
ARNOLD’S MECHANISM OF DIFFUSION IN THE SPATIAL

CIRCULAR RESTRICTED THREE-BODY PROBLEM:

A SEMI-ANALYTICAL ARGUMENT

AMADEU DELSHAMS†,♯ , MARIAN GIDEA‡ AND PABLO ROLDAN†,§

Abstract. We consider the spatial circular restricted three-body problem,
on the motion of an infinitesimal body under the gravity of Sun and Earth.
This can be described by a 3-degree of freedom Hamiltonian system. We
fix an energy level close to that of the collinear libration point L1, located
between Sun and Earth. Near L1 there exists a normally hyperbolic invariant
manifold, diffeomorphic to a 3-sphere. For an orbit confined to this 3-sphere,
the amplitude of the motion relative to the ecliptic (the plane of the orbits of
Sun and Earth) can vary only slightly.

We show that we can obtain new orbits whose amplitude of motion relative
to the ecliptic changes significantly, by following orbits of the flow restricted to
the 3-sphere alternatively with homoclinic orbits that turn around the Earth.
We provide an abstract theorem for the existence of such ‘diffusing’ orbits,
and numerical evidence that the premises of the theorem are satisfied in the
three-body problem considered here. We provide an explicit construction of
diffusing orbits.

The geometric mechanism underlying this construction is reminiscent of the
Arnold diffusion problem for Hamiltonian systems. Our argument, however,
does not involve transition chains of tori as in the classical example of Arnold.
We exploit mostly the ‘outer dynamics’ along homoclinic orbits, and use very
little information on the ‘inner dynamics’ restricted to the 3-sphere.

As a possible application to astrodynamics, diffusing orbits as above can
be used to design low cost maneuvers to change the inclination of an orbit of a
satellite near L1 from a nearly-planar orbit to a tilted orbit with respect to the

ecliptic. We explore different energy levels, and estimate the largest orbital
inclination that can be achieved through our construction.

1. Introduction

1. The instability problem in Hamiltonian dynamics. Many physical systems that
conserve mechanical energy can be modeled as (autonomous) Hamiltonian systems.
Typical Hamiltonian systems exhibit chaotic dynamics. Integrable Hamiltonian sys-
tems – those that can be solved by quadratures – are rare. In applications, one
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frequently encounters nearly integrable Hamiltonian systems, which are small per-
turbations of integrable ones. Studying the long-term behavior of nearly integrable
Hamiltonian systems was considered by Poincaré to be the fundamental problem of
dynamics.

An underlying question is whether the effect of small perturbations averages out
in the long run, or it can accumulate to large effects. Arnold [1] conjectured that,
for ‘typical’ nearly-integrable systems, there always exist orbits that ‘diffuse’, i.e.,
they travel a large distance in the phase space, for all sufficiently small perturba-
tions. A brief overview on Arnold’s diffusion problem and on recent progress is
given in subsection 6 below. Many results on the Arnold diffusion problem concern
‘generic’ classes of Hamiltonian systems. There are only few concrete examples in
the literature where diffusing orbits can be found explicitly.
2. Model and main results. In this paper we describe a simple model from celestial
mechanics which exhibits diffusing orbits.

We also describe a general method, relying on geometric and topological tools,
that can be used to find explicitly such orbits. This method can be applied to other
models not considered in this paper (see. e.g. [7]).

We consider the spatial circular restricted three-body problem (SCRTBP), in the
case of the Sun-Earth system. This models the motion of an infinitesimal particle
(satellite) relative to two massive bodies (Sun and Earth), which are assumed to
move on circular orbits about their center of mass. In the spatial problem the
infinitesimal particle is not constrained to move in the same plane as the massive
bodies (the ecliptic plane).

This system can be described by a 3-degree of freedom Hamiltonian system.
There are five equilibrium points for the Hamiltonian flow: three of them are of
center-center-saddle type, and the other two are of center-center-center type. In
this paper we focus on one of the center-center-saddle equilibria, referred to as L1,
which is located between Sun and Earth. (We point out that we can carry a similar
analysis on the other two equilibria of center-center-saddle type.)

The dynamics near L1 is organized by some remarkable geometric objects. For
an energy level close to that of L1, the flow restricted to the energy manifold has a
3-dimensional normally hyperbolic invariant manifold (NHIM) near L1.

The NHIM is diffeomorphic to a 3-sphere, and contains many 2-dimensional in-
variant tori that are closely spaced. (The existence of families of 2-dimensional
invariant tori as above can be established, under certain restrictions on the param-
eters of the model, by using the KAM theorem.) Thus, any orbit of the ‘inner
dynamics’ — the restriction of the flow to the 3-sphere — is either confined to an
invariant torus, or to one of the narrow ‘gaps’ between two invariant 2-tori that
separate the 3-sphere. For each orbit lying on such a torus the out-of plane ampli-
tude relative to the ecliptic is fixed, and for each orbit lying inside a gap the out-of
plane amplitude varies only very little. Thus, there are no orbits for the inner
dynamics that can ‘diffuse’ across the sphere; in other words, it it is impossible to
achieve a large change of the out-of-plane amplitude of an orbit by using only the
inner dynamics. In this sense, the inner dynamics is similar to that of an integrable
system.

In order to obtain orbits that diffuse across the sphere one has to use also the
‘outer dynamics’ – along homoclinic orbits bi-asymptotic to the 3-sphere. As it



ARNOLD’S MECHANISM OF DIFFUSION 3

turns out, the stable and unstable manifolds of the 3-sphere intersect transver-
sally, yielding multiple homoclinic manifolds, which consist of smooth families of
homoclinic orbits. By following carefully selected homoclinic orbits one can in-
crease/decrease the out-of-plane amplitude by an amount that is larger than the
size of the gaps between the invariant tori. We construct pseudo-orbits — ob-
tained by repeatedly intertwining the outer dynamics with the inner dynamics —
that change the out-of-plane amplitude by a ‘large amount’. We then show, via a
topological version of the shadowing lemma, that there exist true orbits that follow
closely those pseudo-orbits.

Our methodology combines analytical results with numerical methods. The main
analytical result is an abstract theorem that provides the existence of diffusing
orbits under verifiable conditions. The numerical part consists of verifying the
conditions of the theorem, and of explicitly detecting diffusing orbits through careful
computations. More details are given in subsection 4 below.

3. Applications. A possible application of this mechanism is to design low cost
procedures that change the out-of-plane amplitude, relative to the ecliptic, of the
motion of a satellite near L1, from nearly zero amplitude to some ‘large’ amplitude.
We also provide practical information on how to choose the energy level of the
system in order to obtain such motions that end up near the largest possible out-
of-plane amplitude for that energy level.

Our focus on L1 can be viewed as a ‘proof of concept’. Similar type of orbits
can be designed near the other equilibrium points of center-center-saddle type.

We also point out that in this paper we consider a relatively narrow range of
energies near that of L1. At higher energies, new types of orbits appear – the so
called halo orbits –, which are rather useful for space mission design. In practice,
it is not too difficult to jump to the halo orbits (see [36]). At higher energies,
the dynamics restricted to the 3-sphere does no longer resemble that of an nearly-
integrable system – the Poincaré section reveals large ‘elliptic islands’ and a large
‘stochastic sea’. Hence, the underlying dynamics is not nearly integrable, as in
the case of the Arnold diffusion problem, which is one of the motivations of our
work. In fact, the closer the energy level is to that of L1, the closer the dynamics
on the 3-sphere is to that of an integrable system, hence the more difficult is to
achieve diffusion. So in this paper we deliberately choose to consider a more difficult
problem.

4. Methodology. In his original paper [1], Arnold described a mechanism of diffu-
sion based on transition chains consisting of KAM tori and transverse heteroclinic
connections among them. Such transition chains were also used in other papers,
e.g., [48, 26, 18, 54, 16, 20, 9]. Other mechanisms of diffusion make use of transition
chains of secondary tori [16], or of Aubry-Mather sets [11, 12, 31].

In comparison to the works mentioned above, in this paper we do not use transi-
tion chains formed by invariant tori or by Aubry Mather sets. Instead, we param-
etrize the 3-sphere near L1 by a system of coordinates consisting of one action and
two angle variables, – with the action variable corresponding to the out-of-plane
amplitude of the orbit about the ecliptic –, and form transition chains of level sets
of the action. These level sets are not necessarily invariant sets, but only ‘almost
invariant’. Once we obtain a parametrization of the 3-sphere by action-angle vari-
ables, computing level sets of the action is trivial. Consequently, our method is
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computationally very cheap. In contrast, the precise computation of KAM tori,
secondary tori, or Aubry-Mather sets is more laborious.

We mention that transition chains of level sets of the action also appear in [32],
but they have not been numerically implemented before.

Now we briefly explain the construction of transition chains of action level sets.
The main tool is a geometrically defined mapping on the NHIM, referred to as the
scattering map (see [21]). For a fixed choice of a homoclinic manifold, follow an
unstable fiber whose foot point lies on the NHIM up to the homoclinic manifold;
then identify a stable fiber that passes through the same homoclinic point, and
follow the stable fiber up to its foot point on the NHIM; the mapping that assigns
to the foot point of the unstable fiber the foot point of the stable fiber is the
scattering map. In order for this map to be well defined, one has to fix a suitable
restriction of the homoclinic manifold. The resulting scattering map is in general
defined only on some open subset of the NHIM.

The scattering map provides a convenient way to track the effect on the action
variable of following homoclinic orbits. Applying the scattering map to a level set
of the action variable yields points that lie on higher levels of the action variable,
as well as points that lie on lower levels of the action variable. In order to achieve
a consistent effect of the scattering map on successive action level sets — say, to
keep increasing the value of the action — one has first to select those locations
where the scattering map goes from a lower action level to a higher action level.
Then, after applying the scattering map, one has to move along the action level set
in order to reach out a location where another application of the scattering map
increases again the value of the action variable. That is, one has to intersperse
successive applications of the scattering maps with conveniently long trajectories
of the dynamics restricted to the 3-sphere. In our model, a homoclinic excursion
– corresponding to one application of the scattering map – is represented by a
trajectory that starts near L1, makes a turn around the Earth, and returns close
to L1, and an orbit of the inner dynamics is one that turns around L1.

In addition, different scattering maps, corresponding to different homoclinic
manifolds, have different effects on action level sets. If several scattering maps
are available, one may wish to choose at every step the scattering map that has
the maximum effect on action level sets. We provide a practical procedure on how
to select the scattering map at each step in order to obtain orbits that yield the
largest change in the action variable with the fewest homoclinic excursions, i.e., the
fewest number of turns around the Earth.

The main result, Theorem 2.4 assumes the existence of a 3-dimensional NHIM
Λc near L1, the existence of transverse homoclinic intersections of W s(Λc) and
Wu(Λc) — the stable and unstable manifolds of Λc —, and the existence of corre-
sponding scattering maps on Λc. The dimension of the problem is further reduced
by considering a suitable Poincaré section Σ and its corresponding first return map
F . The reduced NHIM ΛΣ

c := Λc∩Σ, the induced scattering maps, and the induced
inner dynamics — defined as the restriction FΛΣ

c
of F to ΛΣ

c —, are 2-dimensional.
Theorem 2.4 says that if there exists a pseudo-orbit generated by applying one of
the scattering maps alternatively with applying the inner dynamics for some num-
ber of iterates, then there exists a true orbit that follows that pseudo-orbit. Hence,
once we find a pseudo-orbit that achieves a significant change in the action variable,
there is a true orbit that also achieves a significant change in the action variable.
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It does not seem possible to verify analytically all of the conditions required by
Theorem 2.4 without imposing further restrictions on the parameter values of the
model. However, the numerical verification of those conditions can be done easily
and with high accuracy.

The level sets of the action variable in ΛΣ
c are 1-dimensional action level sets

(curves) in a 2-dimensional phase space. We construct recursively an ordered se-
quence of such curves, and verify that the image of each curve by a suitably chosen
scattering map intersects the next curve in the sequence. Checking these intersec-
tions numerically is very easy, since the problem is low dimensional. Then we have
to apply the inner dynamics to move from the image of one scattering map to a
location where we can apply the next scattering map. From a numerical stand-
point, these level sets are almost invariant, and FΛΣ

c
restricted to each level set is

nearly a rigid rotation, with the frequency varying from one level set to another.
These properties allow movement along each level set without changing too much
the value of the action. We successively apply a scattering map to each action
level set, and follow it by a number of iterates of the inner dynamics to arrive to
a suitable location where another application of a scattering map yields a jump to
the next action level set. In this way, we obtain explicit constructions of pseudo-
orbits. We note that these pseudo-orbits are indistinguishable from true orbits from
a numerical standpoint.

Since our construction is explicit, we can track the diffusion time of each orbit ob-
tained through this mechanism (here we are referring to the numerically computed
orbits, which coincide with the pseudo-orbits that we construct). Additionally, we
obtain information on how the diffusion range in the action variable varies with the
energy level considered. We discover that energy levels close to that of L1 yield
a smaller diffusion range, and energy levels farther away from that of L1 yield a
wider diffusion range.

