), one has Tz∗
ℓ
Ḡ−1(0) = span(Tz∗

ℓ
W+, Tz∗

δ,ℓ
W−). Thus, one also

has Tz∗
ℓ
Ḡ−1(0) = span(Tz∗

ℓ
W+, Tz∗

ℓ
Γ−,∗
ℓ ). It follows from the λ-lemma that Ψ0,δ(Γ

−
δ,ℓ)

keeps C1-close toW−∩Σ+
0,δ at the point z

+
δ,ℓ and Ψ−1

0,δ(Γ
+
δ,ℓ) keeps C

1-close toW+∩Σ−
0,δ

at the point z−δ,ℓ provided δ > 0 is sufficiently small. As Ψ0,δ = Ψ−
0,δ,D ◦Ψ0,D ◦Ψ+

0,δ,D,
one obtains

C−1
4

(

D

δ

)2(
λ2
λ1

−µ2)
≤ ‖DΨ0,δ(z

−
δ )|T

z
−
δ

(W−∩Σ−
0,δ)

‖ ≤ C4

(

D

δ

)2(
λ2
λ1

+µ2)

,

and

C−1
4

(

D

δ

)2(
λ2
λ1

−µ2)
≤ ‖DΨ−1

0,δ(z
+
δ )|T

z
+
δ

(W+∩Σ+
0,δ)

‖ ≤ C4

(

D

δ

)2(
λ2
λ1

+µ2)

,

where C4 = C0C2C3 > 1. See the figure below.

Figure 5.

Recall the definition, Σ±
E,δ is a two-dimensional disk lying in the energy level set

Ḡ−1(E). For E > 0 sufficiently small, Σ±
E,δ is Cr−1-close to Σ±

0,δ respectively. Let

zE(s) = (xE(s), pE(s)) be the minimal periodic orbit staying in the energy level set
Ḡ−1(E), it approaches to the homoclinic orbit as E decreases to zero. Thus, for
sufficiently small E > 0, it passes through the section Σ−

E,δ as well as Σ+
E,δ k1 + k2

times for one period. We number these points as z±E,k (k = 1, 2, · · · k1 + k2) by the

role that emanating from a point z−E,k, the orbit reaches to the point z+E,k+1 after

time ∆t−E,k, then to the point z−E,k+1 and so on. Note that ∆t−E,k remains bounded

uniformly for any E > 0. Restricted on small neighborhoods of these points, denoted
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by Bd(z̄
±
E,k), the flow Φt

Ḡ
defines a local diffeomorphism ΨE,δ: Σ−

E,δ ⊃ Bd(z̄
−
E,k) →

Σ+
E,δ. Because of the smooth dependence of ODE solutions on initial data, a small

ε > 0 exists such that, for the vector v± ε-parallel to Tz±
δ
(W± ∩ Σ±

0,δ) in the sense

that |〈v±, v±0 〉| ≥ (1 − ε)‖v±‖‖v±0 ‖ holds for some v±0 ∈ Tz±
δ
(W± ∩ Σ±

0,δ), we obtain

from the hyperbolicity of Ψ0,δ (see the formulae above Figure 5) that

C−1
5

(

D

δ

)2(
λ2
λ1

−µ3)
≤

‖DΨE,δ(z
−
E,k)v

−‖
‖v−‖ ≤ C5

(

D

δ

)2(
λ2
λ1

+µ3)

,

and

C−1
5

(

D

δ

)2(
λ2
λ1

−µ3)
≤

‖DΨ−1
E,δ(z

+
E,k)v

+‖
‖v+‖ ≤ C5

(

D

δ

)2(
λ2
λ1

+µ3)

where C5 ≥ C4 > 1, 0 < µ3 → 0 as D → 0. If the vector v− is chosen ε-parallel to
Tz−

δ
(W− ∩ Σ−

0,δ) then the vector DΨE,δ(z
−
E,k)v

− is ε-parallel to Tz+
δ
(W+ ∩ Σ+

0,δ).

For E > 0, the Hamiltonian flow Φt
Ḡ

defines local diffeomorphism Ψ+
E,δ,δ: Σ+

E,δ ⊃
Bd(z̄

+
E,k) → Σ−

E,δ. To make Ψ+
E,δ,δ(Bd(z̄

+
E,k)) ⊂ Σ−

E,δ one has d → 0 as E → 0.

According to the study in Section 3.2 (cf. formula (3.12)), starting from Σ+
E,δ, the

periodic orbit comes to Σ−
E,δ after a time approximately equal to

T =
1

λ1

∣

∣

∣
ln

(δ2

E

)∣

∣

∣
+ τδ

in which τδ is uniformly bounded as δ → 0. Given a vector v, we use vi denote the
(xi, pi)-component. For a vector v+ ε-parallel to Tz+0,δ

(W− ∩ Σ+
0,δ), there is C > 0

such that ‖v+2 ‖ ≥ C‖v+1 ‖. From Eq.(4.3) one obtains

‖v+2 ‖e(λ2−µ)T ≤‖DΨ+
E,δ,δ(z

+
E,k)v

+
2 ‖ ≤ ‖v+2 ‖e(λ2+µ)T ,(4.5)

‖v+1 ‖e(λ1−µ)T ≤‖DΨ+
E,δ,δ(z

+
E,k)v

+
1 ‖ ≤ ‖v+1 ‖e(λ1+µ)T

where 0 < µ→ 0 as δ → 0. It follows that the vector DΨ+
E,δ,δ(z

+
E,k)v

+ is ε-parallel to

Tz−0,δ
(W− ∩ Σ−

δ ) and

C−1
6

(δ2

E

)

λ2
λ1

−µ4 ≤
‖DΨ+

E,δ,δ(z
+
E,k)v

+‖
‖v+‖ ≤ C6

(δ2

E

)

λ2
λ1

+µ4

where C6 > 1 and µ4 ↓ 0 as δ ↓ 0. Similarly, for a vector v− ε-parallel to Tz−0,δ
(W+ ∩

Σ−
0,δ), one sees that the vector DΨ+

E,δ,δ(z
−
E,j)

−1
v− is ε-parallel to Tz−0,δ

(W−∩Σ−
0,δ) and

C−1
6

(δ2

E

)

λ2
λ1

−µ4 ≤
‖DΨ+

E,δ,δ
−1

(z−E,k)v
−‖

‖v−‖ ≤ C6

(δ2

E

)

λ2
λ1

+µ4
.

The composition of the two maps constitutes a Poinćare map ΦE,δ = Ψ+
E,δ,δ ◦ΨE,δ,

it maps a small neighborhood of the point z−E,k in Σ−
E,δ to a small neighborhood of

the point z−E,k+1 in Σ−
E,δ. For a vector v− ε-parallel to Tz−0,δ

(W− ∩ Σ−
0,δ) the vector

DΦE,δ(z
−
E,k)v

− is still ε-parallel to Tz−0,δ
(W− ∩ Σ−

0,δ)

(4.6) Λ−1

(

D2

E

)

λ2
λ1

−µ5
≤

‖DΦE,δ(z
−
E,k)v

−‖
‖v−‖ ≤ Λ

(

D2

E

)

λ2
λ1

+µ5

,
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and for a vector v+ ε-parallel to Tz−0,δ
(W+ ∩ Σ−

0,δ) the vector DΦ−1
E,δ(z

−
E,k)v

+ is still

ε-parallel to Tz−0,δ
(W+ ∩ Σ−

0,δ)

(4.7) Λ−1

(

D2

E

)

λ2
λ1

−µ5
≤

‖DΦ−1
E,δ(z

−
E,k)v

+‖
‖v+‖ ≤ Λ

(

D2

E

)

λ2
λ1

+µ5

holds for each k, where Λ ≥ C5C6 > 1, 0 < µ5 → 0 as D → 0. Therefore, each point

z−E,k is a hyperbolic fixed point for the map Φ
ki+ki+1

E,δ , {z−E,k : k = 1, · · · , ki+ki+1} is a

hyperbolic orbit of ΦE,δ. By Lemma 3.4, these points are uniquely ordered, ki+ ki+1

is the minimal period. As these points approach to the fixed point as E ↓ 0, the
hyperbolicity guarantees the uniqueness. It also guarantees the smooth continuation
of periodic orbits. Therefore, we have

Lemma 4.1. Assume the conditions (H1) and (H2) and let g ∈ H1(T
2,Z) be a class.

If Lβ(νg) → ∂F0 as ν ↓ 0, then there exists E′ > 0 such that for each c ∈ Lβ(νg)

with α(c) = E ∈ (0, E′] the Mather set Ã(c) consists of exactly one periodic orbit.

Let ΣE ⊂ Ḡ−1(E) be a two-dimensional disk transversally intersecting the orbit
at x1 = δ such that TzḠ

−1(E) = span(TzΣE, J∇Ḡ(z)) for z ∈ ΣE and let ΦE:
ΣE → ΣE be the return map naturally determined by the flow Φt

Ḡ
, there exists some

λ > 1, C > 0 independent of E ≤ E′ such that

‖DΦE(zE,0)v
−‖ ≥ CE−λ‖v−‖, ∀ v− ∈ TzE,0

W−
E ;

‖DΦE(zE,0)v
+‖ ≤ C−1Eλ‖v−‖, ∀ v+ ∈ TzE,0

W+
E ,

where zE,0 is the point where the periodic orbit intersects ΣE, W
±
E denotes the stable

(unstable) manifold of the periodic orbit. Therefore, the periodic orbits for E ∈ (0, E′]
constitute a smooth cylinder.

In the second case, some ν0 > 0 exists such that Lβ(ν0g) ∈ ∂∗F0. It is typical
that Lβ(ν0g) is an edge of Ei ⊂ ∂∗F0, where each Mather set consists of a hyperbolic
periodic orbit z0(s) ⊂ Ḡ−1(0) and the fixed point. The uniqueness of minimal periodic
orbit for ν close to ν0 follows from the implicit function theorem.

Given g ∈ H1(T
2,Z), the set ∪ν>0Lβ(νg) is a channel in H1(T2,Z). There is a

path Γg ⊂ ∪ν>0Lβ(νg) reaching to the boundary ∂F0, along which the α-function
monotonely decreases to the minimum as the cohomology class approaches to ∂F0.
With the argument as above and Theorem B.2 shown in the appendix, we find the
following condition also generic

(H4): Given a class g ∈ H1(T
2,Z) and an energy E∗ > 0, there are at most finitely

many Ei ∈ (0, E∗] such that for c ∈ Γg with α(c) = Ei the Mather set consists of two
periodic orbits, for all other c ∈ Γg with α(c) 6= Ei, the Mather set consists of exactly
one periodic orbit. All these periodic orbits are hyperbolic.

We call these {Ei} bifurcation points. Let E1 > 0 be the smallest one. Each energy
E < E1 uniquely determines a hyperbolic periodic orbit {xE(s), pE(s) : s ∈ R}. Thus,
we introduce a notation

ΠE0,E1,g = {(xE(s), pE(s)) : [xE ] = g,E ∈ [E0, E1], s ∈ R},
with small E0 > 0. It is a two-dimensional cylinder composed of a family of periodic
orbits, may approach to a curve of figure-of-eight as E0 decreases to zero. Obviously,
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the cylinder is invariant for the Hamiltonian flow Φt
Ḡ

of Ḡ. Let T (E) denote the

period of the periodic orbit in Ḡ−1(E), one has
∫

ΠE0,E1,g

ω =

∫ E1

E0

∫ T (E)

0
dE ∧ dt > 0.

The cylinder may be slant and crumpled, not standard. To see how the symplectic
area is related to the usual area of the cylinder, let us study the dependence of the
fixed point (x2(E), p2(E)) of the Poincaré return map ΦE,δ on E. By definition, the
fixed point is a solution of the equation

(4.8) ΦE,δ(x2(E), p2(E)) − (x2(E), p2(E)) = 0.

Emanating from a point (δ, p1, x2, p2) ∈ Ḡ−1(E) the orbit reach a point z ∈ {x1 = −δ}
after a time τ(E, δ) which remains bounded as E ↓ 0. Let z′ ∈ {x1 = −δ} be the point
corresponding to (δ, p′1, x2, p2) ∈ Ḡ−1(E′), obtained in the same way. The difference
of the (x2, y2)-coordinate of these two points is bounded by d0|p1 − p′1| where d0
depends on δ. Let (∆x,∆y) be the solution of the variational equation (4.3) along
the periodic solution (xE(s), pE(s)) passing through a neighborhood of the origin, let
s0 < s1 be the time such that the first coordinate xE,1(s0) = −δ and xE,1(s1) = δ,
the quantity s1 − s0 is bounded by (3.12). In virtue of the formula (4.5), it yields

‖(∆x,∆y)(s1)‖ ≤ C7E
−λ2

λ1
−µ6‖(∆x,∆y)(s0)‖

where 0 < µ6 → 0 as δ → 0. Therefore, we find that
∥

∥

∥

∂ΦE
∂p1

∥

∥

∥
≤ C8E

−λ2
λ1

−µ6 .

As the quantity ‖ ∂ΦE

∂(x2,p2)
‖ is bounded by (4.6), the quantity for the inverse of ΦE is

bounded by (4.7), we obtain from the equation (4.8) that

(4.9)
∥

∥

∥

∂x2
∂p1

∥

∥

∥
,
∥

∥

∥

∂p2
∂p1

∥

∥

∥
≤ C9E

−2µ6 .

It yields a relation between the symplectic area ω and the usual area S of the cylinder

(4.10) |ω| ≥ C10E
2µ6 |S|.

Theorem 4.1. We assume the conditions (H1, H2, H4). For each E0 ∈ (0, E1], the

cylinder ΠE0,E1,g is normally hyperbolic for the map Φ∆tE
Ḡ

, where ∆tE0 = 2λ−1
1 | lnE0|.

Proof. For any 0 < E0 < E1, the cylinder ΠE0,E1,g is a 2-dimensional symplectic sub-
manifold, invariant for the Hamiltonian flow Φs

Ḡ
. However, it is not clear whether

this cylinder is normally hyperbolic for the time-1-map ΦḠ = Φs
Ḡ
|s=1, as it is possible

that

m(DΦḠ|TΠE0,E1,g
) = inf{|DΦḠv| : v ∈ TΠE0,E1,g, |v| = 1} < 1,

‖DΦḠ|TΠE0,E1,g
‖ > 1,

and we do not have the estimate on the norm of DΦḠ acting on the normal bundle.

As the first step of the proof, let us search for the normal hyperbolicity of Φs
Ḡ
with

large s for the cylinder ΠE0,E′,g, where E
′ denotes the largest value such that the

formulae (4.6) and (4.7) hold for each E ≤ E′. From these formulae, one sees that
the smaller the energy reaches, the stronger hyperbolicity the map ΦE,δ obtains. The
strong hyperbolicity is obtained by passing through small neighborhood of the fixed
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point. However, on the other hand, the smaller the energy decreases, the longer the
return time becomes.

Let ∆tE,k denote the time interval such that, starting from z−E,k, the periodic orbit

comes to z−E,k+1 after time ∆tE,k. In virtue of the study in Section 3, Eq. (3.12),

∆tE,k ≈ τE,gℓ − λ−1
1 lnE, ℓ = i, or i+ 1,

where τE,gℓ is uniformly bounded and we take τE,gℓ if the segment of the periodic
orbit keeps close to the homoclinic orbit γℓ. Note ∆tE = 2

λ1
| lnE| is much larger than

maxk∆tE,k. Thus, starting from any point z on the minimal periodic orbit zE(s),
Φs
Ḡ
(z) passes through the neighborhood of the fixed point after time ∆tE. It implies

that the map Φs
Ḡ
|s=TE obtains strong hyperbolicity on normal bundle.

To measure how the mapDΦs
Ḡ
acts on the tangent bundle, let us study how the map

Φs
Ḡ
elongates or shortens small arc of the periodic orbit. As the orbit passes through

the neighborhood of the origin Oδ(0) in a time approximately equal to −λ−1
1 ln δ−2E

the variation of the length of short arc is between O(E1+µ7
0 ) and O(E−1−µ7

0 ), where
µ7 > 0 is small. Because of the relation between the symplectic area ω and the usual
area S of the cylinder, given by the formula (4.10), the variation of ‖DΦs

Ḡ
‖, restricted

on the tangent bundle of the cylinder, is between O(E1+µ7+2µ6
0 ) and O(E−1−µ7−2µ6

0 ).
Because of periodicity, it is independent of s.

Thus, the normally hyperbolic property becomes clear: the tangent bundle of M
over ΠE0,E1,g admits DΦs

Ḡ
|s=TE -invariant splitting

TzM = TzN
+ ⊕ TzΠE0,E1,g ⊕ TzN

−

and some Λ1 ≥ 1, Λ2 ≥ 1 and small ν > 0 exist such that

(4.11) Λ−1
1 E1+ν

0 <
‖DΦs

Ḡ
(z)v‖

‖v‖ < Λ1E
−1−ν
0 , ∀ v ∈ TzΠE0,E1,g,

‖DΦs
Ḡ
(z)v‖

‖v‖ ≤ Λ2E
λ2
λ1

−ν
0 , ∀ v ∈ TzN

+,

‖DΦs
Ḡ
(z)v‖

‖v‖ ≥ Λ−1
2 E

−λ2
λ1

+ν

0 , ∀ v ∈ TzN
−,

hold for s ≥ ∆tE (cf. (4.6) and (4.7)). Note that λ2/λ1 − ν > 1 + ν provided ν > 0
is suitably small. The formula (4.11) satisfies the definition of normal hyperbolicity.

For each E ∈ [E′, E1], let zE(s) be the minimal periodic orbit, ΣE ⊂ Ḡ−1(E) be a
2-dimensional disk intersecting zE(s) transversally at the point zE,0, ΦE: ΣE → ΣE
be the Poincaré return map. By the generic property (H4), zE,0 is the hyperbolic
fixed point of ΣE and Λ2 > 1 exists such that

‖DΦE(zE,0)v
−‖ ≥ Λ2‖v−‖, ∀ v− ∈ TzE,0

(W−
E ∩ ΣE),

‖DΦE(zE,0)v
+‖ ≤ Λ−1

2 ‖v+‖, ∀ v+ ∈ TzE,0
(W+

E ∩ ΣE).

As the cylinder is foliated into periodic orbits and ΦḠ preserves the symplectic form,
some Λ1 ≥ 1 exists such that

Λ−1
1 ‖v‖ ≤ ‖DΦsḠ(z)v‖ ≤ Λ1‖v‖, ∀ v− ∈ TzΠE′,E1,g

holds for any s > 0. Choosing m ∈ N such that Λm2 ≥ 2Λ1, one obtains the normal
hyperbolicity for Φs

Ḡ
(z) with s ≥ mT (E′), where T (E′) is the period of the periodic
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solution in Ḡ−1(E′), z ∈ ΠE′,E1,g ∩ Ḡ−1(E) with E ∈ [E′, E1]. By choosing suitably
small E0 > 0, we have ∆tE0 ≥ mT (E′). �

4.3. Persistence of cylinder: near double resonance. To apply the theorem of
normally hyperbolic manifold [HPS] to the Hamiltonian Gǫ of (4.3), we note that the
Hamiltonian Ḡǫ = Ḡ+Zǫ is autonomous with two degrees of freedom. As Zǫ = O(

√
ǫ),

and because of the non-degeneracy assumption for V ((H1,H2)), we see that for each
suitably small ǫ > 0, the map ΦḠǫ

admits invariant cylinder also, denoted by ΠE0,E1,g

still, with the normally hyperbolic properties (see Formulae (4.11)), independent of
the size of ǫ.

Let us consider the persistence of ΠE′
0,E1,g with E′

0 = ǫ2d with d > 0. As the

perturbation depends on time s, we use Φs,s0Gǫ
to denote the map from the time s0-

section to the time s-section, omit the symbol s0 if s0 = 0. Since these hyperbolic
properties are posed for the map Φs,s0

Ḡǫ
with large s−s0, one has to measure how large

the quantity ‖Φs,s0
Ḡǫ

−Φs,s0Gǫ
‖ will be. As Ḡǫ is autonomous, Φs,s0

Ḡǫ
= Φs−s0

Ḡǫ
.

Lemma 4.2. Let the equation ż = Fǫ(z, t) be a small perturbation of ż = F0(z, t), let
Φtǫ and Φt0 denote the flow determined by these two equations respectively. Then

‖Φtǫ − Φt0‖C1 ≤ B

A
(1− e−At)e2At

where A = maxt,λ=ǫ,0 ‖Fλ(·, t)‖C2 and B = maxt ‖(Fǫ − F0)(·, t)‖C1 .

Proof. Let zλ(t) denote the solution of the equations ż = Fλ(z, t) for λ = ǫ, 0 respec-
tively, and zǫ(0) = z(0). Let ∆z(t) = zǫ(t)− z(t), then ∆z(0) = 0 and

∆ż = ∂zFǫ((νz + (1− ν)zǫ)(t), t)∆z + (Fǫ − F0)(z(t), t)

where ν = ν(t) ∈ [0, 1]. Therefore, one has

‖∆ż‖ ≤ max ‖∂zFǫ‖‖∆z‖ +max ‖Fǫ − F0‖.

Let ∆z = y − B
A , we have ẏ ≤ Ay. It follows from Gronwell’s inequality that

‖∆z(t)‖ ≤ B

A
(eAt − 1).

Along the orbit zλ(t), the differential of the flow Φtλ obviously satisfies the equation

d

dt
DΦtλ = ∂zFλ(zλ(t), t)DΦtλ, λ = ǫ, 0.

Therefore, for each tangent vector v attached to zλ(0) one has

‖DΦtλv‖ ≤ ‖v‖eAt.

To study the differential of Φtǫ − Φt0, let us consider the equation of secondary
variation. Let δzλ be the solution of the variational equation δżλ = ∂zFλ(zλ(t), t)δzλ
for λ = ǫ, 0 respectively, where zλ(t) solves the equation żλ = Fλ(zλ, t) and zǫ(0) =
z(0). To measure the size ∆δz = δzǫ − δz with the condition zǫ(0) = z(0), we make
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use of the relations such as v = δzǫ(0) = δz(0), ‖δz(t)‖ ≤ ‖v‖eAt and find that
∥

∥

∥

d(∆δz)

dt

∥

∥

∥
≤max ‖∂zFǫ‖‖∆δz‖ +max ‖∂2zF‖‖∆z(t)‖‖δz(t)‖

+max ‖∂z(Fǫ − F )‖‖δz(t)‖
≤A∆δz +B‖v‖e2At.

Let ∆δz = y + B
A‖v‖e2At, we have ẏ ≤ Ay. Using Gronwell’s inequality again, one

obtains an upper bound of the variation of the differential

‖∆δz(t)‖ ≤ B

A
‖v‖(1 − e−At)e2At.

Note that v represents initial tangent vector, it completes the proof. �

Let us applying this lemma to the Hamiltonian Gǫ. Treating Rǫ as the function of
(x, p) we find that there exist some constants C11, C12 > 0 independent of ǫ such that

max
s

‖J∇Ḡǫ − J∇Gǫ‖C1 ≤ max
∣

∣

∣

∂2R′
ǫ

∂x∂p

∣

∣

∣
≤ C11ǫ

5σ− 1
6

as ‖ǫRǫ(·, s)‖2 = O(ǫ
5
6
+5σ) (see Theorem A.1). Since the function Ḡǫ comes from

h + ǫZ which is Cr-smooth (r ≥ 8), one has maxs ‖J∇Ḡǫ‖C2 = maxs ‖Ḡǫ‖C3 < C12.
For s− s0 =

2
λ1
| ln ǫ2d| one obtains from Lemma 4.2 that

‖Φs,s0
Ḡǫ

− Φs,s0Gǫ
‖C1 ≤ C11

C12
ǫ
5σ− 1

6
− 8C12d

λ1

If the condition 0 < d < λ1
8C12

(5σ − 1
6) is satisfied, then ‖Φs,s0

Ḡǫ
− Φs,s0Gǫ

‖C1 → 0 as

ǫ → 0. It allows one to apply the theorem of normally hyperbolic manifold to obtain
the existence of invariant cylinder for the flow Φs,s0Gǫ

in the extended phase space

T2 × R2 ×√
ǫT, which is a small deformation of ΠE′

0,E1,g ×
√
ǫT.

Be aware of the fact that ΠE′
0,E1,g is a cylinder with boundary, normally hyperbolic

and invariant for Φs
Ḡǫ
, where s = 2

λ1
| ln ǫ2d|, we do not expect that the whole cylinder

survives small perturbation, it may lose some part close to the boundary. To measure
to what range the cylinder survives, we see that the variation of the energy along
each orbit of Φs,s0Gǫ

is bounded by

(4.12)
∣

∣

∣

d

ds
Gǫ(z(s), s)

∣

∣

∣
= |∂sGǫ(z, s)| =

1√
ǫ

∣

∣

∣

∂Rǫ
∂τ

∣

∣

∣
≤ C13ǫ

5σ− 1
6

here, the estimate ‖ǫRǫ‖1 ≤ O(ǫ
4
3
+5σ) is used (see Theorem A.1). Assume that the

number d satisfies the condition

(4.13) d < min
{1

2

(

5σ − 1

6

)

,
λ1

8C12

(

5σ − 1

6

)

,
1

2

}

one sees that, starting from the energy level G−1
ǫ (ǫd), after a time of s−s0 = 2

λ1
| ln ǫ2d|,

the orbit of Φs,s0Gǫ
can not reach the energy level G−1

ǫ (ǫ2d) if ǫ is suitably small so that

2ǫd(1 + 2C13λ
−1| ln ǫ2d|) < 1. Indeed, under such condition one has

Gǫ(z(s), s) ≥ Gǫ(z(s0), s0)−
∫ s

s0

∣

∣

∣

d

dt
Gǫ(z(t), t)

∣

∣

∣
dt(4.14)

≥ ǫd − 2C13

λ1
ǫ2d| ln ǫ2d| > 1

2
ǫd + ǫ2d.
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To use the theorem of normally hyperbolic invariant manifold, let us introduce a
modified Hamiltonian. Let u: R → R+ be a smooth function so that u = 0 for t ≤ 1
and u = 1 for t ≥ 2,

G′
ǫ = Ḡǫ + u

( 2

ǫd

(

Ḡǫ − ǫ2d
)

+ 1
)

Rǫ

it coincides with Gǫ for (x, p) ∈ Ḡ−1
ǫ (E) with E ≥ 1

2ǫ
d + ǫ2d and coincides with Ḡǫ

for (x, p) ∈ Ḡ−1
ǫ (E) with E ≤ ǫ2d. For small d satisfying the condition (4.13) and

small ǫ, the cylinder ΠE′
0,E1,g survives the perturbation Φs,s0G′

ǫ
→ Φs,s0

Ḡǫ
and the bottom

remains invariant for Φs,s0G′
ǫ
.

By the definition, one has Gǫ = G′
ǫ for (x, p) ∈ Ḡ−1

ǫ (E) with E ≥ 1
2ǫ
d + ǫ2d and it

follows from (4.14) that Gǫ(Φ
s,s0
G′

ǫ
(x, p), s) ≥ 1

2ǫ
d + ǫ2d provided Gǫ(x, p, s0) ≥ ǫd and

s ∈ [0, 2
λ1
| ln ǫ2d|]. So, for E0 = ǫd the invariant cylinder ΠE0,E1,g×

√
ǫT persists under

the perturbation Φs,s0
Ḡǫ

→ Φs,s0Gǫ
, denoted by Π̃E0,E1,g. A point (x, p, s) ∈ Π̃E0,E1,g

implies Gǫ(x, p, s) ∈ [E0, E1]. The invariance is in the sense that, emanating from

any point in Π̃E0,E1,g, the orbit has to pass through the bottom of the cylinder if it
is going to leave the cylinder.

Location of Aubry set in the cylinder

As the working space here is phase space, we say that an Aubry set Ã(c) is located

in the cylinder Π̃E0,E1,g if for each c-static curve γ, the orbit in the phase space

(x(s) = γ(s), p(s) = ∂ẋLGǫ(γ(s), γ̇(s), s), s) ∈ Π̃E0,E1,g.

Recall the Hamiltonian Gǫ defined in (4.3) and note the Hamiltonian Ḡǫ = Gǫ−Rǫ is
autonomous. Let αGǫ and αḠǫ

denote the α-function for the Lagrangians determined

by Gǫ and Ḡǫ respectively.

Since Π0,E1,g is a hyperbolic cylinder, invariant for the Hamiltonian flow Φt
Ḡǫ
, the

channel Wg = ∪ν∈(0,ν1]Lβ(νg) has a foliation into a family of segments of line (one-
dimensional flat), where ν1 > 0 is chosen so that αḠǫ

(c) ≤ E1 for each c ∈ Lβ(νg) if
ν ≤ ν1. We claim that the α-function αḠǫ

is smooth in Wg. Indeed, restricted on each
of these flats the function αḠǫ

keeps constant, while restricted on a line Γg orthogonal

to these flats, the function is smooth because Ḡǫ can be treated as a Hamiltonian with
one degree of freedom when it is restricted on the cylinder. If g = kigi + ki+1gi+1

we consider the Hamiltonian in the finite covering space M̄ = k̄1T × k̄2T where
k̄m = kigim + ki+1gi+1,m for m = 1, 2 if we write gj = (gj1, gj2) for j = i, i + 1. In
that space there are ki + ki+1 fixed points. Because of Hartman’s theorem for two-
dimensional system, it is C1-conjugate to a linear equation ẋ = λ1y, ẏ = λ1x around
each fixed point. Therefore, for small E > 0 some C1-function τg(E) exists such that

the period of the frequency νg is Tνg = λ−1
1 (ki + ki+1)(− lnE + τg(E)) (see (3.12)).

Since ∂αḠǫ
= νg

(4.15)
λ1

− lnE + τg(E)
= ‖∂αḠǫ

‖, ∀ c ∈ Γg,

As αḠǫ
(c) = E remains constant when it is restricted on each of its flats which are

orthogonal to the line Γg, we find that for 0 < αḠǫ
≪ 1

(4.16) 〈∂2αḠǫ
v, v〉 =

λ21(1− αḠǫ
τ ′g(αḠǫ

))

αḠǫ
(− lnαḠǫ

+ τg(αḠǫ
))3

> 0,
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where v is the direction of Γg and ‖v‖ = 1. It follows that

(4.17) αḠǫ
(c)− αḠǫ

(cω) ≥ 〈ω, c− cω〉+
1

2
〈∂2αḠǫ

(c)v, v〉|c − cω|2

holds for ω = νg, cω ∈ Lβ(ω) ∩ Γg c ∈ Γg, αḠǫ
(c) > αḠǫ

(cω).

Let c∗ be the class so that αGǫ(c) = αḠǫ
(c∗). To measure the difference of c∗ − c,

we find 1
2 |〈c− c∗, ω(c∗)〉| ≤ |αḠǫ

(c∗)−αḠǫ
(c)| = |αGǫ(c)−αḠǫ

(c)|. As the α-function
undergoes small variation: |αL(c) − αL′(c)| ≤ ε for small perturbation L′ → L with
‖L′ −L‖C1 ≤ ε [Ch], we find |αGǫ(c)−αḠǫ

(c)| ≤ ǫ2d when c is restricted on the path
Γg. Therefore, we obtain that

(4.18) |〈c∗ − c, ω(c∗)〉| ≤ 2ǫ2d.

Lemma 4.3. In the Aubry set for c ∈ Γg ∩ α−1
Gǫ

(E) with E ≥ 2ǫd, any orbit does not

hit the energy level set G−1
ǫ (E) with E ≤ ǫd.

Proof. If the lemma does not hold, there would exist an orbit (x(s), p(s)) in the Aubry
set for c ∈ Γg ∩ α−1

Gǫ
(2ǫd), which hits the energy level G−1

ǫ (ǫd) at the time s = s0
mod

√
ǫ, i.e. Gǫ(x(s0), y(s0), s0) = ǫd. Since the orbit entirely stays in the invariant

cylinder and the perturbation is of order ǫ2d, it returns back to the neighborhood of
(x(s0), y(s0)) after a time S = λ−1

1 (ki + ki+1) ln ǫ
d + τǫ where τǫ remains bounded as

ǫ → 0. To see how close it could be, we obtain from (4.12) that

|Gǫ(x(S + s0), p(S + s0), S + s0)−Gǫ(x(s0), p(s0), s0)|(4.19)

≤
∫ S+s0

s0

∣

∣

∣

d

ds
G′
ǫ(z(s), s)

∣

∣

∣
ds ≤ C15ǫ

2d| ln ǫd|.

As Ḡ−1
ǫ (E) ∩ Π0,E1,g is an invariant circle for Φt

Ḡǫ
, the perturbed cylinder is O(ǫ2d)-

close to the original one [BLZ] and the cylinder may be crumpled but at most up to
the order O(E−2µ6) (cf. (4.9)), some large k ∈ Z exists such that S = k

√
ǫ and

‖(x(S + s0), p(S + s0))− (x(s0), p(s0))‖ ≤ C14ǫ
2d(1−µ6)| ln ǫd|.

Since the curve x(s) is assumed c-static, it follows that

(4.20)
∣

∣

∣

∫ S+s0

s0

(LGǫ(x(s), ẋ(s), s)− 〈c, ẋ(s)〉+ αGǫ(c))ds
∣

∣

∣
≤ C16ǫ

2d(1−µ6)| ln ǫd|.

As the cylinder ΠE0,E1,g ×
√
ǫT is ǫ2d-close to Π̃E0,E1,g, there is a c′-minimal orbit

(x′(s), y′(s)) of the Hamiltonian flow Φs
Ḡǫ

on ΠE0,E1,g such that αḠǫ
(c′) = ǫd and

‖(x′(s0), y′(s0)) − (x(s0), y(s0))‖ ≤ O(ǫ2d(1−µ6)). Let Γx =
⋃s0+S
s=s0

(x(s), y(s)) and

Γx′ =
⋃s0+S′

s=s0
(x′(s), y′(s)) where S′ is the period of x′(s), we have an estimate on the

Hausdorff distance dH(Γx,Γx′) ≤ O(ǫ2d(1−µ6)| ln ǫd|). Consequently, we have
∫

Γx

〈y, dx〉 −
∫

Γx′

〈y, dx〉 = O(ǫ2d(1−µ6)| ln ǫd|).

As Ḡǫ(x
′(s), y′(s)) ≡ αGǫ(c

′) we have

0 =

∫

(LḠǫ
(x′(t), ẋ′(t))− 〈c′, ẋ′(t)〉+ αḠǫ

(c′))dt

=

∫

〈y′(s)− c′, ẋ′(s)〉ds
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Let x̄(s) be the lift of x(s) to the universal covering space, it follows that
∫ S+s0

s0

〈y(s)− c, ẋ(s)〉ds

=

∫ S+s0

s0

〈y(s)− c′, ẋ(s)〉ds −
∫ S′+s0

s0

〈y′(s)− c′, ẋ′(s)〉ds

− 〈c− c′, x̄(S + s0)− x̄(s0)〉

=

∫

Γx

〈y, dx〉 −
∫

Γx′

〈y′, dx′〉+O(ǫ2d(1−µ6)| ln ǫd|)

− 〈c− c′, x̄(S + s0)− x̄(s0)〉
=− 〈c− c′, x̄(S + s0)− x̄(s0)〉+O(ǫ2d(1−µ6)| ln ǫ2d|)

Since it follows from (4.19) that

αGǫ(c)−Gǫ(x(s), y(s), s) ≥ αGǫ(c) − αḠǫ
(c′)−O(ǫ2d| ln ǫd|)

holds for all s ∈ [s0, S + s0], we find
∫ S+s0

s0

(LGǫ(x(s), ẋ(s), s)− 〈c, ẋ(s)〉+ αGǫ(c))ds(4.21)

=

∫ S+s0

s0

(

〈y(s)− c, ẋ(s)〉+ (αGǫ(c)−Gǫ(x(s), y(s), s))
)

ds

≥ (αGǫ(c)− αḠǫ
(c′))S − 〈c− c′, x̄(S + s0)− x̄(s0)〉 −O(ǫ2d| ln ǫ2d|)

≥C17ǫ
d.