Our work can be viewed as a semi-analytical approach1, by which we mean
the following here. We have an analytical result, Theorem 2.4, which provides
the existence of diffusing orbits under certain assumptions on the system. The
assumptions fall into two categories. Some of them – the existence of a NHIM,
the existence of homoclinic trajectories – can be verified analytically for certain
values of the parameters of the problem – the mass ratio of the heavy bodies, the
energy level –, but need to be verified numerically for realistic parameter values.
Some other assumptions can only be verified numerically – the computation of the
scattering map and of the inner map and its iterates. Also, the final construction
of diffusing orbits is numerical.

A highlight of our approach is that the numerical verifications can in principle be
validated through computer assisted proofs using interval arithmetic, via existing
libraries developed for this type of problems, e.g., CAPD [23]. The implementation
of computer assisted proofs is, however, beyond the scope of this paper.

5. Structure of the paper. In this paper we provide two types of results. In
Section 2, after setting up the problem and introducing the methodology, we provide
an abstract result, Theorem 2.4 , which gives some sufficient conditions, on a 5-
dimensional, fixed energy manifold of the SCRTBP, for the existence of trajectories
that visit some given sequence of action level sets in the prescribed order.

1A discussion about the meaning of the terms ‘semi-analytical’ and ‘semi-numerical’ appears
in [5]; these terminologies are not standard.
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The proof of Theorem 2.4, given in Section 3, relies on the theory of normal
hyperbolicity, on the geometric properties of scattering maps, and on the Poincaré
recurrence theorem. Relevant references to our approach include [6, 22, 21, 17, 33,
7].

The numerical verification of the conditions of the theorem is performed in Sec-
tion 4 with high precision computations. We also obtain numerically orbits which
visit a prescribed sequence of action level sets, and thus achieve diffusion.

6. Related works. The diffusion mechanism described above is similar to Arnold’s
mechanism of diffusion in nearly integrable Hamiltonian systems [1]. The Arnold
diffusion problem claims that, small, ‘generic’ perturbations of integrable Hamilton-
ian systems of more than 2-degrees of freedom, yield trajectories that drift across
a significant portion of the phase space. Genericity means that the perturbations
are taken from an open and dense set of functions in a certain regularity class, or
from a cusp residual class (see [45, 46]). It is often the case that one cannot verify
whether a given perturbation belongs or not to such a generic class. Thus, such
treatments are not particularly suitable to applications to concrete models – such
as, those from celestial mechanics –, where the perturbation can be very specific.

The Arnold diffusion problem has a long history, and many important contri-
butions include [13, 3, 27, 11, 12, 4, 59, 19, 39, 15, 30, 51]. Recent progress on
the Arnold diffusion problem has been reported in [2, 40, 41, 10, 45, 46]. The ap-
proaches used in these works range from variational to geometric/topological. This
paper is more in line with the geometric method developed in [21, 32, 31, 33].

The SCRTBP that we consider in this paper is a real-life model for the Arnold
diffusion problem. Although its associated Hamiltonian system is not nearly-
integrable per se, this model exhibits the same type of geometric structures and
mechanisms as in the Arnold diffusion problem, as described above. We use this
model to illustrate many of the difficulties of applying some of the well-known meth-
ods to concrete examples. More importantly, we use the SCRTBP to showcase the
advantages of our method, which does not rely on the explicit knowledge of the
inner dynamics and of the invariant objects that organize it. Indeed, our method
relies mostly on understanding the outer dynamics, via scattering maps.

Arnold’s mechanism of diffusion has been identified in other models from celes-
tial mechanics. The existence of Arnold diffusion type of trajectories was shown
via analytical methods in several models, e.g., [60, 61, 48, 56, 9]. Different mech-
anisms of diffusion in other celestial mechanics models have been established via
combinations of analytical arguments and numerical experiments in [28, 29, 24, 62].
Related works discussing Arnold diffusion in the context of celestial mechanics in-
clude [42, 13, 14, 55].

2. Setup and main result

In this section we describe the spatial restricted three body problem (SCRTBP)
and provide the main theoretical result on the existence of Arnold’s mechanism of
diffusion for this problem.

2.1. The spatial circular restricted three-body problem. The model is de-
fined as follows: two main bodies rotate in the plane about their common center of
mass in circular orbits under their mutual gravitational influence. A third body, of
infinitesimal mass, moves in space attracted by the other two but not influencing
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their motion. The problem is to describe the motion of this third body. A general
reference for the SCRTBP is Szebehely’s book [58].

Usually, the two rotating bodies are called the primaries. We will consider as
primaries the Sun and the Earth. The third body can be regarded as a satellite or
a spaceship of negligible mass. Notice that, unlike in the planar restricted problem,
the motion of the third body is not restricted to the plane of motion of the two
primaries.

We use a rotating system of coordinates centered at the center of mass. The
plane X,Y rotates with the primaries. The primaries are on the X axis, the Y
axis is perpendicular to the X axis and contained in the plane of rotation, and the
angular velocity vector is normal to the plane along the Z axis.

In dimensionless coordinates, µ1 and µ2 represent the masses of the primaries.
They satisfy the relation µ1+µ2 = 1. Let the smaller mass be µ2 = µ and the larger
one be µ1 = 1− µ. The distance between the primaries is also 1. In the sequel, we
will focus on the Sun-Earth system for which µ = 3.040423398444176× 10−6. The
Sun is located to the right of the origin at P1 = (µ, 0, 0), and the Earth is located
to the left at P2 = (µ− 1, 0, 0). See Figure 1.

The equations of motion of the third body, using dimensionless variables, are

Ẍ − 2Ẏ = ΩX ,(2.1a)

Ÿ + 2Ẋ = ΩY ,(2.1b)

Z̈ = ΩZ ,(2.1c)

where

Ω =
1

2
(X2 + Y 2) +

1− µ

r1
+

µ

r2
+

1

2
µ(1− µ),

and r1, r2 denote the distances from the third body to the larger and to the smaller
primary, respectively:

r21 = (X − µ)2 + Y 2 + Z2,

r22 = (X − µ+ 1)2 + Y 2 + Z2.

These equations have an integral of motion [58] called the Jacobi integral

C = 2Ω− (Ẋ2 + Ẏ 2 + Ż2).

The equations of motion take Hamiltonian form if we consider positions X , Y ,
Z and momenta PX = Ẋ − Y , PY = Ẏ +X , PZ = Ż. The Hamiltonian is

(2.2) H =
1

2
(P 2

X + P 2
Y + P 2

Z) + Y PX −XPY − 1− µ

r1
− µ

r2
− 1

2
µ(1 − µ).

The Hamiltonian and the Jacobi integral are simply related by H = −C
2 . In this

paper, we will use the Jacobi integral instead of the Hamilton integral.
Due to the Jacobi integral, the dimensionality of the space can be reduced by

one. Trajectories of equations (2.1) stay on the energy surface M given by

(2.3) M = {C(X,Y, Z, Ẋ, Ẏ , Ż) = c}.
which is a 5-dimensional submanifold of R6.

The system of equations (2.1) has five equilibrium points. Three of them, denoted
L1, L2 and L3, lie on the X axis and are usually called the ‘collinear’ equilibrium
points (see Figure 1). Notice that we denote by L1 the interior collinear point,
located between the primaries.
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Figure 1. The position of the libration points relative to Sun and
Earth.

2.2. Dynamics near L1. The linearized dynamics around each of the three collinear
equilibrium points is of type saddle × center × center for all values of µ. In par-
ticular, the linearized system at L1 has eigenvalues of the type ±λ,±iν,±iω. For
each Jacobi constant c which is below c1 := C(L1) (the Jacobi constant at L1) but
sufficiently close to it, the linearized system restricted to the corresponding energy
level contains a 3-dimensional sphere that is normally hyperbolic, and is filled with
periodic orbits and quasi-periodic orbits lying on 2-dimensional invariant tori. The
definition of a normally hyperbolic invariant manifold is given in Section 2.5. By
the Center Manifold Theorem (see e.g., [57]), there exists a 4-dimensional invariant
center manifold W c(L1) that is tangent at L1 to the generalized eigenspace Ec

corresponding to ±iν,±iω, and is locally a graph over Ec near L1. In general, the
center manifold is not necessarily unique, but every center manifold contains any
solution that stays for all time inside a sufficiently small neighborhood of L1. Hence,
every center manifold contains any compact invariant set within some sufficiently
small neighborhood of L1. Also, W

c(L1) is C
r-differentiable for any r < ∞.

Since W c(L1) is a graph over Ec, the restriction of C to W c(L1) can be locally
expressed in terms of the coordinates induced from Ec. Since C|W c(L1) has a local

maximum point at L1, and the Hessian D2C at L1 is negative definite, L1 is a non-
degenerate local maximum point. By the Morse Lemma, on W c(L1) there exists a
local coordinate system (u1, u2, u3, u4) centered at L1, such that

C|W c(L1)(u1, u2, u3, u4) = c1 − u2
1 − u2

2 − u2
3 − u2

4.

Thus, the intersection between W c(L1) and every energy manifold {C = c}, with
c ∈ [c1 − ǫ, c1), with ǫ > 0 sufficiently small, is a 3-dimensional sphere that is a
normally hyperbolic invariant manifold for the Hamiltonian flow restricted to that
energy manifold. Since this 3-sphere is compact and invariant, it is also uniquely
determined. This argument appears, e.g., in [49].
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The above discussion about the uniqueness property of the center manifold im-
plies that the portion of W c(L1) corresponding to Jacobi constants in [c1 − ǫ, c1],
with ǫ > 0 sufficiently small, is also uniquely determined.

Recall that the normally hyperbolic 3-sphere for the linearized system near L1 is
filled with 2-dimensional invariant tori. The KAM theorem can be applied to show
the existence of a KAM family of 2-dimensional invariant tori survives from the
linear case to the non-linear case; see [56]. We emphasize that the Center Manifold
Theorem and the KAM theorem only apply for Jacobi constants very close to the
critical value c1. In the sequel, we will consider Jacobi constants that are below
but not very close to the Jacobi constant c1 = 3.00090 of L1, and above the Jacobi
constant chalo = 3.00082 where halo orbits appear. These halo orbits are periodic,
three-dimensional orbits that bifurcate from the planar Lyapunov periodic orbits
when the energy reaches certain level chalo < c1, and appear as a pair of symmetric
fixed points in the Poincaré section z = 0. See [35].

In the sequel, we will explore two fixed values of the Jacobi constant, c = 3.00082
and c = 3.00088. Neither constant is sufficiently close to L1 so that we can apply
the analytical results mentioned above. Instead, we will use a Birkhoff normal
form to approximate numerically the center manifold W c(L1) and the normally
hyperbolic invariant manifold Λc = W c(L1) ∩ {C = c}. See Subsection 4.1.1.
A rigorous proof for the existence of the normally hyperbolic invariant manifold
for a fixed value of the Jacobi constant could in principle be obtained by using
computer assisted techniques in the style of [8]. The Birkhoff normal form provides
an approximation of the Hamiltonian H by an integrable hamiltonian HN , N ≥ 2.
Therefore, in the normal form, on a fixed energy level, there exists a normally
hyperbolic invariant manifold Sc, which is diffeomorphic to a three-sphere and is
filled with invariant tori. Also, the Birkhoff normal form provides an action-angle
coordinate system (Ip, Iv, φp, φv) on some neighborhood of L1 in W c(L1). We can
choose this coordinate system so that Iv represents the out-of-plane amplitude of a
quasi-periodic motion. The energy condition C = c yields Ip as an implicit function
of Iv, φp, φv, c. For each fixed value the out-of-plane action Iv = Ī = const., there
is a unique invariant torus for the normal form

TĪ = {(Iv, φp, φv) ∈ Sc | Iv = Ī}.

Of course, when the Jacobi constant is not assumed to be sufficiently close to
c1, we cannot obtain analytically the persistence of a normally hyperbolic invari-
ant manifold diffeomorphic to a three-sphere for the original Hamiltonian, or the
invariant tori contained inside the three-sphere.

In the sequel, we will make the following assumptions:

(1) There exists ǫ0 > 0 sufficiently small such that for each value of c ∈
[chalo + ǫ0, c1) there exists a normally hyperbolic invariant manifold Λc dif-
feomorphic to the three-sphere Sc, which is contained in the energy manifold
{C = c};

(2) The diffeomorphism h : Sc → Λc from (1) is ǫ1-close to the identity, for
some ǫ1 > 0 sufficiently small, that is ‖h− idSc

‖C0 < ǫ1;
(3) The center manifold W c

loc(L1) :=
⋃

c∈[chalo+ǫ0,c1]
Λc is symplectic, that

is, the restriction of the standard symplectic form on W c(L1) is non-
degenerate.
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Via the diffeomorphism h from (2), the coordinate system (Iv, φp, φv) on Sc can
be carried out to a coordinate system on Λc, which, to avoid an overburdening of
the notation, we still denote (Iv, φp, φv). We note that, while a level set Iv = const.
is an invariant torus in Sc, it is not an invariant set in Λc; nevertheless, the level
set Iv = const. in Λc is ǫ1-close to the corresponding invariant torus.