To verify the second inequality, let c∗ be the class such that αḠǫ
(c∗) = αGǫ(c), then

we obtain from the formula (4.18) that

|c∗ − c| ≤ 3λ−1
1 ǫ2d| ln ǫd|.

For small ǫ such that ǫd ≥ 4ǫ2d we find from (4.15) that

|c′ − c∗| ≥ 1

‖∂αḠǫ
‖
(

αḠǫ
(c′)− αḠǫ

(c∗)
)

≥ C18ǫ
d| ln ǫd|

holds for c∗, c′ ∈ Γg and αḠǫ
(c′) > αḠǫ

(c∗). Therefore, one obtains from (4.16) and
(4.17) that

αḠǫ
(c′)− αḠǫ

(c∗)− 〈c′ − c∗, ω〉 ≥ C19
ǫd

| ln ǫd| ,

from which one obtains the second inequality of (4.21) from the first one. As µ6 is
very small, the formula (4.21) contradicts (4.20). It completes the proof. �

For d > 0 satisfying the condition (4.13), going back to the original coordinates
(E → ǫE, y =

√
ǫp and s =

√
ǫτ), we obtain

Theorem 4.2. For an irreducible class g ∈ H1(T
2,Z), there exists a 3-dimensional

cylinder Π̃E0,E1,g ⊂ R2 × T3 associated with a channel Wg ⊂ H1(T2,R) such that

1, the cylinder Π̃E0,E1,g is a small deformation of the cylinder

{(xE(τ + τ∗), yE(τ + τ∗), τ∗) : [xE ] = g, (τ, τ∗) ∈ T2, E ∈ [E0, E1]},
where E0 = ǫ

1
d , xE is the minimal periodic curve for LȲ − 〈c, ẋ〉+E, the function Ȳ

solves the equation (h̃+ ǫZ̃)(x, y, Ȳ (x, y)) = Ẽ, c ∈ Wg and yE = ∂ẋLȲ (xE, ẋE);
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2, the cylinder is invariant for the Hamiltonian flow Φτ,τ0Y : ∀ (x, y, τ0) ∈ Π̃E0,E1,g,

if Φτ,τ0Y (x, y) /∈ Π̃ǫ,g holds for τ > τ0 then ∃ τ ′ ∈ (τ0, τ) such that Φτ
′,τ0
Y (x, y) is on the

boundary of Π̃E0,E1,g, where Y solves the equation H(x, y,−τ, Y (x, y, τ)) = Ẽ;

3, Π̃E0,E1,g is normally hyperbolic for Φτ,τ0Y with τ − τ0 =
2d
λ1

ln ǫ√
ǫ
;

4, this channel reaches to a small neighborhood of the flat F0 in the sense

min
c∈Wg

αY (c)− min
c∈H1(T2,R)

αY (c) = 2ǫ1+d.

For each c ∈ Wg with α(c) ≥ 2ǫ1+d, the Aubry set entirely stays in the cylinder.

Let us consider the autonomous Hamiltonian H with the form of (4.1). Let Ẽ >

minαH , Y (x, y, τ) be the function solves the equation H(x, y, x3, Y (x, y,−x3)) = Ẽ.
Then Y has the form of (4.2). The energy E of G corresponds to the coordinate y3
for the autonomous Hamiltonian H. Applying Theorem 3.4 one obtains

Theorem 4.3. Assume Ẽ > minαH . Given an irreducible g ∈ H1(T
2,Z), there is

a 3-dimensional cylinder Π̃E0,E1,g ⊂ H−1(Ẽ) associated with a channel W̃ ⊂ α−1(Ẽ)
such that

1, the cylinder Π̃E0,E1,g is a small deformation of the cylinder

{(xE(x3), yE(x3), x∗3, E) : [xE ] = g, (x3, x
∗
3) ∈ T2, E ∈ [E0, E1]};

2, the cylinder Π̃E0,E1,g is invariant for the Hamiltonian flow ΦtH : for each (x̃, ỹ) ∈
Π̃E0,E1,g, if Φ

t
H(x̃, ỹ) /∈ Π̃ǫ,g holds for certain t > 0 then ∃ t′ ∈ (0, t) such that Φt

′

H(x̃, ỹ)

is on the boundary of Π̃E0,E1,g;

3, Π̃E0,E1,g is normally hyperbolic for ΦtH with t = 2d
λ1

ln ǫ√
ǫ
;

4, for each c̃ = (c, c3) ∈ W̃ with c3 ≥ 2ǫ1+d, the Aubry set is contained in that

cylinder Ã(c) ⊂ Π̃E0,E1,g.

By H4, it is generic that there are finitely many bifurcation points, denoted by
c1, c2, · · · , cm ∈ Γg corresponding to the energy E1, E2, · · ·Em. For each point c 6= ci,
the c-minimal measure for the Hamiltonian Ḡǫ is uniquely supported on a hyperbolic
periodic orbit. For the class ci, the Mather set is composed of two hyperbolic periodic
orbits. The periodic orbits for c ∈ (ci, ci+1) constitute a piece of cylinder Πi. As these
periodic orbits are hyperbolic, the cylinder Πi can be extended a little bit consisting
of periodic orbits which are hyperbolic also, but do not support minimal measure.
They are local minimal. These cylinders are clearly invariant and normally hyperbolic
for the Hamiltonian flow Φt

Ḡ
with suitably large t. Applying the theorem of normally

hyperbolic manifold, one can see that there exists some Π̃i,ǫ which is invariant for the
Hamiltonian flow determined by G, and keeps close to Πi ×

√
ǫT. For each c ∈ Γg,

the Mather set for G stays in the cylinder. Except for finitely many ci,ǫ very close
to ci, the time-

√
ǫ-section of the Mather set for other c ∈ Γg is an invariant circle,

or periodic points or Aubry-Mather set in the cylinder, for bifurcation point c = ci,ǫ,

the Mather set consists of two parts, one stays in Π̃i,ǫ another one stays in Π̃i+1,ǫ.
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4.4. Transition from double to single resonance. Some normally hyperbolic

invariant cylinder has been shown to reach O(ǫ
1
2
+d)-neighborhood of the double reso-

nant point. This cylinder extends to the place a bit far away from the double resonant
point. To see how to transit from double resonance to single resonance, let us homog-
enize the Hamiltonian in a region ‖y − yj‖ ≤ O(

√
ǫ) and choose different yj. Recall

that the normal form remains valid in the domain {‖y‖ ≤ O(ǫκ)} (16 < κ ≤ 1
3). The√

ǫ-neighborhood of the curve is covered by as many as O(ǫκ−
1
2 ) small balls with

radius O(
√
ǫ). Such approach is based on the following:

Proposition 4.2. For nearly integrable Lagrangian L(x, ẋ, t) = ℓ(ẋ) + ǫℓ1(x, ẋ, t),
each orbit in Mather set (γ, γ̇)

‖γ̇(t)− γ̇(0)‖ ≤ O(
√
ǫ), ∀ t ∈ R.

The result is proved in [BK] for time-1-map. It is also true for the Hamiltonian
flow i.e. ‖y(t)−y(0)‖ ≤ O(

√
ǫ). It makes sense for us to homogenize the Hamiltonian

in the range ‖y − yj‖ ≤ K
√
ǫ with suitably large K > 0.

Using new variables y − yj =
√
ǫp and s =

√
ǫτ , the homogenized Hamiltonian

equation turns out to be the following form

dx

ds
=

ω√
ǫ
+Ap,

dp

ds
= −∂V

∂x
(x, yj),

where A = ∂2h(yj), the frequency ω = ∂h(yj) satisfies a resonant condition. The
corresponding Lagrangian reads

L(ẋ, x) =
1

2

〈

A−1
(

ẋ− ω√
ǫ

)

,
(

ẋ− ω√
ǫ

)〉

− V (x)

With the potential V (x) on the torus one associates its time average [V ] along the
orbits of the linear flow defined by ω: x→ x+ ωt

[V ](x) =
1

T

∫ T

0
V (x+ ωt)dt,

where T is the period of the frequency ω. The function [V ] is then defined on a circle.
Let x0 be the maximal point of [V ], it corresponds to a circle on T2. The averaged
Hamiltonian is also associated with a Lagrangian

[L](ẋ, x) =
1

2

〈

A−1
(

ẋ− ω√
ǫ

)

,
(

ẋ− ω√
ǫ

)〉

− [V ](x).

Let Tω,ǫ be the period of the frequency ω/
√
ǫ, ξω,ǫ: [0, Tω,ǫ] → T2 be the minimizer

of the action

inf
[ξ]=gω

∫ Tω,ǫ

0
[L](dξ(s))ds,

then it is a curve of maximal points of [V ] with constant speed ξ̇ω,ǫ = ω/
√
ǫ. Consider

[V ] as a function defined on T2/ξω,ǫ and denote by [V ]′′ the second derivative for the
variable of T2/ξω,ǫ, where we use ξω,ǫ to denote the circle ∪t∈[0,Tω,ǫ]ξω,ǫ(t).

Let ξω,ǫ + δ denote a translation of ξω,ǫ such that d(ξω,ǫ + δ, ξω,ǫ) = δ and let γω,ǫ:
[0, Tω,ǫ] → T2 be the minimizer of the action

inf
[ξ]=gω

∫ Tω,ǫ

0
L(dξ(s))ds,
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then we have

Proposition 4.3. Assume −[V ] is non-degenerate at its minimal point −[V ]′′ > Λ,
and assume some λ > 0 exists so that Tω,ǫ = ǫλ. Then there exist some constants

D,D′ > 0 such that the minimizer γω,ǫ entirely stays in Dǫλ-neighborhood of the circle

ξω,ǫ + δ, i.e. d(γ(s), ξω,ǫ + δ) < Dǫλ holds for each s ∈ [0, ǫλ] and |δ| ≤ D′ǫλ/2.

Proof. Since the minimizer solves the Lagrange equation, its second derivative remains
bounded. Thus, as the first step, we claim that the minimizer stays entirely in Dǫλ-
neighborhood of ξω,ǫ + δ, a translation of the circle ξω,ǫ. If not, the oscillation of γω,ǫ
in the direction perpendicular to ω would not be smaller than 2Dǫλ. As the average
speed is O(ǫ−λ), there would be a point on the minimizer where ‖γ̇ω,ǫ − ω/

√
ǫ‖ > D.

Since the potential is bounded |V | < C20, one obtains that AL(γω,ǫ) ≥ (C21D
2 −

C20)ǫ
λ > C20ǫ

λ if we choose D2 > 2C−1
21 C20. On the other hand, the action along the

curve γ(t) = x0 + ω/
√
ǫt would be not bigger then C20ǫ

λ. The contradiction implies
our claim.

Let us compare the action of L along the curve γω,ǫ with that along the curve ξω,ǫ.

If |δ| > D′ǫλ/2, by what we have proved, some x1 ∈ T2/ξω,ǫ exists such that

|γω,ǫ(t)− (x1 + ω/
√
ǫt)| ≤ Dǫλ, |(x1 − x0)/ξω,ǫ| ≥ D′ǫλ/2.

It follows that

A(γω,ǫ)−A(ξω,ǫ) =
1

2

∫ ǫλ

0

〈

A−1
(

γ̇ω,ǫ(t)−
ω√
ǫ

)

,
(

γ̇ω,ǫ(t)−
ω√
ǫ

)〉

dt

−
∫ ǫλ

0

(

V (γω,ǫ(t))− V
(

x0 +
ω√
ǫ
t
))

dt

>−
∫ ǫλ

0

(

V (γω,ǫ(t))− V
(

x1 +
ω√
ǫ
t
))

dt

+ (−[V ](x1) + [V ](x0))ǫ
λ

>
(1

2
C22D

′2 − |max ∂V |
)

ǫ2λ

it contradicts the minimality of the curve γω,ǫ if D
′ > 0 is chosen suitably large. �

Recall the picture of minimal periodic orbit close to double resonance, one can see
from this proposition how the shape of the periodic orbit changes when it moves away
from double resonance to single resonance.

5. Annulus of inomplete intersetion

Let us also start with the Hamiltonian Gǫ defined by Formula (4.3), it has two
and half degrees of freedom. Given any two homology class g, g′ ∈ H1(T

2,Z), The
theorem 4.2 confirms the existence of two wedge-shaped regions W and W′ which
reach to the boundary of the annulus

A0 =
{

c ∈ H1(M,R) : 0 < αGǫ(c) −minαGǫ < Dǫ1+d
}

,

For each class in W and W′, the Aubry set lies in the normally hyperbolic cylinder
and, by the result for a priori unstable systems, can be connected to other Aubry
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set lying in the cylinder under certain generic conditions. However, it seems unclear
whether these two wedges can reach to the flat F0. Thus, a notable difficulty rises as
these cylinders are separated by an annulus A0 around the flat F0, it is the problem
of crossing double resonance.

It is the goal of this section to find an annulus A ) A0 where those two wedge-
shaped regions are plugged into and for each class in that annulus, the stable set
of the Aubry set “intersects” the unstable set non-trivially, possibly incomplete. In
other words, for each class in this region, the Mañé set does not cover the whole
configuration space.

5.1. The Mañé set for c ∈ ∂∗F0. As the first step, let us consider the Hamiltonian
Ḡ and study all cases when the Mañé set covers the whole configuration space.

For each c ∈ ∂∗F0, except for the minimal measure µ supported on the fixed point
(x, ẋ) = 0, some minimal measure exists with non-zero rotation vector. In the covering
space π̄: R2 → T2, a disk Bδ(0) is contained in a strip bounded by two c-static curves
ξc and ξ

′
c, both curves are in the Mather set: π̄ξc, π̄ξ

′
c ⊂ M(c) no other c-static curve

in the Mather set touches the interior of this strip. Let U±
c and U ′±

c denote the
elementary weak KAM solution determined by ξc and ξ

′
c respectively, we investigate

what happens when U−
c − U ′+

c = 0 holds in this strip. As the configuration space
is two dimensional, for each x in this region, (x, y) = (x, ∂U−

c (x)) = (x, ∂U ′+
c (x))

uniquely determines a c-semi static curve which lies entirely in this strip. The c-semi
static curves considered here are all determined by U−

c = U ′+
c . It is possible that

some curve approaches to the origin as t → ∞(−∞), in this case, because of H3, it
approaches to the curve ξc (ξ

′
c) as t→ −∞(∞).

Supported on the fixed point, the measure µ is minimal for all c ∈ F0. Thus, there
always exists some semi-static curve γ±c connecting the fixed point to the support of
other c-minimal measure µc

lim
t→±∞

γ±c (t) = 0, and lim
t→∓∞

γ±c (t) → πxsuppµc.

As all eigenvalues are assumed different, generically, all minimal homoclinic curves
approach to the fixed point in the direction Λ1,x, associated to the smallest eigenvalue:

lim
t→±∞

γ̇±ci (t)

‖γ̇±ci (t)‖
= ±Λ1,x.

But this does not exclude the possibility that some c-semi static curves approach to
the point in the direction of Λ2,x. It provides us a criterion to classify the cases when
the Mañé set covers the whole configuration manifold.

Case 1: no c-semi static curve approaches the origin in the direction of Λ1,x. In this
case, as |λ1| < |λ2|, there exist exactly two semi-static curves γ±c such that γ±c (t) → 0
as t→ ±∞. They approach the origin in the direction Λ2,x and

lim
t→∞

γ̇+c (t)

‖γ̇+c (t)‖
= lim

t→−∞
γ̇−c (t)

‖γ̇−c (t)‖
.

Other cases are classified under the condition that there exist some c-static curves
approaching the origin in the direction of Λ1,x. Since the curves ξc as well as ξ′c is
disjoint with the origin, some number δ > 0 exists such that these two curves do not
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hit the ball Bδ(0). The number δ seems depending on c. Let γ+c be a semi-static
curve approaching the origin as t→ ∞, it intersects the circle ∂Bδ(0) at some point.
Let I± ⊂ ∂Bδ(0) be such a set that passing through each point x ∈ I± a c-semi static
curve approaches to the origin, as t→ ±∞, in the direction of Λ1,x. By assumption,
the set I+ is not empty. Obviously, I+ does not occupy the whole circle and can be
made closed by adding at most two points, through which some semi-static curves
approach the origin in the direction of Λ2,x.

Passing through a point x ∈ ∂Bδ(0) very close to I+, there is a unique c-semi
static curve, determined by U−

c = U ′+
c . Because of Proposition 3.2, the curve γc will

get very close to the origin and leave in a direction far away from Λ1,x. Let I+i be
a connected component of I+, it may be a point or an interval. If it is a point, let
xi, x

′
i ∈ ∂Bδ(0) be two sequences of points such that they approach I+i from different

sides. Let γi (γ
′
i) be the semi static curve passing through x+i (x′+i ), it shall intersect

the circle ∂Bδ(0) at a point x−i (x′−) respectively. Some x−, x′− ∈ ∂Bδ(0) exist so

that x−i → x−, x′−i → x′− as i→ ∞.

If x− = x′−, it determines a c-semi static curve approaches the origin as t→ −∞.
Because of Proposition 3.2, it approaches in the direction of Λ2,x. This leads to

Case 2: there exists exactly one c-semi static curve approaching origin in the direction
of Λ2,x.

If x− 6= x′−, let I−i denote the arc bounded by these two points, not containing I+i .
One can see from the proof of Proposition 3.2 that the angle of this arc is not smaller
than π/2. Passing from each point in the interior of the arc, the c-semi static curve
approaches to the origin as t → −∞ and these curves constitute a sector. Since the
fixed point is hyperbolic, it has its stable and unstable manifolds W±

0 . Thus, some
some generating function U± and r > 0 exist such that W±

0 |Br(0) = graphdU±|Br(0).
As the orbits determined by the curves entirely lie in the unstable manifold of the fixed
point, one has U−

c = U ′+
c = U− in the sector. Therefore, the size of the sector-shaped

region is independent of the size of δ. This leads to

Case 3: in the disk Br(0) there is a sector-shaped region with the field angle not
smaller than π/2. In this sector, one has U−

c = U ′+
c = U−.

Let γ+c (γ−c ) be c-semi static curve passing through a point in I+i (I−i ) respec-
tively, then they approach the origin in opposite direction as t → ±∞ respectively,
i.e. limt→∞ γ̇+c (t)‖γ̇+c (t)‖−1 = limt→−∞ γ̇−c (t)‖γ̇−c (t)‖−1. To verify this claim, let us
assume the contrary. Thus, these two curves cut the ball Bδ(0) into two parts, one
is sharp wedge-shaped, denoted by W . We choose a c-semi static curve lying in W

and keeping very close to the curves γ−c and γ+c . In canonical coordinates such that
Ḡ = 1

2(p
2
1−λ1x21)+ 1

2(p
2
2−λ2x22)+O(‖(x, p)‖3), the setW has a vertex at the origin. As

both γ+c and γ−c approach the origin in the direction of Λ1,x, there exists δ1 ≤ δ such
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that |x2| ≤ |x1|3 if (x1, x2) ∈W and |x1| ≤ δ1. Since the fixed point is hyperbolic, it
has local stable and unstable manifold, determined by the generating functions U+

and U− respectively. Restricted in W , these functions satisfy the condition

U−(x)− U−(0) ≥ λ21
3
‖x‖2, U+(0)− U+(x) ≥ λ21

3
‖x‖2, ∀ ‖x‖ ≤ δ.

Pick up two points x and x′ very close to γ±c respectively, through which some c-semi
static curve γc passes, namely, some t′ > t exist such that γc(t) = x and γc(t

′) = x′.
Note the orbit determined by γ+c (γ+c ) lies in the stable (unstable) manifold, by
definition ones has

A[γc|[t,t′]] ≥
3

4

(

U−
c (x′)− U+

c (x)
)

≥ λ21
4
(‖x′‖2 + ‖x‖2).

If we choose x sharing the same first coordinate with x′ and connect them with a
straight line ζ: [0, |x2 − x′2|] → T2, then |ζ̇| ≤ O(1) and the action along this curve
one has A[ζ] ≤ O(‖x‖3). It contradicts the minimality of γc, thus the claim is proved.

We claim that I+ has only one connected component. Otherwise, there would be
two connected component I+k and I+i . By the definition, passing through a point

x ∈ I+j (x′ ∈ I+k ) there is a c-semi static curve γx (γx′) which approaches the curve
ξc as t → ∞ and approaches the origin as t → ∞. These two curves divided the
strip into two parts S = S1 ∪ S2, where S1 is such a strip that passing through any
point x∗ ∈ S1, the c-semi static curve will approach the origin as t → ∞. However,
there exists a point x∗ ∈ S1 ∩ (∂Bδ\I+), it implies that passing thorough x∗, the
c-semi-static curve will approach the curve ξ′c, namely, it would intersect either γx or
γx′ . It is absurd. Thus, we obtain the left picture in Figure 6.

Figure 6.

By similar argument applying to the set I−, we have either the case 2 again or

Case 4: in the disk Br(0) there is a sector-shaped region with the field angle not
smaller than π/2, where U−

c = U ′+
c = U+, see the right picture in Figure 6.

We claim that all of these cases do not occur for generic potential V . The first two
cases takes place at most for four invariant measures, as there are only four curves
which approaches the origin in the direction of Λ2,x. Each of these curves approaches
at most one Mather set. These Mather sets correspond to at most four edges of F0.
Let Vδ−V be a non-negative function such that its support does not touch these four
curves as well as the support of the minimal measure. By perturbing the potential
V → Vδ, one can see that the Mather set remains unchanged, but the Mañé set does
not cover T2 for each of these four cohomology classes.
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Both case 3 and 4 take place also for at most four Mather sets, as each sector-
shaped region has the field angle not smaller than π/2, and the orbit determined
by (x, y) = (x, ∂xU

±) approaches one Mather set only. Let us destruct it one by
one. If some sector-shaped region S+ ⊂ Br(0) exists where U−

c = U ′+
c = U+,

πxsuppµc ∩S+ = ∅. We divide it into three sub-sectors S+ = S+
1 ∪S+

2 ∪S+
3 , each of

which is composed of c-semi static curves approaching the origin as t → ∞ and S+
1

is disjoint with S+
3 . We introduce another potential Vδ such that the function Vδ −V

is non-negative, supp(Vδ − V ) ⊂ S+
2 \Br1 (r1 < r).

For the perturbed Lagrangian determined by Ḡδ =
1
2〈Ap, p〉 + Vδ(x), the minimal

measure for the class c is the same as that for unperturbed Hamiltonian. Let U−
c,δ,

U ′+
c,δ be the elementary weak KAM solutions of the perturbed Hamiltonian, associated

to the minimal measure µc and µ
′
c respectively, one has

argmin(U−
c,δ − U ′+

c,δ) ∩ supp(Vδ − V ) = ∅, argmin(U−
c,δ − U ′+

c,δ) ⊃ S+
1 ∪ S+

3 .

Under such perturbation, there might be another cohomology class c′ such that
U−
c′ −U ′+

c′ = 0 holds on the whole torus and a sector S− exists where U−
c′ = U ′+

c′ = U−.
Note πxsuppµc′ ∩S− = ∅, we split it into three sub-sectors S− = S−

1 ∪S−
2 ∪S−

3 , each
of which is composed by c′-semi static curves approaching to the origin as t → −∞
and S−

1 is disjoint with S−
3 . We introduce again a perturbed potential Vδ such that

the function V ′
δ − V is non-negative, supp(V ′

δ − V ) ⊂ S−
2 \Br1 (r1 < r).

For the new perturbed Lagrangian, the minimal measure for the class c′ is the same
as that for unperturbed one. Let U−

c′,δ, U
′+
c′,δ be the elementary weak KAM solutions

of the perturbed Hamiltonian, determined by ξc′ and ξ
′
c′ respectively, one also has

argmin(U−
c′,δ − U ′+

c′,δ) ∩ supp(Vδ − V ) = ∅, argmin(U−
c′,δ − U ′+

c′,δ) ⊃ S−
1 ∪ S−

3 .

For suitably small r > 0, the Hamiltonian flow determined by Ḡ is well approx-
imated by its linearized flow when they are restricted in the ball Br(0). For the
linearized flow, if (x(t), y(t)) is an orbit in the unstable manifold, (x(−t),−y(−t)) is
an orbit in the stable manifold. Therefore, some sectors Š±

k (k = 1, 3) exist so that

Š±
k ⊂ S±

k , Š
−
k ∩ S+

2 = ∅ and Š+
k ∩ S−

2 = ∅ hold for k = 1, 3, each Š+
k consists of

c-semi static curves which approach the origin as t→ ∞ with

argmin(U−
c,δ − U ′+

c,δ) ⊃ Š+
1 ∪ Š+

3 , argmin(U−
c,δ − U ′+

c,δ) ∩ supp(Vδ − V ) = ∅,

each Š−
k consists of c′-semi static curves which approach the origin as t → −∞ and

argmin(U−
c′,δ − U ′+

c′,δ) ⊃ Š−
1 ∪ Š−

3 , argmin(U−
c′,δ − U ′+

c′,δ) ∩ supp(Vδ − V ) = ∅.

Since there are at most two sectors corresponding to unstable manifold and two
sectors corresponding to stable manifold, there are at most four pairs of static curves
(ξci , ξ

′
ci) (i = 1, 2, 3, 4) for which the case 3 and 4 takes place.

These four pairs of static curves (ξci , ξ
′
ci) (i = 1, 2, 3, 4) corresponds to four edges

(points) contained in ∂∗F0. By construction, the Mañé set does not cover the whole
torus T2 for each cohomology class one these four edges. For any other class c ∈ ∂∗F0,
the Mañé set can not cover the whole torus also. Otherwise, there would be a sector
S± of Br(0) where U

−
c = U ′+

c = U±, but it is absurd since some Š±
i ⊂ S± where U−

ci =

U ′+
ci = U± holds for some i ∈ (1, 2, 3, 4). For each x ∈ Š±

i , (x, v = ∂yḠ(x, ∂U±(x))
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determines an orbit of the Lagrangian flow which approaches both to the support of
µci and to the support of µc as t→ ±∞, it is impossible. Therefore, we have

Lemma 5.1. It is an open and dense condition for the potential V that for all class
c ∈ ∂∗F0, the Mañé set does not cover the torus: N (c) ( T2.

5.2. The Mañé set for c ∈ ∂F0\∂∗F0. This set contains at most countably many
vertexes. Indeed, if both ∂F0\∂∗F0 and ∂

∗F0 are non-empty, there do exist countably
many vertexes (cf. Theorem 3.3).

Let Ei ⊂ ∂F0\∂∗F0 be an edge joined to other two edges at the vertex ci, ci+1

respectively. By Theorem 3.3, the Aubry set for cj consists of two minimal homoclinic
curves γj−1 and γj . Denote by gj ∈ Z2 the homology class of γj , then the matrix
(gj−1, gj) is uni-module. By introducing suitable coordinates on T2, we can assume
gi = (1, 0). In this coordinate system, gi−1 = (k, 1) and gi+1 = (k′,−1).

Figure 7.

In this figure, each unit square represents a fundamental domain of T2 in the
universal covering space, the horizontal line represents the lift of the homoclinic curve
γi, which stays in the Aubry set for each c ∈ Ei. The blue dashed lines represent the
lift of the γi−1 which stays in the Abury set for the class at one end-point of Ei. The
purple dashed lines represents the lift of the γi+1 which stays in the Abury set for
the class at another end-point of Ei.

Let us consider weak KAM solution U±
i,± in the strip bounded by the lines L+ and

L−. According to Lemma 4.1, for E −minα > 0 very small, there exists an interval
IE ⊂ H1(T2,R) such that for each c ∈ IE , the Mather set consists of only one closed
curve γE such that [γE ] = gi. In the universal covering space, let γ̄E be a component
of the lift of γE which approaches L+ as E ↓ minα. Let U±

i,E be the elementary weak

KAM solution determined by γ̄E . As E ↓ minα, U±
i,E → U±

i,+ in C0-topology. The

function U±
i,− is obtained in the same way. The function U−

i,± determines backward
semi-static curves approaching to the line L± as the time approaches to minus infinity,
U+
i,± determines forward semi-static curves approaching to the line L± as the time

approaches to positive infinity respectively.

If we remove the coercive condition on these weak KAM solutions that (x, ∂U±(x))
determines a backward (forward) semi-static curve approaching L+ (L−), then the
weak KAM depends on c ∈ Ei (no longer elementary). As Ac(γi±1) > 0 for each
c ∈ intEi, starting from a point close to the line L+ (L−), the backward (forward)
semi-static curve will approach to L+ (L−).

Let cλ = λci+(1−λ)ci+1. For each λ ∈ (0, 1), by Proposition 2.3, the strip is divided
into two connected parts D+

λ and D−
λ such that U+

cλ
|D+

λ
= U+

i,+ and U+
cλ
|D−

λ
= U+

i,−.
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Let γ+x,± be the forward semi-static curve determined by U+
i,±, starting from the point

x. If x ∈ D+
λ , the curve γ+x,+ is calibrated for U+

i,+ which induces

AL(γ
+
x,+)− 〈γ+x,+(∞)− x, cλ〉 = U+

cλ
(γ+x,+(∞))− U+

cλ
(x)(5.1)

< AL(γ
+
x,−)− 〈γ+x,−(∞)− x, cλ〉,

where both γ+x,+(∞) and γ+x,−(∞) exist. Note π∞γ
+
x,+(∞) = π∞γ

+
x,−(∞) where π∞ :

R2 → T2 is the standard projection. One can see from Figure 7 that

〈γ+x,+(∞)− γ+x,−(∞), ci − ci+1〉 > 0.

It follows that the inequality (5.1) also holds for λ′ > λ, which implies that x ∈ D+
λ′

also. Clearly, D+
λ expands and D−

λ shrinks as λ increases. As the limit, we see that

D−
1 and D+

0 occupies the whole strip. Therefore, we have:

Proposition 5.1. Assume Ei ⊂ ∂F0\∂∗F0 be an edge joined to other two edges at the
vertex ci, ci+1 respectively. Let U±

j be the globally elementary weak KAM for cλ = cj
with j = i, i + 1. Then, for each c = λci + (1− λ)ci+1 ∈ Ei, the weak KAM solution
is completely determined by U±

i and U±
i+1 in the following sense: there is a partition

T2 = D±
i,λ ∪D±

i+1,λ such that D±
j,λ is connected,

U±
cλ
|D±

j,λ
= U±

j |D±
j,λ
,

where D±
i,λ ⊂ D±

i,λ′ and D
±
i+1,λ ⊃ D±

i+1,λ′ if λ < λ′, and D±
i+1,0 = D±

i,1 = T2.

In virtue of this proposition, we see that, for all c ∈ ∂F0\∂∗F0, the set of barrier
functions {Uc − U+

c } are determined by countably many weak KAM solutions. For
each edge Ei, there is an open-dense set in Cr space such that argmin(Uc−U+

c ) ( T2

holds for each c ∈ Ei if the potential V takes value in this set. Therefore, in virtue
of the lemma 5.1, we have

Theorem 5.1. Let L̄ = 1
2 〈A−1ẋ, ẋ〉−V (x). A residual set V ⊂ Cr(T2,R) exists such

that for each V ∈ V and for each c ∈ ∂F0, the Mañé set does not cover the whole
configuration space: argmin(U−

c − U+
c ) ( T2.

Because of this theorem, we have generic hypothesis

(H5): The potential is chosen so that the Mañé set does not cover the whole torus
N (c) ( T2 for each c ∈ ∂F0.

5.3. Thickness of the annulus. The Hamiltonian under consideration is given by
the formula (4.1) which is autonomous. To start with, let us assume assume minαG =
0 and study elementary weak KAM solutions of the Hamilton-Jacobi equation

(5.2) ∂τu+G(x, τ, ∂xu+ c) = ǫ∆, c ∈ ∂F0

where G solves the equation H(x, x3, y,G) = Ẽ and τ = −x3. Expanding the Hamil-
tonian into Taylor series of ǫ, replacing u by

√
ǫu and rescaling τ by s =

√
ǫτ we

obtain the equation

(5.3)
∂u

∂s
+

1

2

〈

A
(∂u

∂x
+ c

)

,
∂u

∂x
+ c

〉

+ V (x) +O(
√
ǫ) = ∆

where A is the Hessian matrix of h in y at y = 0, V (x) = Z(x, 0) (cf. formula (4.3)).
In this equation, only higher order term depends on the time s. As the first step



64 C.-Q. CHENG

to study the weak KAM of this Hamilton-Jacobi equation, we omit the higher order
term and let ∆ = 0. Since the potential V is independent of the time s, all elementary
weak KAM solutions discussed in the last two subsections solve the equation

(5.4)
1

2

〈

A
∂u

∂x
+ c,

∂u

∂x
+ c

〉

+ V (x) = 0,

and for each V ∈ V ⊂ Cr(T2,R) and each c ∈ ∂F0, the weak KAM solutions of this
equation define a Mañé set which does not cover the whole torus: argmin(U−

c −U ′+
c ) (

T2. By the upper semi-continuity of the set of semi-static curves, some small ∆0 > 0
exists such that for each positive ∆ ≤ ∆0 and each c ∈ α−1

Ḡ
(∆) (We use αḠ to denote

the α-function determined by the Hamiltonian Ḡ) the Mañé set does not cover the
torus. It implies that argmin(U−

c −U ′+
c ) ( T2 holds if c ∈ α−1

Ḡ
(∆), both U−

c and U ′+
c

are the weak KAM solutions of the equation 5.4 with ∆ ≤ ∆0.

For each average action ∆ > minαḠ, the dynamics on the energy level Ḡ−1(∆) is
similar to twist and area-preserving maps. First of all, the rotation vector of each
minimal measure is not zero. Thus, any minimal measure is not supported on fixed
points. Secondly, for each class c ∈ α−1

Ḡ
(∆), all c-minimal measures share the same

rotation rotation direction, otherwise, the Lipschitz graph property will be violated.
If the rotation direction is rational, each ergoidc minimal measure is supported on a
periodic orbit.

From these properties one derives the following: for each c ∈ α−1
Ḡ

(∆), there exists

a circle Γc ⊂ T2 such that each semi-static curve passes through it transversally and
argmin(U−

c − U+
c ) ∩ Γc ( Γc. Since the set argmin(U−

c − U+
c ) is closed, there exist

finitely many intervals Ic,i ⊂ Γc disjoint to each other such that (argmin(U−
c −U+

c )∩
Γc) ⊂ ∪Ic,i.

As these functions are independent of s =
√
ǫτ , all of these functions can be thought

as the weak KAM solutions of the homogenized Hamilton-Jacobi equation

∂u

∂s
+

1

2

〈

A
(∂u

∂x
+ c

)

,
∂u

∂x
+ c

〉

+ V (x) = ∆

if they are thought as the function of the variable (x, s). Here, the cohomology class
takes value on the circle: c ∈ α−1

Ḡ
(∆). It follows that, for each class c ∈ α−1

Ḡ
(∆), there

exists non-degenerate embedded two-torus Γc × T ⊂ T3 and finitely many intervals
Ic,i ⊂ Γc disjoint to each other such that each c-semi-static curve passes through the
two-torus transversally and argmin(U−

c −U+
c )∩ (Γc×T) ⊂ ∪Ic,i×T. Here the circle

T is for the time s =
√
ǫτ .