2.3. Homoclinic connections. The stable and unstable manifoldsW s(Λc), W
u(Λc)

of Λc, are 4-dimensional manifolds contained in the 5-dimensional energy manifold
C = c, and they are foliated by 1-dimensional fibers W s(x), Wu(x), x ∈ Λc, re-
spectively; these fibers are equivariant under the Hamiltonian flow. Also, for each
level set LĪ = {(Iv, φp, φv) ∈ Λc | Iv = Ī}, we can define the sets

Wu(LĪ) =
⋃

x∈LĪ∗

Wu(x), W s(LĪ) =
⋃

x∈LĪ

W s(x).

Due to the smooth dependence of these fibers on base points, these sets are Cℓ-
differentiable manifolds for some ℓ ≥ 1, but not invariant. We will select some
energy levels c within the range c ∈ [chalo + ǫ0, c1) and we will show numerically
that Wu(Λc) intersects transversally W s(Λc) in the energy manifold. Moreover,
we will show that there exists a range [Ia, Ib] of Iv-action level sets, which depends
on c, such that, for each Ī ∈ [Ia, Ib], there exists I ′ ∈ [Ia, Ib], such that Wu(LĪ)
has transverse intersections with W s(LI′). The level set I ′ can be chosen above or
below the initial level Ī. Such a transverse intersections imply that there exists a
pair of points x− ∈ LĪ , x+ ∈ LI′ , such that Wu(x−) intersects W s(x+) at some
point x ∈ Wu(LĪ) ∩W s(LI′). One can define an associated scattering map given
by x− 7→ σ(x−) := x+; the scattering map σ is a local diffeomorphism defined on
some open set of Λc. See Section 2.5.

We note that if Wu(LĪ) has transverse intersection with W s(LI′), it also has
transverse intersection with all W s(LI′) with I ′ sufficiently close to I ′. We stress
again that the Iv-level sets LĪ are not necessarily invariant, but they are ‘almost
invariant’.

Using these facts we can construct transition chains of level sets. Given a col-
lection of scattering maps σi, i = 1, . . . ,K, by a transition chain of level sets we
mean a sequence of level sets {LIj}j=1,...,N in Λc, with Ij ∈ [Ia, Ib], satisfying the
following properties:

(1) for each j, there exists a point xj ∈ LIj and a scattering map σi(j), with
xj in the domain of σi(j), such that that σi(j)(xj) = x′

j+1 ∈ LI′
j+1

, with

I ′j+1 ≈ Ij+1;

(2) there exists tj+1 > 0 such that Φ
tj+1

|Λc
(x′

j+1) = xj+1 with xj+1 ∈ LIj+1
,

where Φt
|Λc

denotes the Hamiltonian flow restricted to Λc;

(3) the point xj+1 is in the domain of some scattering map σi(j+1), and
σi(j+1)(xj+1) ∈ LIj+2

.

This construction is made precise in Section 2.6.

2.4. Normally hyperbolic invariant manifolds. We recall the definition and
some basic properties of normally hyperbolic invariant manifolds, following [52, 25].

Consider a Cr-differentiable flow Φ : M × R → M , r ≥ 2, defined on an m-
dimensional manifold M .
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Assume that there exists a normally hyperbolic invariant manifold Λ ⊆ M which
is nc-dimensional, and the stable and unstable bundles have dimensions ns, nu,
respectively, and m = nc + nu + ns. By Λ being a normally hyperbolic invariant
manifold for Φt we mean that Λ is compact nc-dimensional submanifold of M that
is invariant under Φt, and there exists a splitting of the tangent bundle of TM into
sub-bundles

TM = Enu ⊕ Ens ⊕ TΛ,

that are invariant under DΦt for all t ∈ R, and there exist a constant C > 0 and
rates 0 < β < α, such that for all x ∈ Λ we have

‖DΦt(x)(v)‖ ≤ Ce−αt‖v‖ for all t ≥ 0, if and only if v ∈ Ens

x ,

‖DΦt(x)(v)‖ ≤ Ceαt‖v‖ for all t ≤ 0, if and only if v ∈ Enu

x ,

‖DΦt(x)(v)‖ ≤ Ceβ|t|‖v‖ for all t ∈ R, if and only if v ∈ TxΛ.

The manifold Λ is Cℓ-differentiable for some ℓ ≤ r − 1 that depends in some
explicit way on r, α, and β. We will assume that ℓ ≥ 2. There exist stable
and unstable manifolds of Λ, denoted W s(Λ) and Wu(Λ), respectively, that are
Cℓ−1-differentiable, which are foliated by stable and unstable manifolds of points,
respectively. For each x ∈ Wu(Λ) there exists a unique x− ∈ Λ such that x ∈
Wu(x−), and for each x ∈ W s(Λ) there exists a unique x+ ∈ Λ such that x ∈
W s(x+). We define the wave maps Ω+ : W s(Λ) → Λ by Ω+(x) = x+, and Ω− :
Wu(Λ) → Λ by Ω−(x) = x−. The maps Ω+ and Ω− are Cℓ-differentiable.

2.5. Scattering map. Consider the setting from the previous section. Assume
that Wu(Λ) has a transverse intersection with W s(Λ) along a nc-dimensional ho-
moclinic manifold Γ.

In the sequel we recall the scattering map, and some of its properties from [21].
We start with providing an intuitive explanation. Let x be a homoclinic point

in Γ. The normal hyperbolicity of Λ implies that there is a unique point x− ∈ Λ
such that the backwards orbit of x approaches the backwards orbit of x− in Λ, and
that there is a unique point x+ ∈ Λ such that the forward orbit of x approaches the
forward orbit of x+ in Λ. Equivalently, x belongs to a uniquely defined unstable
fiber Wu(x−). The scattering map is, by definition, the map defined by x− ∈ Λ 7→
x+ ∈ Λ, as the point x ∈ Γ is varied. In order for this to be a well defined map,
the homoclinic manifold has to satisfy certain conditions, which are detailed below.
The resulting map is, in general, not defined on the whole of Λ, but only on some
open subset of it.

The main role of the scattering map is to encode in a simple way, the backwards
and the forward asymptotic behavior of homoclinic orbits. For example, suppose
that the backwards orbit of a homoclinic point x accumulates onto some invariant
torus T−, and that forward orbit of x accumulates onto some other invariant torus
T+. The corresponding scattering map will assign to a certain point x− ∈ T− a
certain other point x+ ∈ T+.

Now we proceed to the formal definition of the scattering map.
First, we list conditions regarding the transverse intersection of Wu(Λ) with

W s(Λ) along Γ. The fact that the intersection of these manifolds is transverse
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means that for each x ∈ Γ ⊆ Wu(Λ) ∩W s(Λ), we have

TxM = TxW
u(Λ) + TxW

s(Λ),

TxΓ = TxW
u(Λ) ∩ TxW

s(Λ).
(2.4)

We further assume a strong transversality condition, that for each x ∈ Γ we have

TxW
s(Λ) = TxW

s(x+)⊕ Tx(Γ),

TxW
u(Λ) = TxW

u(x−)⊕ Tx(Γ),
(2.5)

where x−, x+ are the uniquely defined points in Λ corresponding to x.
The restrictions ΩΓ

+, Ω
Γ
− of Ω+, Ω−, respectively, to Γ are local Cℓ−1 - diffeo-

morphisms.
Second, we restrict Γ, if necessary, so that ΩΓ

+, Ω
Γ
− are Cℓ−1-diffeomorphisms. A

homoclinic manifold Γ for which the corresponding restrictions of the wave maps
are Cℓ−1-diffeomorphisms will be referred as a homoclinic channel.

Definition 2.1. Given a homoclinic channel Γ, the scattering map associated to
Γ is the Cℓ−1-diffeomorphism σΓ = ΩΓ

+ ◦ (ΩΓ
−)

−1 from the open subset ΩΓ
−(Γ) in Λ

to the open subset ΩΓ
+(Γ) in Λ.

This formal definition agrees with the explanation given at the beginning of the
section. If x ∈ Γ is a homoclinic point, then (ΩΓ

−)
−1(x) = x− represents the foot

point of the stable fiber Wu(x−) containing x, and ΩΓ
+(x) = x+ represents the foot

point of the stable fiber W s(x+) containing x. Thus σΓ(x−) = ΩΓ
+ ◦ (ΩΓ

−)
−1(x−) =

ΩΓ
+(x) = x+.
We recall below one important property of the scattering map which will be used

in the future.

Proposition 2.2. Assume that M is endowed with a symplectic (respectively exact
symplectic) form ω and that ω|Λ is also symplectic (we implicitly assume that nu =
ns, and nc ≥ 2 is an even number). Assume that Φt is symplectic (respectively
exact symplectic). Then, the scattering map σΓ is symplectic (respectively exact
symplectic).

2.6. Main analytical results.

Proposition 2.3. Consider the spatial circular restricted three-body problem with
the mass ratio µ as in the Sun-Earth system model. Let c be a fixed Jacobi constant.
Assume that there exists a normally hyperbolic invariant manifold Λ = Λc about L1,
for the flow generated by (2.1), which is diffeomorphic to a 3-dimensional sphere.

Assume that Wu(Λc) intersects transversally W s(Λc) in the energy manifold
along a finite family of homoclinic channels Γi, where i = 1, . . . , k. Let σi be the
scattering map associated to Γi, i = 1, . . . , k,

σi : Ω
Γi

− (Γi) → ΩΓi

+ (Γi).

Let (Iv, φp, φv) be an action-angle coordinate system on Λc derived from the
Birkhoff normal form (see Section 4.1.1), with Iv representing the out-of-plane
amplitude.

Let Σ be a Poincaré surface of section given by {φp = 0, φ̇p > 0}, and let F be
the first return map to Σ.

Let ΛΣ
c = Λc ∩ Σ. Assume that ΛΣ

c can be parametrized as follows:

ΛΣ
c = {(I, φ) | I ∈ [0, Imax], φ ∈ [0, 2π]},
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where (I, φ) = (Iv, φv), and Imax represents the maximal value of the out-of-plane
amplitude Iv of an orbit in Λc.

Then ΛΣ
c is a NHIM for F , and ΓΣ

i = Γi ∩ Σ, i = 1, . . . , k, is a homoclinic
channel that determines a scattering map σΣ

i defined on some open subset of ΛΣ.
The relation between σΣ

i and σi is

σΣ
i = PΓi

+ ◦ σi ◦
(

PΓi

−

)−1

,

where PΓi

± : Ω±(Γi) → Ω±(Γ
Σ
i ) is given by PΓi

± (x±) = Φτ(x±)(x±), where τ(x±) is
the first instant of time when the flow trajectory Φt(x±) intersects Σ.

We will denote by LĪ the level set {I = Ī} in Λc, and by LΣ
Ī
the level set {I = Ī}

in ΛΣ
c . Also we will denote by Bδ̄(Ī , φ̄) a topological disk in ΛΣ

c that contains the
point (Ī , φ̄) and has diameter less than δ̄ > 0.

Theorem 2.4. Assume we are in the situation described in Proposition 2.3. Let
δ > 0.

Assume that there exists a finite sequence Ij of level sets of I, with 0 < Ij < Imax,
a finite sequence δj of positive reals, with 0 < δj < δ/2, such that the following
property is satisfied for each j = 0, . . . , N − 1:

(i) there exists a scattering map σΣ
i(j) and a point (Ij , φj) ∈ LΣ

Ij
such that

Bδj (Ij , φj) is contained in the domain of σΣ
i(j),

(ii) there exists kj > 0 such that

(2.6) int[F kj ◦ σΣ
i(j)(Bδj (Ij , φj))] ⊇ Bδj+1

(Ij+1, φj+1).

Then there exist an orbit zj of F in Σ, j = 0, . . . , N , and a sequence of positive
integers nj > 0, j = 0, . . . , N − 1, such that zj+1 = Fnj (zj) and

(2.7) d(zj ,LΣ
Ij
) < δ/2, for all j = 0, . . . , N.

Consequently, there exist a trajectory Φt(z) of the Hamiltonian flow, and a finite
sequence of times 0 = t0 < t1 < t2 < . . . < tN , such that

(2.8) d(Φtj (z),LIj ) < δ.

Remark 2.5. We will see in the proof of Theorem 2.4, which is given below, that
the condition (2.6) allows us to construct pseudo-orbits for the iterated function
system determined by the map F and by the scattering maps σΣ

i ’s, for i = 1, . . . , k.
These pseudo-orbits visit the successive balls Bδj (Ij , φj), j = 0, . . . , N . Then, we
will use the topological shadowing type of result, Lemma 3.1, to prove that such
pseudo-orbits are shadowed by true orbits.

Remark 2.6. In our model, we will only be able produce a finite sequence Ij of
I-level sets that starts at some initial value Ia > 0 and ends at some final value Ib,
with Ib < Imax. We will be able to choose Ia as close to 0 as we wish, however
how close we are able to choose Ib to Imax depends quite dramatically on the
Jacobi constant c. For c close to c1 (the Jacobi constant of L1) we can only choose
values of Ib that are significantly smaller than Imax. When the c-value is increased,
the values of Ib that we can choose get closer to Imax. This implies that for a
suitably high energy levels we are able to construct trajectories whose out-of-plane
amplitude increases from nearly 0 to a significantly large fraction of Imax.

Here we should also mention that we have a investigated in detail only scattering
maps corresponding to first-cut homoclinics, obtained at the first-intersections of
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the stable and unstable manifolds with the surface of section of choice Σ. Never-
theless, 2-nd or 3-rd cut homoclinics did not seem to make much of a difference.
More details are provided in Section 4.

It is not possible to choose the initial value Ia = 0, since this corresponds to the
planar problem z = 0. The level set Iv = 0 represents a periodic orbit about L1,
known as the horizontal Lyapunov orbit. Since z = 0 is an invariant set for the
flow, all trajectories with zero initial out-of-plane amplitude remain at this level for
all time.

Also, generically it is not possible to obtain a final value Ib = Imax. The level
set Iv = Imax corresponds geometrically to the so called vertical Lyapunov orbit,
which is 1-dimensional, hence its stable and unstable manifolds are 2-dimensional;
2-dimensional manifolds do not generically intersects in a 5-dimensional energy
manifold.

Remark 2.7. We note that Theorem 2.4 requires very coarse information about
the inner dynamics, restricted to the NHIM. We do not need to know about the
existence of KAM tori and about the size of the gaps between such tori. We do
not need to verify whether FΛΣ

c
on ΛΣ

c verifies a twist condition, or the existence
of many topologically transitive invariant tori and/or of Aubry-Mather sets. Al-
though such geometric objects are quite apparent in the numerical investigations,
providing analytical arguments or computer assisted proofs to show their existence
is laborious. Our key point is that it is not necessary to detect transition chains
formed by the stable and unstable manifolds of KAM tori, since diffusing orbits
only follow them for finite time anyway. Transition chains formed by almost invari-
ant sets – such as the level sets of the action variable – and their associated stable
and unstable manifolds, are sufficient to establish the existence of diffusing orbits.
Moreover, the assumptions required by Theorem 2.4 are rather mild and easy to
verify numerically. Condition (i) amounts to the calculation of scattering maps and
of their domains. For condition (ii) we first verify that the image of a level set LΣ

Ij

– which is a curve – via one of the scattering map intersects the next level set LΣ
Ij+1

– which is another curve – within the 2-dimensional phase space. Hence we can
choose a ball around a point in LΣ

Ij
that is mapped by the scattering map onto a

ball around LΣ
Ij+1

. Since from a numerical standpoint the level set LΣ
Ij+1

is almost

invariant, and FΛΣ
c
restricted to it is nearly a rigid rotation, we then verify that

there the image under some number of iterations of FΛΣ
c
of the latter ball around

LΣ
Ij+1

contains inside it another ball around LΣ
Ij+1

, which subsequent image by some

scattering map intersects LΣ
Ij+2

. The sizes of these balls can be adjusted so that

the inclusion of a ball inside another ball can be done well within the margin of
error. Thus, the numerical verification of the conditions (i) and (ii) of Theorem
2.4 is simple and can be done with large precision. More details are provided in
Section 4.

Remark 2.8. In the statement of Theorem 2.4 the order of the iterates nj that
appear in the conclusion of the theorem is different from the order of the iterates
kj that appear in (2.6). As we will see in Section 3, our proof for the existence
of a true orbit of the type zj+1 = Fnj (zj) requires invoking Poincaré recurrence
theorem. Thus, the above theorem does not yield quantitative information on the
time required for these orbits to drift. However, in the numerical experiments, we
can estimate numerically the recurrence time, and we can choose kj large enough
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so that it takes into account this recurrence time; hence, at the end, we can obtain
nj = kj . Also note that the above theorem allows to use several scattering maps.
Thus, at each step of the construction of the chain of level sets LΣ

Ij
, given Ij one can

always choose a scattering map σΣ
i(j) that, when applied to the level set LΣ

Ij
reaches

another level set LΣ
Ij+1

with Ij+1 the furthest possible from Ij , and in the desired

direction (i.e, either above or below Ij). More details are provided in Section 4.

3. Proofs of the main results

3.1. Preliminaries. Consider the general case of a discrete dynamical system
given by a Cr-smooth map F on a compact, Cr-smooth manifold M . Assume
that Λ is a normally hyperbolic invariant manifold (NHIM) in M . Suppose that
there exists a finite collection of homoclinic channels Γi ⊆ M , for i ∈ {1, . . . , k},
for some positive integer k. Let σi : Ω−(Γi) → Ω+(Γi) be the scattering map
associated to Γi, for i ∈ {1, . . . , k}.
Lemma 3.1 ([33]). Assume that F : M → M is a Cr-map, r ≥ 3, Λ ⊆ M and
Γi ⊆ M are as above, and σi is the scattering map corresponding to the homoclinic
channel Γi, for i ∈ {1, . . . , k}.

Then, for every ε > 0 and every pseudo-orbit {yi}i≥0 in Λ of the form

yi+1 = Fmi ◦ σi(j) ◦ Fni(yi), i ≥ 0

with ni ≥ n∗, for some n∗ depending on ε, and mi ≥ m∗
i , for some m∗

i depending
on ε and on the powers n0, . . . , ni−1, ni,m0, . . . ,mi−1, there exists an orbit {zi}i≥0

of F in M such that, for all i ≥ 0,

zi+1 = Fmi+ni(zi), and d(zi, yi) < ε.

The proof of this lemma appears in [33].

3.2. Proof of Proposition 2.3. The proof is the same as for Proposition 3 in
[17].

3.3. Proof of Theorem 2.4. The proof is very similar to that of Theorem 3.2 in
[33].

Since the system that we consider is Hamiltonian, the center manifold W c(L1)
is symplectic. This implies that ΛΣ

c is symplectic, and FΛΣ
c
is a symplectic map.

See [47, 43]. Moreover, each scattering map σi(j) is symplectic [21]. Thus FΛΣ
c
and

σi(j) preserve the area form induced by the symplectic structure on ΛΣ
c , which gives

rise to a measure µ on ΛΣ
c that is absolutely continuous with respect to Lebesgue

measure. In particular, FΛΣ
c
and σi(j) satisfy the so called Luzin N property, that

the image of a zero measure set is a zero measure set.
Denote:

B0 = Bδ0(I0, φ0),

Bj+1 = Bδj+1
(Ij+1, φj+1) ⊆ F kj ◦ σi(j)(Bj) = F kj ◦ σi(j)(Bδj (Ij , φj)),

for j = 0, . . . , N − 1.
We start with some preliminary remarks.
By the Poincaré Recurrence Theorem, µ-a.e. point in ΛΣ

c is recurrent for F :=
FΛΣ

c
.

Assume that B is a ball in ΛΣ
c , and that R is a full measure subset of B. Fix

some k∗ sufficiently large.
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Applying the Poincaré Recurrence Theorem to F k∗

implies that the set

Rk∗

= {y ∈ R |F k∗·t(y) ∈ B for some t ≥ 1}

has full measure in B. For y ∈ Rk∗

let tmin = tmin(y) denote the time of the first
return of y to B, that is

tmin = min{t ≥ 1 | y ∈ Rk∗

and F k∗·t(y) ∈ B}.

Denote R̂k∗

= {F k∗·tmin(y) | y ∈ R} the collection of the first returns of points

of R to B under the iterates of F k∗

. We claim that R̂k∗

also has full measure in B,
as we show below.

Let Θ = {τ ≥ 1 | ∃y ∈ Rk∗

s.t. tmin(y) = τ} be the set of first return times to

B, and, for each τ ∈ Θ, let Cτ = {y ∈ Rk∗ | tmin(y) = τ} be the set of points with a

prescribed first return time τ ∈ Θ. Then Rk∗

=
⋃

τ∈ΘCτ , with the sets Cτ mutually

disjoint. The sets F k∗·τ (Cτ ) are also mutually disjoint subsets in B; otherwise we

would have F k∗·τ (y) = F k∗·τ ′

(y′) for some 1 ≤ τ < τ ′ and y ∈ Cτ , y′ ∈ Cτ ′ ,

so F k∗·(τ ′−τ)(y′) = y ∈ B where 1 ≤ τ ′ − τ < τ ′, which is in contradiction with

the definition of τ ′ = tmin(y
′). Since the sets F k∗·τ (Cτ )’s are mutually disjoint

and F is measure preserving, µ(Cτ ) = µ(F k∗·τ (Cτ )) for τ ∈ Θ, hence the set

R̂k∗

=
⋃

τ∈Θ F k∗·τ (Cτ ) is of full measure set in B, as claimed.

Thus, every point in Rk∗ ⊆ B returns to a point in R̂k∗ ⊆ B after some positive
number of iterates of F k∗

. In terms of F , every point in Rk∗ ⊆ B gets mapped
onto a point in R̂k∗ ⊆ B after at least k∗ iterates. We will keep in mind that both
Rk∗

and R̂k∗

have full measure in B.
Now consider a scattering map σ, and let F k′∗

be some iterate of F . Also let B′

be a ball contained in (F k′∗ ◦ σ)(B), the image of B via F k′∗ ◦ σ. Since σ and F k′∗

are measure preserving, hence satisfy Luzin N property, the set R̂k∗

j having a full

measure in B implies that the set (F k′∗ ◦ σ)(R̂k∗

) ∩B′ has full measure in B′.
Now, starting from B0, we will construct a tower of positive measure subsets of

B0 that are mapped onto full measure subsets of Bj , j = 0, . . . , N , under successive

applications of sufficiently large powers F k∗

and of σi(j). The successive powers F
k∗

will be adjusted at each step, and will be chosen large enough so they satisfy the
conditions imposed by the shadowing result – Lemma 3.1.

More precisely, we make the following inductive construction. Let ε = δ/2, with
δ as in Theorem 2.4. Start with the set B0.

For the initial step, set R0 = B0. Let n∗ and m∗
0 depending on ε as in Lemma

3.1, and let

Σ0 = Rn0

0 ⊆ B0, and R̂n0

0 ⊆ B0.

Note that R′
0 := [F k0 ◦ σi(0)(R̂

n0)]∩B1 has full measure in B1. Consider the set

(R′
0)

m∗
0 , consisting of points that return to B1 under some positive power of Fm∗

0 ;

this has full measure in B1. Then consider the corresponding set of returns ˆ(R′
0)

m∗
0

.

Each point y1 ∈ ˆ(R′
0)

m∗
0

is of the form

(3.1) y1 = Fm0 ◦ σi(0) ◦ Fn0(y0)
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for some y0 ∈ Σ0, n0 ≥ n∗ and m0 ≥ m∗
0 + k0. Denote by Σ1 the set of points

y0 ∈ Σ0 which correspond, via (3.1), to some point y1 ∈ R̂
m∗

0

1 . We obviously have
Σ1 ⊆ Σ0, and that Σ1 has positive measure in B0.

Assume that at the j-th step we have constructed a subset Rj ⊆ Bj which has
full measure in Bj , and such that each point yj ∈ Rj is of the form

(3.2) yj = Fmj−1 ◦ σi(j−1) ◦ Fnj−1 ◦ . . . ◦ Fm0 ◦ σi(0) ◦ Fn0(y0),

some y0 ∈ Σ0, with n0 ≥ n∗, . . . , nj−1 ≥ n∗, where n∗ is as in Lemma 3.1, depending
only on ε, and m0 ≥ m∗

0 + k0, . . . ,mj−1 ≥ m∗
j−1 + kj−1, where m∗

j−1 is as in
Lemma 3.1, depending on ε, n0, . . . , nj−1,m0, . . . ,mj−2. Let Σj the set of points
y0 ∈ Σ0 for which the corresponding yj given by (3.2) is in Rj ; we assume that
Σj ⊆ Σj−1 ⊆ . . . ⊆ Σ0 has positive measure in B0.

For the induction step, consider the sets Rn∗ ⊆ Bj and R̂n∗ ⊆ Bj , which have
full measure in Bj . Let nj = n∗ depending on ε, and m∗

j depending on ε and
on n0, . . . , nj ,m0, . . . ,mj−1, as in Lemma 3.1. Applying the scattering map σi(j)

and then the iterate F kj to R̂n∗ ⊆ Bj yields (F kj ◦ σi(j))(Rj) which has the same

measure as Bj . Hence the set R′
j := [(F kj ◦ σi(j))(Rj)] ∩ Bj+1 has full measure

in Bj+1. The preliminary remarks at the beginning of the proof imply that the

corresponding sets (R′
j)

m∗
j and ˆ(R′

j)
m∗

j

have full measure in Bj+1. Each point

yj+1 ∈ ˆ(R′
j)

m∗
j

is of the form

(3.3) yj+1 = Fmj ◦ σi(j) ◦ Fnj (yj),

for some yj ∈ Rj , where nj ≥ n∗ and mj ≥ m∗
j + kj . Let Rj+1 := ˆ(R′

j)
m∗

j

. Since

each yj ∈ Rj is of the form (3.2), for some y0 ∈ Σj , then each yj+1 ∈ ˆ(R′
j)

m∗
j

corresponds to some y0 in some subset Σj+1 ⊆ Σj, which has positive measure in
B0. This completes the induction step.