Let us return back to the Hamilton-Jacobi equation (5.3). Recall the normal form
of the Hamiltonian, we see that in the remainder O(

√
ǫ), one contribution is from

R(x,
√
ǫp,

√
ǫ
−1
s) (see the formula (4.3)), other contributions are independent of s.

Again, by the upper semi-continuity of the set of semi-static curves, we have

Theorem 5.2. Under the hypotheses (H1∼H3, H5), some positive numbers ∆0 > 0
and ǫ0 > 0 exist, depending on the potential V , such that for each ∆ < ∆0, each
ǫ ∈ (0, ǫ0) and each c ∈ α−1(∆), all semi-static curves pass through transversally the
two-torus Γc × {s ∈ T},

(5.5) argmin(U−
c − U+

c ) ∩ (Γc × {s = const.}) ⊂
⋃

Ic,i
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where Γc is a circle located in a 2-torus {s = constant} ⊂ T3, Ic,i ⊂ Γc are closed
intervals, disjoint to each other and independent of the time s.

Here, the semi-static curves are in the sense of extended configuration space, i.e.
if γ : R →M is a curve, we also call its graph a curve γ̃(s) = (γ(s), s) ∈M × T.

Let us go back to the original scale. By Theorem 5.2, there exist a annulus-shaped
region

A = {c : 0 < αG(c) −minαG ≤ ǫ∆0}
such that the condition (5.5) holds for each c ∈ A. Recall this time-periodic system

is deduced from the autonomous system restricted on certain energy level H−1(Ẽ).
In virtue of Theorem 3.4, the counterpart of A in H1(T3,R) is

Ã = {c̃ = (c, c3) ∈ α−1
H (Ẽ) : 0 < c3 ≤ ǫ∆0},

where we notice that the sphere α−1
H (Ẽ) is located in the upper half space of R3 and

touches the plane {c3 = 0} where c ∈ F0.

In the original coordinates (x̃, ỹ) = (x, x3, y, y3), Theorem 5.2 states such a fact:

for each c̃ ∈ Ã, all c̃-semi static curves pass through the 2-torus Γc × {x3 ∈ T}
transversally and all intersection points are restricted in the strips ∪Ic,i × {x3 ∈ T}.
However, the condition (5.5) dost not guarantee complete “intersection” of the stable
set with unstable set, in the sense that the set argmin(U−

c −U+
c )∩ {τ = 0} contains

some disconnected points. Therefore, we call Ã the annulus of incomplete intersection.
In this case, we do not expect to construct orbits connecting each Aubry set to any
other Aubry set nearby, possible incompleteness may block some direction. However,
once non-trivial intersection exists, it opens way to connect some Aubry set nearby.
We shall show it in the subsection 7.2.

As ǫ∆0 ≫ 2ǫ1+d provided ǫ > 0 is sufficiently small and d > 0, we obtain the
following:

Overlap Property: Given any two irreducible g, g′ ∈ H1(T
2,Z), there exists a

positive number ǫ0 = ǫ0(V, g, g
′) > 0 such that the wedge-shaped regions intersects the

annulus-shaped region: Wg ∩ A 6= ∅ and Wg′ ∩ A 6= ∅ provided 0 < ǫ ≤ ǫ0.

6. Loal onneting orbits

To construct orbits connecting some Aubry set to another one nearby, we introduce
two types of modified Tonelli Lagrangian, namely, the time-step and the space-step
Lagrangian. They satisfy the conditions of positive definiteness, super-linear growth
and completeness. The time-step Lagrangian L : TM × R → R is not periodic in t
on the whole R, instead, it is periodic when it is restricted either on (−∞,−δ) or on
(δ,∞), i.e. L(·, t) = L(·, t+ 1) if t, t+ 1 ∈ (−∞,−δ) or t, t+ 1 ∈ (δ,∞). The second
type of Lagrangian is defined on some covering space. Let π : M̄ = R× Tn−1 → M .
The space-step Lagrangian L : TM̄ × T → R is not periodic in one component of
spaces coordinates x1. It is periodic in x1 when it is restricted either on (−∞,−δ) or
on (δ,∞), i.e. L(x1, ·) = L(x1 + 1, ·) if x1, x1 + 1 ∈ (−∞,−δ) or x1, x1 + 1 ∈ (δ,∞).

The existence of local connecting orbits is established based on some upper semi-
continuity of minimal curves for the modified Lagrangian.
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6.1. Upper semi-continuity of minimal curves. Time-step Lagrangian: Let
us consider time-step Lagrangian first. A curve γ : R →M is called minimal if

∫ τ ′

τ
L(γ(t), γ̇(t), t)dt ≤

∫ τ ′

τ
L(ζ(t), ζ̇(t), t)dt

holds for any τ < τ ′ and for any absolutely continuous curve ζ : [τ, τ ′] → M with
ζ(τ) = γ(τ) and ζ(τ ′) = γ(τ ′). Let G (L) denote the set of minimal curves for L.

Let G̃(L) = ⋃

γ∈G (L)(γ(t), γ̇(t), t), G(L) = πG̃(L) where π : TM × R → M × R is the

standard projection.

Theorem 6.1. The set-valued map L → G (L) is upper semi-continuous. Conse-

quently, the map L→ G̃(L) is also upper semi-continuous.

Proof. Let K be the diameter of the closed manifold M , namely,

K = max
x,x′∈M

ℓ(x, x′)

where ℓ(x, x′) denotes the length of the shortest geodesic connecting x with x′. Let

K1 = sup
(x,t)∈M×R

‖v‖≤K

L(x, v, t).

As L is assumed periodic for t ≤ 0 as well as for t ≥ 1, K1 is finite.

Let γ be a shortest geodesic connecting the point x to the point x′. Given time
interval [τ, τ ′] with τ ′− τ ≥ 1, we re-parameterize the geodesic γ(s) by γ′(ℓ(x, x′)(t−
τ)/(τ ′−τ)), then γ′: [τ, τ ′] →M is C1-curve such that γ′(τ) = x, γ′(τ ′) = x′. Clearly,
the action along this curve is not bigger than K1(τ

′−τ). Obviously, there is an upper
bound uniformly for all minimizing action of L′ if it is close to L on {‖v‖ ≤ K}, still
denoted by

hL′((x, τ), (x′, τ ′)) ≤ K1(τ
′ − τ).

If the Lagrangian has super-linear growth, some positive numbers C,D > 0 exist
such that L′(x, ẋ, t) ≥ C‖ẋ‖ −D for all (x, ẋ, t) ∈ TM × R and for all L′ close to L.
Therefore, if γ is a minimizer, one obtains

(6.1)
dist(γ(τ), γ(τ ′))

τ ′ − τ
≤ 1

τ ′ − τ

∫ τ ′

τ
‖dγ‖ ≤ K1 +D

C
.

As (6.1) holds for any τ ′−τ ≥ 1, it implies that there must be some ti ∈ [τ+i, τ+i+1]
for each i ∈ Z such that ‖γ̇(ti)‖ ≤ C−1(K1 + D). As it holds for any x, x′ ∈ M ,
therefore, some positive number K2 > 0 exists such that

φs
({

x, v, ti : ‖v‖ ≤ K1 +D

C

})

⊂
{

x, v, ti + s : ‖v‖ ≤ K2

}

holds for all s ∈ [0, 2] and for all relevant i. It implies that ‖γ̇(t)‖ ≤ K2 holds for all
t ∈ [τ, τ ′].

Let Li ∈ Cr(TM × R,R) be a sequence converging to L in the following sense:
there exists some Uk ⊃ {x, v, t : ‖v‖ ≤ K2}, as well as a sequence of ǫi → 0 as i→ ∞
such that ‖L − Li‖C2(Uk,R) ≤ ǫi. Let γi: [τ, τ ′] → M be the minimizer of Li with

τ ′ − τ ≥ 1, we then have ‖γ̇i(t)‖ ≤ K2 for all t ∈ [τ, τ ′]. The set {γi} is compact in
the C1([τ, τ ′],M)-topology. Indeed, since ∂2L/∂ẋ2 is positive definite one can write
the Lagrange equations in the form of ẍ = f(x, ẋ, t), which implies γi is bounded in
C2-topology.
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Let γ: [τ, τ ′] → M be one of the accumulation points of this set. Clearly, γ:
[τ, τ ′] →M is the minimizer of L. Let Ii = [τi, τ

′
i ] and let τi → −∞ and τ ′i → ∞, we

obtain a sequence of minimizers of Li, γi: Ii →M . By diagonal extraction argument
some subsequence of γi which converges C1-uniformly on each compact set to a C1-
curve γ: R → M . Obviously, it is a minimal curve of L. This proves the upper
semi-continuity. �

In application, the set G (L) seems too big for the construction of connecting orbits.

For time-periodic Lagrangian, Mañé set can be a proper subset of G̃(L), Ñ (L) ( G̃(c).
It is closely related to the problem whether the Lax-Oleinik semi-group converges or
not (cf. [FM]). For time-step Lagrangian, pseudo connecting curve is introduced to
play roles similar to what semi-static curve does.

Each time-step Lagrangian L uniquely determines two time-periodic Lagrangian
L+ and L− such that L+|(δ,∞) = L|(δ,∞) and L−|(−∞,−δ) = L|(−∞,−δ). Let −α±

denote the minimal average action of L±. For m0,m1 ∈M and T0, T1 > 0, we define

hT0,T1L (m0,m1) = inf
γ(−T0)=m0
γ(T1)=m1

∫ T1

−T0
L(dγ(t), t)dt + T0α

− + T1α
+.

Clearly the limit infimum is bounded

|h∞L (m0,m1)| = | lim inf
T0,T1→∞

hT0,T1L (m0,m1)| <∞.

Let {T i0}i∈Z+ and {T i1}i∈Z+ be the sequence of positive integers such that T ij → ∞
(j = 0, 1) as i→ ∞ and the following limit exists

lim
i→∞

h
T i
0 ,T

i
1

L (m0,m1) = h∞L (m0,m1).

Let γi(t,m0,m1): [−T i0, T i1] →M be a minimizer connecting m0 and m1

h
T i
0,T

i
1

L (m0,m1) =

∫ T i
1

−T i
0

L(dγi(t), t)dt+ T i0α
− + T i1α

+.

From the proof of Theorem 6.1 one can see that for any compact interval [a, b] there
is some I ∈ Z+ such that the set {γi}i≥I is pre-compact in C1([a, b],M).

Lemma 6.1. Let γ: R →M be an accumulation point of {γi}. Then for s, τ ≥ δ

AL(γ|[−s, τ ]) = inf
s1−s∈Z,τ1−τ∈Z

s1,τ1≥δ

γ∗(−s1)=γ(−s)

γ∗(τ1)=γ(τ)

∫ τ1

−s1
L(dγ∗(t), t)dt(6.2)

+ (s1 − s)α− + (τ1 − τ)α+.

Proof. : To prove the lemma let us suppose the contrary. Thus there would exist
∆ > 0, s1, τ1 ≥ δ, s1 − s ∈ Z, τ1 − τ ∈ Z and a curve γ∗: [s1, τ1] → M with
γ∗(−s1) = γ(−s), γ∗(τ) = γ(τ1) such that

AL(γ|[−s, τ ]) ≥
∫ τ1

−s1
L(dγ∗(t), t)dt+ (s1 − s)α− + (τ1 − τ)α+ +∆.

Let ǫ = 1
3∆. By the definition of limit infimum there exist T i00 > s and T i01 > τ such

that
hT0,T1L (m0,m1) > h∞L (m0,m1)− ǫ, ∀ T0 ≥ T i00 , T1 ≥ T i01 ,
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and there exist subsequences T ikj (j = 0, 1; k = 0, 1, 2, · · · ) such that T ik0 − T i00 ≥
|s− s1|, T ik1 − T i01 ≥ |τ − τ1| and

|hT
ik
0 ,T

ik
1

L (m0,m1)− h∞L (m0,m1)| < ǫ

holds for each k > 0. Let γik be the minimizer of h
T

ik
0 ,T

ik
1

L (m0,m1). By taking a
subsequence further one can assume γik → γ. In this case, for sufficiently large k, we
are able to construct a curve γ∗ik : [s1, τ1] →M which has the same endpoints as γik :

γ∗ik(−s1) = γik(−s), γ∗ik(τ1) = γik(τ) and satisfies the following

AL(γik |[−s, τ ]) ≥
∫ τ1

−s1
L(dγ∗ik(t), t)dt+ (s1 − s)α− + (τ1 − τ)α+ +

2

3
∆.

Extending γ∗ik from [s1, τ1] to the [−T ik0 − (s1 − s), T ik1 + (τ1 − τ)] by

γ∗ik =











γik(t+ s1 − s), t ≤ −s1,
γ∗ik(t), −s1 ≤ t ≤ τ1,

γik(t− τ1 + τ), t ≥ τ1,

and defining T ′
0 = T ik0 + (s1 − s), T ′

1 = T ik1 + (τ1 − τ) we find that

h
T ′
0,T

′
1

L (m0,m1) ≤AL(γ∗ik |[−T
′
0, T

′
1]) + T ′

0α
− + T ′

1α
+

≤AL(γik |[−T ik0 , T ik1 ]) + T ik0 α
− + T ik1 α

+ − 2

3
∆

≤h∞L (m0,m1)− ǫ.

But this contradicts the definition of the limit infimum as T ′
0 ≥ T0 and T ′

1 ≥ T1. �

We define so-called pseudo connecting curve set

C (L) = {γ ∈ G (L) : (6.2) hold }.
In application, we usually choose time-step Lagrangian so that the Aubry set of L−

is different from that of L+. Clearly, for γ ∈ C (L), the orbit (γ(t), γ̇(t)) approaches

the Aubry set Ã(L−) as t → −∞ and approaches Ã(L+) as t→ ∞. That is why we
call it pseudo connecting curve. Let

C̃(L) =
⋃

γ∈C (L)

(γ(t), γ̇(t), t), C(L) =
⋃

γ∈C (L)

(γ(t), t).

Clearly, if L is periodic in t, then C̃(L) = Ñ (L) and C(L) = N (L).

Theorem 6.2. The map L → C (L) is upper semi-continuous. As the special case,

the map c→ Ñ (c) as well as the map c→ N (c) is upper semi-continuous.

Proof. : Let Li → L be a sequence of time-step Lagrangian, let γi ∈ C (Li) and let γ
be an accumulation point of the set {γi ∈ C (Li)}i∈Z+ . We claim that γ ∈ C (L). If
γ /∈ C (L), there would be two point γ(s),γ(τ) ∈ M connected by another curve γ∗:
[−s− n1, τ + n2] →M and ∆ > 0 such that

AL(γ
∗) < AL(γ|[−s, τ ]) − n1α

− − n2α
+ +∆

where s, s + n1 ≥ δ, τ, τ + n2 ≥ δ. Since γ is an accumulation point of γi, for any
small ǫ > 0, there would be sufficiently large i such that ‖γ−γi‖C1[s,t] < ǫ, and above
inequality also holds for ALi

(γi|[s,τ ]). It follows that γi /∈ C (Li), contradicting to the
assumption. �
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Space-step Lagrangian: Let M = Tn and π : M̄ = R × Tn−1 → M , where R
is for the coordinate x1. The space-step Lagrangian L is introduced to handle the
problem of incomplete intersection. A space-step Lagrangian also uniquely determines
two Lagrangian L− and L+: TM such that L−(x1, ·)|(−∞,−δ) = L(x1, ·)|(−∞,−δ) and
L+(x1, ·)|(δ,∞) = L(x1, ·)|(δ,∞) if we treat L

± as its natural lift to TM̄ . Let µ± denote

minimal measure of L± with 0-cohomology class, ω(µ±) = (ω1(µ
±), · · · , ωn(µ±))

denote the rotation vector. We assume some conditions on the Lagrangian:

1, ω1(µ
±) > 0 for each ergodic minimal measure µ±;

2, min βL− = minβL+ , without losing of generality, it equals zero;

3, |L− − L+| ≤ 1
2 minω1=0{βL−(ω′), βL+(ω′)}.

It is shown in [Lx] that some coordinates exists such that the first condition holds
provided α(0) > minα. As the minimal average action of L± is achieved on suppµ±

with ω1(µ
±) 6= 0, one can see that minω1(ν)=0

∫

L±dν > min
∫

L±dν, so the third
condition makes sense. To introduce minimal curve for space-Lagrangian, we define

hTL(m̄0, m̄1) = inf
γ̄(−T )=m̄0
γ̄(T )=m̄1

∫ T

−T
L(γ̄(t), ˙̄γ(t))dt, ∀ m̄0, m̄1 ∈ M̄.

Lemma 6.2. If the rotation vector of each ergodic minimal measure has positive first
component ω1(µ

±) > 0, m̄0 6= m̄1, then

lim
T→0

hTL(m̄0, m̄1) = ∞ and lim
T→∞

hTL(m̄0, m̄1) = ∞.

Proof. Let γ̄TL : [−T, T ] → M̄ be the minimizer of hTL(m̄0, m̄1). Let m0 = πm̄0,

m1 = πm̄1, ζ: [0, 1] →M be a smooth curve connecting m1 to m0, ζ̇(0) = ˙̄γTL (T ) and

ζ̇(1) = ˙̄γTL (−T ). The action of L+ along ζ is clearly bounded, thus for any ǫ > 0, one

has AL+(ζ) ≤ 2Tǫ provided T is sufficiently large. The curve ξ = ζ ∗ πγ̄TL determines
a holonomic probability measure νTL ∈ H such that

∫

fdνTL =
1

2T + 1

∫ T+1

−T
f(ξ(t), ξ̇(t))dt ∀ f ∈ C(TM,R).

Since |γ̄TL (T ) − γ̄TL (−T )| is bounded for any T > 0, one has ω1(ν
T
L ) → 0 as T → ∞.

By using the third condition, we obtain

1

2T
hTL(m̄0, m̄1) =

2T + 1

2T

∫

L+dνTL − 1

2T

∫ 1

0
L+(ζ(t), ζ̇(t))dt

+
1

2T

∫ T

−T
(L− L+)(γ̄TL (t), ˙̄γ

T
L (t))dt

≥
∫

L+dνTL − 1

2
min
ω1=0

βL+(ω)− ǫ > 0.

It implies that limT→∞ hTL(m̄0, m̄1) = ∞. The case for T → 0 is a consequence of the
super-linear growth of L in ẋ. �

As an intermediate step in introducing pseudo-connecting curve, we define a set of
minimal curve G (L).
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Definition 6.1. A curve γ̄ : R → M̄ is in G (L) if

AL(γ̄|[−T,T ]) = inf
T ′∈R+

hT
′

L (γ̄(−T ), γ̄(T )).

We claim that G (L) 6= ∅. Indeed, denote by γ̄L(·, m̄0, m̄1) : [−T, T ] → M the
minimizer such that γ̄L(−T ) = m̄0, γ̄L(T ) = m̄1 and

A(γ̄L) =

∫ T

−T
L(γ̄L(t), ˙̄γL(t))dt = inf

T ′∈R+

hT
′

L (m̄, m̄′).

Because of Lemma 6.2, this infimum is attained for finite T > 0 if m̄0 and m̄1

are two different points in M̄ . The super-linear growth of L in ẋ guarantees that
T → ∞ as −m̄01, m̄11 → ∞, where m̄i1 denotes the first coordinate of m̄i. Given
an interval [−T, T ], for sufficiently large −m̄01, m̄11, the set {γ̄L(·, m̄0, m̄1)|[−T,T ]} is

pre-compact in C1([−T, T ], M̄ ). Let T → ∞. By diagonal extraction argument, there
is a subsequence of {γ̄L(·, m̄0, m̄1)} which converges C1-uniformly on any compact set
to a C1-curve γ̄: R → M̄ . Obviously, γ̄ ∈ G (L), and

Proposition 6.1. Some number K > 0 exists so that |hTL(γ̄(−T ), γ̄(T ))| ≤ K holds
for any curve γ̄ ∈ G (L) and any T > 0.

Proof. By the assumption, one has αL±(0) = min βL± = 0. So, some K ′ > 0 exists
such that |A(γ|I)| ≤ K ′ holds for any interval I ⊂ R+(R−) provided it is a forward
(backward) semi-static curves for L+ (L−). Also, some K ′′ > 0 exists such that

−K ′′ ≤ max
x̄,x̄′∈{x∈M̄ :|x1|≤1}

inf
T≥0

hTL(x̄, x̄
′) ≤ K ′′.

We claim that K ≤ 2K ′ +K ′′.

If there exists some γ̄ ∈ G (L) and some T > 0 such that hTL(γ̄(−T ), γ̄(T )) >
2K ′ + K ′′, we join γ̄(−T ) to γ̄(T ) by another curve ξ = γ̄− ∗ ζ ∗ γ̄+ where γ̄− is
a lift of backward semi-static curve γ− for L− such that γ̄(−T ) = γ̄−(0), denote
by x̄− the intersection point of this curve with the section {x̄ ∈ M̄ : x̄1 = −1},
γ̄+ is a lift of forward semi-static curve γ+ for L+ such that γ̄(T ) = γ̄+(0), denote
by x̄+ the intersection point of this curve with the section {x̄ ∈ M̄ : x̄1 = 1},
ζ is a minimal curve of L that connects the point x̄− to x̄+. Obviously, one has
AL(ξ) ≤ 2K ′ +K ′′ < hTL(γ̄(−T ), γ̄(T )), but it contradicts the definition of G (L). �

Each k ∈ Z defines a Deck transformation k : M̄ → M̄ : kx = (x1 + k, x2, · · · , xn).
Let M̄−

δ = {x ∈ M̄ : x1 < −δ}, M̄+
δ = {x ∈ M̄ : x1 > δ}.

Definition 6.2. A curve γ̄ ∈ G (L) is called pseudo connecting curve if the following
holds

AL(γ̄|[−T,T ]) = inf
T ′∈R+

k
− γ̄(−T )∈M̄

−
δ

k
+γ̄(T )∈M̄

+
δ

hT
′

L (k−γ̄(−T ),k+γ̄(T ))

for each γ̄(T ) ∈ M̄−
δ and γ̄(T ) ∈ M̄+

δ . Denote by C (L) the set of pseudo connecting
curves.

Lemma 6.3. The set C (L) is non-empty.
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Proof. Let us start with a curve γ̄ ∈ G (L). Given ∆ > 0, if some interval [t−i , t
+
i ]

exists such that k−
i γ̄(t

−
i ) can be connected to k+

i γ̄(t
+
i ) by another curve ζi with

smaller action
AL(γ|[t−i ,t+i ])−AL(ζi) ≥ ∆ > 0,

then one obtain a curve γ̄i = k−
i γ̄|(−∞,t−i ] ∗ ζ ∗k−

i γ̄|[t+i ,∞) by one step of such surgery.

Given any ∆ > 0, we claim that there are finitely many intervals [t−i , t
+
i ] with

t+i ≤ t−i+1 such that k−
i γ̄(t

−
i ) can be connected to k+

i γ̄(t
+
i ) by another curve ζi with

the action ∆ smaller than the original one. Let us assume the contrary. Then, for
any positive integer m, some large T > 0 exists such that [−T, T ] ⊃ ∪mi=1[t

−
i , t

+
i ]. We

can choose arbitrarily many of such intervals such that either t−1 > δ or t+m < −δ. In
the first case, let x̄− = γ̄(−T ) and x̄+ = Πmℓ=1k

−
ℓ k

+
ℓ γ̄(T ). By assumption, these two

points can be connected by a curve ζ along which the action AL(ζ) ≤ K −m∆ as it
follows from Proposition 6.1 that AL(γ̄|[−T,T ]) ≤ K. Since m can be arbitrarily large,
it implies the existence of a curve along which the action of L approaches to minus
infinity, it also contradicts Proposition 6.1.

Given a curve γ̄ ∈ G (L) and any small ǫi > 0, by finitely many steps of such
surgery, we obtain a curve γ̄i : R → M̄ with following properties:

1, for each small ǫi > 0, some large Ti exists such that γ̄(−Ti) ∈ M̄−
δ , γ̄(T ) ∈ M̄+

δ
and

AL(γ̄i|[−Ti,Ti]) ≤ inf
T ′∈R+

k
− γ̄(−T )∈M̄

−
δ

k
+γ̄(T )∈M̄

+
δ

hT
′

L (k−γ̄i(−T ),k+γ̄i(T )) + ǫi.

2, γ̄i is smooth everywhere except for two points which fall beyond the region
{x ∈ M̄ : |x1| ≤ Θi}, and Θi → ∞ as ǫi → 0.

Let T ′
i > 0 such that γ̄i1(±T ′

i ) = ±Θi. Because of Lemma 6.2, we see that T ′
i → ∞

as Θi → ∞. In virtue of the argument before, for any large T ∃ i0 > 0 such that the
set {γ̄i|[−T,T ] : i ≥ i0} is pre-compact in C1([−T, T ], M̄ ). Let T → ∞, by diagonal

extraction argument, there is a subsequence of {γ̄i} which converges C1-uniformly on
each compact set to a C1-curve γ̄: R → M̄ . Obviously, γ̄ ∈ C (L). �

Theorem 6.3. The map L→ C (L) is upper semi-continuous.

Proof. Let γ̄i ∈ C (Li), Li → L. If {γ̄i} converges C1-uniformly on each compact set
to a C1-curve γ̄, it is obvious that γ̄ ∈ C (L). �

It is an immediate consequence of Definition 6.2 that

Proposition 6.2. If the space-step Lagrangian L is periodic in x1, then a curve
γ̄ ∈ C (L) if and only if its projection γ = πγ̄: R →M is semi-static.

Similar to the definition for time-step Lagrangian, we define

C̃(L) =
⋃

γ̄∈C (L)

(γ̄(t), ˙̄γ(t)), C(L) =
⋃

γ̄∈C (L)

γ̄(t).

If L is periodic in x1, then πC̃(L) = Ñ (L) and πC(L) = N (L).
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6.2. Local connecting orbits of type-c. An orbit dγ (A curve γ) is said connecting

one Aubry set Ã(c) to another one Ã(c′) if the α-limit set of the orbit dγ is contained

in Ã(c) and the ω-limit set is contained in Ã(c′). It is called local connecting orbit if
these two classes are close to each other. It is called global when the two classes are far
away from each other. In this subsection, we show how to construct local connecting
orbits of type-c by using so-called c-equivalence. This type of connecting orbits are
found in the annulus of incomplete intersection and plays key role in establishing
transition chain crossing strong double resonance.

For this purpose, we use the new version of c-equivalence introduced in [LC]. The
concept of c-equivalence was introduced in [Ma2] for the first time, but it does not
apply in interesting problems of autonomous system. The new version is defined not
on the whole M , but on a non-degenerate embedded (n − 1)-dimensional torus. We
call Σc non-degenerately embedded (n− 1)-dimensional torus by assuming a smooth
injection ϕ: Tn−1 → Tn such that Σc is the image of ϕ, and the induced map ϕ∗:
H1(T

n−1,Z) → H1(T
n,Z) is an injection.

Let C ⊂ H1(Tn,R) be a connected set where we are going to define c-equivalence.
For each class c ∈ C, we assume that there exists a non-degenerate embedded (n−1)-
dimensional torus Σc ⊂ Tn such that each c-semi static curve γ transversally intersects
Σc. Let

Vc =
⋂

U

{iU∗H1(U,R) : U is a neighborhood ofN (c) ∩ Σc},

here iU : U → M denotes inclusion map. V⊥
c is defined to be the annihilator of Vc,

i.e. if c′ ∈ H1(Tn,R), then c′ ∈ V⊥
c if and only if 〈c′, h〉 = 0 for all h ∈ Vc. Clearly,

V⊥
c =

⋃

U

{ker i∗U : U is a neighborhood ofN (c) ∩ Σc}.

Note that there exists a neighborhood U of N (c) ∩ Σc such that Vc = iU∗H1(U,R)
and V⊥

c = keri∗U (see [Ma2]).

We say that c, c′ ∈ H1(M,R) are c-equivalent if there exists a continuous curve Γ:
[0, 1] → C such that Γ(0) = c, Γ(1) = c′, α(Γ(s)) keeps constant for all s ∈ [0, 1],
and for each s0 ∈ [0, 1] there exists δ > 0 such that Γ(s) − Γ(s0) ∈ V⊥

Γ(s0)
whenever

s ∈ [0, 1] and |s− s0| < δ.

Let {ei}1≤i≤n−1 be the standard basis of H1(T
n−1,Z), one obtains n-dimensional

vectors {gi+1 = ϕ∗(ei) ∈ H1(T
n,Z)}1≤i≤n−1. Because ϕ is injection, there is a vector

g1 ∈ Zn such that the n×nmatrix G = (g1, g2, · · · , gn) is uni-module, i.e. detG = ±1.

In new coordinates system x→ G−1x, the Lagrangian L̃(ẋ, x) = L(Gẋ,Gx) is also 2π-
periodic in x. In new coordinates, let M̄ = R×Tn−1 = {x1 ∈ R, (x2, · · · , xn) ∈ Tn−1}
be a covering space of Tn, π : M̄ → M = Tn. The lift of Σc, π

−1(Σc) has infinitely
many compact components {Σic}i∈Z. If ϕ is linear, Σic = {x1 = 2iπ}. For the section
Σ = {x1 = 0 mod 1} we have π−1(Σ) = ∪k∈Z{x1 = k} while for Σ = {x1 = x2}, the
lift π−1(Σ) consists of only one connected component.

Theorem 6.4. Assume the cohomology class c∗ is c-equivalent to the class c′ through
the path Γ: [0, 1] → H1(Tn,R). For each s ∈ [0, 1], the following are assumed:

1, there exists a coordinate systems G−1
s x where the first component of rotation

vector is positive, ω1(µΓ(s)) > 0 for each ergodic Γ(s)-minimal measure µΓ(s);
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2, for the covering space M̄s = R × Tn−1 in the coordinate system the lift of non-
degenerately embedded codimension-one torus ΣΓ(s) has infinitely many connected and
compact components, each of which is also a codimension-one torus.

Then there exist some classes c∗ = c0, c1, · · · , ck = c′ on this path, closed 1-forms
ηi and µ̄i on M with [ηi] = ci and [µ̄i] = ci+1 − ci, and smooth functions ̺i on M̄ for
i = 0, 1, · · · , k−1, such that the pseudo connecting curve set C (Li) for the space-step
Lagrangian

Li = L− ηi − ̺µ̄i

possesses the properties:

(i), each curve γ̄ ∈ C (Li) determines an orbit (γ, γ̇) of φtL;

(ii), the orbit (γ, γ̇) connects Ã(ci) to Ã(ci+1), i.e., the α-limit set α(dγ) ⊆ Ã(ci)

and ω-limit set ω(dγ) ⊆ Ã(ci+1).

Proof. By the definition of c-equivalence, there exists a path Γ: [0, 1] → H1(M,R)
with Γ(0) = c∗, Γ(1) = c′ such that for each c = Γ(s) (s ∈ [0, 1]) on the path, there
exists ǫ > 0 such that Γ(s′) − c ∈ V⊥

Γ(s) whenever s
′ ∈ [0, 1] and |s − s′| < ǫ. Thus,

there exist a non-degenerately embedded (n− 1)-dimensional torus Σc, a closed form
µ̄c and a neighborhood U of N (c)∩Σc such that [µ̄c] = Γ(s′)−c and suppµ̄c∩U = ∅.

In the new coordinates x → G−1
c x on the torus as above, the codimension one

hypersurface Σ0
c separates M̄ into two parts, the upper part M̄+ and the lower part

M̄−. M̄± extends to where the first coordinate x1 → ±∞. Let Σ0
c + δ denotes the

δ-neighborhood of Σ0
c in M̄ , we introduce a smooth function ̺ ∈ Cr(M̄, [0, 1]) such

that ̺ = 0 if x ∈ M̄−\(Σ0
c + δ), ̺ = 1 if x ∈ M̄+\(Σ0

c + δ). Let η and µ̄ are closed
1-forms on M such that [η] = c and [η+ µ̄] = c′. These forms have natural lift on M̄ ,
with the same notation.

A sufficiently small δ > 0 can be chosen so that

(Σ0
c + δ) ∩ (C(L+ η) + 2δ) ⊂ U,

It follows from the upper semi-continuity of C(L) w.r.t. L, we find

(6.3) (Σ0
c + δ) ∩ (C(L+ η + ̺µ̄) + δ) ⊂ U,

if ̺µ̄ is C0-sufficiently small. As µ̄ is carefully chosen so that its support is disjoint
from U , each curve γ̄ ∈ C (L + η + ̺µ̄) is clearly a solution of the Euler-Lagrange
equation determined by L, the term ̺µ̄ has no contribution to the equation along γ̄.
In other words, each curve in C (L+ η + ̺µ̄) generates an orbit dγ of φtL: R → TM .

The definition of C tells us that for each curve γ̄ ∈ C , γ|(−∞,t0] is backward Γ(s)-

semi static once γ̄|(−∞,t0] falls entirely into M̄−\(Σ0
c+δ), γ|[t1,∞) is forward Γ(s′)-semi

static once γ̄|[t1,∞) falls entirely into M̄+\(Σ0
c + δ). Therefore, (γ(t), γ̇(t)) → Ã(Γ(s))

as t→ −∞ and (γ(t), γ̇(t)) → Ã(Γ(s′)) as t→ ∞.

Because of the compactness of [0, 1], there are finitely many numbers s0, · · · , sk ∈
[0, 1] such that above argument applies if s and s′ are replaced respectively by si and
si+1. Set ci = Γ(si). �

Corollary 6.1. Let ci, ηi, µ̄i and ̺i be evaluated as in Theorem 6.4. Let Ui be an open
neighborhood of N (ci)∩Σ0

ci such that Ui∩suppµ̄i = ∅. Then, there exist large Ki > 0,
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Ti > 0 and small δ > 0 such that for each m̄, m̄′ ∈ M̄ , with −Ki ≤ m̄1 ≤ −Ki + 2π,
Ki − 2π ≤ m̄′

1 ≤ Ki, the quantity hTηi,µi(m̄, m̄
′) reaches its minimum at some T < Ti

and the corresponding minimizer γ̄i(t, m̄, m̄
′) satisfies the condition

(6.4) Image(γ̄i) ∩ (Σ0
ci + δ) ⊂ Ui.

There is some flexibility to choose the coordinate system and the non-degenerately
embedded codimension one torus. Let πs: M̄s → M = Tn be a covering space such
that M̄s = R× Tn−1 in the coordinate system G−1

s x.

Definition 6.3. For s ∈ [0, 1], the non-degenerately embedded codimension one torus
Σs is called admissible for the coordinate system G−1

s x if the lift of Σs to the covering
space M̄s consists of infinitely many connected and compact components, the first
component of the rotation vector is positive ω1(µΓ(s)) for each ergodic Γ(s)-minimal
measure.

Let us describe how the equivalence relation is established between two classes near
strong double resonance. Let Γ ⊂ A ⊂ α−1(E) be a curve skirting around the flat F0,
along which the α-function keeps constant and the third coordinate c3 keeps constant
as well. For each c ∈ Γ, there exists certain coordinate system and finitely many
intervals Ic,i for x2-coordinates such that each c-semi static curve passes through the
section Σc = {x1 = 0} and

N (c) ∩ Σc ⊂ {(x1, x2, x3) : x1 = 0, x2 ∈ ∪Ic,i, x3 ∈ T}.
Clearly, some open set U ⊃ N (c) ∩ Σc such that Vc = iU∗H1(U,R) = span{(0, 0, 1)},
from which one obtains that V ⊥

c = span{(1, 0, 0), (0, 1, 0)}. For each class c′ ∈ Γ very
close to c, one has c′ − c = (∆c1,∆c2, 0) ∈ V ⊥

c , thus, there exists a closed 1-form µ̄
such that [µ̄] = c′ − c and

suppµ̄ ∩ N (c) ∩ Σc = ∅.