Our construction process involvesN steps. At the end of the N -th step we obtain
a tower of sets Σ0 ⊇ Σ1 ⊇ · · · ⊇ ΣN , such that each set Σj , j = 0, . . . , N , has posi-
tive measure in B0. We also obtain pseudo-orbits of the form y0, y1, . . . , yN−1, yN ,
with y0 ∈ ΣN and

(3.4) yj+1 = Fmj ◦ σi(j) ◦ Fnj (yj),

where nj ,mj are as in Lemma 3.1, for j = 0, . . . , N − 1. There is a positive set ΣN

of points y0 that determine pseudo-orbits as in (3.4).
By construction, each point yj is inside Bδj (Ij , φj). Hence each point yj ∈

Bδj (Ij , φj) lies at a distance at most δj < δ/2 = ε from the level set LΣ
Ij
.

Applying Lemma 3.1 for the pseudo-orbit {yj}j=0,...,N and for the above ε > 0,
yields an orbit {zj}j=0,...,N of F with zj+1 = Fmj+nj (zj), such that d(zj , yj) < ε.
Since d(yj ,LΣ

Ij
) < ε and ε = δ/2, we conclude d(zj ,LΣ

Ij
) < δ for all j.

Then the existence of a trajectory Φt(z) of the flow that visits the δ-neighborhoods
of the level sets LΣ

Ij
in the prescribed order follows immediately. �

4. Numerical verification of the existence of diffusing orbits

4.1. Computation of geometric objects near the libration point. We focus
on the dynamics near the equilibrium point L1. We will compute the main geometric
object near L1 that organizes the dynamics. More precisely, we will compute with
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high accuracy, using a normal form procedure, the normally hyperbolic invariant
manifold near L1 for a fixed energy level, and its local stable and unstable invariant
manifolds. Then, by numerical integration, we will compute the global stable and
unstable manifolds.

4.1.1. Normal form about L1. We apply a normal form procedure to simplify the
Taylor expansion of the Hamiltonian around the equilibrium point using canonical,
near-identity changes of variables. This procedure is carried up to a given (finite)
degree in the expansion.

We compute a normal form expansion that is as simple as possible, i.e. one that
has the minimum number of monomials. This is usually called a Birkhoff or full
normal form. The (truncated) normal form equations can be integrated exactly. As
a result, locally the normal form gives a very accurate and complete approximation
to the dynamics. In a previous paper [22] we have used the same (full) normal form
expansion for a different system (Hill’s problem).

In particular, we use the action-angle normal form coordinates to parameterize
the normally hyperbolic invariant manifold around L1. We will be particularly
interested in the out-of-plane amplitude of motions relative to the ecliptic, which
is described via one of the action coordinates later denoted Iv (see Remark 4.10).

Remark 4.1. In contrast, many recent papers [37, 38, 34, 35, 44] use a partial normal
form procedure known as the “reduction to center manifold”. The (truncated)
partial normal form equations can not be integrated exactly. Still, one can identify
some relevant dynamical structures directly from the partial normal form, such
as the center manifold or the normally hyperbolic invariant manifold. The main
advantage of a partial normal form procedure is that it avoids some small divisors,
and thus the normal form is accurate in a larger neighborhood of the equilibrium.
For instance, it captures the appearance of periodic ‘halo’ orbits at a (large) distance
of the equilibrium. In this paper we only deal with local diffusion, so we have
preferred full normal forms to partial normal forms.

The normal form construction proceeds in three steps. First we perform some
convenient translation and scaling of coordinates, and expand the Hamiltonian
around L1 as a power series. Then we make a linear change of coordinates to put the
quadratic part of the Hamiltonian in a simple form, which diagonalizes the linear
part of the equations of motion. Finally we use the so-called Lie series method
to perform a sequence of canonical, near-identity transformations that simplify
nonlinear terms in the Hamiltonian of successively higher degree.

4.1.2. Hamiltonian expansion. We start by writing the Hamiltonian (2.2) as a
power series expansion around the equilibrium point L1. First we translate the
origin of coordinates to the equilibrium point. The distance γ from L1 to its closest
primary (the Earth) is given by the only positive solution of the equation

γ5 − (3 − µ)γ4 + (3 − 2µ)γ3 − µγ2 + 2µγ − µ = 0.

(See Szebehely [58], section 4.4.)
In order to have good numerical properties for the Taylor coefficients, it is also

convenient to scale coordinates [53]. The translation and scaling are given by

(4.1) X = −γx+ µ− 1 + γ, Y = −γy, Z = γz.
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Accordingly, the position of the Sun and the Earth are now P1 =
(

1−γ
γ

, 0, 0
)

respectively P2 = (−1, 0, 0). The unit of distance is redefined as the distance
from the equilibrium point to its closest primary. Since scalings are not canonical
transformations, we apply this change of coordinates to the equations of motion,
to obtain

ẍ− 2ẏ = Ωx(4.2a)

ÿ + 2ẋ = Ωy(4.2b)

z̈ = Ωz,(4.2c)

where

Ω =
1

2
(x2 + y2)− µ− 1 + γ

γ
x+

1

γ3

(

1− µ

r1
+

µ

r2

)

and r1, r2 denote the (scaled) distances from the third body to the larger and the
smaller primary, respectively:

r21 =

(

x− γ − 1

γ

)2

+ y2 + z2

r22 = (x− 1)2 + y2 + z2.

Defining px = ẋ − y, py = ẏ + x, pz = ż, the libration-point centered equations
of motion (4.2) are Hamiltonian, with Hamiltonian function

(4.3) H =
1

2
(p2x + p2y + p2z) + ypx − xpy +

µ− 1 + γ

γ
x− 1

γ3

(

1− µ

r1
+

µ

r2

)

.

We use Legendre polynomials to expand the nonlinear terms in the Hamilton-
ian (4.3) according to the formula

(4.4)
1

√

(x −A)2 + (y −B)2 + (z − C)2
=

1

D

∞
∑

n=0

( ρ

D

)n

Pn

(

Ax+By + Cz

Dρ

)

,

whereD2 = A2+B2+C2, ρ2 = x2+y2+z2, and Pn is the nth Legendre polynomial.
This expansion holds where ρ < D.

The Hamiltonian is then rewritten in the form

(4.5) H =
1

2
(p2x + p2y + p2z) + ypx − xpy −

∑

n≥2

cn(µ)ρ
nPn

(

x

ρ

)

,

where the coefficients cn(µ) are given by

cn(µ) =
1

γ3

(

µ+ (−1)n
(1− µ)γn+1

(1− γ)n+1

)

.

This expansion holds where ρ < min (|P1|, |P2|) = |P2| = 1, i.e. it is valid in a ball
centered at L1 that extends up to the Earth.

Notice that the constants cn have the desirable property that they are all of the
same order of magnitude. (This property is due to the scaling (4.1).) Thus the
effect of high-order terms in the Hamiltonian expansion (4.5) is basically measured
by the factor ρn.

Richardson [53] initially developed the equations into this form, which is well-
suited for use in perturbative methods such as normal forms, where one needs to
assess the relative importance of various orders of magnitude in the perturbing
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function. It also allows computation of high-order terms using simple recursive
relationships.

4.1.3. Linear preliminaries. Now we transform the linear part of the system into
Jordan form, which is convenient for the normal form procedure. This particular
transformation is derived in [37, 38], for instance.

Consider the quadratic part H2 of the Hamiltonian (4.5),

(4.6) H2 =
1

2
(p2x + p2y + p2z) + ypx − xpy − c2x

2 +
c2
2
y2 +

c2
2
z2,

which corresponds to the linearization of the equations of motion. It is well-
known [38] that the linearized system has eigenvalues of the form ±λ,±iν,±iω,
where λ, ν, ω are real and positive.

One can find ([38] section 2.1) a symplectic linear change of variables χ from
position-momenta to new variables (x, y) = (x1, y1, x2, y2, x3, y3) ∈ R6,

(4.7) (x, y, z, px, py, pz) = χ(x1, y1, x2, y2, x3, y3),

that casts the quadratic part of the Hamiltonian into

(4.8) H2 = λx1y1 +
ν

2
(x2

2 + y22) +
ω

2
(x2

3 + y23).

The linear equations of motion (ẋ, ẏ) = A(x, y) associated to (4.8) decouple into
a hyperbolic and a center part

(ẋ1, ẏ1) = Ah(x1, y1)(4.9a)

(ẋ2, ẏ2, ẋ3, ẏ3) = Ac(x2, y2, x3, y3),(4.9b)

with

Ah =

(

λ 0
0 −λ

)

and Ac =









0 ν
−ν 0

0 ω
−ω 0









.

Remark 4.2. The solution of these linear equations is

x1(t) = x0
1e

λt, y1(t) = y01e
−λt

x2(t) + iy2(t) = (x0
2 + iy02)e

−iνt

x3(t) + iy3(t) = (x0
3 + iy03)e

−iωt,

where (x0
i , y

0
i ) are initial conditions. Thus the solution is composed of three uncou-

pled motions: a saddle in the (x1, y1) coordinates, and two harmonic oscillators in
the (x2, y2) and (x3, y3) coordinates.

Remark 4.3. Due to the particular form of the change of coordinates C, the pair
(x3, y3) is just a rescaling of the SCRTBP coordinates (z, pz), so the (x3, y3) os-
cillation is perpendicular to the xy plane of motion of the primaries, whereas the
(x2, y2) oscillation happens on the xy plane. Thus they are sometimes called the
“out-of-plane” and the “in-plane” oscillation respectively.

Notice that the matrixA of the linear equations (4.9) is in block-diagonal form. It
is convenient to diagonalize the matrix A over C so that the homological operator
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(definition 4.14) takes a specially simple form. Consider the symplectic change
T−1 : R6 → C6 to complex variables (q, p) = (q1, p1, q2, p2, q3, p3) ∈ C6

q1 = x1, p1 = y1(4.11a)

q2 =
1√
2
(x2 − iy2), p2 =

1√
2
(−ix2 + y2)(4.11b)

q3 =
1√
2
(x3 − iy3), p3 =

1√
2
(−ix3 + y3).(4.11c)

This change casts the quadratic part of the Hamiltonian into

(4.12) H2 = λq1p1 + iνq2p2 + iωq3p3.

Equivalently, this change carries A to diagonal form:

T−1AT = Λ = diag(λ,−λ, iν,−iν, iω,−iω).

Remark 4.4. Below we consider the real system H(x, y) that has been transformed
to a complex system, say K(q, p), to simplify the computation of the normal form.
Notice that H can be thought of as being defined on (x, y) ∈ C

6 but taking real
values when (x, y) ∈ R6. After complexification, K(q, p) =

∑

kαβq
αpβ is defined on

(q, p) ∈ C6 but must take real values when (q1, p1) ∈ R2 and p̄j = iqj for j = 2, 3.
Thus we have the following reality conditions on the coefficients kαβ :

(4.13) kα1α2α3β1β2β3
= iα2+α3+β2+β3 k̄α1β2β3β1α2α3

.

Remark 4.5. Below we compute the normal form in complex variables. The inverse
change of (4.11) carries this complex normal form back to a real normal form (with
respect to (4.9)). The fact that the final series is real follows from the preservation of
the reality conditions by the normalization transformations. Also, the final change
of variables that brings the system to normal form is real.

4.1.4. Normal form. Assume that the symplectic linear changes of variables (4.7)
and (4.11) have been performed in the Hamiltonian expansion (4.5), so that the
quadratic part H2 is already in the form (4.12).

Let us then write the Hamiltonian as

(4.14) H(q, p) = H2(q, p) +H3(q, p) +H4(q, p) + · · ·
with Hj(q, p) a homogeneous polynomial of degree j in the variables (q, p) ∈ C6.

Next we remove most monomials in the series (4.14) by means of a formal se-
quence of coordinate transformations, in order to obtain an integrable approxima-
tion to the dynamics close to the equilibrium point.

Theorem 4.6 (Birkhoff normal form around a saddle × centre × centre). For any
integer N ≥ 3, there exists a neighborhood U (N) of the origin and a near-identity
canonical transformation T (N) : C6 ⊃ U (N) 7→ C6 that puts the system (4.14) in
normal form up to order N , namely

H(N) := H ◦ T (N) = H2 + Z(N) +R(N)

where Z(N) is a polynomial of degree N that Poisson-commutes with H2

{Z(N), H2} ≡ 0,

and R(N) is small

|R(N)(z)| ≤ CN ||z||N+1 ∀z ∈ U (N).



22 AMADEU DELSHAMS, MARIAN GIDEA, AND PABLO ROLDAN

If the elliptic frequencies ν, ω are nonresonant to degree N ,

c1ν + c2ω 6= 0 ∀(c1, c2) ∈ Z
2, 0 < |c1 + c2| ≤ N,

then in the new coordinates, the truncated Hamiltonian H2+Z(N) depends only on
the basic invariants

Ih = q1p1 = x1y1(4.15a)

Ip = iq2p2 = q2q̄2 =
x2
2 + y22
2

(4.15b)

Iv = iq3p3 = q3q̄3 =
x2
3 + y23
2

.(4.15c)

Remark 4.7. The equations of motion associated to the truncated normal form
H2 + Z(N) can be integrated exactly. Using (4.8), the truncated normal form can
be written in terms of the new coordinates as

H2 + Z(N) = λIh + νIp + ωIv + Z(N)(Ih, Ip, Iv).

Remark 4.8. The reminder R(N) is very small in a small neighborhood of the origin.
Hence, close to the origin, the exact solution of the truncated normal form is a very
accurate approximate solution of the original system H .

Remark 4.9. Let φh, φp, φv be the symplectic conjugate variables to Ih, Ip, Iv, re-
spectively. The variables (Ih, φh) correspond to the hyperbolic component of the
dynamics. The normally hyperbolic invariant manifold near L1 corresponds to
Ih = 0. The basic invariants Ip and Iv are usually called action variables, and their
conjugate variables φp, φv are usually called angle variables. They are given in polar

variables (ρ, φ) by Ip =
ρ2
2

2 and Iv =
ρ2
3

2 , where ρ22 = x2
2 + y22 and ρ23 = x2

3 + y32

Remark 4.10. To make the notation more intuitive, we have named the second
action-angle pair (Ip, φp), where the subscript p suggests the ‘planar component’,
and the third action-angle pair (Iv, φv), where the subscript v suggests the ‘vertical
component’. Notice that the new coordinates (4.15) are related to the old linear
coordinates (4.8) by a near-identity transformation. Thus, in the linear aproxima-
tion, Ip represents the in-plane action, and Iv represents the out-of-plane action,
as explained in Remark 4.3.

Remark 4.11. In practice, we compute a normal form of degree N = 16. See some
comments in Remark 4.21.

In the rest of this section, we give a proof of Theorem 4.6. The proof consists
of an algorithm to find the transformation T (N) that puts the original system in
normal form.

There are several normal form algorithms in the litterature. (The book by Mur-
dock [50] studies different algorithms, or “formats”, in a general setting.) We use
the so-called Lie series method [37], or “generated iterative format”, because it is
well-suited to Hamiltonian systems and it is computationally very efficient.

Definition 4.12. Let Hj be the vector space of homogeneous polynomials of degree
j in the variables (q, p) ∈ C6.

Let {H,K} be the Poisson bracket of two functions, given by

{H,K} =
3

∑

i=1

(

∂H

∂qi

∂K

∂pi
− ∂H

∂pi

∂K

∂qi

)

.
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Remark 4.13. If H ∈ Hi and K ∈ Hj then {H,K} ∈ Hi+j−2.

In the Lie series method, we look for a sequence of canonical coordinate trans-
formations

T (N) := ΦN ◦ ΦN−1 ◦ ΦN−2 ◦ · · · ◦Φ3

to be applied to the Hamiltonian H(q, p). The crucial idea is to use as each basic
canonical coordinate transformation Φj the time-one flow of a HamiltonianGj ∈ Hj

for j = 3, 4, 5, . . . . We recall that the time-t flow of a Hamiltonian system is always a
canonical transformation. The Hamiltonian Gj is called the generating Hamiltonian
of the transformation.

It is not hard to see that the coordinate transformation Φj acts formally on the
Hamiltonian H in the following way:

K ≡ H ◦ Φj

= H + {H,Gj}+
1

2!
{{H,Gj}, Gj}+

1

3!
{{{H,Gj}, Gj}, Gj}+ · · · .(4.16)

Notice that the action of the transformation on the HamiltonianH is completely de-
termined by its generating Hamiltonian Gj . The new Hamiltonian will temporarily
be called

K = K2 +K3 +K4 + · · · ,
with Ki ∈ Hi.

Since Gj ∈ Hj is assumed to be a homogeneous polynomial of degree j, the
action of the transformation (4.16) leaves terms Ki = Hi of lower degree i < j
unmodified. Terms of degree j are modified according to

(4.17) Kj = Hj + {H2, Gj}.
Terms Ki of higher degree i > j are also modified by the transformation.

The normal form algorithm is an iterative procedure. Every iteration is as fol-
lows:

• Begin with a Hamiltonian H(q, p) in the form (4.14), assuming it to be
normalized to degree j − 1, i.e. assuming that H2, H3, . . . , Hj−1 are in
“normal form” (to be made precise in definition 4.17).

• Perform one normalization step to put the j-th degree terms in normal form.
In the light of equation (4.17), we need to choose a generating Hamiltonian
Gj such that Kj becomes as simple as possible.

• Compute the rest of K (i.e. Ki for i > j) from expression (4.16). Then K
is renamed H , and the process is iterated for the next j.

Definition 4.14. Let Lj : Hj → Hj be the homological operator, defined as

Lj = LH2
= {·, H2}.

The heart of the process is the normalization step, where Gj is chosen such that
Kj = Hj + {H2, Gj} becomes as simple as possible. Thus we are led to study the
homological equation

(4.18) LjGj = Hj −Kj .

Ideally, one would like to make Kj = 0. This can be accomplished whenever
Hj ∈ imLj . In general (depending on H2), imLj 6= Hj so one can not make Kj = 0.
However, if Nj is a complement to imLj in the space Hj,

Hj = imLj ⊕ Nj ,
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we can certainly make Kj lie in the complement Nj .
Of course, the aim is to have a “simple” complement Nj , so that the only j-th

degree terms left Kj ∈ Nj do not prevent integrability of the resulting Hamiltonian.
Next we describe the complement Nj when the quadratic part of the Hamiltonian

H2 has the form (4.12). It is useful to introduce multi-index notation.

Definition 4.15. If k = (k1, k2, . . . , kn) ∈ N
n is a vector of non-negative numbers,

then define
xk = xk1

1 xk2

2 · · ·xkn

n ,

a monomial of degree
|k| = k1 + k2 + · · ·+ kn.

Proposition 4.16. If H2 = λq1p1+ iνq2p2+ iωq3p3, then the homological operator
Lj : Hj → Hj defined as Lj = LH2

= {·, H2} is semisimple for each j.

Proof. Let qlpm be a monomial of degree j = |l + m|. An easy calculation shows
that

Ljq
lpm =< l −m, λ̄ > qlpm,

where
λ̄ = (λ, iν, iω)

and
< l−m, λ̄ >= (l1 −m1)λ+ i(l2 −m2)ν + i(l3 −m3)ω.

Hence, the standard basis for Hj consists of eigenvectors of Lj , which is therefore
semisimple. Specifically, the eigenvalues of Lj are < l−m, λ̄ > with |l+m| = j. �

Since the homological operator is semisimple, it follows that Hj = imLj ⊕ kerLj

(Murdock [50], Theorem 2.1.3). Therefore, we can choose as complement subspace

Nj = kerLj .

Definition 4.17. We say that a formal power series HamiltonianH(q, p) = H2(q, p)+
H3(q, p) + · · · is in normal form with respect to H2 = λq1p1 + iνq2p2 + iωq3p3 to
degree N if

Hj ∈ Nj = kerLj for j = 3, 4, . . . , N

or equivalently, if Hj commutes with the quadratic part H2.

The iterative procedure outlined above describes how to transform the original
Hamiltonian (4.14) to its normal form. In practice, we only compute the normal
form to finite degree N .

Corollary 4.18. The space kerLj is spanned as a vector space over C by the
monomials qlpm ∈ Hj such that

< l −m, λ̄ >= 0,

or equivalently such that the following relations hold simultaneously:

l1 −m1 = 0 and(4.19a)

(l2 −m2)ν + (l3 −m3)ω = 0.(4.19b)

The structure of the normal form space Nj = kerLj depends on the relation
between the frequencies ν and ω, whether they are resonant or not. Since we are
only interested on finite degree normal forms, it is enough to ask for a non-resonance
condition to degree N .
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Definition 4.19. The frequencies ν and ω are non-resonant to degree N if

c1ν + c2ω 6= 0 ∀(c1, c2) ∈ Z
2, 0 < |c1 + c2| ≤ N.

Suppose that the frequencies are non-resonant to degree N . (In practice, this
assumption has to be verified numerically for the actual values of ν and ω, but it
is a finite computation.) Then the only solutions to equation (4.19b) have l2 = m2

and l3 = m3, for 0 < |l2 −m2 + l3 −m3| ≤ N . Hence the normal form space Nj is
spanned over C by monomials of the form

qlpl = (q1p1)
l1(q2p2)

l2(q3p3)
l3 ,

of degree j = 2|l|, for 3 ≤ j ≤ N .

Remark 4.20. In particular, Nj = ∅ whenever j is odd.

Note that these monomials do not satisfy the reality condition (4.13). However,
the normal form space is spanned over R by monomials of the form

(q1p1)
l1(iq2p2)

l2(iq3p3)
l3 ,

of degree j = 2|l|. We express the normal form in terms of this real basis.
Therefore, if the elliptic frequencies are non-resonant to degree N , the normal

form space is spanned by monomials of the form I l1h I l2p I l3v . This concludes the proof
of Theorem 4.6.

Remark 4.21. Numerically, it is convenient to avoid small divisors when solving for
Gj in the normalization step. Thus, in our computations, we check that there are
no quasi-resonances up to degree N , i.e. we check that

|c1ν + c2ω| ≥ ε ∀(c1, c2) ∈ Z
2, 0 < |c1 + c2| ≤ N.

In particular, for N = 16 we find that ε can be taken as large as 0.1.

Therefore, we can apply Theorem 4.6 to the Hamiltonian of the SCRTBP ex-
panded around the equilibrium point L1. Using the iterative procedure outlined
above, we compute the normal form H(N) to degree N = 16.

4.2. Computation of the Stable and Unstable Manifolds. For the rest of the
paper, we assume that the energy condition (2.3) is fixed to any value c with

chalo < c < c1,

where c1 := C(L1) ≈ 3.00088 · · · is the Jacobi constant of the equilibrium point
L1, and chalo := C(halo) ≈ 3.00082 · · · is the critical value at which the so-called
halo orbits appear. Thus the motion in the center manifold of L1 restricted to this
energy value is essentially quasi-periodic (see Gómez et al [35]).

Consider the truncated normal form

H(N)
trunc := H2 + Z(N)

of the SCRTBP around the equilibrium point L1. Let x1, y1 be the hyperbolic
normal form coordinates (4.15a). It is not hard to see that the 4-dimensional
manifold
(4.20)

W c,(N)(L1) := {(x1, y1, Ip, φp, Iv, φv) : x1 = y1 = 0, Ip, Iv ∈ R
+, φp, φv ∈ T}.

is the invariant center manifold for H(N)
trunc.
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Also the 3-dimensional manifold

(4.21) Λ(N)
c := W c,(N)(L1) ∩M = {(Ip, φp, Iv, φv) ∈ W c,(N)(L1) : C(Ip, Iv) = c}

is a normally hyperbolic invariant manifold for H(N)
trunc. The manifold Λc can be

parameterized by (Ip, φp, φv) or (Iv, φp, φv) (the actions are related by the energy
condition C(Ip, Iv) = c). We choose to use the action Iv to parameterize it.

Let us clarify the relation between the invariant objects in the original system
and in the truncated system. The center manifold in the original system and the
center manifold in the truncated system are CN -close in the following sense: For
each integer r with N ≤ r < ∞, there exists a (not necessarily unique) local
invariant center manifold W c(L1) of the original system, which is of class Cr and
is expressible as a graph over W c,(N)(L1), and having Nth order contact with
W c,(N)(L1). (See Murdock [50], chapter 5.)

We assume that, for the range of energy values considered, there exists a NHIM
of class Cr in the original system, diffeomorphic to S3. Since it is compact, it must
be unique, as explained in Section 2.2. The NHIM in the original system and the
NHIM in the truncated system are also CN -close, since they are contained in the
center manifold.

We do not need to assume the existence of invariant tori in the original system.
Instead, we consider 2-dimensional level sets LĪ = {Iv = Ī}∩Λc of the out-of-plane
action Iv, which correspond to invariant tori

(4.22) TĪ := {(Iv, φp, φv) ∈ Λ: Iv = Ī}
in the normal form approximation. Each torus TĪ is invariant under the flow cor-
responding to the truncated Hamiltonian H(N) given by Theorem 4.6. Each corre-
sponding level set is the image of such a torus via the normal form transformation
T (N), i.e.,

LĪ = T (N) (TĪ) .

The action level set LĪ is geometrically a 2-dimensional torus, but it it not invariant
by the original flow, only ‘approximately invariant’.

Numerically, we use the parametrizations (4.20), (4.21) and (4.22) to represent
the manifolds W c(L1), Λc and LĪ . We simply discretize the variables Ip, Iv, φp, φv

into a finite grid of points, and transform the resulting grid to original coordinates
by the normal form transformation. Indeed, the objects in the truncated system can
be thought of as model manifolds for the objects in the original system. As discussed
above, those numerical approximations are close to the true invariant objects. Thus,
from a numerical standpoint we do not make any distinction between TĪ and LĪ .

Remark 4.22. Close to the equilibrium point, one can use either normal form or
original coordinates to parametrize the manifolds. In practice, we transform coor-

dinates from and to normal form as needed using T (N) and its inverse
(

T (N)
)−1

.
In our notation, we do not distinguish between manifolds written in normal form
and original coordinates.