Therefore, all classes along the curve Γ are equivalent in this case.

6.3. Local connecting orbits of type-h. Another type of local connecting orbits
look like heteroclinic orbits. Therefore, we call them local connecting orbits of type-h.

It is used to handle a typical case when an Aubry set falls in a neighborhood N of
some lower dimensional torus such that H1(M,N,Z) 6= 0. Equivalence relation seems
not exist among those classes if the Aubry sets is located in N . However, each of these
Aubry sets has homoclinic orbit, it may lead to the existence of heteroclinic orbits.
Towards this goal, let us work in suitable finite covering manifold π̌: M̌ →M . In this
covering space, these homoclinic orbits turn out to be semi-static orbits. We assume
that the Aubry set A(c, M̌ ) consists of finitely many classes A(c) = A1 ∪ · · · ∪ Ak

(k > 1), M̌ is chosen so that the lift of N , Ň = N1 ∪ · · · ∪Nk with k > 1, π̌Ni = N
and dist(Ni, Nj) > 0 provided i 6= j. In the following, we denote by Ni the open
neighborhood such that each Ni contains one Aubry class Ni ⊃ Ai.

If an Aubry set contains finitely many static classes only, denoted by Ãi (i =
1, 2, · · · , k), then these classes are transitive in the following sense: by rearranging the

subscripts, there exist k semi-static curves γi,i+1 (mod k) such that ω(dγi,i+1) ⊆ Ãi+1

and α(dγi,i+1) ⊆ Ãi [CP]. It does not exclude the case that some semi-static curve

γi,j exists such that j 6= i + 1 (mod k), α(dγi,j) ⊆ Ãi and ω(dγi,j) ⊆ Ãj. We say
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that Ãi is connected to Ãj through Ãi′ with i
′ = i+ 1, i + 2, · · · , j − 1 if there exist

semi-static curves γi′,i′+1 such that ω(dγi′,i′+1) ⊆ Ãi′+1 and α(dγi′,i′+1) ⊆ Ãi′ .

The Aubry set Ai is said to be directly connected to the Aubry set Aj if a semi-

static curve γ: R → M exists such that ω(dγ) ⊆ Ãj and α(dγ) ⊆ Ãi. That Ai is
directly connected to Aj does not imply that Aj is directly connected to Ai.

Pick up two points xi ∈ Ai, xj ∈ Aj, we consider the quantity

hTc (xi, xj) = inf
γ(−T )=xi
γ(T )=xj

∫ T

−T
Lc(dγ(t))dt + 2Tα(c).

By standard notation,
h∞c (xi, xj) = lim inf

T→∞
hTc (xi, xj).

Let γT : [−T, T ] → M be the minimal curve realizing the quantity hTc (xi, xj). Let
[ti,T , tj,T ] be the sub-interval of [−T, T ] such that γT (t) /∈ Ni ∪Nj for t ∈ (ti,T , tj,T )
but γT (ti,T ) ∈ N̄i and γ

T (tj,T ) ∈ N̄j . In the case that Ai is directly connected only to
Aj, tj,T − ti,T is upper bounded uniformly for T > 0. Some sequence of time tT and
a positive number ∆ > 0 such that [tT −∆, tT +∆] ⊂ (ti,T , tj,T ) for sufficiently large

T . The set of curves {γT (t− tT )|[−∆,∆]} is compact in C1-topology. Let γ|[−∆,∆] be
the accumulation point which can be uniquely extended to whole line γ: R → M .
Clearly, α(dγ) ⊂ Ãi and ω(dγ) ⊂ Ãj. If Ai is directly connected also to other Ak,
one can also obtain such a sequence of curves by introducing small perturbation so
that Ai is directly connected only to Aj and the support of the perturbation does
not touch the semi-static curves connecting Ai to Aj.

Given a semi-static curve one can choose an (n−1)-dimensional disk Σ intersecting
the curve transversally. This disk also intersects semi-static curves nearby. A semi-
static curve is said disconnected to other semi-static curves if the intersection point
is disconnected to the intersection points of all other semi-static curves.

Theorem 6.5. (Connecting Lemma) Assume that the Aubry set contains finitely
many classes A(c) = A1 ∪ · · · ∪ Ak, there exist open domains N1 · · ·Nk such that
Ai ⊂ Ni for each 1 ≤ i ≤ k and dist(Ni, Nj) > 0 provided i 6= j. If each semi-static
curves connecting different Aubry sets is disconnected to all other semi-static curve,
then there exists some orbit dγ′ of φtL connecting Ã(c) to Ã(c′) provided α(c) = α(c′),
the class c′ is close to the class c, A(c′) ⊂ ∪ki=1Ni and two sets Ni, Nj exist such that
A(c′) ∩Ni 6= ∅ and A(c′) ∩Nj 6= ∅.

Proof. In autonomous case, Ã(c) can be connected to Ã(c′) only if α(c) = α(c′). If

both c and c′ are the minimal points of the α-function, then Ã(c) ∩ Ã(c′) 6= ∅ (see
[Ms]), it is trivial to connect an Aubry set to itself. Thus we only need to work on
the energy level set H−1(E) with E > minα, the minimum of the α-function. In this
case, we obtain from [Lx] that

Proposition 6.3. Let L : Tn → R be an autonomous Lagrangian of Tonelli type, the
class c not be the minimal point of the α-function, and Ωc be the flat of the β-function
such that

ω ∈ Ωc ⇒ α(c) + β(ω) = 〈c, ω〉.
Then, there exists a coordinate system such that each rotation vector in this flat has
positive first component ω1 > 0.
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The existence of such connecting orbits is derived from the upper-semi continuity
of pseudo-connecting orbit set (see Definition 6.2). For the definition of this set in
autonomous case, we need to work in certain covering space π : M̄ = R×Tn−1 where
ω1(µc) > 0 holds for each ergodic minimal measure µc. By Proposition 6.3, it is
possible if we choose suitable coordinate system. Let γ̄ denote the lift of the curve
γ : R →M , γ̄1 denote the first coordinate.

Let Σ0 = {x : x1 = 0} be a codimension one hyperplane separating M̄ into two
parts, the upper part M̄+ connected to {x1 = ∞} and the lower part M̄− connected
to {x1 = −∞}. Let Σ0 + δ denote the δ-neighborhood of Σ0 in M̄ , we introduce
a smooth function ρ ∈ Cr(M̄, [0, 1]) such that ρ = 0 if x ∈ M̄−\(Σ0 + δ), ρ = 1
if x ∈ M̄+\(Σ0 + δ). Let η and µ̄ be closed 1-forms on M such that [η] = c and
[η + µ̄] = c′. They have natural lift on M̄ . Let µ = ρµ̄. We carefully choose smooth
function ψ = ψ(x, ẋ) such that ψ = 0 as x1 ∈ (−∞,−1) ∪ (1,∞) (the construction
will be demonstrated later) and let

Lη,µ,ψ = L− η − µ− ψ.

Let m̄, m̄′ be two points in M̄ , we define

hTη,µ,ψ(m̄, m̄
′) = inf

γ(−T )=m̄

γ(T )=m̄′

∫ T

−T
(Lη,µ,ψ(dγ(t)) + α(c))dt.

For small µ and ψ, the Lagrangian Lη,µ,ψ satisfies the conditions required for space-
step Lagrangian. In the following we shall use the notation Cη,µ,ψ = C (Lη,µ,ψ) to
denote the relevant set of the pseudo-connecting curves.

Let us recall a graph property. Given two Aubry classes Ãi and Ãj, let Ñij be the

set of all semi-static orbits whose α-limit set is in Ãi and the ω-limit set is in Ãj.

Let Nij = πxÑij, where πx denotes the standard projection TM → M . Then, the
inverse of πx, restricted on Nij , is Lipschitz. The proof is the same as that for the
graph property of Aubry set.

If Ãi is directly connected to Ãj, there exists a semi-static orbit dζij connecting

Ãi to Ãj. Pick up a curve ζ̄ij in the lift of ζij to M̄ such that its intersection point
x0 with the section {x : x1 = 0} is not close to ∪N̄i, the lift of ∪Ni to M̄ . Denote by

v0 = ζ̇ij the velocity of ζij at πx0, obviously, v0 6= 0. Let ̺′ be a smooth function in
s such that ̺′ = 0 for s ≤ 0, ̺′ = 1 for s > δ and ˙̺′ > 0 for s ∈ (0, δ), where δ > 0
is suitably small. Let ̺ij(x) = ̺′(〈x − x0, v0〉), then 〈∂̺ij(x), v〉 = 〈v0, v〉 ˙̺′(s) where
s = 〈x− x0, v0〉.

We choose an (n − 1)-dimensional plane Σij,s = {x : 〈x − x0, v0〉 = s}. Since
the set of semi-static curves is totally disconnected, we can choose, for each s ∈
[0, δ], two suitably small (n − 1)-dimensional topological disks D′

ij,s,Dij,s located in

Σij,s and small δ1 > 0 such that D′
ij,s ∩ (∪Nj) = ∅, D′

ij,s ⊃ Dij,s + δ1, certain
semi-static curve ζij passes through the disk Dij,s and no semi-static curve in Nij

passes through D′
ij,s\Dij,s. These disks can be chosen so that the Hausdorff distance

dH(Dij,s,Dij,s′) → 0 and dH(D
′
ij,s,D

′
ij,s′) → 0 as s′ → s. Let D′

ij = ∪s∈[0,δ]D′
ij,s,

Dij = ∪s∈[0,δ]Dij,s. We choose a smooth non-negative function wij: M̄ → R such
that suppwij ∩ {x : 0 ≤ 〈x− x0, v0〉 ≤ δ} = D′

ij and wij ≡ λ if x ∈ Dij .



ARNOLD DIFFUSION IN A PRIORI STABLE SYSTEMS 77

For different (i, j) 6= (i′, j′), it is possible that Dij ∩ Ni′,j′ 6= ∅. But it does not

make trouble, as Ñij ∩ Ñi′j′ = ∅. Let Sij be the graph of a Lipschitz map x → ẋ

containing Ñij. Therefore, we can choose a smooth function υij : TM → [0, 1] such
that υij ≡ 1 when (x, ẋ) ∈ (Sij + δ2)∩TD′

ij and υij ≡ 0 when (x, ẋ) /∈ Sij + δ3, where
δ3 > δ2 > 0 are small numbers. As there are finitely many Aubry classes, we have
suppυij ∩ suppυi′j′ = ∅ if (i, j) 6= (i′, j′).

Let us consider what curves contained in the set Cη,0,ψ by assuming

ψ =
∑

υijwij〈∂̺ij , ẋ〉.

Since the term 〈∂̺ij , ẋ〉 = 0 for {〈x − x0, v0〉 ≤ 0} ∪ {〈x − x0, v0〉 ≥ δ}, we do not
care about how wij is defined on those (n− 1)-dimensional plane Σij,s with s /∈ [0, δ].
The set {〈x− x0, v0〉 = s} ⊂ M̄ may extend to infinity, but it does not make trouble
since the support of wij is contained in Dij,s when 〈x− x0, v0〉 = s.

Let ψ0 be the function defined on TM such that πψ|{x1∈[−π,π]} = ψ0. By the
construction of ψ we see that ψ0 is well-defined and smooth. The Aubry set for the
Lagrangian L − η − ψ0 is the same as for L − η. As there is no semi-static curve of
L− η touches the tube D′

ij\Dij , each semi-static curve of L− η also solves the Euler-
Lagrange equation determined by L− η − ψ0. Because of the upper semi-continuity
of L → N (L), each semi-static curve for L − η − ψ0 stays in a small neighborhood
of N (L). Since ψ < 0 if x ∈ ∪Dij and ψ = 0 if x /∈ ∪D′

ij, a curve is still semi-static
for L− η− ψ0 if it is semi-static for L− η and passes through the solid cylinder Dij.
It is based on following argument. Since the 1-form wij〈∂̺ij , dx〉 is closed in Dij,
〈∂̺ij , ẋ〉 = ˙̺′(s)〈ẋ, v0〉 = 0 on each Σij,s with s /∈ [0, δ], this term has no contribution
to the Euler-Lagrange equation along this semi-static curve, i.e. this curve solves the
Euler-Lagrange equation determined by L− η−ψ0 also. Any other semi-static curve
for L − η is no longer minimal for L − η − ψ0 if it connects Ai to Aj but does not
pass through Dij, for there exists some semi-static curve ζij of L− η passing through
Dij , along which the action is smaller than the action along γij.

Let us go back to the covering space M̄ . For small ψ, realized by choosing small wij,
each curve γ̄ ∈ Cη,0,ψ stays in a small neighborhood of certain curve belong to the lift
of the semi-static curve. It is due to the upper semi-continuity of L→ C (L). By the
discussion above, a curve does not belong to Cη,0,ψ if its projection does not belong
to the Aubry set for L − η, or dose not pass through Dij although it is semi-static
and connects Ai to Aj.

Let ζ̄ij be a curve in Cη,0,ψ passing through Dij. Its projection πζ̄ connects Ai to
Aj. Let k∗ζ̄ij = ζ̄ij + (k, 0, · · · , 0) with k ∈ Z denote its shift. Each of these curves
solves the Euler-Lagrange equation determined by Lη,0,ψ. However, except for ζ̄ij,
any other curve k∗ζ̄ij with k 6= 0 does not belong to Cη,0,ψ because they do not pass
through Dij , the action along these curves is bigger than the action along ζ̄ij. It can
be easily seen from the definition 6.2: minimal property persists under translation.

In the cylinder M̄ we choose two sections Σ+ and Σ− such that:

1, both are the deformation of the section {x : x1 = constant}, they divide M̄
into three parts, M̄+, M̄− and M̄0. M̄+ is homeomorphic (0,∞) × Tn−1, M̄− is
homeomorphic (−∞, 0) × Tn−1 and M̄0 is homeomorphic to (0, 1) × Tn−1. Let Σ±
denote the boundary of M̄± shared with M̄0;
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2, there exists δ4 > 0 such that ∪D′
ij + δ4 ⊂ M̄0;

3, for each ζ̄ij ∈ Cη,0,ψ, both Imageζ̄ ∩ M̄+ and Imageζ̄ ∩ M̄− are connected, i.e. if
one moves into M̄± along the curve as t→ ±∞ then it stays in M̄± forever.

Let U+
ij be the tube connectingDij to M̄

+, U+
ij∩Dij = Dij,δ, each ζ̄ij ∈ Cη,0,ψ passes

through U+
ij , does not touch the boundary of U+

ij before it moves forward into M̄+.

Similarly, we define the tube U−
ij connecting Dij to M̄

− such that U−
ij ∩Dij = Dji,0,

each of those curve passes through U−
ij , does not touch the boundary of U−

ij before it

is going to retreat back into M̄−.

Since there are finitely many Aubry classes only, by choosing suitably small D′
ij we

can assume dist(D′
ij ,D

′
i′j′) > 0 if (i, j) 6= (i′, j′). A closed 1-form µ̄ clearly exists such

that [µ̄] = c′ − c and suppµ̄ ∩ (∪Dij) = ∅. Let ρ′ : R → [0, 1] be a smooth function
such that ρ′ = 0 for s ≤ 0, ρ′ = 1 for s > δ and let U ′

ij be an open set containing the

closure of U+
ij ∪D′

ij ∪U−
ij and dist(U ′

ij , U
′
i′j′) > 0 if (i, j) 6= (i′, j′). We define a smooth

function ρ: M̄ → [0, 1] such that ρ(x) = ρ′(〈x− x0, v0〉) if x ∈ Dij where x0 = ζ̄ij(t0)

and v0 =
˙̄ζij(t0), ρ = 1 if x ∈ M̄+ ∪ (∪U+

ij ) and ρ(x) = 0 if x ∈ M̄− ∪ (∪U−
ij ). By the

construction of M̄±, U±
ij and Di,j, we see the existence of such function.

Let us now study the Lagrangian Lη,µ,ψ with µ = ρµ̄. By condition, A(c′)∩Ni 6= ∅,
A(c′)∩Nj 6= ∅ and i 6= j. Thus, there exist xi ∈ M(c)∩Ni and xj ∈ M(c′)∩Nj . Let
x̄i and x̄j be two points in M̄ such that πx̄i = xi and πx̄j = xj and let x̄ik = x̄i− ke1
and x̄jk = x̄j + ke1 where e1 = (1, 0, · · · , 0). Let γ̄k: [−T, T ] → M̄ be the minimizer
of

inf
T ′>0

hT
′

η,µ,ψ(x̄ik, x̄jk) =

∫ T

−T
Lη,µ,ψ(dγ̄k(t))dt + 2Tα(c),

and let k → ∞, we obtain a sequence of {γ̄k}. Let γ̄: R → M̄ be the accumulation
point of the sequence. Due to the upper semi-continuity of Cη,µ,ψ with respect to
(η, µ, ψ), the curve γ̄ must pass through ∪Dij if |c′− c| is suitably small. Thus, along
the curve γ̄ the term ρµ̄ does not contribute the Lagrange equation, namely, the curve
determines an orbit of φtL. Since this curve is in the set Cη,µ,ψ, therefore, it connects

Ã(c) to Ã(c′). This completes the proof. �

6.4. Locally minimal property. The orbit dγ obtained in Theorem 6.5 is locally
minimal in the sense we define in the following. It is crucial for the variational
construction of global connecting orbits. The set of local minimal curve will not be
empty if the Aubry set A(c) has some totally disconnected minimal homoclinic orbit,
the 1-form µ as well as the function ψ is carefully chosen for the modified Lagrangian.

Here is the definition for autonomous systems:

Definition 6.4. Let N1, · · · , Nk ⊂ M be open domains such that dist(Ni, Nj) > 0
(k > 1). We assume that A(c),A(c′) ⊂ ∪Ni, [η] = c, [η + µ̄] = c′, α(c) = α(c′)
and the first component of both c- and c′-minimal measures is positive ω1(µc) > 0,
ω1(µc′) > 0. Let π : M̄ = R × Tn−1 → M be the covering space, denote by γ̄ the lift
of a curve γ : R → M . Then, dγ: TM → R is called local minimal orbit of type-h
that connects Ã(c) to Ã(c′) if



ARNOLD DIFFUSION IN A PRIORI STABLE SYSTEMS 79

1, dγ is an orbit of φtL, α(dγ) ⊂ Ã(c) and ω(dγ) ⊂ Ã(c′). There exist 1 ≤ i 6= j ≤ k
such that α(dγ) ⊂ TNi and ω(dγ) ⊂ TNj;

2, there exist two (n − 1)dimensional disks V −
i , V +

j ⊂ M̄ and positive numbers

T, d > 0 such that πV −
i ⊂ Ni\A(c), πV +

j ⊂ Nj\A(c′), γ transversally passes πV −
i

and πV +
j at the time −T and T respectively, and

h∞c (x−, πm̄0) + hT
′

η,µ,ψ(m̄0, m̄1) + h∞c′ (πm̄1, x
+)(6.5)

− lim
t
−
i

→∞

t
+
i

→∞

∫ t+i

−t−i
Lη,µ,ψ(dγ(t))dt − (t−i + t+i )α(c) > 0

holds for each (m̄0, m̄1, T
′) ∈ ∂(V −

i × V +
j × [T − d, T + d]), x− ∈ Ni ∩ πx(α(dγ))

and x+ ∈ Nj ∩ πx(ω(dγ)). Where t−i → ∞ and t+i → ∞ are the sequences such that

γ(−t−i ) → x− and γ(t+i ) → x+.

In this definition, the term h∞c (x−, πm̄0)+h
T ′

η,µ,ψ(m̄0, m̄1)+h
∞
c′ (πm̄1, x

+) measures

the smallest action of Lη,µ,ψ along those curves which join m0 to m1 with time 2T ′

such that x− is an accumulation point of these curves as t → −∞ and x+ is an
accumulation point of the curves as t→ ∞.

Remark. In the space of curves, a neighborhood of the curve γ consists of those
curves that start from V − and reach V + within a time between 2(T −d) and 2(T +d).
Different time scale determine orbits in different energy levels, that is why we consider
the time scale T ′ ∈ [T − d, T + d] as variable while we search for the local minimum.

Remark. This definition applies also to the case that there exists only one Aubry
class staying in the small neighborhood of lower-dimensional torus. In that case, we
can consider a suitable finite covering of the configuration manifold. In the finite
covering configuration space, there are more than one Aubry class.

The following is the version for time-periodic systems

Definition 6.5. Let N1, · · · , Nk ⊂M (k > 1) be open domains withdist(Ni, Nj) > 0.
We assume that A0(c),A0(c

′) ⊂ ∪Ni, [η] = c, [η + µ̄] = c′. Then, dγ: TM → R is

called local minimal orbit of type-h that connects Ã(c) to Ã(c′) if

1, dγ is an orbit of φtL, the α-limit and the ω-limit sets of dγ are contained in Ã(c)

and Ã(c′) respectively, α(dγ)|t=0 ⊂ TNi and ω(dγ)|t=0 ⊂ TNj with i 6= j;

2, there exist two open balls V −
i , V +

j and two positive integers t−, t+ such that

V̄ −
j ⊂ Ni\A0(c), V̄

+
j ⊂ Nj\A0(c

′), γ(−k−) ∈ V −
i , γ(k+) ∈ V +

j and

h∞c (x−,m0) + hk
−,k+

η,µ,ψ (m0,m1) + h∞c′ (m1, x
+)

− lim inf
k
−
i

→∞

k
+
i

→∞

∫ k+i

−k−i
Lη,µ,ψ(dγ(t), t)dt − k−i α(c) − k+i α(c

′) > 0

holds ∀ (m0,m1) ∈ ∂(V −
i × V +

j ), x− ∈ Ni ∩ πx(α(dγ))t=0, x
+ ∈ Nj ∩ πx(ω(dγ))|t=0,

where k−i , k
+
i ∈ Z+ are the sequences such that γ(−k−i ) → x− and γ(k+i ) → x+.
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The set of curves starting from V − and reaching V + with time k−+k+ constitutes
a neighborhood of the curve γ in the space of curves. Once a curve γ̃ touches the
boundary of this neighborhood, the action of Lη,µ,ψ along γ̃ will be larger than the
action along γ. As V −, V + and therefore d > 0 can be chosen arbitrarily small, it is
reasonable to call it locally minimal.

7. Variational onstrution of global onneting orbits

In this section we show how to construct global connecting orbits by variational
method, provided a generalized transition chain exists. In the next section, the main
result (Theorem 1.1) is proved by showing the genericity of such transition chain.

7.1. Generalized Transition chain. The concept of transition chain was proposed
by Arnold in his celebrated paper [Ar1] where it is formulated in geometric language.
The generalized transition chain formulated in our previous work [CY1, CY2] is in
variational version which need less information about the geometric structure.

Definition 7.1. (Autonomous Case) Let c, c′ be two cohomolgy classes in H1(M,R).
We say that c is joined with c′ by a generalized transition chain if a continuous curve
Γ: [0, 1] → H1(M,R) exists such that Γ(0) = c, Γ(1) = c′, α(Γ(s)) ≡ E > minα and
for each s ∈ [0, 1] at least one of the following cases takes place:

(H1), the Aubry set is composed of finitely many classes only. There exist certain
finite covering: π̌ : M̌ → M , two open domains N1, N2 ⊂ M̌ with d(N1, N2) > 0, an
(n − 1) dimensional disk Ds and small numbers δs, δ

′
s > 0 such that

i, the Aubry set A(Γ(s))∩N1 6= ∅, A(Γ(s))∩N2 6= ∅ and A(Γ(s′))∩(N1∪N2) 6= ∅
for each |s′ − s| < δs,

ii, π̌N (Γ(s), M̌ )|Ds\(A(Γ(s)) + δ′s) is non-empty and totally disconnected;

(H2), For each s′ ∈ (s − δs, s + δs), Γ(s
′) is equivalent to Γ(s). Some section Σs

and some neighborhood U of N (Γ(s))∩Σs exist such that Γ(s′)−Γ(s) ∈ ker i∗U . Each
class Γ(s′) is associated with an admissible section Σs′ and an admissible coordinate
system G−1

s′ x.

Remark. Because of upper semi-continuity of Mañé set, it is possible that there
exist some classes for which both cases take place.

In the case (H1), if the Aubry set contains only one Aubry class, one can take
some finite covering π̌ : M̌ → M non trivial if H1(M,A,Z) 6= 0. A typical case is
that A(Γ(s)) is contained in a small neighborhood of lower dimensional torus. One
takes suitable finite covering space so that A(Γ(s), M̌ ) contains exactly two connected
components. If A(Γ(s)) contains more than one class, we choose M̌ =M .

The existence of generalized transition chain implies that there exists a sequence
of local connecting orbits. More precisely, there exists a sequence of locally minimal
curve γi, a sequence of numbers si (s = 0, 1, · · · ,m) such that α(dγi) ⊂ A(Γ(si))
and ω(dγi)) ⊂ A(Γ(si+1)). Global connecting orbits are constructed shadowing these
local connecting orbits.
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One can also define generalized transition chain for time-periodic systems.

Definition 7.2. (Time-periodic Case) Let c, c′ be two classes in H1(M,R). We
say that c is joined with c′ by a generalized transition chain if a continuous curve Γ:
[0, 1] → H1(M,R) exists such that Γ(0) = c, Γ(1) = c′ and for each s ∈ [0, 1] at least
one of the following cases takes place:

(H1), the Aubry set is composed of finitely many classes only. There exist certain
finite covering: π̌ : M̌ →M , two open domains N1, N2 with d(N1, N2) > 0 and small
number δs, δ

′
s > 0 such that

i, the Aubry set A0(Γ(s))∩N1 6= ∅, A0(Γ(s))∩N2 6= ∅ and A0(Γ(s
′))∩(N1∪N2) 6=

∅ for each |s′ − s| < δs,

ii, π̌N0(Γ(s), M̌ )\(A0(Γ(s)) + δ′s) is non-empty and totally disconnected;

(H2), For each s′ ∈ (s− δs, s+ δs), Γ(s
′) is equivalent to Γ(s), namely, there exists

a neighborhood of N0(Γ(s)), denoted by U , such that Γ(s′)− Γ(s) ∈ ker i∗U .

7.2. Variational construction. Given x ∈ M and c ∈ H1(M,R), there exists at
least a forward (backward) c-semi static curve γ+c : [0,∞) →M (γ−c : (−∞, 0] →M)
such that γ±c (0) = x. It determines certain velocity v±x,c = γ̇±c (0), for almost all
points, the velocity is uniquely determined. Before proving the main theorem of this
subsection, let us formulate and prove a proposition.

Proposition 7.1. Given an Aubry set, the Aubry distance from any Aubry class Ai

to all other Aubry classes is assumed have positive lower bound, namely, some d > 0
exists such that dc(Ai,Aj) ≥ d > 0 for all j 6= i. Let

Ni = {m ∈M : h∞(m,x) + h∞(x,m) ≤ d

6
, ∀ x ∈ Ai},

then for all m0,m1 ∈ Ni and for any x ∈ Ai one has

(7.1) h∞(m0, x) + h∞(x,m1) = h∞(m0,m1);

for any m0,m1 ∈ Ni and any x ∈ A\Ai one has

(7.2) h∞(m0, x) + h∞(x,m1) ≥ h∞(m0,m1) +
d

2
.

Proof. : For each pair of points (m0,m1) ∈M ×M , we claim that there exists some
Aubry class Aj such that

h∞(m0,m1) = h∞(m0, x) + h∞(x,m1)

holds for each x ∈ Aj. Indeed, let ki → ∞ be a subsequence of integers such that

lim
i→∞

hki(m0,m1) = h∞(m0,m1),

let γki : [−ki, ki] → M be the minimizer for hki(m0,m1). There exists at least one
point x ∈ A which is the accumulation point of {γki(ti)}i∈Z. Otherwise, the quantity
hki(m0,m1) → ∞ as ki → ∞.

Given m ∈ Ni, we claim that (7.1) and (7.2) hold if m0 = m1 = m. Let kℓ → ∞ be
a sequence such that limkℓ→∞ hkℓ(m,m) = h∞(m,m) and let γkℓm (t): [−kℓ, kℓ] → M

be the minimizer of hkℓ(m,m). There is a positive number d1 > 0 such that the
ordinary distance d(γkℓm (t),Aj) ≥ d1 > 0 for any t ∈ [−kℓ, kℓ] and j 6= i. Otherwise
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along the curve γkℓm (t) there exists a point getting closer and closer to a point xj ∈ Aj.
Consequently, one would obtain from the property that dc(Ai,Aj) ≥ d > 0 for each
j 6= i that

h∞(m,m) =h∞(m,xj) + h∞(xj,m)

≥h∞(xi, xj)− h∞(xi,m) + h∞(xj , xi)− h∞(m,xi)

≥5

6
d

where xi ∈ Ai. On the other hand, we have

h∞(m,m) ≤ h∞(m,xi) + h∞(xi,m) ≤ 1

6
d.

It is a contradiction. Therefore, some xi ∈ Ai and tℓ ∈ [0, kℓ] exist such that tℓ → ∞
as kℓ → ∞ and γkℓm (tℓ) → xi. This proves (7.1) in case m1 = m2.

For different points m0,m1 ∈ Ni and x ∈ Aj with j 6= i, let ζks (t,m0, x): [−k, k] →
M be the curve which minimizes the quantity hk(m0, x), let kj be the subsequence

of k such that limkj→∞ hkj (m0, x) = h∞(m0, x). In autonomous case, it converges as

k → ∞. Similarly, we let ζku(t, x,m1): [−k, k] → M be the curve which minimizes

the quantity hk(x,m1), let k
′
j be the sequence of k such that limk′j→∞ hk

′
j (x,m1) =

h∞(x,m1). Let ℓ = 0, 1, γkℓ : [−k, k] → M be the minimizer of hk(mℓ,mℓ) and let

kℓ be the subsequence of k such that hkℓ(mℓ,mℓ) → h∞(mℓ,mℓ). By the proof we

just finished, there exists xℓ ∈ Ai and integer tiℓ ∈ [−kℓ, kℓ] such that γkℓℓ (tiℓ) → xℓ
and tiℓ → ∞ as kℓ → ∞. Let ξk01: [−k, k] → M be the minimizer of hk(x0, x1), k

i
01

be the subsequence of k such that hk
i
01(x0, x1) → h∞(x0, x1), let ξ

i
10: [0, k] → M

be the minimizer of hk(x1, x0), k
i
10 be the subsequence of k such that hk

i
1(x1, x0) →

h∞(x1, x0). Given arbitrarily small δ > 0, we have sufficiently large kj, k
′
j , k

i
0, k

i
1, k

i
01

and ki10 such that

|h∞(m0, x)− hkj (m0, x)| < δ,

|h∞(x,m1)− hk
′
j (x,m1)| < δ,

|h∞(mℓ,mℓ)− hk
i
ℓ(mℓ,mℓ)| < δ, ℓ = 0, 1

|h∞(x0, x1)− hk
i
01(x0, x1)| < δ,

|h∞(x1, x0)− hk
i
10(x1, x0)| < δ.

Since x0, x1 ∈ Ai, we have dc(x1, x0) = 0. Consequently,

ht
i
0(m0, x0) + hk

i
01(x0, x1) + hk

i
1−ti1(x1,m1)(7.3)

+ht
i
1(m1, x1) + hk

i
10(x1, x0) + hk

i
0−ti0(x0,m0)

≤1

3
d+ 6δ.

Since x is in Aubry class Aj, while x0, x1 ∈ Ai, one has

hk
′
j (x,m1) + ht

i
1(m1, x1) + hk

i
10(x1, x0)(7.4)

+ hk
i
0−ti0(x0,m0) + hkj (m0, x)

≥d− 5δ.
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Because δ can be arbitrarily small, by subtracting (7.3) from (7.4) we obtain

h∞(m0, x) + h∞(x,m1)−
2

3
d

≥h∞(m0, x0) + h∞(x0, x1) + h∞(x1,m1)

≥h∞(m0,m1)

it verifies (7.2). Since (7.2) holds for each x ∈ Aj with j 6= i and for any m0,m1 ∈ Ni,
(7.1) hold for each x ∈ Ai and for any m0,m1 ∈ Ni. This completes the proof of the
proposition. �

Theorem 7.1. If c is connected to c′ by a generalized transition chain, then

1, there exists an orbit of the Lagrange flow φtL, dγ: R → TM which connects the

Aubry set Ã(c) to Ã(c′), namely, α(dγ) ⊆ Ã(c) and ω(dγ) ⊆ Ã(c′);

2, given x, x′ ∈ M and arbitrarily small δ > 0, there exists an orbit (γ, γ̇) of
φtL passing through δ-neighborhood of the points (x, v+x,c) and (x′, v−x,c′) successively,

namely, t < t′ such that (γ(t), γ̇(t)) ∈ Bδ(x, v
+
x,c) and (γ(t′), γ̇(t′)) ∈ Bδ(x

′, v−x,c′).

Proof. We only need to study the autonomous case. Time periodic case can be treated
in the same way. Therefore, one has that α(Γ(s)) ≡ E > minα. By adding suitable
constant on the Lagrangian, we assume E = 0 to simplify notation.

First of all, as a generalized transition chain Γ(s) is assumed, the Aubry set Ã(Γ(s))

can be connected to some Ã(Γ(s′)) by locally minimal orbits of either type-h, or type-
c if s′ close to s. So, there is a sequence 0 = s0 < s1 < · · · < sk = 1 such that for
each 0 ≤ j < k, Ã(Γ(sj)) is connected to Ã(Γ(sj+1)) by some local minimal orbits.
The global connecting orbits are constructed shadowing such a sequence of orbits.

Let cj = Γ(sj). We divide the set {0, 1, · · · , k} into m parts

{0, 1, · · · k} = {0, 1, · · · , i1} ∪ {i1 + 1, · · · , i2} ∪ · · · ∪ {im−1 + 1, · · · , im = k}.
The rule to make such a partition is that for all i = ij , ij + 1, · · · , ij+1 − 1, Ã(ci) is

connected to Ã(ci+1) by a local minimal orbit of the same type. More precisely, let
Λc and Λh be the subset of {i1, i2, · · · , im}, Λc ∪ Λh = {i1, i2, · · · , im}, Λc ∩ Λh = ∅.

If ij ∈ Λı, then for all i = ij, ij + 1, · · · , ij+1 − 1, Ã(ci) is connected to Ã(ci+1) by a
local minimal orbit of type-ı (ı =c, or h).

Since the map c→ Ñ (c,M) is upper semi-continuous, once the Mañé set Ñ (Γ(s))

is in the case (H1) (or H2), then for s′ sufficiently close to s, the set Ñ (Γ(s)) is also in
the case (H1) (or H2). Thus, for each ij ∈ Λh, by choosing cij−1 and cij+1 sufficiently
close to cij and cij+1−1 respectively, we can assume that both cij−1 and cij+1 satisfy
the condition (H1) also.

With the class ci we associate an admissible coordinate system x→ G−1
i x and let

G−1
i = [g−1

i,1 , g
−1
i,2 , · · · , g−1

i,n ]
t denote the inverse of Gi. Because we consider the problem

on H−1(E) with E > minα, we can choose Gi for each i ∈ Λc (see Proposition 6.3)
such that, in the new coordinate system, the first component of ω(µci) is positive for
each ergodic ci-minimal measure. In virtue of the upper semi-continuity of Mañé set
on cohomology class, one can assume that

〈g−1
j,1 , ω(µci)〉 > 0, ∀ j = i− 1, i
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holds for each ergodic component µci as ci−1 is chosen suitably close to ci. It means
that the ω1(µci) > 0 holds in the coordinates not only determined by Gi, but also
determined by Gi−1 as well as by Gi+1. Therefore, ∃ xi,1 > 0 such that

〈g−1
i,1 ,∆γ̃i〉 ≥ 2π, whenever 〈g−1

i−1,1,∆γ̃i〉 ≥ xi,1,

〈g−1
i−1,1,∆γ̃i〉 ≥ 2π, whenever 〈g−1

i,1 ,∆γ̃i〉 ≥ xi,1(7.5)

holds for each ci-semi-static curve γi, where γ̃i denotes a curve in the lift of γi to
universal covering space and ∆γ̃i = γ̃i(t

′)− γ̃i(t) with t
′ > t.