Note that Λc is a compact manifold which consists of a 1-parameter family of
action level sets:

Λc =
⋃

Ī∈[0,Imax]

LĪ .
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Figure 2. The normally hyperbolic invariant manifold Λc as a
family of invariant tori of increasing out-of-plane action Iv. It is
plotted in the original SCRTBP coordinates (2.1). This NHIM
corresponds to a low energy c = 3.00088. (Refer to the definition
of Iv in equation (4.15c). See also Remark 4.10 on the meaning of
‘out-of-plane’).

Figures 2 and 3 show two NHIM corresponding to two different energies: a low
energy c = 3.00088 close to c1, and a high energy c = 3.00083 close to chalo.
Actually, we only show a few representative level sets in Λc.

Remark 4.23. The maximum out-of-plane action Imax depends on the value of the
energy considered. For example, c = 3.00088 yields a maximum action Imax ≃
0.052, whereas c = 3.00083 yields a maximum action Imax ≃ 0.17. To compare
different energies, in the figures we normalize the out-of-plane action to lie on [0, 1].

All these objects have associated stable and unstable (or asymptotic) invariant
manifolds of one more dimension than the object itself. The normal form provides
a very accurate approximation to the local asymptotic manifolds in a small neigh-
borhood of Λ. Outside this neighborhood, the asymptotic manifolds are globalized
using numerical integration.

Let Υs = Υu = (0, υ) ⊂ R be a small interval in the stable (resp. unstable)
coordinates. (In practice, we take υ = 10−5). The local invariant center-stable and
center-unstable manifolds are given by

W cs
loc := W c(L1)⊕Υs

= {(x1, y1, Ip, φp, Iv, φv) : x1 = 0, y1 ∈ Υs, Ip, Iv ∈ R
+, φp, φv ∈ T},
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Figure 3. This NHIM corresponds to a high energy c = 3.00083.

W cu
loc := W c(L1)⊕Υu

= {(x1, y1, Ip, φp, Iv, φv) : x1 ∈ Υu, y1 = 0, Ip, Iv ∈ R
+, φp, φv ∈ T}.

The 4-dimensional local stable and unstable invariant manifolds of Λc are

(4.23) W s
loc(Λc) := Λc ⊕Υs, Wu

loc(Λc) := Λc ⊕Υu.

The 3-dimensional local stable and unstable (non-invariant) manifolds of LI are

(4.24) W s
loc(LĪ) := LĪ ⊕Υs, Wu

loc(LĪ) := LĪ ⊕Υu.

The decomposition of Λc into level sets implies an analogous decomposition of
the asymptotic manifolds

W s
loc(Λc) =

⋃

Ī∈[0,Imax]

W s
loc(LĪ), Wu

loc(Λc) =
⋃

Ī∈[0,Imax]

Wu
loc(LĪ).

We use this property to compute W s
loc(Λc), W

u
loc(Λc) numerically: it is enough to

compute W s
loc(LĪ), W

u
loc(LĪ) for a “dense” set of actions Ī.

Recall that the asymptotic manifolds are invariant for the dynamics. To obtain
the global asymptotic manifoldsW s(LĪ), W

u(LĪ), we propagate the local manifolds
using numerical integration. More precisely, we do the following:

(1) Fix a 2-dimensional section of the stable manifold at a distance υ = 10−5

of the action level set LĪ measured along W s
loc(LĪ), and similarly for the

unstable manifold:

W s
υ (LĪ) := W s(LĪ) ∩ {y1 = υ},(4.25)

Wu
υ (LĪ) := Wu(LĪ) ∩ {x1 = υ}.(4.26)
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These sets belong to the boundary of the local stable (resp. unstable)
manifolds of LĪ as given in (4.24).

(2) Transform the sets W s
υ (LĪ),W

u
υ (LĪ) back to SCRTBP coordinates (2.1).

(3) Consider Wu
υ (LĪ) as a set of initial conditions, and integrate the corre-

sponding trajectories forward in time using SCRTBP equations (2.1). The
resulting orbits approximate the global unstable manifold.

(4) Consider W s
υ (LĪ) as a set of initial conditions, and integrate the corre-

sponding trajectories backward in time using SCRTBP equations (2.1).
The resulting orbits approximate the global stable manifold.

Recall from section 2 that there exists a preserved fibration of the stable/unstable
manifold Wu,s(Λc) by the stable/unstable manifolds of points on Λc

W s,u(Λc) =
⋃

x∈Λc

W s,u(x).

Remark 4.24. The stable and unstable fibrations are not invariant by the flow.
Instead, they are preserved by the flow Φ, meaning that fibers are carried into
fibers. In other words, if two points x and y belong to the same fiber, then Φt(x)
and Φt(y) belong to the same fiber for every t.

Let z = (Ī , φ̄p, φ̄v) be a point on Λc. The local stable and unstable manifolds of
z are given by

W s
loc(z) :=z ⊕Υs

={(x1, y1, Ip, φp, Iv, φv) : x1 = 0, y1 ∈ Υs, Iv = Īv, C(Ip, Iv) = c,

φp = φ̄p, φv = φ̄v}

(4.27)

Wu
loc(z) :=z ⊕Υu

={(x1, y1, Ip, φp, Iv, φv) : x1 ∈ Υu, y1 = 0, Iv = Īv, C(Ip, Iv) = c,

φp = φ̄p, φv = φ̄v}.

(4.28)

4.3. Computation of Homoclinic Points. Next we explain the procedure used
to compute the intersection of the stable and unstable manifolds W s(Λc)∩Wu(Λc)
restricted to a suitable surface of section S. Our procedure is similar to the one
used by Masdemont [44]. The main difference is that we decompose W s(Λc) and
Wu(Λc) into level sets for the purpose of the computation.

The procedure consists of the following three steps:

(1) First integrate the stable and unstable invariant manifolds until they cut
the surface of section S for the first time. This gives rise to two sets of
points on the section, denoted W s

S(LI) and Wu
S (LI).

(2) Then look for approximate intersections between these two sets. We look
for pairs of points (x1, x2) with x1 ∈ Wu

S (LI) and x2 ∈ W s
S(LI) such that

their distance |x1 − x2| in phase space is small.
(3) Finally refine these approximate intersections using a Newton method to

obtain true intersections, i.e. zeros of the distance function |x1 − x2|.
Let us describe these three steps in more detail, and present the numerical results.

For the first step, we fix a 5-dimensional surface of section

S = {(x, y, z, ẋ, ẏ, ż) : y = 0, ẏ > 0}.
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This section corresponds to crossing the xz-plane (with positive y velocity) in syn-
odic SCRTBP coordinates (4.2). Notice that the choice of the section S is somewhat
arbitrary; it is only related to the computation procedure. Specifically, the section
is used to reduce the dimension of the manifolds and their intersection. This way,
the problem to compute their intersection becomes simpler.

To integrate the asymptotic manifolds, we select initial conditions on the local
stable and unstable manifolds of Λc at a small distance υ = 10−5 of the normally
hyperbolic invariant manifold Λc. In particular, we fix two level sets LI1 and LI2 ,
and consider a 2-dimensional section of the stable manifold at a small distance
υ = 10−5 of LI2 , and similarly for the unstable manifold:

W s
υ (LI2 ) := W s(LI2 ) ∩ {y1 = υ},(4.29)

Wu
υ (LI1) := Wu(LI1 ) ∩ {x1 = υ}.(4.30)

These sections belong to the boundary of the local stable (resp. unstable) manifolds
of Λc as given in (4.23).

Integrate the set of initial conditions Wu
υ (LI1 ) forwards until they hit the section

S, obtaining a set of final points denoted Wu
S (LI1) ⊂ S. Integrate the set of initial

conditions W s
υ (LI2 ) backwards until they hit the section S, obtaining a set of final

points denoted W s
S(LI2 ) ⊂ S. Figure 4 shows the sets Wu

S (LI1) and W s
S(LI2 ) for

two sample action levels I1 = I2 = 0.12.

Remark 4.25. We are only considering the ‘first’ intersection of the stable and
unstable manifolds with the section S. We have also explored subsequent (second,
third, etc) intersections of the manifolds with the section, but they do not seem to
be more interesting for the purpose of diffusion.

For the second step of the procedure, we consider all pairs of points (x1, x2)
with x1 ∈ Wu

S (LI1) and x2 ∈ W s
S(LI2 ), and compute the distance |x1 − x2|. Then

we select only those pairs (x1, x2) whose distance is below a given threshold, e.g.
|x1 − x2| < 0.01.

Let y− ∈ Wu
υ (LI1 ) be the initial condition that corresponds to x1, that is

Φt(y−) = x1. Let y+ ∈ W s
υ (LI2) be the initial condition that corresponds to

x2, that is Φ−s(y+) = x2. Since |x1 − x2| is small, the point x1 is a candidate to
homoclinic point, giving rise to an approximate homoclinic orbit from y− to y+.

For the third step of the procedure, we use a multidimensional Newton method to
refine the initial conditions y− and y+ until |x1−x2| = 0 within numerical tolerance
10−10. Therefore the point x = x1 is considered a homoclinic point, giving rise to
a true homoclinic orbit from y− to y+.

For each different homoclinic orbit obtained in the third step, we record the
following information:

• initial conditions y− ∈ Wu
υ (LI1) and y+ ∈ W s

υ (LI2 ),
• integration times t and s,
• homoclinic point x ∈ Wu

S (LI1) ∩W s
S(LI2 ).

Of course, we vary the level sets LI1 and LI2 in the range [0, Imax], and repeat
the computation procedure explained above to obtain the homoclinic points.

The numerics show that, given two level sets LI1 and LI2 , typically there are
either 8, 4, or 0 homoclinic points. As the value of the level sets changes, one
encounters some exceptional values of LI1 and LI2 for which the manifolds Wu

S (LI1)
and W s

S(LI2) intersect tangentially, giving rise to 6 or 2 intersections.
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Figure 4. Some projections of the setW s
S(LĪ) (blue) andWu

S (LĪ)
(red) for an sample level set LĪ .
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Figure 4 shows the homoclinic points (marked in black) for two sample level sets
I1 = I2 = 0.12. For these particular level sets, there are 8 homoclinic points.

Collecting together all the homoclinic points, we obtain a manifold that cor-
responds to the the intersection ΓS := W s

S(Λc) ∩ Wu
S (Λc). ΓS is precisely the

intersection of the stable and unstable manifolds W s(Λc),W
u(Λc) restricted to the

section S.
Notice that ΓS is the intersection of two 3-dimensional manifoldsW s

S(Λc),W
u
S (Λc)

in the 4-dimensional space M∩S. Thus the intersection ΓS is a 2-dimensional man-
ifold.

4.4. Computation of scattering maps. In this section we compute the scatter-
ing maps associated to homoclinic manifold found in Section 4.3.

As we shall see, in our model it is difficult to verify what are the maximal
homoclinic channels and the corresponding maximally defined scattering maps.
However, every triplet of points x, x−, x+ satisfying (2.4) and (2.5) locally determine
a unique scattering map. The set of points x− (resp. x+) were these transversality
conditions fail is of codimension 1, so they do not appear explicitly in the numerical
computation. Also, the numerical verification of the existence of diffusing orbits is
based on Theorem 2.4, which assumes the existence of a finite collection of scattering
maps, so the fact that do not necessarily distinguish between several scattering maps
does not hinder in any way the numerical verification.

The computation of the scattering maps follows easily from the procedure used
to compute Wu(Λc) ∩W s(Λc) explained in section 4.3.

Recall that in Section 4.3 that we actually computed ΓS = Wu
S (Λc) ∩W s

S(Λc).
Taking the solution curves passing through ΓS yields a homoclinic manifold Γ,
whose restriction to the section S is given by ΓS . Notice that the homoclinic
manifold Γ is 3-dimensional, while ΓS is 2-dimensional.

Further, recall that the procedure described in Section 4.3 is basically a ‘shooting
method’, where we look for two initial points y− ∈ Wu

υ (Λc) and y+ ∈ W s
υ (Λc) such

that, when integrated forward (resp. backwards) in time up to the section S, they
coincide on a single final point x ∈ ΓS . More precisely, we look for the point
x ∈ ΓS by applying a Newton correction to the initial conditions y− ∈ Wu

υ (Λc) and
y+ ∈ W s

υ (Λc) and verifying that

(4.31) Φt(y−) = Φ−s(y+) = x,

for some integration times t, s > 0.
Assume that x ∈ Wu(x̃−) ∩W s(x̃+), where the points x̃−, x̃+ are to be deter-

mined. Since the fibers Wu(x̃−), W
s(x̃+) are equivariant under the Hamiltonian

flow, y− = Φ−t(x) ∈ Wu(Φ−t(x̃−)) and y+ = Φs(x) ∈ W s(Φs(x̃+)). In fact we
have that y− ∈ Wu

υ (Φ
−t(x̃−)), and y+ ∈ W s

υ (Φ
s(x̃+)), so, according to (4.27),

y− = (ỹ−, υ, 0) for some ỹ− ∈ Λc and y+ = (ỹ+, 0, υ) for some ỹ+ ∈ Λc. Since υ is
small, we can approximate y− ≈ ỹ− and y+ ≈ ỹ+. In other words, the points ỹ−,
ỹ+ are obtained from the points y−, y+, respectively, by setting both hyperbolic co-
ordinates x1, y1 equal to 0. Thus, each of the points ỹ−, ỹ+ is characterized by a set
of 3-coordinates of the form (Iv, φp, φv). Hence Φt(ỹ−) = x̃− and Φ−s(ỹ+) = x̃+.
Thus, Ω−(x) = x̃− and Ω+(x) = x̃+. We can summarize the computation as
follows:

(1) Consider each triplet of points (x, y−, y+), with x ∈ ΓS , y− = (ỹ−, υ, 0) ∈
Wu

υ (Λc) and y+ = (ỹ+, 0, υ) ∈ W s
υ (Λc), satisfying (4.31).
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(2) Compute Φt(ỹ−) = x̃− and Φ−s(ỹ+) = x̃+, for the precise times t, s that
were used in (4.31). We obtain a locally defined scattering map σ associated
to the flow Φt, given by

x̃− = Φt(ỹ−)
σ−→ x̃+ = Φ−s(ỹ+).

Each scattering map obtained via this algorithm, which is locally defined, can
be extended (in a non-unique way) to a maximal domain. At this point we do
not attempt to distinguish between different possible scattering maps and find the
corresponding maximal domains. Since the points x that we use in this computation
are taken from the 2-dimensional manifold ΓS , what we obtain are 2-dimensional
families of points x̃− ∈ V−, x̃+ ∈ V+ in Λc that correspond to one another via
locally defined scattering maps σ.

Next we show the result of computing such scattering maps in the SCRTBP.
To represent these maps graphically, we show the effect of applying the scattering
maps to several action level sets of the normalized action I = Iv/Imax (the maximal
value of the normalized action being equal to 1). The results are shown in Figure 5.

Let us clarify a few things about Figure 5:

• Each σ is π-periodic in the out-of-plane angle φv. This is due to the z = 0
symmetry in the SCRTBP.

• For each normalized action value I = 0.005, 0.010, 0.015, 0.020, we identify
a set V−, contained in the action level set, which consists of two non-
contractible red curves on the torus and are homeomorphic to a circle S1.
The corresponding set V+ consists of two ‘sinusoidal-like’ blue curves. The
‘leftmost’ red curve (consisting of points with φp < π) is mapped to the
leftmost blue curve, while the ‘rightmost’ red curve (consisting of points
with φp > π) is mapped to the rightmost blue curve.

• For each action value Iv = 0.025, 0.030, we identify a set V−, contained in
the action level set, which consists of two red curves contractible to a point
on the torus. The corresponding set V+ consists of two blue ‘figure-eight-
like’ closed loops. They do not look like closed loops, because φp = 0 and
φp = 2π need to be identified. However when we identify both sides, we
do indeed see two closed loops. The ‘center’ red curve (consisting of points
with 2 < φv < 5) is mapped to the center blue loop, while the ‘displaced’
red curve (consisting of points with φv < 2 or φv > 5) is mapped to the
displaced blue loop.

• Based on the numerical evidence, there seem to be (at least) two scattering
maps whose domains are disjoint open sets in Λc, and whose intersections
with I = const. contain the two components of the set V−. As mentioned be-
fore, it is non straightforward to precisely identify the homoclinic channels
within the homoclinic manifold, and the corresponding scattering maps,
and also to identify the maximal domains of these scattering map. The
point is that, in order to establish the existence of diffusing trajectories,
distinguishing between different scattering maps is not relevant for the ar-
gument.

• The curves depicted in Figure 5, despite some apparent gaps, are in fact
continuous. These visible gaps are due to the discrete nature of our nu-
merics. Of course, using more action-level sets and more points on those
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Figure 5. Effect of the scattering map on the normalized action
level sets I = 0.12, 0.29, 0.47, 0.65, 0.71, 0.82 (left to right and top
to bottom). Each plot shows an action level set (red) and its image
under the scattering map (blue). See text for more details.
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level sets would give a better approximation of the scattering maps, filling
in those gaps.

Next, we compute scattering maps σΣ associated to the first return map F to
the surface of section Σ in Λc, as in 2.3.

We transport each point x̃−, x̃+ in Λc by the flow Φt until the in-plane angle
φp becomes 0. We set x− = Φτ(x̃−)(x̃−) and x+ = Φτ(x̃+)(x̃+), where τ(x̃±) is the
first instant of time when the flow trajectory Φt(x̃±) intersects Σ.

We obtain numerically computed scattering maps σΣ associated to the first re-
turn map F to Σ, given by

x− = Φτ(x̃−)(x̃−)
σΣ

−→ x+ = Φτ(x̃+)(x̃+).

Each point x−, x+ is described by a pair of coordinates of the form (Iv, φv).
Since (Iv, φv) are our distinguished coordinates, from now on we will denote them
(I, φ) := (Iv , φv) for simplicity. We let x− = (I−, φ−) and x+ = (I+, φ+).

The results of computing the scattering maps reduced to the surface of section
Σ are shown in figure 6. We show the effect of applying the scattering maps to
several action level sets. An action level set here is a set of points in Σ with fixed
action I = Ī, i.e. lying on a horizontal line in the (I, φ)-plane.

Let us clarify some things about figure 6:

• We have selected a scattering map σΣ corresponding to one of the two
numerically identified scattering maps σ for the flow. More precisely, we
have selected the scattering map σ that has the maximum effect on action
level sets.

• Again, we do not identify the maximal domain of the scattering map σΣ,
so we may in fact have several scattering maps σΣ rather than a single one.
However, we stress again that main theoretical result Theorem 2.4 is valid
even when one deals with several scattering maps, so we do not necessarily
need to make distinction between various scattering maps.

• In addition to action level sets and their images by the scattering map σΣ,
we also depict some (rectangle-like) topological disks and their images by

the scattering map, i.e., 1
σΣ

−→ 2, 3
σΣ

−→ 4, 5
σΣ

−→ 6. The color code suggests
that, besides the effect on the action level sets, the scattering map also has
a twist effect, as it tilts vertical lines to the right. The topological disks
are chosen so that the image of 2 under some power of F contains 3 in its
interior, and the image 4 under some power of F contains 5 in its interior.
More details are given in Section 4.5. The color code shows that F is also
a twist map in the reverse direction, as it tilts vertical lines to the left.

We now compare the effect of scattering map σΣ on action level sets for differ-
ent energy levels. In figure 7 we have a schematic representation on the effect of
scattering map on action level sets for c = 3.00087 — closer to c1 = C(L1) —,
and for c = 3.00083 — closer to chalo = C(halo). A marked dot in each of these
diagrams signifies the possibility to move with a scattering map from an action level
set corresponding to normalized value of action equal to the horizontal coordinate
of the dot, to a an action level set corresponding to a normalized value of action
equal to the vertical coordinate of the dot. A normalized value of the action equal
to 1 corresponds to Iv = Imax, the largest possible value of the action coordinate
for the corresponding energy level. We remark that the closer c is to C(L1), the
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Figure 6. Two-dimensional projection of three different level sets
of the normalized action (red lines) and of their images by the scat-
tering maps (blue lines). Locally, the scattering map is continued
to rectangle-like sets. Rectangle 1 is mapped by the scattering map
onto rectangle 2, rectangle 3 is mapped by the scattering map onto
rectangle 4, and rectangle 5 is mapped by the scattering map onto
rectangle 6.

smaller is the normalized action that can be reached via this mechanism, and the
the closer c is to C(halo), the larger is normalized action that that can be reached
via this mechanism.

Remark 4.26. We also note that numerical computation of the scattering map, sim-
ilar to this one, in different models from celestial mechanics, have been performed in
[6, 22]. A related concept to that of scattering map that is more closely associated
to trajectories in the phase space is that of the transition map, introduced in [17];
with the notation from above, a transition map is given by the map y− 7→ y+.

4.5. Existence of diffusing orbits. We first summarize the geometric structures
that have been identified numerically so far, and explain how to apply Theorem 2.6
to show the existence of diffusing orbits.

Our numerical procedure produced the following geometric objects:

• For some fixed levels of the Jacobi constant c ∈ [chalo + ǫ0, c1) we have
obtained numerical approximations of the NHIM Λc ≃ S3, via the Birkhoff
normal form procedure in Section 4.1.1. Each such NHIM is parametrized
by a system of coordinates (Iv, φp, φv). (We recall that in our theoretical
argument we assumed that the normally hyperbolic invariant manifold Λc
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Figure 7. Effect of scattering map on action level sets for different
energy levels for c = 3.00087 (left) and c = 3.00083 (right). Both
axes are labeled by values of the normalized action.

exists, is uniquely defined, and is diffeomorphic to S3, for each c in this
energy range.)

• We have identified numerically the transverse intersection of the manifolds
Wu(Λc), W

s(Λc) within the surface of section S = {y = 0, ẏ > 0}, con-
sisting of homoclinic orbits that execute 1-turn around the Earth. Cor-
responding to this transverse homoclinic intersections we have computed
numerically and identified two scattering maps, that have different effects
on action level sets. These scattering maps take values on Λc. We have
selected and fixed the scattering map σ that has the largest effect on action
level sets. (As we did not compute the corresponding homoclinic chan-
nels, each of the numerically identified scattering maps may in fact be the
juxtaposition of several scattering maps defined on maximal domains.)

• In Λc we have built a finite grid of I := Iv-action level sets such that the
unstable manifold of each action level set intersects the stable manifolds of
one or more of the neighboring level sets in the grid. (We recall that these
level sets are not invariant under the Hamiltonian flow.)

• We have fixed a local surface of section Σ = {φ2 = 0, φ̇2 > 0} in a neigh-
borhood of Λc and computed the first return map F to Σ. The manifold
ΛΣ
c = Λc∩Σ is a NHIM for F . The selected scattering map σ for the Hamil-

tonian map induces a scattering map corresponding to the return map. We
have identified a finite sequence of level sets LΣ

I0
, . . . ,LΣ

IN
in ΛΣ

c , such that

for each j = 0, . . . , N − 1, σΣ(LΣ
Ij
) intersects transversally LΣ

Ij+1
.

• We construct a sequence of topological disks Bj in ΛΣ
c , j = 0, . . . , N − 1,

such that:
– each Bj is contained in a neighborhood of diameter δj of some point

(Ij , φj) ∈ LΣ
Ij
, for some suitable δj > 0, and

– for each j = 0, . . . , N − 1, int[F kj ◦ σΣ(Bj)] ⊇ Bj+1, for some kj > 0.
• Choosing δ > maxj δj, Theorem 2.6 implies the existence of a trajectory
Φt(z) of the Hamiltonian flow and of times tj such that d(Φtj (z),LIj ) < δ,
for j = 0, . . . , N − 1.
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Figure 8. Two-dimensional scattering map acting on three differ-
ent level sets of the normalized action (red lines). The topological
disk 1 is mapped to 2 by the scattering map. The topological disk
2 is mapped to 2’ after 11 iterations. The topological disk 2’ con-
tains 3 in its interior. The topological disk 3 is mapped to 4 by the
scattering map. The topological disk 4 is mapped to 4’ after 12
iterations. The topological disk 4’ contains 5 in its interior. The
topological disk 5 is mapped to 6 by the scattering map.

The numerical construction of the topological disks is shown in Figure 8. First
we identify four action level sets LΣ

I0
= 0.12, LΣ

I1
= 0.35, LΣ

I2
= 0.53, and LΣ

I3
= 0.71

such that σΣ(LΣ
Ij
) intersects transversally LΣ

Ij+1
, for j = 0, 1, 2. The first three level

sets are shown in red. Their image by the scattering map is shown in blue. The
last level set is not shown in the figure.

Then we choose a sequence of points (Ij , φj) ∈ LΣ
Ij

such that each of these points

is mapped by the scattering map to the next action level set: σΣ(Ij , φj) ∈ LΣ
Ij+1

for j = 0, 1, 2. In the picture, the first point (I0, φ0) is located on the topological
disk 1, the second point (I1, φ1) is on disk 3, and the third point (I2, φ2) is on
disk 5. These points are actually not shown in the figure to avoid cluttering. Their
respective images are located on disks 2, 4, and 6.

Then we construct a sequence of topological disks (denoted 1 to 5 in the figure)
in ΛΣ such that:

• disc 1 is mapped to disc 2 by the scattering map σΣ, disc 3 to disc 4, and
disc 5 to disc 6.
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Figure 9. An example of a diffusing orbit, in four different projections.

• disc 2 is mapped by the first return map F to disc 2’ after 11 iterations,
and disc 4 is mapped by F to disc 4’ after 12 iterations.

• disc 3 is contained strictly inside disc 2’, and disc 5 is contained strictly
inside disc 4’.

• the diameter of the discs are: disc 1: δ0 = 0.18, disc 3: δ1 = 0.06, disc 5:
δ2 = 0.01.

Therefore, choosing δ > 0.18, Theorem 2.6 implies the existence of a trajectory
Φt(z) of the Hamiltonian flow and of times tj such that d(Φtj (z),LIj ) < δ, for
j = 0, 1, 2.

An example of a diffusing trajectory obtained via this mechanism is shown in
figure 9.
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