As the second step, let us describe the minimal properties of local connecting orbits
of type-h as well as of type-c.

The case of type-h. For each integer i ∈ ⋃

ij∈Λh
{ij , ij+1, · · · , ij+1−1}, the con-

dition (H1) holds for generalized transition chain. Namely, in certain finite covering
space π̌ : M̌ →M , the Aubry set for i and i+1 consists of more than one but finitely

many classes A(cℓ, M̌ ) = ∪Aj
ℓ for ℓ = i, i + 1. By the assumption of (H1), some

open domains N−
i , N

+
i+1 ⊂ M̌ exist such that d(N−

i , N
+
i+1) > 0, A(ci, M̌) ∩N−

i 6= ∅,

A(ci, M̌) ∩ N+
i+1 6= ∅, A(ci+1, M̌ ) ∩ N+

i+1 6= ∅ and N (ci, M̌ )\(A(ci) + δ′i) 6= ∅ is
totally disconnected, with small δ′i > 0.

The new coordinate system x → G−1
i x of Tn is introduced such that (7.5) holds.

If writing M̌ = {(x1, x2, · · · , xn) : xi ∈ T}, we introduce the covering space M̄ =
{(x1, x2, · · · , xn) : x1 ∈ R, xi ∈ T for i ≥ 2}. We shall work with this covering space
π : M̄ → M̌ . For closed 1-forms ηi and µ̄i on M̌ we use the same symbol to denote
their natural lift to M̄ .

Recall the proof of Theorem 6.5. Some decomposition of M̄ exists such that M̄ =
M̄+
i ∪M̄i,0∪M̄−

i such that M̄+
i is diffeomorphic to [0,∞)×Tn−1, M̄−

i is diffeomorphic
to (−∞, 0]×Tn−1 and M̄i,0 is diffeomorphic to (0, 1)×Tn−1. Some open and connected
disks U+

i , U
−
i ,Di,D

′
i ⊂ M̄i,0 and δi > 0 exist such that Di+δi ⊂ D′

i, (πD
′
i+δi)∩N−

i =

∅ and (πD′
i + δi) ∩N+

i+1 = ∅, the intersection of any two of these sets is empty and

the closure of M̄+
i ∪U+

i ∪Di∪U−
i ∪ M̄−

i , denoted by M̄ c
i , is connected, see Figure 8.

Figure 8.

As it was studied in the subsection of 6.3 (local connecting orbit of type-h), some
function wi, ρi: M̄ → [0, 1], some closed 1-form ηi, µ̄i, ̺i and some small constant
δi > 0 exist such that [ηi] = ci, [µ̄i] = ci+1 − ci, suppµ̄i ∩ D̄i = ∅, suppwi ⊂ D′

i,
wi|Di

= constant, ρi(x) = 1 if x ∈ M̄+
i ∪ U+

i and ρi(x) = 0 if x ∈ U−
i ∪ M̄−

i .

Let µi = ρiµ̄i, ψi = wi̺i we introduce a space-step Lagrangian for the coordinate
system G−1

i x

Lηi,µi,ψi
= L− ηi − µi − ψi.
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In virtue of Theorem 6.5, some curve ζ̄i ∈ Cηi,µi,ψi
(pseudo connecting orbit set) such

that its projection down to M̌ , ζi = πζ̄i, determines an orbit dζi = (ζi, ζ̇i) connecting

certain Aubry class Ãj
i to another Aubry class Ãj′

i+1. Here, the subscript i indicates
the Aubry set is for the cohomology class ci, the superscript j indicates which Aubry
class it belongs to. Such curve stays entirely in the interior of M̄ c

i . Therefore, along
such curve both µi and ψi do not contribute to the Euler-Lagrange equation, i.e. dζi
is an orbit of φtL.

As pointed out in Definition 6.4, such local connecting orbit of type-h is endowed
with certain kind of local minimality. There exist two (n − 1)-dimensional disks V −

i

and V +
i+1 with πV −

i ⊂ N−
i \Aj

i , πV
+
i+1 ⊂ N+

i+1\A
j′

i+1, large number T+
i > 0, suitably

small di > 0 and quite small ǫ∗i > 0 such that ζ̄i(−T+
i ) ∈ V −

i , ζ̄i(T
+
i ) ∈ V +

i+1 and

min
{

h∞ci (x
−,m0) + hTηi,µi,ψi

(m̄0, m̄1) + h∞ci+1
(m1, x

+) :(7.6)

(m̄0, m̄1, T ) ∈ ∂(V −
i × V +

i+1 × [T+
i − di, T

+
i + di])

}

≥ min
{

h∞ci (x
−,m0) + hTηi,µi,ψi

(m̄0, m̄1) + h∞ci+1
(m1, x

+) :

(m̄0, m̄1, T ) ∈ V −
i × V +

i+1 × [T+
i − di, T

+
i + di]

}

+ 5ǫ∗i ,

where x− ∈ πxα(dζi) ⊆ Aj
i , x

+ ∈ ω(dζi) ⊆ πxAj′

i+1. The disks V −
i and V +

i+1 are

chosen so that ζ̄i intersects them transversally, for each (m̄0, m̄1, T
′) ∈ V −

i × V +
i+1 ×

[T+
i −di, T+

i +di], the minimizer of hTηi,µi,ψi
(m̄0, m̄1), γ̄i(t, m̄0, m̄1, T ) has the property

(7.7) γ̄i(t) ∈ M̄ c
i ∀ t ∈ [−T, T ].

Let ζi−1 be a locally minimal curve such that the orbit dζi−1 connecting Ãi−1 to Ãi.

Denote by Ãj′

i the Aubry class which contains the ω-limit set of dζi−1. It is possible

that Aj′

i is different from Aj
i which contains the α-limit set of dζi. Remember that we

have assumed that each Aubry set consists of finitely many classes, let’s say, ki classes.
By the result in [CP], the subscript of Aubry classes can be rearranged such that

some ci-semi-static curve γi,j exists such that α(dγi,j) ⊂ Ãj
i and ω(dγi,j) ⊂ Ãj+1

i for
j = 1, · · · , ki (mod ki). So some positive integer k ≤ ki exists such that ji−j′i = k ≤ ki

(mod ki). Let di = min dc(Aj
i ,A

j′

i ).

We choose some (n − 1)-dimensional small disks V ±
i,j with j = j′i, · · · , ji such that

V +
i,j′i

= V +
i , V −

i,ji
= V −

i , V ±
i,j is located within Ni,j, a small neighborhood of Aj

i such

that dc(m,x) ≤ di
6 holds for each m ∈ Ni,j and each x ∈ Aj

i (the definition of Ni,j is

the same as Ni in Proposition 7.1), γi,j intersects V
−
i,j as well as V

+
i,j+1 transversally.

These curves also have locally minimal property similar to the form of (7.6):

min
{

h∞ci (x
−,m0) + hTci(m0,m1) + h∞ci (m1, x

+) :

(m̄0, m̄1, T ) ∈ ∂(V −
i,j × V +

i,j+1 × [T+
i,j − τi, T

+
i,j + τi])

}

(7.8)

≥ min
{

h∞ci (x
−,m0) + hTci(m0,m1) + h∞ci (m1, x

+) :

(m̄0, m̄1, T ) ∈ V −
i,j × V +

i,j+1 × [T+
i,j − τi, T

+
i,j + τi]

}

+ 5ǫ∗i ,
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where x− ∈ Aj
i , x

+ ∈ Aj+1
i , T+

i,j is the time such that γi,j(2T
+
i,j) ∈ V +

i,j+1 if γi,j(0) ∈
V −
i,j . As semi-static curves are totally disconnected, V −

i,j and V
+
i,j+1 are chosen so that

any curve in N (ci) does not touch the boundary of V −
i,j and of V +

i,j+1.

Note that h∞c = limT→∞ hTc in the autonomous case [Fa1], we find from Proposition
7.1 that, for any ǫ∗i > 0, there exists T−

i,j = T−
i,j(ǫ

∗) > 0 such that

|hTci(m,m′)− h∞ci (m,x)− h∞ci (x,m
′)| ≤ ǫ∗i

holds for each T ≥ T−
i,j, each m,m

′ ∈ Ni,j and x ∈ Aj
i .

Let t+i = t+i,j′ < t−i,j′ < t+i,j′+1 · · · < t+i,j < t−i,j = t−i , 2∆t
+
i,j = t+i,j+1 − t−i,j, 2∆t

−
i,j =

t−i,j − t+i,j. A curve γ: [t+i , t
−
i ] → M̌ is called admissible for V ±

i,j if

(7.9) γ(t±i,j) = x±i,j ∈ V ±
i,j, ∀ j′i ≤ j ≤ ji,

where ∆t+i,j and ∆t−i,j are chosen to satisfy the condition

(7.10) T+
i,j − τi ≤ ∆t+i,j ≤ T+

i,j + τi

where τi is chosen in the inequality (7.8), the condition

(7.11) T−
i,j + T+

i,j + τi ≤ ∆t−i,j +∆t+i,j ≤ T−
i,j + T+

i,j + τ∗i

which is set so that the minimal curve does not touch the boundary of V −
i,j provided

it passes through V +
i,j at t = t+i,j and through V +

i,j+1 at t = t+i,j+1 and the condition

(7.12) T−
i,j + T+

i,j−1 + τi ≤ ∆t−i,j +∆t+i,j−1 ≤ T−
i,j + T+

i,j−1 + τ∗i .

which is set so that the minimal curve does not touch the boundary of V +
i,j provided

it passes through V −
i,j−1 at t = t−i,j−1 and through V −

i,j at t = t−i,j. These conditions

define non-empty set for (∆t+i,j,∆t
−
i,j) if we choose suitably large τ∗i > 0.

We consider the minimum of the following action among all admissible curves:

h
t+i ,t

−
i

ci (x+i , x
−
i ) = inf

γ(t+
i

)=x
+
i

∈V
+
i,j′

i

γ(t−
i

)=x
−
i

∈V
−
i,ji

∫ t−i

t+i

(L− ηi)(dγ)dt.

Let γ(t, t±i , x
±
i ): [t

+
i , t

−
i ] → M̌ be the minimizer of the action. If t−i,j−t+i,j is sufficiently

large, the minimizer is smooth at each t−
i,j′i

< t+
i,j′i+1

< · · · < t+i,ji. First of all, we claim

that (x−i,j, x
+
i,j+1,∆t

+
i,j) ∈ int(V −

i,j×V +
i,j+1×[T+

i,j−τi, T+
i,j+τi]) holds for each j

′
i ≤ j < ji.

If it does not hold for certain j′i ≤ j < ji, one obtains from (7.8) that

h
∆t−i
ci (x+i,j , x

−
i,j) + h

∆t+i
ci (x−i,j , x

+
i,j+1) + h

∆t−i+1
ci (x+i,j+1, x

−
i,j+1)

≥h∞ci (ξ, x
−
i,j) + h

∆t+i
ci (x−i,j , x

+
i,j+1) + h∞ci (x

+
i,j+1, ζ)

+ h∞ci (x
+
i,j, ξ) + h∞ci+1

(ζ, x−i,j+1)− 2ǫ∗i

≥h∞ci (ξ, x̂
−
i,j) + h

∆t+i
ci (x̂−i,j , x̂

+
i,j+1) + h∞ci (x̂

+
i,j+1, ζ)

+ h∞ci (x
+
i,j, ξ) + h∞ci+1

(ζ, x−i,j+1) + 3ǫ∗i

≥h∆t
−
i

ci (x+i,j , x̂
−
i,j) + h

∆t+i
ci (x̂−i,j , x̂

+
i,j+1) + h

∆t−i+1
ci (x̂+i,j+1, x

−
i,j+1) + ǫ∗i
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where ξ ∈ Aj
i , ζ ∈ Aj+1

i , x̂−i as well as x̂+i+1 is the intersection point of a semi-static

curve γj,j+1 with V −
i,j and with V +

i,j+1 respectively. The orbit dγj,j+1 connects Aj
i to

Aj+1
i . This contradicts the minimality of γ. The smoothness follows from the property

that (x−i,j , x
+
i,j+1,∆t

+
i,j) is in the interior of the domain. If the minimizer γ(t, t±i , x

±
i )

is not smooth at x−i,j, we join the points γ(t−i,j − δ, t±i , x
±
i ) and γ(t−i,j + δ, t±i , x

±
i ) by

the minimizer of

hδci(γ(t
−
i,j − δ, t±i , x

±
i ), γ(t

−
i,j + δ, t±i , x

±
i )).

As the minimizer approaches x−i,j from both sides of V −
i,j as t approaches t−i,j from

opposite direction [BCV], this minimizer also passes through V −
i,j. Thus, one obtains

a curve γ′ by replacing the segment of γ(t, t±i , x
±
i )|t−i,j−δ,t−i,j+δ with this minimizer. Let

t′ be the time of this curve passing through V −
i,j, clearly, t

+
i,j − t′ ∈ (T+

i,j − τi, T
+
i,j + τi),

the action along this curve is clearly smaller than the original one. But this is absurd.

The case of type-c. For each integer i ∈ ⋃

ij∈Λc
{ij , ij + 1, · · · , ij+1 − 1}, there

exist an admissible section Σci , a neighborhood Ui of N (ci)∩Σci, two closed 1-forms
ηi and µ̄i on M with [ηi] = ci, [µ̄i] = ci+1− ci and suppµ̄i∩Ui = ∅. Correspondingly,
an admissible coordinate system q = G−1

i x on M is chosen such that in the new

coordinates, one has a covering space πi: M̄i = R×Tn−1 →M , the set π−1
i Σci consists

of infinitely many compact components Σjci = {q = (q1 + j, q2, · · · , qn) : q ∈ Σ0
ci}

(j ∈ Z). M̄i is separated by Σ0
ci into upper part M̄+

i and lower part M̄−
i . A smooth

function ρi: M̄ → [0, 1] is constructed such that ρi = 0 for q ∈ M̄−
i \(Σ0

ci + δi) and

ρi = 1 for q ∈ M̄+
i \(Σ0

ci + δi). The number δi > 0 is chosen so small such that

(Σ0
ci + δi) ∩ (N ([ηi + µi]) + δi) ⊂ Ui, (cf. Formula (6.3)). Let µi = ρiµ̄i.

To make notation simpler, for each integer i ∈ ⋃

ij∈Λc
{ij , ij+1, · · · , ij+1−1}, we let

ψi = 0, V −
i = {q1 = −Ki} and V +

i+1 = {q1 = Ki} in the coordinate system q = G−1
i x

(see the corollary 6.1 for the definition of Ki). Again, let

Lηi,µi,ψi
= L− ηi − µi − ψi.

Since the class ci is equivalent to the class ci+1 and they are close to each other, one
sees from Theorem 6.4 that each curve γ̄ ∈ Cηi,µi,ψi

determines a locally minimal

orbit type-c dγ which is an orbit of φtL and connects Ã(ci) to Ã(ci+1).

Let m̄ ∈ V −
i , m̄′ ∈ V +

i+1 and let γ̄i(t, m̄, m̄
′) : [−T, T ] → M̄ be the minimizer of

hTηi,µi,ψi
(m̄, m̄′) = inf

T ′>0
hT

′

ηi,µi,ψi
(m̄, m̄′).

According to Lemma 6.2 and Corollary 6.1, ∃ Ki > 0, T+
i = T+

i (Ki) > 0, there

exists T < T+
i such that hTηi,µi,ψi

(m̄, m̄′) = infT ′>0 h
T ′

ηi,µi,ψi
(m̄, m̄′) provided the first

coordinate of m̄ as well as of m̄′ satisfies the condition that m̄1 ≤ −Ki and m̄
′
1 ≥ Ki.

The minimizer γ̄i(t, m̄, m̄
′) : [−T, T ] → M̄ satisfies

(7.13) γ̄i(t, m̄, m̄
′) ∈ Ui, whenever γ̄i(t, m̄, m̄

′) ∈ Σ0
ci + δi.

By the definition, the disks V +
i and V −

i are codimension one torus in different
coordinate systems, their relative position needs to be fixed in the universal covering
space. For this purpose, we define the following covering spaces:

Rn
π̄i−→ M̄i

πi−→ M̌i,
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where M̌i = {(q1, · · · , qn) : qi mod 2ijπ} and M̄i = R × {(q2, · · · , qn) : qi mod 2ijπ}
in the coordinate system q = G−1

i x. For simplicity of notation and without danger

of confusion, we use the same symbol for a fundamental domain of V ±
i in Rn, i.e.

restricted on V ±
i the projection is a homeomorphism, π̄iV

−
i = V −

i and π̄iV
−
i+1 = V −

i+1.

Both V −
i and V +

i+1 are some translation of unit (n− 1)-dimensional disk {q1 = 0, qi ∈
[0, 2π) for i = 2, · · · , n}. Clearly, π̄−1

i V −
i is parallel to π̄−1

i V +
i+1 and there exist (n− 1)

irreducible integer vectors (vi2, v
i
3, · · · vin) tangent to V −

i (V +
i+1) such that

π̄−1
i V −

i =
⋃

kℓ∈Z,ℓ=2,···n
V −
i + kℓv

i
ℓ, π̄−1

i V +
i+1 =

⋃

kℓ∈Z,ℓ=2,···n
V +
i+1 + kℓv

i
ℓ.

Given a fundamental domain V +
i and a ci-semi static curve γi, there exists a curve

in the lift γi to the universal covering space, denoted by γ̃i, which intersects V +
i ⊂ Rn.

Clearly, one can choose a fundamental domain V −
i ⊂ Rn (up to a translation) so that

it intersects the curve γ̃i and π̄i−1V
−
i is “above” the V +

i ⊂ M̄i−1 in the following sense:

some suitably large K ′
i > 0 exists such that min{q−1 − q+1 : q− ∈ π̄i−1V

−
i , q

+ ∈ V +
i } =

K ′
i. Note that V −

i is usually not parallel to V +
i . We say that the two fundamental

domains V +
i and V −

i are (ci,K
′
i)-related if they satisfy this condition.

Let V +
i and V −

i be (ci,K
′
i)-related fundamental domains. Given positive integers

k+i , k
−
i , we define

k±
i V

±
i =

⋃

|kℓ|≤k±i ,ℓ=2,···n

V ±
i + kℓv

i
ℓ,

then π̄i−1k
+
i V

+
i = V +

i ⊂ M̄i−1. Let x̃
+
i ∈ k+

i V
+
i , x̃−i ∈ k−

i V
−
i one defines the minimal

action of Lci connecting these two points

hci(x̃
+
i , x̃

−
i ) = inf

T>0
inf

ζ̃(−T )=x̃
+
i

ζ̃(T )=x̃
−
i

∫ T

−T
Lci(dζ̃(s))ds.

Let
hci(k

+
i V

+
i ,k

−
i V

−
i ) = min

x̃
+
i

∈k
+
i

V
+
i

x̃
−
i

∈k
−
i

V
−
i

hci(x̃
+
i , x̃

−
i ).

Clearly, for fixed k+i , some positive number ǫi > 0 and suitably large integer k−i exist

such that k+
i V

+
i does not touch k−

i V
−
i ,

(7.14) hci(x̃
+
i , x̃

−
i ) > hci(k

+
i V

+
i ,k

−
i V

−
i ) + ǫ′i, if d(x̃−i , ∂k

−
i V

−
i ) ≤ 1.

To understand this property let us consider those curves in the lift of ci-semi static
curves which pass through V +

i . There exists ki > 0 such that the intersection points

of these curves with π̄−1
i V −

i locate in the disk ∪|kℓ|≤kiV
−
i +kℓv

i
ℓ. The “rotation vector”

of this segment of the orbit can not be too far away from ρ(µi).

One can also define related fundamental domains V −
i and V +

i+1. For a fundamental

domain V −
i and a curve γ ∈ Cηi,µi , we pick up a curve in the lift of this curve to

the universal covering space, denoted by γ̃, which intersects the section V −
i . Some

fundamental domain V +
i+1 exists where this curve intersects. Recall the projection of

the two fundamental domains takes the form V +
i+1 = {q1 = Ki} and V −

i = {q1 = −Ki}
in the configuration space M̄i. We say that the two fundamental domains V −

i and
V +
i+1 are (ηi, µi,Ki)-related.
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As the Lagrangian Lηi,µi is well-defined in the universal covering space, let us
consider its action in the universal covering space:

hηi,µi(x̃
−
i , k

∗x̃+i+1) = inf
T>0

inf
ζ̃(−T )=x̃

−
i

ζ̃(T )=k∗x̃
+
i+1

∫ T

−T
Lηi,µi(dζ̃(s))ds,

where k∗x̃+i+1 = x̃+i+1+
∑

ℓ=2,···n kℓv
i
ℓ stands for a translation of x̃+i+1 and k = (k2, · · · kn).

Obviously, one has

inf
k∈Zn−1

hηi,µi(x̃
−
i , k

∗x̃+i+1) = hηi,µi(x̃
−
i , x̃

+
i+1) = inf

T>0
hTηi,µi(q

−
i , q

+
i+1)

where the term infT>0 h
T
ηi,µi(q

−
i , q

+
i+1) was defined before by considering the action in

the configuration space M̄i. As above, one defines

hηi,µi(k
−
i V

−
i ,k

+
i+1V

+
i+1) = min

x̃
−
i

∈k
−
i

V
−
i

x̃
+
i+1

∈k
+
i+1

V
+
i+1

hηi,µi(x̃
−
i , x̃

+
i+1).

Again, for fixed k−i , some positive number ǫi > 0 and suitably large k+i+1 exist such

that k−
i V

−
i does not touch k+

i+1V
+
i+1 and

(7.15) hηi,µi(x̃
−
i , x̃

+
i+1) > hηi,µi(k

−
i V

−
i ,k

+
i+1V

+
i+1) + ǫi, if d(x̃+i+1, ∂k

+
i V

+
i+1) ≤ 1.

Let Ṽ ±
i = k±

i V
±
i . By induction, these sections Ṽ ±

i are well defined such that V +
i

and V −
i are (ci,K

′
i)-related, V

−
i and V +

i+1 are (ηi, µi,Ki)-related, the formulae (7.14)
and (7.15) are satisfied.

As the third step of the construction, let us clarify what conditions the candidates
of minimal curve are required to satisfy.

Let γ: [−K,K ′] → M be an absolutely continuous curve joining m to m′, i.e.
γ(−K) = m and γ(K ′) = m′. We split the interval [−K,K ′] into 2im+1 subintervals

[−K,K ′] = [t+0 , t
−
0 ] ∪ [t−0 , t

+
1 ] ∪ · · · ∪ [t+im , t

−
im
],

where t+0 = −K, t−im = K ′. Correspondingly, we divide the curve into 2im+1 segments

γ−i = γ|[t+i ,t−i ], γ
+
i = γ|[t−i ,t+i+1]

for i = 0, 1, 2, · · · , im − 1, and γ−im = γ|[t+im ,t−im ].

We fix a curve γ̃ in the lift of γ to the universal covering space Rn by choosing
π̄G−1

0 γ̃(t−0 ) ∈ V −
0 . Correspondingly, each γ±i has its lift γ̃±i to Rn.

The curve γ is required to satisfy the conditions:

1, for each i = 0, 1, 2, · · · im − 1, there is some ki ∈ Z such that

π̄iG
−1
i γ̃+i (t

−
i )− (2kiπ, 0, · · · , 0) ∈ V −

i ,

π̄iG
−1
i γ̃+i (t

+
i+1)− (2kiπ, 0, · · · , 0) ∈ V +

i+1;(7.16)

2, for i ∈ ⋃

ij∈Λc
{ij + 1, · · · , ij+1 − 1}, γ̃(t±i ) ∈ Ṽ ±

i . Let ∆t+i = 1
2 (t

+
i+1 − t−i ) and

∆t−i = 1
2(t

−
i − t+i ). To formulate the conditions for ∆t±i , let us consider the quantity

h∆tci (x̃
+
i , x̃

−
i ) = inf

ξ̃(−∆t)=x̃
+
i

∈Ṽ
+
i

ξ̃(∆t)=x̃
−
i

∈Ṽ
−
i

∫ ∆t

−∆t
(L− ηi)(dξ̃(t))dt.



90 C.-Q. CHENG

One obtains from the proof of Lemma 6.2 that h∆tci (x̃
+
i , x̃

−
i ) → ∞ as ∆t → 0 or

→ ∞. Thus, if T−
i = T−

i (x̃+i , x̃
−
i ) is defined as the quantity such that h

T−
i
ci (x̃+i , x̃

−
i ) =

min∆t h
∆t
ci (x̃

+
i , x̃

−
i ), then we find 0 < T−

i (x̃+i , x̃
−
i ) < ∞. Since both V +

i,− and V −
i,+ are

compact, there exist 0 < T̂−
i < T̆−

i <∞ such that T̂−
i < T−

i (x̃+i , x̃
−
i ) < T̆−

i holds for

each x̃+i ∈ Ṽ +
i,− and x̃−i ∈ Ṽ −

i,+. Let

(7.17) ∆T−
i = [T̂−

i , T̆
−
i ].

The range of ∆t±i is somehow implicitly defined. Let

(7.18) ∆T+
i = [T+

i − di, T
+
i + di], ∀i ∈

⋃

ij∈Λh

{ij , ij + 1, · · · , ij+1 − 1}

∆T+
i = (0, T+

i ], ∆T−
i = [T̂−

i , T̆
−
i ], for other i ≤ im.

See (7.6), (7.13) for the definition of T+
i and (7.17) for the definition of ∆T−

i respec-
tively.

The conditions for ∆t±i are the following:

1, ∆t+i ∈ ∆T+
i for all 0 ≤ i < im;

2, ∆t−i ∈ ∆T−
i for i ∈ ⋃

ij∈Λc
{ij + 1, ij + 2, · · · , ij+1 − 1};

3, for i ∈ ⋃

ij∈Λh
{ij , ij +1, · · · , ij+1− 1}, as it is assumed that the Aubry set A(ci)

contains finitely many classes, an orbit connects A(ci−1) to A(ci) by approaching the

Aubry class Aj′

i as t → ∞, another orbit connects A(ci) to A(ci+1) by approaching

the Aubry class Aj
i as the time retreat back to −∞. For the time interval [t+i , t

−
i ],

one has the partition

[t+i , t
−
i ] = [t+i , t

−
i,j′] ∪ [t−i,j′, t

+
i,j′+1] ∪ · · · ∪ [t+i,j , t

−
i ],

and has restrictions for these quantities, formulae (7.10) ,(7.11), (7.12) and

(7.19) T−
i,j + T+

i + di ≤ ∆t−i,j +∆t+i ≤ T−
i,j + T+

i + d∗i ,

(7.20) T−
i+1,j′ + T+

i + di ≤ ∆t−i+1,j′ +∆t+i ≤ T−
i+1,j′ + T+

i + d∗i ;

with suitably large d∗i > 0.

4, for i = ij with ij ∈ Λh, by definition, ci is equivalent to ci−1, one has

(7.21) T̂−
i + T+

i ≤ ∆t+i +∆t−i ≤ T̆−
i + T+

i + d∗i ;

5, for i = ij with ij ∈ Λc, by choosing ci−1 suitable close to ci one can also assume
that ci is equivalent to ci−1. Thus, one has

(7.22) T̂−
i + T+

i−1 ≤ ∆t+i−1 +∆t−i ≤ T̆−
i + T+

i−1 + d∗i−1.

As the system is autonomous, by choosing sufficiently large T−
i , these conditions

defines non-empty set for (∆t+i ,∆t
−
i ).

Finally, let us introduce a modified Lagrangian and verify the smoothness of the
minimizer of the action. Recall µi and ψi are defined on R× Tn−1 in the coordinate
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system q = G−1
i x, G∗

i (µi+ψi)(dγ̃) = (µi+ψi)(π̄G
−1
i dγ̃) is well defined. We introduce

a modified Lagrangian

Lηi,µi,ψi
→ L− ηi − (kiGi)

∗(µi + ψi)

where k∗i is a translation of q1: (ki)
∗φ(q, q̇) = φ(q1−2πki, q̂, q̇) on TM̄i and the integer

ki is chosen so that (7.16) holds.

Let π̃: Rn →M be the universal covering space. For a curve γ̃: [−K,K ′] → Rn, let
γ = π̃γ̃: [−K,K ′] →M . Let ~t = (t−0 , t

±
1 , · · · , t±im−1, t

+
im
), ~x = (x̃−0 , x̃

±
1 , · · · , x̃±im−1, x̃

+
im
),

we consider the minimal action

hK,K
′

L (m,m′, ~x,~t) = inf

im
∑

i=0

∫ t−i

t+i

(L− ηi)(dγ̃
−
i (t))dt

+
im−1
∑

i=0

∫ t+i+1

t−i

(L− ηi − (kiGi)
∗(µi + ψi))(dγ̃

+
i (t))dt(7.23)

where the infimum is taken over all absolutely continuous curves γ̃: [−K,K ′] → Rn

with the boundary conditions γ̃+i (t
−
i ) = x̃−i , γ̃

+
i (t

+
i+1) = x̃+i+1 for i = 0, 1, · · · , im − 1,

γ(−K) = m, γ(K ′) = m′ and satisfying the condition (7.16). Moreover, restricted on
[t+i , t

−
i ], γ is admissible for the condition (7.9).

As the system is autonomous, the quantity hK,K
′

L (m,m′, ~z,~t) remains constant if

(~t,K,K ′) is subject to a translation. Thus, it is a function of K ′ − t+im , t
−
0 +K and

∆~t = {∆t+0 ,∆t±1 , · · · ,∆t±im−1}. Denote by ∆~T the domain where ∆~t takes its value.

Let ~V = (Ṽ −
0 , Ṽ

±
1 , · · · , Ṽ ±

im−1, Ṽ
+
im
), where all entries have been well defined in the

previous proof.

Denote by γ(t;K,K ′,m,m′, ~x,∆~t) the curve along which the quantity of (??) is
realized, it obviously depends on the value K,K ′,m,m′, ~x,∆~t and it may not be
smooth at ~t. Let ~x and ∆~t range over the set ~V and ∆~T respectively, one obtains
a minimizer. The purpose of the following steps is to show that the minimizer is a
solution of the Euler-Lagrange equation determined by L.

Let hK,K
′

L (m,m′) be the minimum of hK,K
′

L (m,m′, ~z,~t) over ~V in ~x and over ∆~T

in ∆~t respectively:

hK,K
′

L (m,m′) = min
∆~t∈∆~T ,~x∈~V

hK,K
′

L (m,m′, ~x,~t),

denote the minimal curve by γ(t;K,K ′,m,m′), we claim that dγ(t;K,K ′,m,m′) is
a solution of the Euler-Lagrange equation of L if K and K ′ are sufficiently large. To
verify this claim, we need to show that

1, dγ+i = dγ|∆t+i solves the Euler-Lagrange equation determined by L. Restricted

on ∆t−i , it obviously solves the Euler-Lagrange equation.

2, γ(t;K,K ′,m,m′) has no corner at x̃−i and x̃+i for each i = 0, 1, · · · im − 1, i.e.
it is smooth for the whole t ∈ [−K,K ′]. For each i ∈ Λh, as γ

−
i = γ|∆t−i is the

minimizer for the curves admissible for the condition (7.9), it is smooth at each
t+i,j′+1 < · · · < t+i,j.
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Indeed, if i ∈ ⋃

ij∈Λh
{ij , ij + 1, · · · , ij+1 − 1}, we obtained from (7.7) that

γ̄+i (t) ∈ Ui when γ̄+i,1(t)− 2kiπ ∈ Σ0
ci + δi,

where γ̄+i = π̄iGiγ̃
+
i . Since the support of µ̄i has no intersection with Ui and ψi is

closed in Ui, while µi is closed and ψi = 0 in the region {γ̄+i,1(t) − 2kiπ 6∈ [−∆i,∆i]},
the term µi and ψi have no contribution to the Euler-Lagrange equation along γ̄+i .
For other i, the conclusion is obtained from (7.13) by similar argument. This proves
the first conclusion.

Recall the disks Ṽ −
i and Ṽ +

i+1 are defined in the covering space Rn. We claim that

γ̃ does not touch the boundary of Ṽ −
i × Ṽ +

i+1× [T+
i −di, T+

i +di] for i ∈
⋃

ij∈Λh
{ij , ij+

1, · · · , ij+1 − 1}. Let us assume the contrary, i.e. (x̃−i , x̃
+
i+1,∆t

+
i ) ∈ ∂(Ṽ −

i × Ṽ +
i+1 ×

[T+
i − di, T

+
i + di]) holds for some i ∈ ⋃

ij∈Λh
{ij , ij + 1, · · · , ij+1 − 1}. Let x̂−i =

π̄iG
−1
i x̃−i −(2kiπ, 0, · · · , 0) and x̂+i+1 = π̄iG

−1
i x̃+i+1−(2kiπ, 0, · · · , 0). By the condition

(7.16) we see that x̂−i ∈ V −
i and x̂+i+1 ∈ V +

i+1. Then, in x → G−1
i x-coordinates, we

obtain from (7.6) and (7.18) that

h
∆t−i
ci (πix̂

+
i , πix̂

−
i ) + h

∆t+i
ηi,µi,ψi

(x̂−i , x̂
+
i+1) + h

∆t−i+1
ci+1 (πix̂

+
i+1, πix̂

−
i+1)

≥h∞ci (ξ, πix̂
−
i ) + h

∆t+i
ηi,µi,ψi

(x̂−i , x̂
+
i+1) + h∞ci+1

(πix̂
+
i+1, ζ) + h∞ci (πix̂

+
i , ξ)

+ h∞ci+1
(ζ, πix̂

−
i+1)− 2ǫ∗i

≥h∞ci (ξ, πix̄
−
i ) + h

T+
i

ηi,µi,ψi
(x̄−i , x̄

+
i+1) + h∞ci+1

(πix̄
+
i+1, ζ) + h∞ci (πix̂

+
i , ξ)

+ h∞ci+1
(ζ, πix̂

−
i+1) + 3ǫ∗i

≥h∆t
−
i

ci (πix̂
+
i , πix̄

−
i ) + h

T+
i

ηi,µi,ψi
(x̄−i , x̄

+
i+1) + h

∆t−i+1
ci+1 (πix̄

+
i+1, πix̂

−
i+1) + ǫ∗i

where x̄−i and x̄+i+1 are the intersection points of a curve in Cηi,µi,ψi
with V −

i and with

V +
i+1 respectively, ξ ∈ M(ci−1) and ζ ∈ M(ci). This contradicts the minimality of γ,

thus it verifies our claim.

To see that the curve γ̃ is smooth at x−i , let us assume the contrary again. Let x′ =
γ̃(t−i −δ) and x∗ = γ̃(t−i +δ), here δ is chosen so small that ∆t+i ±δ ∈ [T+

i −di, T+
i +di].

This is possible since (x̂−i , x̂
+
i+1,∆t

+
i ) 6∈ ∂(V −

i ×V +
i+1× [T+

i −di, T+
i +di]) implies that

T+
i − di < ∆t+i < T+

i + di. We join these two points by a minimizer ξ : [−δ, δ] →M
with ξ(−δ) = x′ and ξ(δ) = x∗

[Aci(ξ|[−δ,δ])] = inf
ζ(−δ)=x′

ζ(δ)=x∗

∫ δ

−δ
(L− ηi)(dξ(s))ds.

If ξ passes through V −
i , we obtain a curve γ′ by replacing the segment of the minimizer

γ|[t−i −δ,t−i +δ] with ξ : [−δ, δ] →M . Let t′−i be the time for γ′ passing through V −
i , then

1
2 (t

+
i+1−t′−i ) ∈ ∆T+

i and 1
2(t

′−
i −t+i ) ∈ ∆T−

i . Thus, we obtain an absolutely continuous
curve which is admissible for each required condition (see (7.18) and (7.20)). Along

this curve we obtain smaller action hK,K
′

L (m,m′), but this is absurd. So, we only need

to show that ξ passes through V −
i . Indeed, as V −

i is chosen small and transversal

to the local connecting curve in Cηi,µi,ψi
, γ(t) approaches V −

i from different sides as

t ↓ t−i and t ↑ t−i respectively. Otherwise, the minimality of γ would be violated. One
refers to [BCV] for the details. The smoothness at x+i+1 can be proved similarly.
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The smoothness of γ at t = t±i for i ∈ ⋃

ij∈Λc
{ij , ij + 1, · · · , ij+1 − 1} is obvious.

Because of the formulae (7.14) and (7.15), γ̃ does not touch the boundary of Ṽ ±
i at

the time of t±i respectively. Indeed, γ̃ approaches Ṽ ±
i from different sides as t ↓ t±i

and t ↑ t±i respectively. If γ̃ has a corner at t = t±i , let ζ: [t±i − δ, t±i + δ] → Rn be
the minimizer of the action

A(ζ|[t±i −δ,t±i +δ]) = inf
ξ(t±

i
−δ)=γ̃(t±

i
−δ)

ξ(t±
i

+δ)=γ̃(t±
i

+δ)

∫ t±i +δ

t±i −δ
Lci(dξ(s))ds,

then the curve ζ passes through the disk Ṽ ±
i . Replacing γ̃|[t±i −δ,t±i +δ] by this minimizer

ζ one obtains a curve with smaller action. The contradiction verifies the smoothness.

If ci−1 is connected to ci by a type-h orbit and i ∈ ⋃

ij∈Λc
{ij , ij +1, · · · , ij+1 − 1},

then V +
i is a small disk. By the same argument as above, one obtains the smoothness

of γ̃ at t = t−i and the smoothness at t = t+i from the arguments for type-h.

As the system is autonomous, the following limit exists

h∞L (m,m′) = lim
K,K ′→∞

hK,K
′

L (m,m′).

We pick out a sequence of γ(t;K,K ′,m,m′) for large K and K ′. Obviously, the
set {γ(t;K,K ′,m,m′)} has at least one accumulation point γ∞: R → M with the

property α(dγ∞) ⊆ Ã(c) and ω(dγ∞) ⊆ Ã(c′). As we have shown, it is an orbit of
φtL. This proves the first conclusion of the theorem.

For any two points x, x′ ∈ M , the sequence {γ(t;K,K ′, x, x′)|[0,K]} approaches
to a forward c-semi static curve as K → ∞, which starts from the point x, and
{γ(t;K,K ′, x, x′)|[t−im ,K ′]} approaches to a backward c′-semi static curve as K ′ → ∞,

which approach to the point x′. Therefore, for sufficiently large K,K ′, the initial
value (γ, γ̇)|t=0 falls into any prescribed δ-neighborhood of the points (x, v+x,c) and

the orbit reaches the δ-neighborhood of (x′, v−x,c′) at the time t = K ′. This completes

the proof. �

The proof for time-periodic system is similar, and a bit easier from technical point
of view, since one can treat the time variable t as the first angle variable and take
{t = 0} the section for all classes. One does not need to introduce various coordinate
systems {G−1

i } for different cohomology class. We omit the details here.

8. Proof of the main theorem

Once one obtains the existence of a generalized transition chain in the system (1.1),
Theorem 1.1 is proved by applying Theorem 7.1. Therefore, the main purpose of this
section is to show the genericity of such transition chains.

8.1. Candidate of transition chain. Let us consider the Hamiltonian (1.1). Any

integer vector k̃ ∈ Z3 determines a plane Σk̃ = {ω̃ ∈ R3 : 〈ω̃, k̃〉 = 0}, which passes

through the origin. Let ΩE = {ω̃ = ∇h(ỹ) : ỹ ∈ h−1(E)} ⊂ R3, it is diffeomorphic to
a 2-sphere with the origin inside if E > minh, because the Hamiltonian h is assumed
convex. Thus, the set Σk̃ ∩ΩE is a closed curve, denoted by Γω̃,k̃. Given any positive
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number δ > 0, some positive integer Kδ exists such that ∪‖k̃‖≤Kδ
Γω̃,k̃ constitutes a δ-

grid on ΩE in the sense that the M−1
h δ-neighborhood of ∪‖k̃‖≤Kδ

Γω̃,k̃ cover the whole

sphere ΩE, where Mh = maxỹ∈h−1(E) ‖∂2h(ỹ)‖. Therefore, there exists a resonant
path

Γω̃ = Γω̃,0 ∗ Γω̃,1 ∗ · · · ∗ Γω̃,m.
such that each rotation vector falls into itsM−1

h δ-neighborhood, where Γω̃,ℓ represents
a resonant path determined by one resonant relation (one integer vector). It is possible

that Γω̃,ℓ and Γω̃,ℓ′ are determined by the same resonant relation k̃ℓ = k̃ℓ′ .

Figure 9. The resonant path in the surface of h−1(E).

Obviously, the map ∂h is a global diffeomorphism, which maps each closed curve
Γω̃,ℓ onto the 2-sphere h−1(E), Γℓ = ∂h−1Γω̃,ℓ. The δ-grid on ΩE induces a δ-grid
on h−1(E): the δ-neighborhood of ∪‖k̃‖≤Kδ

Γk̃ covers the whole sphere. Under the

inverse of the frequency map ω̃ → ỹ = (∇h)−1(ω̃) we obtain a path

Γ = Γ0 ∗ Γ1 ∗ · · · ∗ Γm
in action variable space, where Γℓ = (∇h)−1Γω̃,ℓ.

Let ℓ( ˙̃x) = maxỹ(〈 ˙̃x, ỹ〉 − h(ỹ)) be the Lagrangian determined by the Hamiltonian
h, φtℓ be the Lagrange flow. As the system is integrable, the action variable ỹ keeps
constant along each orbit of φtℓ which obviously lies in the support of certain c-minimal
measure with c̃ = ỹ. In this sense, one obtains a path Γc ⊂ H1(T3,R) and Γc = Γ if
we identify H1(T3,R) = R3.

By the study of normal form, finitely many points ỹ0, ỹ1, · · · ỹN ∈ Γ exist such that
each ω̃i = ∇h(ỹi) is rational frequency vector with period Ti ≤ K0ǫ

−̺ and
⋃

0≤i≤N
{ỹ : ‖ỹ − ỹi‖ ≤ µT−1

i ǫσ} ⊃ Γ +
µ

2
ǫ
1
3 ,

where ̺ = (1 − 3σ)/3, σ < 1/6, see (A.5). Obviously, N depends on ǫ, the size of
perturbation. Under five steps of KAM iteration, we obtain the normal form

Hi(x̃, ỹ) = h̃(ỹ) + ǫZ̃ǫ,i(x̃, ỹ) + ǫR̃ǫ,i(x̃, ỹ),

which is valid in the domain {ỹ : ‖ỹ−ỹi‖ ≤ µT−1
i ǫσ}×T3. In which ‖R̃ǫ,i‖C2 = O(ǫ

1
21 )

and Z̃ǫ,i is resonant with respect to ωi

Z̃ǫ,i(x̃, ỹ) =
∑

〈k̃,ωi〉=0

Z̃ǫ,i,k̃(ỹ)e
i〈k̃,x̃〉,
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where the summation is made over all those k̃ spanned by (k̃i, k̃
′
i): k̃ = j1k̃i + j2k̃

′
i

in which ‖k̃i‖, ‖k̃′i‖ ≤ Kδ, (k̃i, k̃i) is irreducible and the integer vector k̃i is used to

determine the resonant path Γi, i.e. 〈∇h̃(ỹ), k̃i〉 = 0 holds for each ỹ ∈ Γi.

For these two integer vectors (k̃i, k̃i) there is another k̃
∗
i ∈ Z3 such that the matrix

Ii = (k̃i, k̃
′
i, k̃

∗
i ) is uni-module. There are infinitely many k̃∗i satisfying the condition,

we choose one so that its norm is as small as it can be. The coordinate transformation:

(8.1) q̃ = Iti x̃, p̃ = I−1
i ỹ.

is obviously symplectic and Hi(p̃, q̃) = H(I−ti x̃, Iiỹ) is also a function of q̃ defined in
Tn. Let ỹ be the point where ∇hi(ỹ) = ω̃, then the gradient of hi(p̃) = h(Iiỹ) satisfies

ω̃i = ∇hi(p) = (0, 0, ωi3),

and Z̃ǫ,i(p̃, q̃) = Z̃ǫ,i(Iiỹ, I
−t
i x̃) is independent of q3, namely, Z̃ǫ,i = Z̃ǫ,i(p, p3, q) if we

write p = (p1, p2) and q = (q1, q2).

Let us still use (x̃, ỹ) to denote the new coordinate system. Therefore, around a
strong resonance point ω̃i the normal form takes the form

(8.2) Hi(x̃, ỹ) = hi(ỹ) + Z̃ǫ,i(x, y, y3) + R̃ǫ,i(x̃, ỹ)

in the new coordinate system (8.1). This form remains valid in T3 × {‖Ii(ỹ − ỹi)‖ <
T−1
i ǫσ} and at ỹ = ỹi one has ∇h̃i = (0, 0, ω3) with ω3 6= 0.

For our purpose, it is not necessary consider the Hamiltonian Hi on the whole disk
{ỹ : ‖ỹ− ỹi‖ ≤ µT−1

i ǫσ}. Instead, we choose finitely many ỹij ∈ Γi with ỹi0 = ỹi such
that

∪j{‖ỹ − ỹij‖ < 2K
√
ǫ} ⊇ Γi +K

√
ǫ,

and

dist(ỹij′ , ỹij) ≥ K
√
ǫ ∀ j′ 6= j.

where K > 0 is a suitably large number. The results obtained in Section 4 and 5 can
be applied to the Hamiltonian when it is restricted on each domain T3×{‖y− yij‖ <
K
√
ǫ}, especially on the domain T3 × {‖y − yi0‖ < K

√
ǫ}.

Let Yi(x, y, τ) be the solution of the equation Hi(x,−τ, y, Yi) = E, where Hi is
given by (8.2). It can be written in the form of

Yi = hi(y) + ǫZi(x, y) + ǫRi(x, y, τ).

The truncated form of Yi
Yi,T = hi(y) + ǫZi(x, y)

is determined by Hi,T = h̃(y) + Z̃ǫ,i(x, ỹ), the truncated form of Hi. Denote ỹij =
(yij , yij,3) and let y − yij =

√
ǫp, s =

√
ǫτ , we obtain from Yi the Hamiltonian

Gij,ǫ =
1√
ǫ
〈ωij, p〉+

1

2
〈Aijp, p〉+ Vij(x) + Zij,ǫ(x,

√
ǫp) +Rij,ǫ(x,

√
ǫp, s/

√
ǫ),

for j = 0 we have

Gi0,ǫ = Gi,ǫ =
1

2
〈Aip, p〉+ Vi(x) + Zi,ǫ(x,

√
ǫp) +Ri,ǫ(x,

√
ǫp, s/

√
ǫ),

where ωij = ∂hi(yij), Aij = ∂2hi(yij), Ai = ∂2hi(yi), Vij(x) = Zj(x, yij), Vi(x) =

Zj(x, yi), ‖Rij,ǫ‖C2 , ‖Ri,ǫ‖C2 = O(ǫ
1
21 ) and ‖Zij,ǫ‖C2 , ‖Zi,ǫ‖C2 = O(

√
ǫ) where the
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C2-norm is with respect to (x, p) only. By the choice of yij and the convexity of h we
can see that

‖ωij‖ ≥ mhK
√
ǫ

where mh is the lower bound of the eigenvalues of ∂2h. Therefore, the α-function
αGij,ǫ

for the Lagrangian determined by Gij,ǫ does not reach its minimum when the

action variable is restricted on the disk ‖p‖ ≤ K. As the frequency R2 ∋ ωij 6= 0
satisfies certain resonant condition, the existence of normally hyperbolic cylinder is
guaranteed by Theorem B.2 (see Appendix B) for generic Vij. Therefore, all functions
Gij,ǫ (j 6= 0) are treated as a priori unstable Hamiltonian and the Hamiltonian Gi,ǫ
is considered as the problem of double resonance.

Recall the Fenchel-Legendre transformation Lβ : H1(M,R) → H1(M,R), deter-
mined by the β-function. Let βh, βHi,T

and βHi
be the β-function for h, Hi,T and Hi

respectively. Obviously, Lβh(Γω,i) is still a curve. As it was studied in Subsection
4.3, Lβ

HT
i

(Γω,i) is composed of a flat F0 joined with two channels. See Figure 10

below. These channels are joined to the flat either at a point or along an edge. The
former case was thought difficult to handle.

Figure 10. The transition chain under π3 : α−1(E) → R2, repre-
sented by the thick solid red curve. Along the segment from B to C,
c3 keeps constant. The purple dashed curve represents the curve Lβh .

8.2. Transition chain of incomplete intersection. Let αHi
, αHi,T

be α-function
determined by the Hamiltonian Hi,Hi,T respectively. As it has been studied in the

subsection 5.3, the double resonance corresponds to a flat F0 ⊂ α−1
Hi

(E), around which
there exists a annulus of incomplete intersection

ÃT = {(c1, c2, c3) ∈ α−1
Hi,T

(E) : 0 < c3 ≤ ǫ∆0}.

The following has been proved generic in Theorem 5.2. For each c̃ ∈ ÃT , the Mañé
set does not cover the whole 3-torus. Thus, some di > 0 exists such that for each
c̃ ∈ ÃT the set

Nc̃,di = {x ∈ T3 : U−
c̃ (x)− U ′+

c̃ (x) < diǫ}
does not cover the whole 3-torus, where U−

c̃ and U ′+
c̃ are the elementary weak KAM

solutions. Such results are obtained under the hypothesis (H1∼4) proposed in the
section 5.

As the truncated system is independent of x3, the Mañé set for Hi,T is independent
of x3

NHi,T
(c̃)|Σs = NHi,T

(c̃)|Σs′
, Nc̃,di |Σs = Nc̃,di |Σs′
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where Σs is a co-dimension one section on which x3 = s. Let π3: R3 → R2 be the
standard projection: π3(x1, x2, x3) = (x1, x2), let αYi,T and αYi be the Lagrangian
determined by Yi,T and Yi respectively, NYi,T and NYi denote the Mañé set for the
Lagrangian determined by Yi,T and Yi respectively. As Yi,T (x, y) solves the equation
Hi,T (x, y, Yi,T ) = αHi

(c), one has π3NHi,T
(c̃) = NYi,T (c). If NHi,T

(c̃) does not cover
the 3-torus, NYi,T (c) does not cover the 2-torus. Because of αYi,T (c) > minαYi,T , each
c-minimal measure possesses non-zero rotation vector. Therefore, there exists some
circle Σ1

c non-degenerately embedded into the 2-torus such that each c-minimal curve
passes through Σ1

c transversally and NYi,T (c)|Σ1
c
is topologically trivial, i.e. some open

intervals Iℓ ⊂ Σ1
c exist such that

⋃

Iℓ ⊃ NYi,T (c)|Σ1
c
, Iℓ ∩ Iℓ′ = ∅, ∀ ℓ 6= ℓ′.

One can suitably choose Iℓ so that

(8.3)
⋃

Iℓ × {x3 ∈ R : mod 2π} ⊃ Nc̃,di .

As ‖Hi −Hi,T‖C2 ≤ O(ǫ1+
1
21 ), some ǫi > 0 exists such that the Mañé set for the

Hamiltonian Hi

(8.4) NHi
(c̃) ⊂ Nc̃,di , ∀ ǫ < ǫi.

Let ΓYi = Ã ∩ {c3 = Yi} where

Ã = {(c1, c2, c3) ∈ α−1
Hi

(E) : 0 < c3 ≤ ǫ∆0}.
It is a closed curve. By the preliminary works as above, some c-equivalence along the
curve is established. Indeed, for each c̃ ∈ ΓYi , let

Σc̃ = Σ1
c × {x3 ∈ R mod 2π}.

By the construction, each c̃-semi static curve passes through the section Σc transver-
sally. Recall

Vc̃ =
⋂

U

{iU∗H1(U,R) : U is a neighborhood ofN (c̃) ∩ Σc̃},

one sees that c̃′ − c̃ ∈ V ⊥
c̃ provided c̃′ is close to c̃, c′3 = c3 and αHi

(c̃′) = αHi
(c̃), i.e.

c′ ∈ ΓYi . In this case, some open set U ⊃ NHi
(c) ∩ Σc̃ such that Vc̃ = iU∗H1(U,R) =

span{(0, 0, 1)}, from which one obtains that V ⊥
c̃ = span{(1, 0, 0), (0, 1, 0)}. For each

class c̃′ ∈ ΓYi close to c̃, one has c̃′ − c̃ = (∆c1,∆c2, 0) ∈ V ⊥
c̃ , thus, there exists a

closed 1-form µ̄ such that [µ̄] = c′ − c and

suppµ̄ ∩ NHi
(c̃) ∩Σc̃ = ∅.

Thus, any two classes along the curve ΓYi is equivalent. Therefore, a transition chain
for incomplete intersection is established, see Figure 10, the thick solid red curve from
the point B to the point C.

8.3. Transition chain for complete intersection. By the study in the subsection
4.2 (see Theorem 4.2), there are two wedge-shaped channels W̃g = ∪λ≥λ0>0Lβ(λg)

and W̃g′ = ∪λ≥λ′0>0Lβ(λg
′) which extend into the annulus Ã. Corresponding to

these two channels there exist two normally hyperbolic cylinder Π̃E0,E1,g and Π̃E′
0,E

′
1,g

′

respectively, which are three-dimensional and invariant for the Hamiltonian flow: for
each c̃ = (c1, c2, c3) ∈ W̃g, the Mañé set ÑHi

(c̃) ⊂ Π̃E0,E1,g if c3 ≥ 2ǫ1+d.
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We are now in the situation that there is a normally hyperbolic cylinder Π̃ homeo-
morphic to I×T2, the Aubry set is located on this cylinder for each cohomology class
under consideration. If the Aubry set is a two-dimensional torus, it has its own stable
and unstable manifold. It implies that the forward (backward) weak KAM solution
is differentiable when it is restricted in a neighborhood of this 2-torus. Because weak
KAM is a viscosity solution, any C1 viscosity solution for Tonelli Hamiltonian must
be C1,1 [CS, FS, Ri]. Therefore, in a small neighborhood of the Aubry set, the stable
and unstable manifold are Lipschitz graphs. As the cylinder is smooth, the Aubry
set is also a Lipschitz graph over two-torus.

Let Σ ⊂ H−1(E) be a four-dimensional section intersecting each orbit in the Aubry

sets transversally. The set Π = Σ∩Π̃ is a two-dimensional cylinder. In a neighborhood
of Π the Hamiltonian flow defines a return map on the section Σ. Restricted on the
cylinder Π, each Aubry set is either periodic orbit, or Aubry-Mather set or invariant
circle. Each circle is a Lipschitz curve. A piece of the cylinder Π, bounded by
two invariant circles, is invariant for the return map which preserves some “area”
element. Let ψ: Π0 = [0, 1] × T → Π be the map, it pulls back the standard closed
2-form ω = dx ∧ dy to a 2-form on Π. Since the second de Rham cohomology of a
cylinder is trivial, by Moser’s theorem on the isotopy of symplectic forms, there exists
a diffeomorphism ψ1 which transforms this form to the standard 2-form, namely

(ψ ◦ ψ1)
∗ω = dθ ∧ dI.

Since the return map ΦH preserves the form ω, one has

((ψ ◦ ψ1)
−1 ◦ΦH ◦ (ψ ◦ ψ1))

∗dθ ∧ dI = dθ ∧ dI.
Let us consider those Aubry sets which are invariant two-torus, denoted by Υc. We
use the same notation for their intersection with Π, which are circles. Fix one circle
Υc0 , other circles are parameterized by the “area” σ. Given any other circle Υc, we
obtain the algebraic area σ of the region bounded by these two circles. If each circle
is regarded as the graph of a function, then there is a regularity result [CY1]

‖Υc(σ) −Υc(σ′)‖C0 ≤ C1

√

|σ − σ′|.

Because the cylinder is normally hyperbolic, there is an segment of a line Iσ ⊂ α−1(E)
such that all cohomology classes located in this segment share the same Aubry set,
an invariant 2-torus, so we have a map σ → Iσ.

For a small segment of cylinder, some neighborhood N ⊂ T3 of a two-torus exists
so that all Aubry sets on this cylinder fall into this neighborhood: A(c) ⊂ N . In a
suitably coordinate system we take a finite covering space M̌ so that the lift of N
consists of two connected components Nl andNr. The Mañé set satisfies the condition

N (c, M̌ )\(Nl ∪Nr) 6= ∅.

To construct transition chain in this situation, one need to show it consists of totally
disconnected semi-static curves when the Aubry set is a two-torus.

Let us consider the covering space π1 : M̄ = R × T2 such that the lift of N
contains infinitely many connected components, each of which is still a neighborhood
of two-torus. We consider two adjacent components Nl and Nr in the lift of N , i.e.
π1Nl = π1Nr = N and no other component in the lift is located between them. The
subscript r means “right” and l means “left”. Correspondingly, denote by Υl,σ and
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Υr,σ the connected component in the lift of Υσ respectively, Υl,σ ⊂ Nl and Υr,σ ⊂ Nr.
The barrier function takes the form

u−l,σ − u+r,σ or u−r,σ − u+l,σ

where u±l,σ and u±r,σ are the elementary weak KAM solution determined by Υl,σ and

Υr,σ respectively. The elementary weak-KAM solution u±l,σ is uniquely determined by
Iσ, all classes in Iσ share the same elementary weak-KAM solution. It is why we use
the subscript σ. A point π1x ∈ N (c) if and only if

x ∈ argmin(u−l,σ − u+r,σ), or x ∈ argmin(u−r,σ − u+l,σ).

Let M0 be a segment of R×T2 bounded by Υl,c and Υr,c. The problem turns out to

be the version: whether does the set argmin(u−l,σ − u+r,σ)|M0\(Nl∪Nr) consist of totally

disconnected semi-static curves?

We only need to follow the argument in [CY1, CY2, LC] if we are satisfied with the
generic property in the category of Lagrangian, where the perturbations are functions
also defined on TM : L(x, ẋ) → L(x, ẋ)−Lδ(x, ẋ). In this paper, we are also going to
prove the generic property in the sense of Mañé, i.e. the perturbations are imposed
on the potential L(x, ẋ) → L(x, ẋ)− V (x).

Let us construct the potential perturbations. Choose a 2-dimensional disk D which
transversally intersects the backward semi-static curves γ−x,σ0 : (−∞, 0] → M̄ with

γ−x,σ0(0) = x ∈ D. These curves approach Υl,σ0 as t → −∞. In suitable coordinate
system we can assume that D is located in the section

D + d1 = {(x1, x2, x3) : x1 = x10, |x2 − x20| ≤ d+ d1, |x3 − x30| ≤ d+ d1}
where (x10, x20, x30) = x0. Let D = (D + d1)|d1=0. We write the curve γ−x0,σ0 in the
coordinate form

γ−x0,σ0(t) = (x10(t), x20(t), x30(t))

where x10 is monotonely increases for t ∈ [−T, 0]. Since continuous function can
be approximated by smooth function, for any small δ > 0, a tubular neighborhood
of the semi-static curve γ−x0,σ0 |[−T,0] admits smooth foliation of curves ζx: (x, t) ∈
(D + d1) × [−T, 0] → T3 such that each semi-static curve γ−x,σ0 |[−T,0] remains δ-

close to ζx in the sense that d(ζx(t), γ
−
x,σ0(t)) < δ for all t ∈ [−T, 0]. The tubular

neighborhood is defined by the form

C = ∪−T≤t≤0{ζx(t) : x ∈ D + d1}.

Let ρ: (D+d1)×R → R be a smooth function such that ρ(x, t) = ρ(x′, t), ρ(x, t) = 0
if t /∈ [−T + t0,−t0] with small t0 > 0 and ρ(x, t) > 0 if x ∈ (−T + t0,−t0). As ζx is a
smooth foliation of the tubular domain, it can be thought as a differeomorphism Ψ:
(D+d1)×[−T, 0] → C, namely, for x′ ∈ C there exists unique (x, t) ∈ (D+d1)×[−T, 0]
such that Ψ(x, t) = ζx(t) = x′. With a smooth function V : D + d1 → R we obtain a
smooth function V̄ defined on C

(8.5) V̄ (x′) = ρ(Ψ−1(x′))V (ζx(0)),

Since unique (x, t) ∈ (D+d1)×[−T, 0] is determined by certain x′ ∈ C, some constant
C2 > 0 exists such that

(8.6)

∫ −t0

−T+t0
V̄ (ζx(t))dt = C2V (x), ∀x ∈ D + d1.
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We construct the potential perturbation in the form of (8.5) where V ranges over
the function space spanned by

V2 =ε
(

∑

ℓ=1,2

aℓ cos 2ℓπ(x2 − x20) + bℓ sin 2ℓπ(x2 − x20)
)

,

V3 =ε
(

∑

ℓ=1,2

cℓ cos 2ℓπ(x3 − x30) + dℓ sin 2ℓπ(x3 − x30)
)

,

where each parameter of (aℓ, bℓ, cℓ, dℓ) ranges over an unit interval [1, 2]. If we con-
struct a grid for the parameters (aℓ, bℓ, cℓ, dℓ) by splitting the domain equally into a
family of cubes and setting the size length by

∆aℓ = ∆bℓ = ∆cℓ = ∆dℓ = ε,

the grid consists of as many as [ε−8] cubes.

Let us choose a neighborhood Iσ0 of the point σ0 which satisfies the conditions:

1, for each (x, σ) with x ∈ D and σ ∈ Iσ0 , there is a unique backward semi-static
curve γ−x,σ such that γ−x,σ(0) = x and γ−x,σ(t) → Υl,σ as t → −∞. It is guaranteed by
the existence of unstable manifold and if D is chosen close to Υl,σ0 . By the definition,
γ−x,σ(t) ∈ C for t ∈ [−T, 0] and x ∈ D, so each σ ∈ Iσ0 defines a linear operator

(8.7) KσV̄ =

∫ 0

−T
V̄ (γ−x,σ(t))dt;

2, as each curve γ−x,σ0(t) stays in δ-neighborhood of the fiber ζx for t ∈ [−T, 0] with
small δ > 0, by choosing suitably small neighborhood Iσ0 (depending on the size of
D) some constant C3 > 0 exists such that

Oscx∈D(KσV̄ − KσV̄
′) = max

x,x′∈D
|KσV̄ (x)− KσV̄

′(x′)|

> 2−1C2Oscx∈D(V − V ′)(8.8)

> C3ε∆

with ∆ = max{|aℓ−a′ℓ|, |bℓ−b′ℓ|, |cℓ−c′ℓ|, |dℓ−d′ℓ|}. Indeed, as V is a linear combination
of the functions {sin ℓxj , cos ℓxj : ℓ = 1, 2, j = 2, 3}, there exists some number d =
d(D) > 0 depending on the size of D only such that the Hausdorff distance

dH(V
−1
D (min

D
V +

1

4
∆), V −1

D (max
D

V − 1

4
∆)) ≥ d(D)

where V −1
D (minD V + 1

4∆) = {x ∈ D : V (x) ≤ minD V + 1
4 |(maxD V − minD V )}

and V −1
D (maxD V − 1

4∆) = {x ∈ D : V (x) ≥ maxD V − 1
4 |(maxD V −minD V )}. By

requiring σ suitably close to σ0 and using the notation πx(x, t) = x, we have

πxΨ
−1γx,σ(t) ∈ V −1

D (min
D

V +
1

4
∆) if V (x) = min

D
V ;

and

πxΨ
−1γx,σ(t) ∈ V −1

D (max
D

V − 1

4
∆) if V (x) = max

D
V.

Therefore, one obtains (8.8) from (8.5), (8.6) and (8.7);

3, for each σ ∈ Iσ0 and each x ∈ D, the forward semi-static curve γ+x,σ, determined

by u+r,σ with γx,σ(0) = x ∈ D, does not touch the support of ρ ⊂ C and approaches
Υr,σ as t increases to infinity.
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For the perturbed system L(ẋ, x)−V̄ (x), we use u+
r,σ,V̄

and u−
l,σ,V̄

to denote the weak

KAM solution. By the construction of perturbation, the invariant cylinder remains
unchanged. Restricted on the disk D, the forward weak-KAM solution u+

r,σ,V̄
is also

unchanged (u+r,σ,V − u+r,σ)|x∈D = 0, but the backward weak KAM solution undergoes

small perturbation u−
l,σ,V̄

6= u−l,σ. To see how it is related to the potential, let us recall

the following relations

u−l,σ(γx,σ(0)) − u−l,σ(γx,σ(−t)) =
∫ 0

−t
(L− ηc)(dγx,σ(t))dt+ Et

if γx,σ is a semi-static curve determined by u−l,σ with γx,σ(0) = x and c ∈ Iσ. We also

have

u−
l,σ,V̄

(γx,σ(0)) − u−
l,σ,V̄

(γx,σ(−t)) ≤
∫ 0

−t
(L− V̄ − ηc)(dγx,σ(t))dt+ Et.

Clearly, for suitably large t the backward weak-KAM solution γx,σ(−t) shall retreat
into a small neighborhood of Υl,σ where the weak KAM solution u−l,σ also remains

unchanged. Therefore we deduce from the last two formulae that

u−
l,σ,V̄

(x)− u−l,σ(x) ≥
∫ 0

−T
V̄ (γx,σ(t))dt.

In a similar way, we find

u−
l,σ,V̄

(x)− u−l,σ(x) ≤
∫ 0

−T
V̄ (γx,σ,V̄ (t))dt

where γx,σ,V̄ stands for the backward semi-static curve determined by the elementary

weak-KAM solution u−
l,σ,V̄

with γx,σ,V̄ (0) = x. As x is located in the region where

the weak KAM solution is differentiable, we have |γx,σ,V̄ (t)− γx,σ(t)| → 0 as V̄ → 0,
guaranteed by the upper-semi continuity of semi-static curves. Therefore, it follows
that for x ∈ D

u−l,σ,V (x)− u−l,σ,V ′(x) =

∫ 0

−T
(V̄ − V̄ ′)(γ−

x,σ,V̄
(t))dt+ o(‖V̄ − V̄ ′‖),(8.9)

=(Kσ + Rσ)(V̄ − V̄ ′)

where the linear operator Kσ is defined in (8.7) and Rσ(V̄ − V̄ ′) = o(‖V − V ′‖).

Next, let us consider all backward weak-KAM solutions for σ ∈ Iσ. Each parameter
σ ∈ Iσ determines an interval Ic(σ) for cohomology class. We restricted ourselves on
a curve of first cohomology classes contained in the set ∪Ic(σ) and intersecting each
Ic(σ) transversally. In this sense, we think the class defined on the interval Ic ∋ c and

the map σ → c(σ) is continuous. As h∞c(σ)(x, x
′) = u−l,σ(x

′) − u−l,σ(x) if x ∈ Υl,σ and

h∞c(σ)(x, x
′) = u+r,σ(x

′)− u+r,σ(x) if x
′ ∈ Υr,σ, we obtain from Lemma 6.4 in [CY2]

|u−l,σ(x)− u−l,σ′(x)| ≤ C4(
√

|σ − σ′|+ |c(σ)− c(σ′)|),(8.10)

|u+r,σ(x)− u+r,σ′(x)| ≤ C4(
√

|σ − σ′|+ |c(σ)− c(σ′)|).

We split the interval Iσ equally into Kσ[ε
−2] parts and split the interval Ic equally

into Kc[ε
−1], where

Kσ =
[

Lσ

(12C4

C3

)2]

, Kc =
[

Lc
12C4

C3

]

,
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Lσ and Lc are the length of Iσ and of Ic respectively. The grid over Ic × Iσ consists
of as many as KσKc[ε

−3] cuboids in which Kσ ,Kc are independent of ε. We pick up
all cuboids which contain the points (c, σ(c)) and denote them by cj with j ∈ J, then
the cardinality of the set J is not bigger than KσKc[ε

−3].

According to the definition, a point (cj , σ(cj)) ∈ cj corresponds to a barrier func-
tion u−l,σj − u+r,σj . Let us assume that some parameters (aℓ,j , bℓ,j) exist such that

Oscx∈Dmin
x3

(

u−l,σj − u+r,σj − (Kσj + Rσj )V̄j

)

= 0

where V̄j = ρΨ−1Vj is defined as in (8.5) with Vj ∈ V2 determined by the parameters.
We consider another perturbation determined by the parameters (a′ℓ, b

′
ℓ)

V ′ = ε
(

∑

ℓ=1,2

a′ℓ cos 2ℓπ(x2 − x20) + b′ℓ sin 2ℓπ(x2 − x20)
)

and set V̄ ′ = ρΨ−1V ′. By using the formula (8.9) we write the identity

u−
l,σ,V̄ ′ − u+

r,σ,V̄ ′ = (u−
l,σ,V̄ ′ − u−

l,σj ,V̄ ′)− (u+
r,σ,V̄ ′ − u+

r,σj ,V̄ ′)

+ (u−l,σj − u+r,σj)− (Kσj + Rσj )V̄j

+ (Kσj + Rσj )(V̄j − V̄ ′).

For any point (c, σ(c)) ∈ cj , in virtue of the formulae in (8.10) the first term on the
right-hand-side of the identity is not bigger than C3ε

2/3. For small ‖V̄j− V̄ ′‖ we have
‖(Kσj + Rσj )(V̄j − V̄ ′)‖ < 1

3‖Kσj (V̄j − V̄ ′)‖. As both V ′ and Vj are independent of
x3, if the parameters (a′ℓ, b

′
ℓ) satisfy

max{|aℓ,j − a′ℓ|, |bℓ,j − b′ℓ|} ≥ ε

we find from above identities and the estimate (8.8) that

(8.11) Oscx∈Dmin
x3

(

u−l,σ − u+u,σ − (Kσ + Rσ)V̄
′
)

≥ 1

3
C3ε

2 > 0.

It implies that, for each small rectangle cj we only need to cancel out at most 24

ε-cubes from the grid for {∆aℓ,∆bℓ : ℓ = 1, 2} so that the formula (8.11) holds for
the all other cubes. Let j ranges over the set J, we obtain a set Sc2 ⊂ {aℓ ∈ [1, 2], bℓ ∈
[1, 2] : ℓ = 1, 2} with Lebesgue measure

measSc2 ≥ 1− 24KσKcε,

such that the formula (8.11) holds for each (a′ℓ, b
′
ℓ) ∈ S

c
2 and for each σ ∈ Iσ0 .

By taking V ′ ∈ V3, in the same way we can see that some set Sc3 ⊂ {cℓ ∈ [1, 2], dℓ ∈
[1, 2] : ℓ = 1, 2} with Lebesgue measure

measSc3 ≥ 1− 24KσKcε,

such that the formula

(8.12) Oscx∈Dmin
x2

(

u−l,σ − u+u,σ − (Kσ + Rσ)V̄
′
)

> 0

for each (c′ℓ, c
′
ℓ) ∈ S

c
3 and each σ ∈ Iσ0 .

Therefore, for each (aℓ, bℓ, cℓ, dℓ, ) ∈ S
c
2×S

c
3, the formulae (8.11) and (8.12) implies

that for all σ ∈ Iσ0 the diameter of each connected component of the set

argmin(u−
l,σ,V̄

− u+
r,σ,V̄

)|D
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is smaller than D. As ε > 0 can be arbitrarily small, for each disk D, an open-dense
set VD exists such that this disconnect property holds for the system L − V̄ with
V̄ ∈ VD. Since σ is restricted on a closed set in the line which can be covered by
finitely many Iσi , this property is also open-sense for all σ under our consideration.

Each section D admits a hierachy of partition of small disks D = ∪jDkj such that
the size Djk approaches zero as k → ∞, the intersection ∩kVDkj

is a residual set.
Therefore, we have proved

Theorem 8.1. It is an open-dense condition for H such that the set

argmin(u−l,σ − u+r,σ)\((Υl,σ ∪Υr,σ) + δ)

consists of totally disconnected semi-static curves.

8.4. Criterion for strong and weak resonance. Given a perturbation ǫP (x̃, ỹ), it
is natural to ask, along the resonant path Γ, how many many double resonant points
need to be treated as strong resonance. Along a segment of resonant path Γω̃,ℓ the
resonance condition

〈k̃, ω̃〉 = 0

is always satisfied and at each double resonant point some other k̃′ ∈ Z3 exists such
that k̃′ is linearly independent of k̃ and

〈k̃′, ω̃〉 = 0.

Recall the process of KAM iteration, the main part of the resonant term is obtained by
averaging the perturbation over a circle determined by these two resonant relations.
It takes the form

Z = Zk̃(〈k̃, x̃〉, ỹ) + Zk̃,k̃′(〈k̃, x̃〉, 〈k̃′, x̃〉, ỹ)
where

Zk̃ =
∑

j∈Z\{0}
Pjk̃(ỹ)e

j〈k̃,x̃〉i, Zk̃,k̃′ =
∑

(j,l)∈Z2,l 6=0

Pjk+lk′(ỹ)e
(j〈k̃,x̃〉+l〈k̃i,x̃〉)i.

Since P is Cr-function, the coefficient Pjk̃+lk̃′ is bounded by

|Pjk̃+lk̃′ | ≤ 8π3‖P‖Cr‖jk̃ + lk̃′‖−r,
which deduces the estimation

(8.13) ‖Zk̃,k̃′‖2 ≤ d‖P‖Cr‖k̃′‖−r+2

where d = d(k̃) depends on k̃. The function Zk̃ is periodic in q̃ = 〈k̃, x̃〉. In virtue of
the theorem B.1 (see Appendix B), the following hypotheses is obviously open and
dense:

(H1.1): For each ỹ ∈ Γℓ, Zk̃ is non-degenerate at its maximal point, i.e. ∂2qqZk̃(q̃) >
0 holds provided q̃ is a maximal point.

Given some Zk̃ satisfying the hypothesis (H1.1), certain λ > 0 exists such that for

each ỹ ∈ Γℓ, ∂
2
qqZk̃ ≥ λ holds at the maximal point. Assume at ỹ′ ∈ Γℓ, the second

resonant condition 〈k̃′, ω̃(ỹ′)〉 = 0 is also satisfied. One thus obtains the normal form
(8.2), by performing the coordinate transformation (8.1). The homogenized form of
the truncated Hamiltonian takes the form

G = 〈Ay, y〉 + Vk̃(x2) + Vk̃,k̃′(x).
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The Hamiltonian flow determined by 〈Ay, y〉 + Vk̃(x2) admits a normally hyperbolic

invariant cylinder Π0
k̃,k̃′

= {y = 0, x2 = x∗2} × T if x∗2 is a non-degenerate maximal

point of Vk̃. Applying the theorem of normally hyperbolic manifold, one obtains from
the estimate (8.13) that some positive number d1 = d1(λ) > 0 exists such that Φt

Ḡ

also admits a normally hyperbolic and invariant cylinder Πk̃,k̃′ close to Π0
k̃,k̃′

provided

(8.14) ‖k̃′‖r−2 ≥ d

d1
‖P‖Cr .

It is a criterion to see whether the double resonance is thought as weak resonance and
can be treated in the way for a priori unstable system. There are only finitely many
k̃′ ∈ Z3 not satisfying this condition, thus are treated as strong double resonance.

Therefore, once a perturbation P is chosen so that (H1.1) is satisfied, there are
finitely many double resonant frequencies which need to be treated as strong double
resonance. The number is independent of the size of ǫ. At strong double resonance,
it is also open and dense condition that

(H1.2): at each strong double resonance point, the maximal point of Zk̃ + Zk̃,k̃′
is non-degenerate, two eigenvalues of the Hessian matrix are positive and different
λk,j > 0 for j = 1, 2. Indeed, there exists ν > 0 such that λk̃,2 ≥ ν‖k̃‖r−2 and

λk̃,1 ≥ ν‖k̃‖r−2‖k̃′‖r−2.

8.5. Proof of the main theorem. Given y′0, y
′
1, · · · , y′k we have chosen a resonant

path Γω so that Lβh(Γω) passes through each δ-neighborhood of these points. Let
ǫP satisfy all hypothesis above. In order to make things convenient for readers, we
formulate them here again:

(H1) for each strong double resonance, the potential Vi attains its maximum at one
point only, the Hessian matrix of Vi at that point is negative definite. All eigenvalues
are different: −λ2 < −λ1 < 0 < λ1 < λ2. (see H1 in Subsection 5.1, H1.1 and H1.2

in Subsection 8.4);

(H2) for the Hamiltonian flow ΦtYi,T , the stable and unstable manifold of the fixed

point intersect transversally along each minimal homoclinic orbit. Each minimal ho-
moclinic orbit approaches to the fixed point along the direction Λ1: γ̇(t)/‖γ̇(t)‖ → Λx1
as t → ±∞. (see H2 in Subsection 4.1. The function Yi,T solves the equation
Hi,T (x̃, y, Yi,T ) = E, the transversality is in the sense that, at the intersection points,
the tangent space of the stable and unstable manifold span the tangent space of the
energy level set.)

(H3): For each c ∈ ∂∗F0,i, the Aubry set does not contain minimal curve homoclinic
to the origin (fixed point). (see H2 in Subsection 4.1, each strong double resonance
is related to a flat F0,i corresponding to the Hamiltonian Yi,T .)

(H4): For each g ∈ H1(T
2,Z), there are finitely many θi ∈ R such that, for each

rotation vector θig, the Mather set consists of two periodic orbits, for other rotation
vector θg, the Mather set consists of one periodic orbit only. All these periodic orbits
are hyperbolic. (see H4 in Subsection 4.2, also formulated for the Hamiltonian Yi,T .)

(H5): For each c ∈ ∂∗F0,i there is a disk disjoint either with the support of µc or of
µ, restricted on which, the set argmin(U−

c −U ′+
c ) is non-empty. The size of the disk
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is independent of c. (see H5 in Subsection 4.2, also formulated for the Hamiltonian
Yi,T .)

Along the resonant path Γω, the strong double resonance points are denoted by
ω0, ω1, · · · , ωm, where the number m depends on P . Each flat LβH (ωi) is surrounded

by a annulus Ãi ⊂ α−1
H (E). For each segment of Γω connecting ωi to ωi+1, denoted

by Γω,i, LβH (Γω,i) constitutes a channel connecting Ãi to Ãi+1.

Split the unit interval into 2m+ 1 segments

[0, 1] = [0 = s0,i, s0,c] ∪ [s0,c, s1,i] ∪ · · · ∪ [sm−1,i, sm,c] ∪ [sm,c, sm,i = 1]

and let Γj,c: [sj,i, sj,c] → α−1
H (E), Γj,i: [sj,c, sj+1,i] → α−1

H (E) denote the paths such

that Γj,c(sj,c) = Γj,i(sj,c), Γj,i falls into the annulus Ãj along which the component c3
keeps constant in the local coordinate system and Γj,c falls into the channel LβH (Γω,j)

connecting Ãi to Ãi+1. Let Γ0,c(0) ∈ LβH (∇h(y′0)) and Γm,c(1) ∈ LβH (∇h(y′k)). The
subscript “c” is used to indicate complete intersection and the subscript “i” denotes
the incomplete intersection. We choose the conjunction of these curves as candidate
of generalized transition chain

(8.15) Γ = Γ0,c ∗ Γ0,i ∗ · · · ∗ Γm−1,i ∗ Γm,c.
Indeed, restricted on the segment Γj,i (j = 0, · · · ,m− 1) it has been proved satisfy-
ing the condition (H2) in the Definition 7.1 (c-equivalence) by using the hypothesis
(H1∼5). To guarantee the condition (H1) in the Definition 7.1 when it is restricted
on each segment Γj,c (j = 0, · · · ,m), one need to impose some condition which has
been proved to be generic in Subsection 8.3, Theorem 8.1:

(H6): if the Aubry set covers certain 2-torus in T3 for c ∈ Γj,c, then certain finite

covering manifold M̌ and certain two-dimensional section Σc exist such that

N (c, M̌ )|Σc\(A(c, M̌ ) + δ)|Σc 6= ∅.

is totally disconnected.

Under these hypothesis, namely (H1∼6), the path Γ defined in (8.15) is a transition
chain. Choose suitably many ci ∈ Γ (i = 0, 1, · · · , im) such that

1, each Ã(ci) is connected to Ã(ci+1) by local minimal orbit either of type-c or of
type-h;

2, among these classes, some classes cij (j = 0, 1, · · · , k) exist such that cij is very
close to y′j (the prescribed action variables in Theorem 1.1) if one thinks both cij and

yj as points in R3.

Recall the proof of Theorem 7.1. Let γ: [−K,K ′] → T3 be the minimizer of the
action (see (7.23)) satisfying the boundary conditions γ(−K) = x0 and γ(K ′) = xk.
Dividing the time interval [−K,K ′] into 2im + 1 parts

[−K,K ′] = [t+0 , t
−
0 ] ∪ [t−0 , t

+
1 ] ∪ · · · ∪ [t+im , t

−
im
],

imposing some constraints on γ at t = t±i and conditions on sufficiently large t+i+1−t−i
and t−i − t+i , one then proves that γ is a solution of the Lagrange equation determined
by H. The curve γ determines an orbit of the Hamiltonian flow ΦtH :

x(t) = γ(t), y(t) =
∂L

∂ẋ
(γ(t), γ̇(t)).
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For each x ∈ M , the set V −(c, x, L) ⊂ TxM is defined as follows: a vector v ∈
V −(c, x, L) if and only if a backward c-semi static curve γ− for the Lagrangian L
exists such that v = γ̇−(0). The set V +(c, x, L) is defined for forward semi-static
curve similarly. Clearly, one has

Proposition 8.1. The set-valued map L→ V ±
c,x,L is upper-semi continuous.

To see that this orbit visits the ball Bδ(x0, y0), Bδ(xk, yk) ⊂ T3 ×R3 and the balls
Bδ(yi) ⊂ R3 (i = 1, · · · , k − 1), we use this proposition. As h is integrable, any
backward (forward) c-semi static curve is c-static for all t ∈ R. Along any c-minimal
curve it holds that the action variable y = c. Since the perturbation h → h + ǫP
is small, γ̇(−K) is close to V +

x,c0,L
if t−0 − t+0 is sufficiently large. It follows that

‖y(−K)− y0‖ is very small provided ǫ is sufficiently small. In the same way, one can
see that ‖y(K ′) − yk‖ is also very small. Since Mañé set is upper semi continuous
with respect to Lagrangian, at the time ti = (t−i + t+i )/2, (γ(ti), γ̇(ti)) is very close to

Ã(ci), ‖y(ti) − yi‖ is very small. This proves that the Hamiltonian flow ΦtH admits
an orbit that visits these balls in turn.

To complete the proof of Theorem 1.1, we only need to show the generic property.

Towards this goal, let us observe a fact: under the rescaling y →
√
λy, t →

√
λ
−1
t,

the Hamiltonian equation determined by 1
2〈Ay, y〉 + λV (x) is the same as it for the

function 1
2〈Ay, y〉+V (x). Therefore, some open-dense set O ⊂ S1 ⊂ Cr exists, some

ǫP > 0 is associated to each P ∈ O such that the Hamiltonian flow ΦtH satisfies
the conditions H1∼5 provided ǫ ≤ ǫP , because the number of strong double resonant
points is independent of the size of ǫ. From the proof of Theorem 8.1 in the subsection
8.3, the condition H6 is required for the intersection of countably many open-dense
set contained in Bǫ0 : ∩iOi. Clearly, there exists a residual set Rǫ0 ⊂ Sǫ0 , for each
P ∈ Rǫ0 there exists a set RP residual in [0, ǫ0] such that {λP : P ∈ Rǫ0 , λ ∈ RP } ⊂
∩iOi. Take the intersection of these sets, we obtain the cusp-residual property. �

Appendix A. Normal form

In this appendix, we study the normal form of nearly integrable Hamiltonian, from
which one obtains some information about the relevant Mather sets, Aubry sets as
well as Mañé sets. Here, the system is assumed to have arbitrary n-degrees of freedom

H(x, y, t) = h(y) + Pǫ(x, y, t), (x, y, t) ∈ Tn × Rn × T.

The perturbation can be autonomous as well as time-1-periodic. As t can be treated
as the (n + 1)-th angle coordinate, we replace n by n + 1 when we consider time-1-
periodic perturbation Pǫ(x, y, t). Thus, we consider autonomous Hamiltonian only.

A.1. KAM iteration at strong resonance. Let ω(y) = ∇h(y) denote the fre-
quency vector of the unperturbed system. For autonomous case, a frequency ω is
called rational of (minimal) period T if Tω ∈ Zn and tω /∈ Zn for each t ∈ (0, T ).

Let the frequency ω be rational of period T . With a function g(x, y) on the torus
one associates its time average [g] along the orbits of the linear flow defined by ω:
x→ x+ ωt

[g](x, y) =
1

T

∫ T

0
g(x+ ωt, y)dt.
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We say that g is resonant (with respect to ω) if g = [g], it implies that g is constant
along the orbits of the linear flow (x, y) → (x+ ωt, y).

Let BR ⊂ Rn be the ball of radius R around the origin, then there are positive
numbers M =M(R) ≥ m = m(R) > 0 such that

m‖v‖2 ≤ 〈∇2h(y)v, v〉 ≤M‖v‖2, ∀ y ∈ BR, v ∈ Rn.

Let σ and ̺ denote positive number such that

σ <
1

3
, K = K(ǫ) = K0ǫ

−̺, ̺ =
1

3
(1− 3σ),

the value of σ will be specified later to satisfy certain covering property.

Denoted by {ωλ : λ ∈ ΛK,R} ⊂ BMR the set of frequencies which are rational of
period T with T ≤ K. Clearly, ΛK is a finite index set. Let yλ = ∇−1h(ωλ).

Let i = (i1, i2, · · · , in) ∈ Zn+, namely, ij is non-negative ∀ j ∈ {1, 2, · · · , n}. Let

|i| = ∑n
j=1 ij , Yi(y) =

∏n
j=1 y

ij
j . Let ‖ · ‖j,D denote the Cj-norm on the domain D,

we omit the notation D when it is clearly implied.

Theorem A.1. For a nearly integrable Hamiltonian H(x, y) = h(y) + Pǫ(x, y) we
assume that both h and Pǫ are C

r-smooth with r ≥ 8, and ‖Pǫ‖r,BR×Tn+1 ≤ ǫ. Some
small ǫ0 = ǫ0(M,m,n, r) > 0 exists such that for each ǫ ≤ ǫ0 and each rational
frequency ωλ = ω(yλ) with a period T ≤ K(ǫ), a canonical transformation Fλ is well
defined on

Dyλ,ǫ = {(x, y) ∈ Tn × Rn : ‖y − yλ‖ ≤ T−1ǫσ}
which reduce the Hamiltonian into the normal form

(A.1) H ◦ Fλ(x, y) = h(y) + Z(x, y) +R(x, y)

where Z is resonant with respect to ωλ with ‖Z‖r ≤ 2ǫ, R = Rh+Rr is a higher order
term when it is restricted in Dyλ,ǫ :

Rh =
∑

|i|=5

Yi(y − yλ)Rh,i(x, y),

‖Rh‖2,Dyλ,ǫ ≤ Dǫ
1
3
+5σ,

‖Rr‖2,Dyλ,ǫ ≤ Dǫ
4
3
+2σ

where the constant D > 0 is independent of ǫ. Restricted in the region {‖y − yλ‖ =
O(

√
ǫ)}, we have a sharper estimate

‖Rh‖1 ≤ Dǫ
4
3
+5σ, ‖Rh‖2 ≤ Dǫ

5
6
+5σ.

Proof. The canonical transformation Fλ is the composition of five steps of coordinate
transformations Fλ = F4 ◦· · ·◦F1◦F0. Each step of transformation Fj is defined as
the time-1-map of φtWj

, the Hamiltonian flow determined by the generating function

Wj . For the first step of coordinate transformation F0, we set

W0(x, y) = − 1

T

∫ T

0
P (x+ ωt, y)tdt

which solves the equation
〈

ω,
∂W0

∂x

〉

= −P + [P ].
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Let Z = [P ], it follows that

H1 = h(y) + Z(x, y) +R1,1(x, y) +R1,2(x, y)

where

R1,1 =
〈∂h

∂y
− ω,

∂W0

∂x

〉

,

R1,2 =

∫ 1

0
(1− t){{H,W0},W0} ◦ φtW0

dt.

Obviously, [R1,1] = 0 and one has the form R1,1 =
∑

|i|=1 Yi(y − yλ)R1,1,i(x, y). If we

write Hj = Hj,1 +Rj,2 where

Hj,1 = h(y) + Z(x, y) +Rj,1(x, y),

and for the coordinate transformation Fj (j = 1, · · · , 4), we set by induction

Wj(x, y) = − 1

T

∫ T

0
Rj,1(x+ ωs, y)sds

then the Hamiltonian Hj+1 takes the form

Hj+1 = h(y) + Z(x, y) +Rj+1,1(x, y) +Rj+1,2(x, y)

where

Rj+1,1 =
〈∂h

∂y
− ω,

∂Wj

∂x

〉

,

Rj+1,2 =

∫ 1

0
(1− t){{Hj,1,Wj},Wj} ◦ φtWj

dt

+Rj,2 ◦ Fj .

Also, [Rj+1,1] = 0 and we can write Rj+1,1 =
∑

|i|=j+1 Yi(y − yλ)Rj+1,1,i(x, y).

By the construction, we see that Hj,1 is Cr−j-smooth and Rj,2 is Cr−j−1-smooth.
Some constants Dj > 0, independent of ǫ, exists such that for (x, y) ∈ Dyλ,ǫ :

‖W0‖1 ≤ D0K0ǫ
1−̺,

‖Wj‖1 ≤ DjK
j+1
0 ǫ1+(j−1)σ−2̺, (j ≥ 1),

‖Rj+1,1,i‖2 ≤ DjK
j+1
0 ǫ1−(j+1)̺,(A.2)

‖Rj+1,2‖2 ≤ DjK
2(j+1)
0 ǫ2−2̺,

where we have used the relations that T ≤ K0ǫ
−̺, ̺ = 1

3(1 − 3σ) and σ < 1
3 . If we

write the canonical transformation Fj in the form

Fj : (x, y) ⇒ (x+ Uj(x, y), y + Vj(x, y))

then

(Uj , Vj) =

∫ 1

0

(∂Wj

∂y
,−∂Wj

∂x

)

◦ φtWj
dt

It maps Tn ×Bδj+1
→ Tn ×Bδj for ǫ ≤ ǫ0 if we set

δj =
(

2− j + 1

5

)ǫσ

T
, ǫ0 ≤ max

j≤5

1

(5DjK
j+2
0 )

1
(j+1)σ

.

The estimate on Rr = R5,1 and Rh = R5,2 follows from the formulae (A.2). �



ARNOLD DIFFUSION IN A PRIORI STABLE SYSTEMS 109

If the system is real analytical, the higher order term can be reduced to the order
O(exp(− 1

ǫσ )) (see [Lo]), with which one obtains the Nekhoroshev’s estimate.

A.2. Covering property. Recall that the set of frequencies {ωλ : λ ∈ ΛK,R} ⊂ BMR

each of which is rational of period T with T ≤ K, and the domains {Dyλ,ǫ : λ ∈ ΛK,R}
where the iteration of KAM is carried (see Theorem A.1 for definition).

Theorem A.2. The following covering property holds

(A.3)
⋃

λ∈ΛK,R

F
−1
λ Dyλ,ǫ ⊃ Tn ×BR provided σ <

1

3n+ 3
.

Proof. To show the covering property, we use Dirichlet’s approximation theorem. For
real x one has

x = [x] + {x},
where [x] ∈ Z the integer part, and {x} ∈ (0, 1). We use notation

‖x‖Z = inf{{x}, 1 − {x}} = dist(x,Z).

If x = (x1, x2, · · · , xn) ∈ Rn one sets

‖x‖Z = sup
i=1,2,··· ,n

‖xi‖Z.

Proposition A.1. (Dirichlet, see for examples, [Cas, Sch]) Let ω ∈ Rn and K a real
number with K > 1. There exists an integer k, 1 ≤ k < K, such that

‖kω‖Z ≤ K− 1
n .

For any ω ∈ Rn, by applying Dirichlet’s theorem, we find some rational vector ω∗

existing such that K ′ω∗ ∈ Zn with K ′ ≤ K and

dist(K ′ω,K ′ω∗) ≤ √
nK− 1

n ,

here, ω∗ is a rational vector of period T . Since h is assumed strictly convex, there
exist two points y, y∗ ∈ BR such that ∇h(y) = ω, ∇h(y∗) = ω∗ and

dist(y, y∗) ≤ 1

m
dist(ω, ω∗).

The condition ‖y − y∗‖ ≤ T−1ǫσ is guaranteed if we choose

(A.4) K
1
n =

√
n

m
ǫ−σ.

As T ≤ K is required, the following should be satisfied:

K ≤ K0ǫ
− 1

3
(1−3σ),

that is, referring to (A.4),

ǫ
1−3σ

3
−nσ ≤

( m√
n

)n
K0,

which determines a threshold for ǫ provided:

σ <
1

3n+ 3
.

As we choose σ satisfying this condition, the covering property (A.3) is proved. �
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For the purpose of this paper, the covering property (A.3) for the whole space is
not necessary, instead, it is good enough to cover a neighborhood of a resonant path.
Denote by k = (k1, · · · , kn−1) a n × (n − 1) matrix, where k1, · · · , kn−1 are integer
vectors. We consider the n− 1 resonance line

Γk = {y ∈ Rn : 〈ki, ∂h(y)〉 = 0 ∀ i = 1, · · · n− 1}.
If the covering property (A.3) in Theorem A.1 is replaced by covering a neighborhood
of the line

(A.5)
⋃

λ∈ΛK,R

Dyλ,ǫ ⊃ Tn × {‖y − y0‖ < µK−1ǫσ : y0 ∈ Γk ∩BR}

then it works if

σ <
1

6
.

Indeed, as all frequencies are on a (n− 1)-resonance line, by using Dirichlet approxi-
mation theorem (Proposition A.1) for n = 1 we obtain a threshold σ < 1/6.

Recall that the term Z in (A.1) is resonant with respect to ω, some rational fre-
quency of period T ≤ K, namely, it has the form

Z(x, y) =
∑

〈k,ω〉=0

Zk(y)e
i〈k,x〉.

Note that Tω is an indivisible integer vector, i.e. µTω /∈ Zn for any µ ∈ (0, 1).
There are n − 1 integer vectors I2, I3, · · · , In such that the matrix (I2, I3, · · · , In) is
indivisible, rank(I2, I3, · · · , In) = n−1 and 〈Ii, ω〉 = 0 holds for each i ∈ {2, 3, · · · , n}.
Clearly, there is another integer vector I1 such that the matrix I = (I1, I2, · · · , In)
is uni-module. Each integer vector k ∈ Zn with 〈k, ω〉 = 0 uniquely determines an

integer vector k̄ ∈ Zn−1 such that k =
∑n−1

j=1 k̄jIj+1.

We introduce a coordinate transformation: (x, y) → (p, q) such that

(A.6) q̃ = Itx, p̃ = I−1y.

This coordinate transformation is symplectic, H(I−tq̃, Ip̃) is also a function defined
on Tn with respect to q̃. Let y be the point where ∇h(y) = ω, then the gradient of

h̃(p̃) = h(Ip̃) satisfies

ω̃ = ∇h̃(p̃) = (0, · · · , 0, ω̃n),
and Z(Ip̃, I−tq̃) is independent of qn, thus we can write Z̃(p̃, q̃) = Z̃(p, q, pn) if we use
the natation p̃ = (p, pn) and q̃ = (q, qn).

Next, let us consider the time-1-periodical non-autonomous case. Assume T (ω, 1) ∈
Zn+1 is an indivisible integer vector. As Z is resonant with respect to ω, we have

Z(x, y, t) =
∑

〈k,ω〉+l=0

Zk,l(y)e
i〈k,x〉+lt.

Thus, there are n integer vectors I1, · · · , In, J ∈ Zn such that 〈Ii, ω〉 + Ji = 0 for
each i ∈ {1, · · · , n}. For each (k, l) ∈ Zn+1 with 〈k, ω〉 + l = 0, there is uniquely
determined (k̄1, · · · , k̄n) ∈ Zn such that

(k, l) =
n
∑

i=1

k̄i(Ii, Ji).
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By choosing suitable Ii, we can make I = (I1, I2, · · · , In) be uni-module. Introduce
the coordinate transformation (A.6), let y be the point where ∇h(y) = ω, then the
gradient of h̄(p) = h(Ip) satisfies

ω̄ = ∇h̄(p) = −J.
Note that each (k, l) with 〈k, ω〉 + l = 0 uniquely determines k̄ ∈ Zn such that
(k, l) = k̄(It, J). As we have

Z(I−tq, Ip, t) =
∑

k̄∈Zn

Zk,l(Ip)e
i〈k̄,q+Jt〉,

in the new coordinates the resonant term Z̄ = Z̄(p, q + Jt). Let q′ = q + Jt, p′ = p
and let h′(p′) = h̄(p′) + 〈J, p〉, we find the Hamiltonian equation of h′(p′) + Z̄(p′, q′)
is the same as the Hamiltonian equation of h̄(p) + Z̄(p, q + Jt).

Appendix B. Hyperbolicity of minimal periodic orbits

by Chong-Qing Cheng and Min Zhou

In the section 4, we made the hypothesis (H4) on the hyperbolicity of minimal
periodic orbits in Hamiltonian systems with two degrees of freedom. In the subsetion
8.4, we need the hypothesis (H1.1). In Cr-topology with r ≥ 4 these hypotheses are
shown generic in [CZ]. For the sake of completeness and convenience of reader, we
present the proof in this appendix.

B.1. Non-degeneracy of global minimum.

Theorem B.1. Let Fλ: T → R be a family of Cr-functions depending on the pa-
rameter λ ∈ [λ0, λ1] (r ≥ 4). If Fλ is Lipschitz continuous in λ, then there exists an
open-dense set O ⊂ Cr(T,R) such that for each V ∈ O and each λ ∈ [λ0, λ1], each
global minimum of Fλ−V is non-degenerate, namely, the second derivative is positive
at each global minimizer.

Proof. Since the openness is obvious, we only need to show the density. For this goal,
we introduce a set of perturbations with four parameters:

V =
{

V =
2

∑

i=1

(Ai cos ix+Bi sin ix) : (A1, B1, A2, B2) ∈ I4
}

,

where I4 = [1, 2] × [1, 2] × [1, 2] × [1, 2]. Let M = 12−1 supx,λ |∂4xFλ|, we are going to

show that, for any small numbers ǫ, d > 0 there exists (A1, B1, A2, B2) ∈ I4 such that

(B.1) (Fλ − ǫV )(x) −min
x

(Fλ − ǫV ) ≥M |x− x∗|4, ∀ |x− x∗| ≤ d

holds for each λ ∈ [λ0, λ1] whenever the point x
∗ is a global minimizer of Fλ− ǫV . It

implies the second derivative is positive. Indeed, if it equals zero, the third derivative
will be zero also. Consequently, the above formula does not hold.

By choosing sufficiently large integer k, ǫ =
√

π/k can be arbitrarily small. Let

xi = 2iπ/k, Ii = [xi − d, xi + d] and d = π/k, then ǫ =
√
d and

k−1
⋃

i=0

Ii = T.
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Restricted on each interval Ii, each function V ∈ V is approximated by Taylor series
(module constant)

Vi(x) = ai(x− xi) + bi(x− xi)
2 + ci(x− xi)

3 +O(|x− xi|4).
Given two points (ai, bi, ci) and (a′i, b

′
i, c

′
i), we have two functions Vi and V ′

i in the
form of Taylor series. Let ∆V = Vi−V ′

i , ∆a = ai− a′i, ∆b = bi− b′i and ∆c = ci− c′i,
we have ∆V (xi) = 0 and

∆V (xi + d) + ∆V (xi − d) = 2∆bd2 +O(d4),

∆V (xi + d)−∆V (xi − d) = 2(∆a+∆cd2)d+O(d4),

∆V
(

xi ±
1

2
d
)

=
(

± 1

2
∆a+

1

4
∆bd± 1

8
∆cd2

)

d+O(d4).

Using the notation

OscIV = sup{V (x)− V (x′) : x, x′ ∈ I},
it follows from the identities above that

(B.2) OscIi(V
′
i − Vi) ≥ max

{1

4
|∆a|d, |∆b|d2, 1

2
|∆c|d3

}

+O(d4).

We construct a grid for the parameters (ai, bi, ci) by splitting the domain for (ai, bi, ci)
equally into a family of cuboids and setting the size length by

∆ai = 8Md5/2, ∆bi = 2Md3/2, ∆ci = 4Md1/2.

These cuboids are denoted by cij with j ∈ Ji = {1, 2, · · · }, the cardinality of the set
of the subscripts is bounded by

#(Ji) = K[d−9/2],

where the integer K is independent of d. Let (aij , bij, cij) denote the center of each
cuboid and let

Vij(x) = aij(x− xi) + bij(x− xi)
2 + cij(x− xi)

3 +O(|x− xi|4).
Define

ℓj,j′ = max
{ |aij − aij′ |

8Md5/2
,
|bij − bij′ |
2Md3/2

,
|cij − cij′ |
4Md1/2

}

,

we find from the formula (B.2) that following holds for suitably small d > 0

(B.3) OscIi(ǫVij − ǫVij′) ≥ 2ℓj,j′Md4.

Let us define a subset J′i ⊂ Ji in the following way. A subscript j ∈ J′i if and only
the set

Λj = {λ ∈ [λ0, λ1] : OscIi(Fλ − ǫVij) < 2Md4} 6= ∅.

is non-empty. By definition, we have

OscIi(Fλ − ǫVij) ≥ 2Md4 ∀ λ ∈ [λ0, λ1] and j ∈ Ji\J′i.
Using the Lipschitz property λ→ Fλ, we claim an estimate on the cardinality of this
subset

#(J′i) ≤ 27Kd[d
−2− 1

2 ], where
logKd

| log d| → 0 as d→ 0.

In order to prove it, let us replace Fλ(x) by Fλ(x) − Fλ(xi) =
∫ x
xi
∂xFλ(x)dx, which

is still Lipschitz in λ, and denote the set of functions by

F = {Fλ : λ ∈ [λ0, λ1]}.
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It follows from the Lipschitz property that the box dimension of the set F equals
one in C0-topology. Let CDǫd(0) denote a cube in C0-function space, centered at
the origin with the size equal to Dǫd, where D > 0 depends on the upper bound of
{|aij |, |bij |, |cij |}. The set Λj is non-empty only if Fλ ∈ CDǫd(0) holds for λ ∈ Λj.
Since the box dimension of the set F equals one, we see that the set

F ∩CDǫd(0),

can be covered by as many asKd[ǫd
−3] cubes with the size of 2Md4, where the number

Kd satisfies the condition that logKd/| log d| → 0 as d→ 0.

Let us keep in mind that, by the definition, each j ∈ J′i corresponds to a non-empty
set Λj ⊂ [λ0, λ1]. If the cardinality #(J′i) > 28Kd[ǫd

−3], by Pigeonhole principle, there
would be at least 28 different subscripts jm ∈ J′i such that certain λjm ∈ Λjm, and
the 28 functions {Fλjm : m = 1, 2, · · · , 28} fall into one small cube with the size of

2Md4. On the other hand, since the parameter space is three dimensional, in these
28 different subscripts, there must be m 6= m′ such that

ℓjm,jm′ = max
1≤ℓ,ℓ′≤28

{ |aijℓ − aijℓ′ |
8Md5/2

,
|bijℓ − bijℓ′ |
2Md3/2

,
|cijℓ − cijℓ′ |
4Md1/2

}

≥ 4,

it follows from (B.3) that

OscIi(ǫVijm − ǫVijm′ ) ≥ 8Md4.

On the other hand, as both Fλjm and Fλj
m′

fall into the same cube where

OscIi |Fλj − ǫVij | < 2Md4, for j = jm, jm′

we find that
OscIi(ǫVijm − ǫVijm′ ) ≤ 6Md4.

This contradiction proves the claim that #(J′i) ≤ 27Kd[ǫd
−3].

By the definition of the cube, we have that if (ai, bi, ci) ∈ cij then

OscIi(ǫVij − ǫVi) ≤Md4.

It follows from the definition for J′ that for (ai, bi, ci) ∈ cij with j ∈ Ji\J′i
(B.4) OscIi(Fλ − ǫVi) ≥Md4, ∀ λ ∈ [λ0, λ1].

The gird for (ai, bi, ci) induces a grid for the parameters (A1, B1, A2, B2) determined
by the equation

(B.5)





ai
bi
ci



 =





− sinxi cos xi −2 sin 2xi 2 cos 2xi
− cos xi − sinxi −4 cos 2xi −4 sin 2xi
sinxi − cos xi 8 sin 2xi −8 cos 2xi













A1

B1

A2

B2









the coefficient matrix is non-singular for each xi ∈ T. Indeed, let M1 be the 3 × 3
matrix formed by first three columns and let M2 be the matrix formed by the first,
second and the fourth column, we have

det(M1)(xi) = 6 sin 2xi, det(M2)(xi) = −6 cos 2xi.

Note that infxi{|detM1(xi)|, |detM2(xi)|} = 3
√
2, the grid for (ai, bi, ci) induces a grid

for (A1, B1, A2, B2). It contains as many as K[d−9/2] 4-dimensional strips, denoted
by sij with j ∈ Ji. Each sij is mapped onto cij by the equation (B.5). For each
(A1, B1, A2, B2) ∈ sij with j ∈ Ji\J′i, the inequality (B.4) holds for any λ ∈ [λ0, λ1].
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Let us consider all intervals Ii with i = 0, 1, · · · , k−1. Different Ii induces different
gird for the parameters (A1, B1, A2, B2). In general, sij is not parallel to si′j′ if i 6= i′.
For each Ii, one can define two set of subscripts Ji ⊃ J′i in the way as above. Thus,
one obtains the cardinality of the disjoint union set

#(∨k−1
i=0 J

′
i) ≤ 27Kdπ[ǫd

−4] = 27Kdπ[d
−7/2] ≪ K[d−9/2].

Since logKd/| log d| → 0 as d→ 0, we obtain a Lebesgue measure estimate

meas
(

⋃

j∈J′
i

0≤i≤k−1

sij

)

≤ 27Kdπ

K
d→ 0 as d→ 0.

Let Sc = I4\ ∪j∈J′i, 0≤i≤k−1 sij , we obtain the Lebesgue measure estimate

meas(Sc) ≥ 1− 27Kdπ

K
d→ 1, as d→ 0.

By the definition Ji and J′i, one can see that for any (A1, B1, A2, B2) ∈ S
c and any

λ ∈ [λ0, λ1] the variation of Fλ − ǫV is bounded from below

OscIi(Fλ − ǫV ) ≥Md4, ∀ 0 ≤ i < k.

It implies that the inequality (B.1) holds. This completes the proof. �

B.2. Hyperbolicity of minimal periodic orbits. Let L ∈ Cr(TT2,R) be a Tonelli
Lagrangian with two degrees of freedom (r ≥ 4), let H be the Hamiltonian determined
by L. Because of topological property of two torus, each ergodic minimal measure is
supported on closed orbits if the rotation vector satisfies certain resonant condition.
It is a natural question whether these periodic orbits are hyperbolic. Once it is true,
one then obtains normally hyperbolic cylinder composed by these periodic orbits.

Given a Lagrangian L and a rotation direction g ∈ H1(T
2,Z), by Fenchel-Legendre

transformation, we obtain a channel in H1(T2,R)

Cg =
⋃

λ>0

LβL(λg) ⊂ H1(T2,R).

Typically, it is foliated into segments of line (flat of the α-function), along which the
α-function keeps constant, all cohomology classes share the same Mather set. Thus,
it makes sense to write M̃(c) = M̃(E, g) with E = α(c) and c ∈ Cg.

Theorem B.2. Given a class g ∈ H1(T
2,Z) and a closed interval [Ea, Ed] ⊂ R+

with Ea > minα, there exists an open-dense set O ⊂ Cr(T2,R) with r ≥ 4 such that

for each P ∈ O, each E ∈ [Ea, Ed], the Mather set M̃(E, g) for L + P consists of
hyperbolic periodic orbits. Indeed, except for finitely many Ej ∈ [Ea, Ed] where the
Mather set consists of two hyperbolic periodic orbits, for all other E ∈ [Ea, Ed] it
consists of exactly one hyperbolic periodic orbit.

This theorem will be proved by showing the non-degeneracy of the minimal point
of certain action function. Toward this goal, let us split the interval into suitably
many subintervals [Ea, Ed] = ∪ki=0[Ei − δEi

, Ei + δEi
] with suitably small δEi

> 0.
Once the open-dense property holds for each small subinterval, then it hold for the
whole interval.

Let us explain how the interval [Ea, Ed] is split. In the channel, one can choose a
path along which the α-function monotonely increases. Restricted on this path, we
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obtain a family of Lagrangians with one parameter. By using the method of [BC],
we can see that it is typical that the minimal measure is supported at most on two
periodic orbits for each class on this path. Thus, the Mather set M̃(E, g) consists of
at most two periodic orbits for each E ∈ [Ea, Ed].

Without of losing generality, we assume g = (0, 1), all of these minimal curves are
associated with the homological class. Restricted on the neighborhood SγEi

⊂ T2 of

a minimal curve γEi
∈ M(Ei, g) for certain energy Ei, we introduce a configuration

coordinate transformation x = X(u) such that along the curve γEi
one has u1 =

constant. In the new coordinates, the Lagrangian reads

L′(u̇, u) = L(DX(u)u̇,X(u))

which is obviously positive definite in u̇. As γE(t) is a solution of the Euler-Lagrange
equation determined by L, the curve X−1(γE)(t) solves the equation determined by
L′ and is minimal for the action of L′. As there are at most two minimal curves for
each energy, the neighborhood of these two curves can be chosen not to overlap each
other. Therefore, one can extend the coordinate transformation to the whole torus.

Let H ′ be the Hamiltonian determined by L′ through the Legendre transformation.
the minimal curve determines a periodic solution for the Hamiltonian equation. By
construction, ∂v2H

′ > 0 holds along the periodic solution which entirely stays in
the energy level set H ′−1(E). We choose suitably small δEi

> 0 such that for E ∈
[Ei − δEi

, Ei + δEi
] each minimal periodic curve in M(E, g) falls into the strip SγEi

and ∂v2H
′ > 0 holds along each minimal periodic orbit.

For brevity of notation, we still use x to denote the configuration coordinates,
use L and H to denote the Lagrangian and Hamiltonian, for which the condition
∂y2H > 0 holds along minimal periodic orbits for E ∈ [Ei − δEi

, Ei + δEi
]. Under

such conditions, the Lagrangian as well as the Hamiltonian can be reduced to a time-
periodic system with one degree of freedom when it is restricted on energy level set.
The new Hamiltonian H̄(x1, y1, τ, E) solves the equation H(x1, y1, x2, H̄) = E with
τ = −x2, from which one obtains a new Lagrangian L̄ = ẋ1y1− H̄(x1, y1, τ, E) where
y1 = y1(x1, ẋ1, τ) solves the equation ẋ1 = ∂y1H̄(x1, y1, τ). In the following we omit
the subscript “1”, i.e. let (x, y, ẋ) = (x1, y1, ẋ1) if no danger of confusion occurs.

We introduce a function of Lagrange action F (·, E): T → R:

F (x,E) = inf
γ(0)=γ(2π)=x

∫ 2π

0
L̄(dγ(τ), τ, E)dτ.

A periodic curve γ is called the minimizer of F if the Lagrange action along this curve
reaches the quantity F (γ(0), E). As there might be two or more minimizers if x is
not a minimal point, the function F may not be smooth in global. However, we claim
that it is smooth in certain neighborhood of minimal point.

To verify our claim, we let Ti =
2πi
m and define the function of action Fi(x, x

′, E)

Fi(x, x
′, E) = inf

γ(Ti)=x

γ(Ti+1)=x′

∫ Ti+1

Ti

L̄(dγ(τ), τ)dτ.

There will be two or more minimizers of Fi(x, x
′, E) if the point x is in the “cut locus”

of the point x′. However, the minimizer is unique if x is suitably close to x′, denoted
by γi(·, x, x′, E). In this case, it uniquely determines a speed v = v(x, x′) such that
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γ̇i(Ti, x, x
′, E) = v(x, x′). Let ~x = (x0, x1, · · · , xm) denote a periodic configuration

(x0 = xm), we introduce a function of action

F(~x,E) =

m−1
∑

i=0

Fi(xi, xi+1, E).

As Ti+1 − Ti is suitably small and the Lagrangian is positive definite in the speed,
the boundary condition γ(Tj) = xj for j = i, i + 1 uniquely determines the speed
vj = γ̇(Tj) for j = i, i+1. Indeed, the function Fi generates an area-preserving twist
map from the time-Ti-section to the time-Ti+1-section Φi: (xi, yi) → (xi+1, yi+1)

yi+1 = ∂xi+1Fi(xi+1, xi), yi = −∂xiFi(xi+1, xi).

where yi = ∂ẋL(xi, vi, Ti). As the Lagrangian is positive definite in ẋ, it implies that
the initial condition (xi, vi) smoothly depends on the boundary condition (xi, xi+1)
in this case. Because of the smooth dependance of solution of ordinary differential
equation on initial condition, the function is smooth. Obviously, each minimal point
of F(·, E) uniquely determines a c-minimal measure for c ∈ α−1(E) ∩ Cg, supported
on a periodic orbit (γE , γ̇E) with [γE ] = g. Let xi = γE(Ti), it satisfies the discrete
Euler-Lagrange equation

∂Fi
∂x′

(xi−1, xi, E) +
∂Fi+1

∂x
(xi, xi+1, E) = 0.

We shall show later that the periodic orbit is hyperbolic if and only if the minimal
configuration is non-degenerate, namely, the Jacobi matrix is positive definite:

J =















A0 B0 0 · · · Bm−1

B0 A1 B1 · · · 0
0 B1 A2 · · · 0
...

...
...

. . . Bm−2

Bm−1 0 0 Bm−2 Am−1















where

Ai =
∂2Fi−1

∂x′2
(xi−1, xi) +

∂2Fi
∂x2

(xi, xi+1), Bi =
∂2Fi
∂x∂x′

(xi, xi+1)

and x−1 = xm−1.

Let ~x = (x0, x1, · · · , xm = x0) be a minimal configuration of the function F (~x,E),
where the Jacobi matrix is non-negative and the smallest eigenvalue is simple. Indeed,
as the Lagrangian is positive definite, the generating function Fi(x, x

′, E) determines
an area-preserving and twist map Φi, we have Bi < 0. Consequently, by using a
theorem in [vM], we find that the smallest eigenvalue is simple. Let λi denote the
i-th eigenvalue of the matrix, at the minimal configuration one has

0 ≤ λ0 < λ1 ≤ λ2 < · · · ≤ λm−1.

Let ξi = (ξi,0, ξi,1, · · · , ξi,m−1) be the eigenvector for λi. By choosing ξ0,0 = 1 we have
ξ0,i > 0 for 1 ≤ i < m (see Lemma 3.4 in [An]). At the minimal configuration, we
find the following matrix is positive definite:

Jm−1 =











A1 B1 · · · 0
B1 A2 · · · 0
...

...
. . . Bm−2

0 0 Bm−2 Am−1











.
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If not, there will be a vector v̂ = (v1, · · · , vm−1) ∈ Rm−1\{0} such that v̂tJmv̂ = 0.
It follows that vtJv = 0 if we set v = (0, v̂) ∈ Rm. As the matrix J is non-negative, it
implies that v = µξ0, but it contradicts the fact that all entries of ξ0 have the same
sign, either positive or negative.

In a suitably small neighborhood ~U = U0 ×U1 × · · · ×Um−1 of the minimal config-
uration, let us consider the equations

(B.6)
∂F

∂xi
(x0, x1, · · · , xm−1, E) = 0, ∀ i = 1, 2, · · · ,m− 1.

Since the matrix { ∂2F
∂xi∂xj

}m−1
i,j=1 = Jm−1 is positive definite at the minimal point, by the

implicit function theorem, this equation has a unique smooth solution xi = Xi(x0, E)
when x0 ∈ U0. Let γ: [0, 2π] → R be a minimizer of F (x0) with γ(0) = γ(2π) = x0, we
obtain a configuration xi = γ(2iπ/m). Clearly, ∂xiF = 0 holds at this configuration
for each i ≥ 1. It implies the uniqueness of the minimizer of F (x0, E) for x0 ∈ U0.
The minimal point of F uniquely determines a minimal configuration of F, therefore,
the function F is smooth in certain neighborhood of its minimal point.

Non-degeneracy of minimizers

In a neighborhood of the minimal point, let us study what change the function of
action undergoes when the Lagrangian is under a perturbation of potential L→ L+P ,
where P : T2 → R is a potential. Let L̄′ denote the reduced Lagrangian of L+P and
let G = −(∂y2H)−1, one has

L̄′ = L̄+GP +O(‖P‖2).
We denote the minimal curve of F (x,E) by γ(t, x,E) such that γ(0, x,E) = x. Let
γ′(t, x,E) and F ′(x,E) be the quantities defined for L̄′ as the quantities γ(t, x,E)
and F (x,E) defined for L̄. By the definition of minimizer, we have

F ′(x,E) − F (x,E) =

∫ 2π

0
L̄′(dγ′(τ))dτ −

∫ 2π

0
L̄(dγ(τ))dτ

≥
∫ 2π

0
G(dγ′(τ), τ)P (γ′(τ))dτ + o(‖γ′ − γ‖, ‖P‖),

and

F ′(x,E)− F (x,E) =

∫ 2π

0
L̄′(dγ′(τ))dτ −

∫ 2π

0
L̄(dγ(τ))dτ

≤
∫ 2π

0
G(dγ(τ), τ)P (γ(τ))dτ + o(‖γ′ − γ‖, ‖P‖).

Since the distance between these two curves γ and γ′ is due to the perturbation P ,
we finally obtain

(B.7) F ′(x,E) = F (x,E) + KEP (x) + REP (x)

where REP = o(‖P‖) and

KEP (x) =

∫ 2π

0
G(dγ(τ, x,E), τ)P (γ(τ, x,E))dτ.

The field of smooth curves {γ(·, x,E)} defines an operator P → KEP , which maps
functions defined on T2 into the function space defined on T. Obviously, both KEP
and REP are smooth in x ∈ U0 and in E.
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Unless the point x is a minimizer of F (·, E), the curve γ(·, x,E) may have corner
at τ = 0 mod 2π.

Lemma B.1. There exist constants ε, θ > 0 such that if F (x,E) −minF (·, E) < ε
and if γ : [0, 2π] → R is a minimizer of F (x,E), then

‖γ̇(0)− γ̇(2π)‖ < θ
√

F (x,E) −minF (·, E).

Proof. Let us consider the derivative of F (·, E). As the Lagrangian is positive definite,
some positive constants mL > 0 exist such that

∂2L̄

∂ẋ2
≥ mL, ∀ (x, ẋ) ∈ TT2.

Since γ(0, x,E) = γ(2π, x,E) = x, one has ∂xγ(0) = ∂xγ(2π) = 1 and

∣

∣

∣

∂F

∂x

∣

∣

∣
=

∣

∣

∣

∫ 2π

0

(∂L̄

∂ẋ
(dγ(τ), τ)

∂γ̇

∂x
+
∂L̄

∂x
(dγ(τ), τ)

∂γ

∂x

)

dτ
∣

∣

∣

=
∣

∣

∣

∂L̄

∂ẋ
(γ̇(0), γ(0), 0) − ∂L̄

∂ẋ
(γ̇(2π), γ(2π), 2π)

∣

∣

∣

≥ mL|γ̇(0)− γ̇(2π)|,
where the second equality follows from that γ solves the Euler-Lagrange equation.
If ∂F

∂x > 0 and if the lemma does not hold, by choosing x′ − x = −
√
∆ (∆ =

F (x,E) −minF (·, E)) we obtain from the Taylor series up to second order that

F (x′, E)−minF (·, E) = F (x′, E) − F (x,E) + F (x,E) −minF (·, E)

≤ −∂xF (x,E)
√
∆+

M

2
∆ +∆ < 0

if θ > 1
mL

(1 + M
2 ), where M = max ∂2xF . But it is absurd. The case ∂F

∂x < 0 can be

proved by choosing x′ − x =
√
∆. This completes the proof. �

Let x ∈ (x∗ − δx∗ , x
∗ + δx∗), where x∗ is the minimal point of F (·, E0). As it

was shown above, γ(2iπm , x,E0) smoothly depends on x, we have a smooth foliation
of curves in a neighborhood of the curve γ(·, x∗, E0). The corner at γ(0, x,E0), i.e.
γ̇(2π, x,E0)− γ̇(0, x,E0) approaches to zero as F (x,E0) ↓ minF (·, E0). For each x, if
there is a corner at γ(0, x,E0) = γ(2π, x,E0), we construct a curve γx that smoothly
connects the point γ(2π − δ, x,E0) to the point γ(δ, x,E0) with γx(0) = x, where
δ > 0 is suitably small. Replacing the segment γ(·, x,E0)|[0,δ]∪[2π−δ,2π] by this curve,
we obtain a smooth curve γx such that γx(t) = γ(t, x,E0)|[δ,2π−δ] and γx(0) = x.

Indeed, as the curve γ(t, x,E0) is C
3-smooth in x and γ(t, x∗, E0) is also C

3-smooth
in t, for small number ε some µ0 > 0 exists such that the quantities
∣

∣

∣

dkγ

dtk
(t, x,E0)−

dkγ

dtk
(t, x∗, E0))

∣

∣

∣
< ε, ∀ x ∈ [x∗ − δx∗ , x

∗ + δx∗ ], k = 0, 1, 2, 3.

Let the curve ζx(·): [−δ, δ] → R be an interpolation polynomial of degree eight such
that

dkζx
dtk

(t) =
dkγ

dtk
(t, x,E0)−

dkγ

dtk
(t, x∗, E0) ∀ t = ±δ,

and ζx(0) = γ(0, x,E0) − γ(0, x∗, E0), then the coefficients of the polynomial are
smooth in x. Let γx(t) = γ(t, x∗, E0) + ζx(t), we see that the foliation of the curves
γx is smooth in x and as a function of t, γx − γ(·, x,E0) is small in C3-topology.



ARNOLD DIFFUSION IN A PRIORI STABLE SYSTEMS 119

For each point (τ, x) ∈ S, there is a curve γx0 such that x = γx0(τ). It uniquely
determines a speed v = v(x, τ) = γ̇x0(τ). By the construction, v(x, τ) is C3-smooth in
(x, τ). As −G−1 = ∂y2H > 0 when it is restricted to a neighborhood of the minimal
curves, both v and G can be approximated by Cr-function vs and Gs in C

3-topology
respectively i.e. ‖v − vs‖C3 < ε and ‖G −Gs‖C3 < ε hold for small ε > 0. Given a
Cr-function P̄ : T → R we obtain a Cr-function P = TE0P̄ : T

2 → R defined by

(B.8) P (x, τ) = TE0P̄ (x0) = G−1
s (vs(x, τ), x, τ)P̄ (x0),

if x = γx0(τ). By the definition, we have

(B.9) KETE0P̄ (x) =

∫ 2π

0

G(dγ(τ, x,E), τ)

Gs(vs(γ(τ, x,E), τ), γ(τ, x,E), τ)
P̄ (x+∆γ(τ, x,E))dτ

where ∆γ(τ, x,E) is defined as follows: passing through the point γ(τ, x,E) there is
a unique x′ such that γx′(τ) = γ(τ, x,E). We set ∆γ(τ, x,E) = x′ − x.

We introduce a set of perturbations with four parameters:

P̄ =
{

2
∑

ℓ=1

(Aℓ cos ℓx+Bℓ sin ℓx) : (A1, B1, A2, B2) ∈ I4
}

,

where I4 = [1, 2]× [1, 2]× [1, 2]× [1, 2]. By applying the formula (B.9) to the function
cos ℓx and sin ℓx we find that

KETE0 cos ℓx = uℓ(x,E) cos ℓx− vℓ(x,E) sin ℓx,(B.10)

KETE0 sin ℓx = uℓ(x,E) sin ℓx+ vℓ(x,E) cos ℓx,

where

uℓ(x,E) =

∫ 2π

0

G(dγ(τ, x,E), τ)

Gs(vs(γ(τ, x,E), τ), γ(τ, x,E), τ)
cos ℓ∆γ(τ, x,E)dτ,

vℓ(x,E) =

∫ 2π

0

G(dγ(τ, x,E), τ)

Gs(vs(γ(τ, x,E), τ), γ(τ, x,E), τ)
sin ℓ∆γ(τ, x,E)dτ.

Let us study the dependence of the terms uℓ(x,E) and vℓ(x,E) on the point x. We
claim that there exists constant θ1 > 0 as well as small numbers δE0 > 0 and δx∗ > 0
such that for each E ∈ (E0− δE0 , E0+ δE0), each x ∈ (x∗− δx∗ , x∗+ δx∗), j = 0, 1, 2, 3
and ℓ = 1, 2, we have

|uℓ(x,E)| ≥ 1− θ1δ, |vℓ(x,E)| ≤ θ1δ,

(B.11) max
j=1,2,3

{∣

∣

∣

∂juℓ
∂xj

(x,E)
∣

∣

∣
,
∣

∣

∣

∂jvℓ
∂xj

(x,E)
∣

∣

∣

}

≤ θ1δ.

By the construction of the curves γx, for τ ∈ T\(−δ, δ) and for x ∈ (x∗−δx∗ , x∗+δx∗)
we have

∆γ(τ, x,E0) = 0 and
G(dγ(τ, x,E0), τ)

G(v(γ(τ, x,E0), τ), γ(τ, x,E0), τ)
= 1

and ∂jx∆γ(τ, x,E0) is small for τ ∈ (−δ, δ) and for j = 0, 1, 2, 3. Integrating the them
over the set with Lebesgue measure 2δ, we find that some small θ1 > 0 exists such
that the formulae in (B.11) hold for E = E0 with θ1 being replaced by θ1/4 if Gs
and vs in the formula (B.9) are replaced by G and v respectively. As both v and G
are approximated by vs and Gs in C

3-topology, by choosing ε > 0 suitably small, all
formulae in (B.11) hold for E = E0 with θ1 being replaced by θ1/2.
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For other energy E, let us recall the solution xi = Xi(x0, E) of Eq. (B.6) is smooth.
As the map Φi: (xi, yi) → (xi+1, yi+1) is area-preserving and twist, it uniquely deter-
mines the initial speed v0 = v0(x0, E), namely, the initial speed smoothly depends on
the initial position and such dependence is also smooth in the parameter E. As solu-
tion of ODE smoothly depends on its initial conditions, the minimal curve γ(·, x,E)
of F (x,E) smoothly depends on the parameters x and E. Thus, the formulae in
(B.11) hold if the numbers δE0 > 0 and δx∗ > 0 are suitably small.

Theorem B.3. There exists an open-dense set O ⊂ Cr(M,R) with r ≥ 4 such
that for each P ∈ O and each E ∈ [E0 − δE0 , E0 + δE0 ], all minimizers of F (·, E),
determined by L+ P , are non-degenerate.

Proof. To show the non-degeneracy of the global minimum of F (·, E) located at the
point x, we only need to verify that

(B.12) F (x+∆x,E)− F (x,E) ≥M |∆x|4

holds for small |∆x|, where M = 12−1 max ∂4xF . Assume I is an interval, we define
OscIF = maxx,x′ |F (x)−F (x′)|. To show the non-degeneracy, it is sufficient to verify
that

OscIF (·, E) ≥M |I|4

if the minimal point x ∈ I, where |I| denotes the length of the interval.

The openness is obvious of P. To show the density, we are concerned only about
the configurations where F takes the value close to the minimum and consider small
perturbations from the following set where the parameters (A1, B1, A2, B2) range over
the cube I4 = [1, 2] × [1, 2] × [1, 2] × [1, 2]

VE =
{

(KE + RE)TE0

2
∑

ℓ=1

ǫ(Aℓ cos ℓx+Bℓ sin ℓx) : (A1, B1, A2, B2) ∈ I4
}

where each element is a function of (x,E), see the formulae (B.10). Recall that both
operators KE and TE0 are linear and ‖RE(ǫP )‖ = o(ǫ), see the formula (B.7) and
the formula (B.8).

We choose sufficiently large integer K so that ǫ = 4
√

π/K can be arbitrarily small.

Let xk = 2kπ
K , Ik = [xk − d, xk + d] and d = π/K, then

⋃K−1
k=0 Ik = T. Restricted

on each interval Ik, each C4-function V ∈ VE is approximated by the Taylor series
(module constant)

Vk(x) = ǫ
(

ak(x− xk) + bk(x− xk)
2 + ck(x− xk)

3 +O(|x− xk|4)
)

.

Given two points (ak, bk, ck) and (a′k, b
′
k, c

′
k), we have two functions Vk and V ′

k in
the form of Taylor series. Let ∆V = V ′

k − Vk, ∆a = a′k − ak, ∆b = b′k − bk and
∆c = c′k − ck, we have ∆V (xk) = 0 and

∆V (xk + d) + ∆V (xk − d) = 2ǫ∆bd2 +O(ǫd4),

∆V (xk + d)−∆V (xk − d) = 2ǫ(∆a+∆cd2)d+O(ǫd4),

∆V
(

xk ±
1

2
d
)

= ǫ
(

± 1

2
∆a+

1

4
∆bd± 1

8
∆cd2

)

d+O(ǫd4).
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It follows that

(B.13) OscIk(V
′
k − Vk) ≥ ǫmax

{1

3
|∆a|d, |∆b|d2, 1

2
|∆c|d3

}

.

We construct a grid for the parameters (ak, bk, ck) by splitting the domain for them
equally into a family of cuboids and setting the size length by

∆ak = 9Md
11
4 , ∆bk = 3Md

7
4 , ∆ck = 6Md

3
4 .

These cuboids are denoted by ckj with j ∈ Jk = {1, 2, · · · }, the cardinality of the set
of the subscripts is up to the order

#(Jk) = N [d−
21
4 ],

where the integer 0 < N ∈ N is independent of d. If OscIkF (·, E) ≤ Md4, we obtain
from the formula (B.13) that

OscIk(F (x,E) + V (x)) ≥ 2Md4

if V (x) = ǫ(a(x− xk) + b(x− xk)
2 + c(x− xk)

3 +O(|x− xk|4)) with

max
{1

3
|a|d− 11

4 , |b|d− 7
4 ,

1

2
|c|d− 3

4

}

≥ 3M.

The coefficients (ak, bk, ck) depend on the parameters (A1, B1, A2, B2), the energy
E and the position xk. The gird for (ak, bk, ck) induces a grid for the parameters
(A1, B1, A2, B2), determined by the equation

(B.14)





ak
bk
ck



 = (C1U+C2)









A1

B1

A2

B2









(

1 + Tǫ,E,xk(A1, B1, A2, B2)
)

where the map Tǫ,E,xk: R
4 → R3 is as small as of order O(ǫ),

C1 =





− sinxk cos xk −2 sin 2xk 2 cos 2xk
− cos xk − sinxk −4 cos 2xk −4 sin 2xk
sinxk − cos xk 8 sin 2xk −8 cos 2xk



 ,

U = diag

{[

u1(xk) v1(xk)
−v1(xk) u1(xk)

]

,

[

u2(xk) v2(xk)
−v2(xk) u2(xk)

]}

,

each entry of C2 is a linear function of ∂jxuℓ cos ℓxk, ∂
j
xvℓ cos ℓxk, ∂

j
xuℓ sin ℓxk and

∂jxvℓ sin ℓxk with j = 1, 2, 3, ℓ = 1, 2. Both matrices U and C2 depend on the energy
E, U is close to the identity matrix. Let M1 be the matrix composed by the first
three columns of C1U + C2, M2 be the matrix composed by the first, the second
and the fourth column of C1U+C2. As we are only concerned about those positions
where F takes value close to the minimum and about the energy E close to E0, in
virtue of (B.11) we obtain

det(M1)(xk) = 6 sin 2xk(1−O(θ1δ)),

det(M2)(xk) = −6 cos 2xk(1−O(θ1δ)).

Since infxk{|detM1(xk)|, |detM2(xk)|} = 3
√
2(1 − O(θ1δ)), the grid for (ak, bk, ck)

induces a grid for (A1, B1, A2, B2) which contains as many as N1[d
− 21

4 ] 4-dimensional
strips (N1 > 0 is independent of d). Note that the induced partition for the parameters
(A1, B1, A2, B2) depends on the energy E.
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Given an energy E ∈ [E0−δE0 , E0+δE0 ], if there exist Taylor coefficients (ak, bk, ck)
which determines a perturbation V such that

OscIk(F (·, E) + V ) ≤Md4

then for (a′k, b
′
k, c

′
k) which determines a perturbation ∆V ′ and satisfies the condition

max
{ |ak − a′k|

9Md
11
4

,
|bk − b′k|
3Md

7
4

,
|ck − c′k|
6Md

3
4

}

≥ 1

one obtains from the formula (B.13) that

(B.15) OscIk(F (·, E) + V ′) ≥ 2Md4.

Under the map defined by the formula (B.14), the inverse image of a cuboid ck with

the size 18Md
11
4 ×6Md

7
4×12Md

3
4 is a strip in the parameter space of (A1, B1, A2, B2),

denoted by Sk(E), with the Lebesgue measure as small as N−1
1 d

21
4 . If the cuboid ck

is centered at (ak, bk, ck), then for (a′k, b
′
k, c

′
k) /∈ ck the inequality (B.15) holds.

Splitting the interval [E0 − δE0 , E0+ δE0 ] equally into small sub-intervals IE,j with

the size |IE,j| = M−1
1 d4, we obtain as many as [M1d

−4] small intervals. Since the
function F is Lipschitz in E, suitably large positive numberM1 can be chosen so that

max
x∈Ik

|F (x,E) − F (x,E′)| < 1

2
Md4, ∀ E,E′ ∈ IE,j.

Therefore, for V ∈ VE with (∆A1,∆B1,∆A2,∆B2) /∈ Sk(E), one has

(B.16) OscIk(F (·, E) + ∆V ′) ≥Md4.

Pick up one energy Ej in each small interval IE,j, there are [M1d
−4] strips Sk(Ej).

Finally, by considering all small intervals Ik with k = 0, 1, · · ·K − 1, we find

meas
(

⋃

k,j

Sk(Ej)
)

≤M1N
−1
1

4
√
d.

Let Sc = I4\ ∪j,k Skj(Ej), we obtain the Lebesgue measure estimate

meas(Sc) ≥ 1−M1N
−1
1

4
√
d→ 1, as d→ 0.

Obviously, for each (A1, B1, A2, B2) ∈ S
c, each E ∈ [E0 − δE0 , E0 + δE0 ] and each

k = 1, 2, · · · ,K the formula (B.16) holds. This proves that it is open-dense that all
minimal points of F (·, E) are non-degenerate when the energy ranges over the interval
[E0 − δE0 , E0 + δE0 ]. �

Hyperbolicity

Let x∗ be a minimal point of the function F (·, E) and let the curve γ(·, x∗, E):
T → R be the minimal curve of F (x∗, E) which is smooth and determines a periodic
orbit (τ, γ(τ), ddτ γ(τ)) of the Lagrange flow φτ

L̄
. Back to the autonomous system, it

determines a periodic orbit (γ1(t), γ̇1(t), γ2(t), γ̇2(t)) of the Lagrange flow φtL, where
γ2(t) = −τ , γ1(t) = γ(γ2(t)).

Theorem B.4. If x∗ is a non-degenerate minimal point of the function F (·, E), then
the periodic orbit γ(·, x∗, E) is hyperbolic.
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Proof. If a periodic orbit is hyperbolic, it has its stable and unstable manifold in
the phase space. Consequently, any orbit staying on the stable (unstable) manifold
approaches to the periodic orbit exponentially fast as the time approaches to positive
(negative) infinity.

In a neighborhood of the minimal periodic curve γ, each point x on the section
{τ = 0} determines at least one forward (backward) semi-static curve γ+x : R+ → T
(γ−x : R− → T) such that γ±x (0) = x. These curves determine forward (backward)
semi-static orbits dγ±x of which the ω-set (α-set) is the periodic orbit dγ. In the
configuration space (x, τ) ∈ T2, these two curves intersect with the section {τ = 0}
infinitely many times at the points γ+x (2kπ) and γ

−
x (−2kπ). These points are denoted

by xi, they are well ordered · · · ≺ xi+1 ≺ xi · · · ≺ x0. It is possible that γ+x (2kπ) =
γ−x (−2k′π). In this case, we count the point twice. For each point xi, there is a curve
joining (xi, 0) to (xi, 2π) which is composed by some segments of γ+x as well as of γ−x .
For instance, in the following figure, by starting from the point (x2, 0) and following
a segment of γ−x to the point A, then following a segment of γ+x to the point B and
finally following a segment of γ−x to the point (x2, 2π), we obtain a circle. Clearly,
the Lagrange action along this circle is not smaller than the quantity F (x2).

Let us consider the whole sequence {xi}, we obtain infinitely many circles in that
way. Therefore, the sum of the quantities F (xi)|∞i=0 is obviously not bigger than the
total action along all of these circles

(B.17)
∞
∑

i=0

F (xi) ≤ lim
k→∞

{

∫ 2kπ

0
L(dγ+(τ), τ)dτ +

∫ 0

−2kπ
L(dγ−(τ), τ)dτ

}

.

The right hand side is nothing else but the barrier function valued at x0.

As the periodic orbit supports the minimal measure, both γ+x (2kπ) and γ
−
x (−2kπ)

approach the point x∗ where the periodic curve intersects the section {τ = 0} as
k → ∞. If the periodic orbit is not hyperbolic, the sequence of {xi} approach x
slower than exponentially, i.e., for any small λ > 0 there exists δ > 0 such that

|γ+x (2(k + 1)π) − x∗)| ≥ (1− λ)|γ+x (2kπ)− x∗)|,
|γ−x (−2(k + 1)π) − x∗)| ≥ (1− λ)|γ−x (−2kπ)− x∗)|,

if |γ±x (0) − x∗| ≤ δ. It follows that |xi+1 − x∗| ≥ (1 − λ)|xi − x∗|. As the periodic
curve is assumed non-degenerate minimizer, some λ0 > 0 exists such that

(B.18)
∞
∑

i=0

(F (xi)− F (x∗)) ≥ λ0

∞
∑

i=0

(xi − x∗)2 ≥ λ0
(x0 − x∗)2

1− (1− λ)2
.
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By subtracting minF from the Lagrangian L we obtain that F (x∗) = 0 and

right-hand-side of (B.17) = u−(x, 0) − u+(x, 0)

where u± represents the backward (forward) weak-KAM solution. Since u− is semi-
concave and u+ is semi-convex, u− − u+ is semi-concave. Since (x∗, 0) is a minimal
point where u−(x∗, 0) − u+(x∗, 0) = 0, there exists some number CL > 0 such that
(cf. [Fa2])

u−(x0, 0)− u+(x0, 0) ≤ CL(x0 − x∗)2.

Comparing this with the inequality (B.18), we obtain from (B.17) a contradiction

λ0
(x0 − x∗)2

1− (1− λ)2
≤ CL(x0 − x∗)2

if λ > 0 is suitably small. This proves the hyperbolicity of the periodic orbit. �

We are now ready to prove the main result.

Proof of Theorem B.2. According to Theorem B.3 and B.4, for each Ei ∈ [Ea, Ed], a
neighborhood [Ei−δEi

, Ei+δEi
] of Ei and an open-dense set O(Ei) ⊂ Cr(T2,R) exist

such that for each P ∈ O(Ei) and each E ∈ [Ei − δEi
, Ei + δEi

] each minimal orbit
of φtL+P with homological class g is hyperbolic. As each δEi

is positive, there exists
finitely many Ei such that [Ea, Ed] ⊂ ∪i[Ei − δEi

, Ei + δEi
]. We take P ∈ ∩O(Ei),

the hyperbolicity for L+ P holds for all E ∈ [Ea, Ed].

Once a minimal point is non-degenerate for certain E, by the theorem of implicit
function it has natural continuation to a neighborhood of E. Namely, there exists a
curve of minimal points passing through this point, it either reaches to the boundary
of [Ea, Ed], or extends to some point E′ where the critical point is degenerate. Since
each global minimal point is non-degenerate, the critical point becomes local minimum
when it enters into certain neighborhood of E′. As each non-degenerate minimal point
is isolated to other minimal points for the same energy E, there are finitely many
such curves, denoted by Γi.

For a curve Γi: Ii = (Ei, E
′
i) → T, the definition domain Ii contains finitely

many closed sub-intervals Ii,j such that F (Γi(E), E) = minx F (·, E) for all E ∈ Ii,j.
By definition, Ii,j ∩ Ii,j′ = ∅ for j 6= j′. Let Γi,j = Γi|Ii,j , we have finitely many
curves {Γi,j} such that F (·, E) reaches global minimum at the point x if and only if
x = Γi,j(E) for certain subscript (i, j).

For each E ∈ ∂Ii,j, by the definition of Ii,j, some other subscript (i′, j′) exists such
that F (·, E) reaches the global minimum at the points Γi,j(E) and Γi′,j′(E). It is
obviously an open-dense property that

dF (Γi,j(E), E)

dE
6= dF (Γi′,j′)(E), E)

dE
.

Thus, it is also open-dense that [Ea, Ed] = ∪Ii,j and [Ea, Ed]\∪intIi,j contains finitely
points. This completes the whole proof. �
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